CH513097A - Unsaturated cycloaliphatic ketones - Google Patents

Unsaturated cycloaliphatic ketones

Info

Publication number
CH513097A
CH513097A CH1805270A CH1805270A CH513097A CH 513097 A CH513097 A CH 513097A CH 1805270 A CH1805270 A CH 1805270A CH 1805270 A CH1805270 A CH 1805270A CH 513097 A CH513097 A CH 513097A
Authority
CH
Switzerland
Prior art keywords
sep
ketones
formula
trimethyl
acid
Prior art date
Application number
CH1805270A
Other languages
French (fr)
Inventor
Ervin Dr Kovats
Edouard Dr Demole
Guenther Dr Ohloff
Max Dr Stoll
Original Assignee
Firmenich & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firmenich & Cie filed Critical Firmenich & Cie
Priority to CH1805270A priority Critical patent/CH513097A/en
Publication of CH513097A publication Critical patent/CH513097A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0069Heterocyclic compounds
    • C11B9/0073Heterocyclic compounds containing only O or S as heteroatoms
    • C11B9/0076Heterocyclic compounds containing only O or S as heteroatoms the hetero rings containing less than six atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/203Alicyclic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/34Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a carbocyclic ring other than a six-membered aromatic ring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/36Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring
    • A24B15/40Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring having only oxygen or sulfur as hetero atoms
    • A24B15/403Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring having only oxygen or sulfur as hetero atoms having only oxygen as hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/08Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/40Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing carbon-to-metal bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/04Acyclic alcohols with carbon-to-carbon triple bonds
    • C07C33/048Acyclic alcohols with carbon-to-carbon triple bonds with double and triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/14Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by doubly-bound oxygen atoms
    • C07C403/16Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by doubly-bound oxygen atoms not being part of —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/14Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/32Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by aldehydo- or ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0007Aliphatic compounds
    • C11B9/0015Aliphatic compounds containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0026Essential oils; Perfumes compounds containing an alicyclic ring not condensed with another ring
    • C11B9/0034Essential oils; Perfumes compounds containing an alicyclic ring not condensed with another ring the ring containing six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Epoxy Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Seasonings (AREA)

Abstract

The ketones have organoleptic properties and can be used in the perfumery industry, as ingredients in artificial essences and as additives for human and animal food, drinks, pharmaceuticals and tobacco. They have the formula : (where R1, R2 and R3 are H or one of them is a lower alkyl radical; R4, R5, R6 and R7 are H or one of them is a lower alkyl radical and n is 0 or 1). Prepn. is by oxidation of the corresponding alcohols (in posn.11) which also possess similar properties and are themselves prepd. by the addition of an organometallic cpd. of formula : Me CHn(R3) = C(R2) - CH2-nR1 (where Me is Li or BrMg) to alpha-, beta- or gamma-cyclocitral derivs. followed by hydrolysis of the resulting addn. product.

Description

  

  
 



  Procede pour la preparation de composes cyclooléfiniques carbonyles
La présente invention concerne un procédé pour la préparation de cétones cyclooléfiniques de formule:
EMI1.1     
 dans laquelle les pointillés representent une double liaison endocyclique en position 1-(forme ss-) ou 2- (forme   α-),    dans laquelle l'un des R représente un alcoyle, par exemple méthyle ou éthyle, et les autres R l'hydrogène, et dans laquelle les R' représentent soit l'hydrogène, soit l'un d'entre eux un alcoyle, par exemple méthyle ou éthyle, et les autres l'hydrogène.



   On a découvert que les composés de formule I sont doués de propriétés organoleptiques particulièrement intéressantes et de ce fait sont utilisables comme agents parfumants dans l'industrie des parfums, comme ingredients dans la preparation   d'arömes    artificiels et comme agents   aromatisants    pour l'aromatisation d'aliments, d'aliments pour animaux, de boissons, de preparations pharmaceutiques et du tabac.



   Les nouvelles cétones peuvent être utilisées comme ingrédients odoriférants dans les parfums dilués ou concentrés et dans les produits parfumes tels les savons, les detergents, les produits   cosmetiques,    les cires et autres produits pouvant être parfumés et susceptibles de devenir ainsi plus intéressants du point de vue commercial.



  De plus, ces composés sont très prisés en tant qu'ingrédients entrant dans la préparation d'huiles essentielles artificielles, telles par exemple les essences de jasmin, de géranium Bourbon, de rose, etc. Les cétones de formule I augmentent souvent la la puissance et le pouvoir de diffusion des compositions de parfums et leur conferent dans bien des cas une richesse   tres    naturelle.



   Les cetones I possedent egalement des propriétés aromatisantes   tres    interessantes. Selon la nature des produits auxquels on les ajoute elles développent des notes aromatiques fruitées, vineuses, boisées, florales, cireuses ou de plantes aromatiques, ou toute combinaison desdites notes.



   Le procédé de l'invention est caractérisé en ce qu'on cyclise des cétones oléfiniques (appelées  pseudo  cétones) de formule:
EMI1.2     
 dans laquelle les symboles R et R' ont le sens indiqué plus haut au moyen d'un agent cyclisant acide. Cette cyclisation peut être effectuée dans des conditions semblables à celles qu'on utilise habituellement pour cycliser le citral en cyclocitral ou l'acide géranique en acide cyclogéranique (voir à ce sujet Perfumery and Flavoring Synthetics, P.Z. Bedoukian, Elsevier Publ. Company, New York (1967)). De façon générale, l'utilisation dans la cyclisation par le procédé selon l'invention d'un acide  protonique comme, par exemple, H2SO4 HCI ou H3PO4, conduit à des cétones I de structure ss-, c'est   à-dire    avec la double liaison cyclique conjuguée avec le groupe CO.

  Par contre, l'utilisation dans ladite cyclisation d'acides dits de Lewis, tels par exemple l'éthérate de   trifluorure    de bore, ou le SnCl4, conduit à des cétones de structure   α-,      c'est-à-dire    avec la double liaison en position 2- du cycle. Comme solvant pour ladite cyclisation on peut   employer    avantageusement un solvant inerte tels, par exemple, le benzene ou le toluene.



   Dans le procédé ci-dessus, les   pseudo   cétones II, qui sont des produits odorants nouveaux et utilisables avantageusement en   parfumerie,    peuvent   etre      facilement    préparées en faisant reagir des dérivés du citral de formule:
EMI2.1     
 dans laquelle les R' ont le sens indiqué plus haut, avec des dérivés organométalliques du propene de formule:
MR-CR=CH-CH2R dans laquelle ME represente une fonction métallique, telles par exemple Li- ou BrMg-, et les R ont le sens indique plus haut, puis l'hydrolyse du produit d'addition et finalement en oxydant l'alcool resultant par un agent Schema A: oxydant. Le procédé est illustré par le schema A cidessous, dans lequel les symboles R et R' ont le sens indiqué plus haut.
EMI2.2     

EMI2.3     


<tb>



  oxydation
<tb> 
EMI2.4     

Pour oxyder l'alcool III, on peut employer comme agents oxydants le carbonate d'argent en présence de terre d'infusoires, des dérivés oxygénés de certains éléments de transition comme le chrome et le manganese, et l'oxygène sous forme de gaz (pur ou atmosphérique) en présence d'activateurs comme, par exemple, des ini   tiateurs    de la formation de radicaux libres. Des dérivés du chrome et du manganese utilisables dans le processus d'oxydation ci-dessus comprennent par exemple CrO2 ou l'acide chromique, le MnO2 ou des permanganates. De préférence on emploie le trioxyde de chrome ou le dioxyde de manganese (voir par exemple J. Org.



  Chem. 26, 4814 (1961)). MnO2 est un oxydant bon marche pouvant etre utilise à temperature ambiante dans un solvant inerte comme le pentane ou l'hexane.



  Lorsqu'on l'utilise pour convertir III en II, l'isomérie géometrique du produit à oxyder est conservée (alcools   III de forme cis- ou trans- 011 ou langes des deux for-    mes). Lorsqu'on utilise CrOs, de préférence en presence d'une base   organique    comme la pyridine, il peut se produire une isomerisation et la cetone résultant de l'oxydation des alcools III (forme cis- ou trans-) peut pré- senter la structure trans-. Les dérivés IV eux-mêmes peuvent   etre    préparés par analogie avec divers procédés connus dont quelques exemples sont illustrés par les schemas B et C suivants dans lesquels les R' ont le sens déja décrit, ME représente une fonction métallique réactive et r designe une réaction d'addition d'un   reactif    organométallique sur une cétone (voir par exemple D.J.



  Cram et G.S. Hammond, Organic   Chemistry,    McGraw- Hill, New York (1959) p. 294).  



  Schema B:
EMI3.1     
 Schema C: b: Réaction de Carroll (voir par exemple J. Chem. Soc. pp. 704, 1266 (1940), p. 507 (1941)).



  c: Diverses reactions de conversion des méthylhepténones en citrals correspondants (voir par exemple Bedoukian,
Perfumery and Flavoring Synthetics, Elsevier, New York (1967) p. 102-103)).
EMI3.2     


<tb>



   <SEP> R' <SEP> R'
<tb>  <SEP> b
<tb> R <SEP> ,;) <SEP> ss <SEP> + <SEP> R
<tb>  <SEP> Cooi <SEP> t
<tb>  <SEP> R <SEP> '
<tb>  <SEP> derivs <SEP> de <SEP> la <SEP> methyl
<tb>  <SEP> R' <SEP> heptenone
<tb>  <SEP> R')I <SEP> , >  <SEP> CHO
<tb>  <SEP> 1 <SEP> IV
<tb>  <SEP> R <SEP> ' < S
<tb>   
On peut egalement preparer les pseudo-cétones II à partir des dérivés de la méthylhepténone (voir schema C cidessus) au moyen d'un processus illustré par le schema D ci-dessous dans lequel les symboles R' ont le sens   deja    indique plus haut. Un mode   operataire    de ce processus est detaillé dans la partie speciale de la presente description.



  Schema D:
EMI4.1     

EMI4.2     


<tb> 7
<tb> n <SEP> thynylatton
<tb> 
EMI4.3     
 1) alcoyl-MgBr
EMI4.4     
 2) RCH=CR-CHXR CuCl2/KOH
X=halogène
EMI4.5     


<tb>  <SEP> RT
<tb> CHR-CH=CHR
<tb>  <SEP> OH
<tb>  <SEP> RT
<tb>  <SEP> anhydride <SEP> acét <SEP> ique
<tb>  <SEP> h <SEP> 8 <SEP> ,
<tb>  <SEP> b
<tb>  <SEP> -H-CR:CHR
<tb>  <SEP> R
<tb>  <SEP> 1 <SEP> i
<tb>  <SEP> OAc
<tb>  <SEP> R'
<tb>  <SEP> CuAc2
<tb>  <SEP> v
<tb>  <SEP> RfMÄK <SEP> c;O-CR:OR-CH2R
<tb>  <SEP> R <SEP> CO-CR=CR-CH,R
<tb>  <SEP> YII
<tb> 
Les exemples qui suivent illustrent l'invention de maniere plus détaillée. Dans lesdits exemples, les temperatures figurent en degres   centigrades.   



  Exemple 1:
Préparation du 2,6,6-triméthyl-1-(4-méthylcrotonyl)-2-cyclohexène a) Sous atmosphère d'azote ou a ajouté goutte à goutte, à 0-50, 75 g de 7,11-diméthyl-5-oxo-3,6,10-do- décatriène (contenant également un peu de 7,11-diméthyl-5-oxo-3,7,10-dodécatriene et de 1-méthyl-7-méthylène-5-oxo-3,10-dodécadiène) à une solution bien agitée de 30g de chlorure stannique dans 350 ml de benzene sec. On a   maintenu    en agitation à 30-35  jusqu'à complete disparition des composés trieniques (2-3 h), le changement étant contrôle périodiquement par analyse par chromatographie en phase gazeuse. On a ensuite verse le tout sur de la glace. On a extrait à l'éther et lave l'extrait à l'eau jusqu'à neutralité. Apres sechage de l'extrait, on l'à concentré sous pression reduite et obtenu 72 g de residu brut.

  Ce dernier a fourni par distillation 22,6 (30 %) de trans-2,6,6-triméthyl-1-(4-méthylcrotonoyl)-2-cyclohexène, Eb. 75-770/0,1 Torr; =1,4925; D20 = 0,9821.



   Le 7,11-diméthyl-5-oxo-3,6,10-dodécatriène utilisé comme produit de départ a   ete    préparé comme suit: b) On a ajouté à 200, 456 g (3 moles) de dehydrolinalol à une solution fraiche de 220g (3,9 moles) de KOH, 30g de K2CO3 et 20g de Cu2CI2 dans 1500 ml de methanol. Puis, sous vigoureuse agitation et en maintenant la température au-dessous de   500,    on a ajouté goutte à goutte 352 g (3,9 moles) de 3-chloro-1-butène.

 

  Après encore 3 h d'agitation, on a éliminé le methanol sous pression reduite et secoué le residu avec environ 1 litre d'eau. On a procédé à une extraction à l'éther et l'extrait, traité comme de coutume, a fourni par distillation, à   cote    de 44 g de dehydrolinalol, 530 g d'un mé- lange 85:15 de 7,11-diméthyl-2,10-dodécadiène-5-ine-7- ol (A) et de 3,6,10-triméthyl-1,9-undécadiène-4-ine-6-ol (B). On a séparé ces deux alcools acétyléniques par distillation sur colonne à bande tournante. Le corps A   (400 g) présentait les constantes suivantes: Eb. 84-5%/0,1 Torr; n20=1,4824; d20 = 0,8872. Absorptions IR caractéristiques 3380, 2235, 960 cm-1
Pour l'alcool B (80 g) on a mesuré Eb. 800/0,1 Torr; nD30 = 1,4789; d240 = 0,8944. Bandes IR, 3380, 2235, 915,   1640 cm-1.   



   c) 400 g de   l'alcool    A, préparé suivant la mé- thode du paragraphe précédent ont ete chauffés 3 h à 1300 en présence de 700g   d'anhydride    acétique et de 60 g d'acetate de soude. On a éliminé l'excés   d'anhydride    à 50  sous pression réduite en on a traité le résidu à l'eau comme d'habitude. On a extrait à l'éther de pétrole puis on a lavé l'extrait par une solution de carbonate de soude. Apres séchage de l'extrait on a obtenu par distillation 414 g (90 %) de l'acétate de l'alcool A dont les caractères étaient les suivants: Eb. 88-90%0,1 Torr; nD20 = 1,4732; d420= 0,9122. Bandes d'absorption IR, 1740, 2240,   965 cm-1.   



   d) On a chauffé 5 heures, à 90  248 de l'acétate préparé suivant le méthode du paragraphe précédent avec 50 ml d'acide acétique, 10 g   d'acetate    de cuivre. On a alors constaté par l'analyse chromatographique en phase gazeuse que l'acétate de départ avait été entièrement transformé. Après concentration du mélange sous pression réduite, on a secoué le résidu avec 300 ml d'eau et épuisé le melange à l'éther de petrole. Apres neutralisation, lavage et séchage de l'extrait comme d'habitude on a obtenu par distillation 190 g d'un melange de 7,11-diméthyl-5-oxo-3,6,10-dodécatriène et des cétones isoméres 7,11-diméthyl-5-oxo-3,7,10-dodécatriène et 11méthyl-7-méthylène-5-oxo-3,10-dodécatriene.

  Ledit mélange utilise   directement    pour la cyclisation suivant la methode du paragraphe a) ci-dessus a présenté les constantes suivantes: Eb. 88-970/0,1 Torr; nD20= 1,4932 d240 = 0,8919.



  Exemple 2:
Preparation du 2,6,6-triméthyl-1-(2-méthylcrotonoyl)-2-cyclohexène a) A 30 , on a procédé à la cyclisation, suivant la méthode décrite à l'exemple 1, paragraphe a), de 25 g de 3,6,10-triméthyl-4-oxo-2,5,9-undécatriène (lequel etait accompagné des cétones isomères 3,6,10-triméthyl-4oxo-2,6,9-undécatriène et 3,10-diméthyl-6-méthylène-4oxo-2,9-undécadiène) en présence de 50 ml de benzène sec et de 10 g de SnCl4, On a obtenu, par distillation de 2 g de produit brut, 12,8 g d'une substance huileuse qui, purifiée par chromatographie en phase gazeuse, a fourni 8,8 g de 2,6,6-triméthyl-1-(2-méthylcrotonoyl)-2-cyclo- hexene. On a mesure pour ce produit les constantes suivantes: Eb. 70-71 /0,1 Torr; nD20 = 1,4818; d420= 0,9249. Bandes d'absorption IR: 1720, 1630, 825, 810 cm-1.



   Le mélange des cetones de depart a   ete    préparé comme suit: b) 50 g de   l'alcool    B obtenu à l'exemple 1, paragraphe b) ont été acétylés par 84 g d'anyhdride acétique en présence de 8 g d'acétate de soude dans les mêmes conditions que celles decrites à l'exemple 2, paragraphe c). On a obtenu ainsi 54 g (90 %)   d'acetate    de 3,6, 10-triméthyl-1,9-undécadiène-4-ine-6-yle. Absorption IR: 245, 1745, 1640, 915 cm-1.



   c) On a isomerisé 37 g de l'acétate préparé suivant la methode décrite au paragraphe précédent par 5 h de chauffe à 900 en présence de 75 ml d'acide acétique et 1,5 g   d'acetate    de cuivre. On a ainsi obtenu 26 g (85 %) de 3,6,10-triméthyl-4-oxo-2,5,9-undécatriène, accompagné des deux autres cétones isomeres.   Ce    melange a   ete    utilise   directement    pour Ja cyclisation suivant la methode décrite au paragraphe a) ci-dessus. Constantes: Eb. 7577 /0,1 Torr; nD20 = 1,4899; d420 = 0,8890.



  Exemple 3:
Préparation du 2,6,6-triméthyl-1-(3-méthylcrotonoyl)-2-cyclohexène a) Suivant la methode decrite à l'exemple 1, paragraphe a), on a cyclise 20 g de 2,6,10-triméthyl-4-oxo- 2,5,9-undécatriène au moyen de 7 g de SnCl4 dans 100 ml de benzene sec. On a   maintenu    la temperature audessous de 150  pendant l'addition de la cétone, puis on a poursuivi l'agitation 4 heures à 40 . Suivant le procédé habituel, on a obtenu 6,8 g (34 %) de produit purifié par chromatographie en phase gazeuse. On a mesuré les constantes suivantes: Eb. 67-68 /0,1 Torr; nD20 = 1,4818; d420 = 0,9249. Bandes d'absorption IR: 1670, 1615, 826, 805 cm-1.



   Le produit de depart, lequel est accompagné des cétones isoméres 2,6,10-triméthyl-4-oxo-2,6,78-undéca triène et 2,10-diméthyl-6-méthylène-4-oxo-2,9-undécadiene, a été préparé de la maniere suivante: b) Sous atmosphère d'azote, on a ajouté par petites portions 100 g de chlorure de méthallyle à une solution contenant 60 g de KOH, 500 ml de méthanol, 10 g de K2CO3 et 7 g de CO2Cl3. Pendant l'addition, la température a été   maintenue    à environ 400. On a agite encore 3 heures, puis on a concentré sous vide et traité le résidu par 500 ml d'eau et 300 ml d'ether de pétrole.



  L'extrait a été purifié comme décrit à l'exemple 2, paragraphe b) et on en a obtenu 35 g de déhydrolinalool et 152 g (90 %) de 2,6,10-triméthyl-2,10-undécadien-7-ine6-ol dont les   caractéristiques    sont les suivantes: Eb. 70720/0,1 Torr; nD20 = 1,4818; d420 = 0,8941. Bandes d'absorption IR: 3350, 2245, 1650, 890 cm-1.



   c) On a acétylé 103 g de   l'alcool    préparé suivant la methode décrite au paragraphe précédent par 200 g d'acétanhydride et 20 g d'acetate de soude dans les conditions indiquées à l'exemple 2, paragraphe c). On a ainsi obtenu 112 g (90 %) d'acétate dont les constantes physiques sont les suivantes: Eb. 80 /0,01 Torr; nD20 = 1,4709: d420 = 0,9173. Spectre IR: 2245, 1740, 1645, 890 cm-1.

 

   d) On a isomérisé 248 g de l'acétate préparé suivant la méthode décrite au paragraphe précédent par 400 ml d'acide acétique et 15 g d'acetate de cuivre. On a procédé comme décrit à l'exemple 1, paragraphe d) et on a isole 187 g du mélange contenant le 2,6,6-triméthyl-4-oxo-2,5,9-undécatriène et des deux autres cétones isomères. Ce mélange a été utilisé tel que pour la reaction de cyclisation décrite au paragraphe a) cidessus. Constantes du produit ci-dessus: Eb. 90-97 /0,1 Torr; nD20 = 1,5075; d420 = 0,8915. 



  
 



  Process for the preparation of cycloolefinic carbonyl compounds
The present invention relates to a process for the preparation of cycloolefinic ketones of formula:
EMI1.1
 in which the dotted lines represent an endocyclic double bond in position 1- (ss- form) or 2- (&alpha;-) form, in which one of R represents an alkyl, for example methyl or ethyl, and the other R l 'hydrogen, and in which the R' represent either hydrogen, or one of them an alkyl, for example methyl or ethyl, and the others hydrogen.



   It has been found that the compounds of formula I are endowed with particularly advantageous organoleptic properties and therefore are useful as perfuming agents in the perfume industry, as ingredients in the preparation of artificial flavors and as flavoring agents for flavoring. food, animal feed, drink, pharmaceutical preparations and tobacco.



   The new ketones can be used as scent ingredients in diluted or concentrated perfumes and in perfumed products such as soaps, detergents, cosmetics, waxes and other products that can be scented and thus may become more attractive from a standpoint. commercial.



  In addition, these compounds are very popular as ingredients used in the preparation of artificial essential oils, such as for example the essences of jasmine, Bourbon geranium, rose, etc. The ketones of formula I often increase the potency and diffusing power of perfume compositions and in many cases give them a very natural richness.



   Ketones I also have very interesting flavoring properties. Depending on the nature of the products to which they are added, they develop fruity, vinous, woody, floral, waxy or aromatic herbal aromatic notes, or any combination of said notes.



   The process of the invention is characterized in that olefinic ketones (called pseudo ketones) of formula are cyclized:
EMI1.2
 in which the symbols R and R 'have the meaning indicated above by means of an acidic cyclizing agent. This cyclization can be carried out under conditions similar to those usually used to cyclize citral to cyclocitral or geranic acid to cyclogeranic acid (see on this subject Perfumery and Flavoring Synthetics, PZ Bedoukian, Elsevier Publ. Company, New York. (1967)). In general, the use in the cyclization by the process according to the invention of a protonic acid such as, for example, H2SO4 HCl or H3PO4, leads to ketones I of structure ss-, that is to say with the double cyclic bond conjugated with the CO group.

  On the other hand, the use in said cyclization of so-called Lewis acids, such as for example boron trifluoride etherate, or SnCl4, leads to ketones of structure &alpha; -, that is to say with the double bond in position 2- of the ring. As solvent for said cyclization, an inert solvent such as, for example, benzene or toluene, can advantageously be employed.



   In the above process, the pseudo ketones II, which are new odorous products and which can be advantageously used in perfumery, can be easily prepared by reacting citral derivatives of formula:
EMI2.1
 in which the R 'have the meaning indicated above, with organometallic derivatives of propene of formula:
MR-CR = CH-CH2R in which ME represents a metallic function, such for example Li- or BrMg-, and the Rs have the meaning indicated above, then the hydrolysis of the adduct and finally by oxidizing the alcohol resulting by an agent Schema A: oxidizing. The process is illustrated by diagram A below, in which the symbols R and R 'have the meaning indicated above.
EMI2.2

EMI2.3


<tb>



  oxidation
<tb>
EMI2.4

To oxidize alcohol III, one can use as oxidizing agents silver carbonate in the presence of diatomaceous earth, oxygenated derivatives of certain transition elements such as chromium and manganese, and oxygen in the form of gas ( pure or atmospheric) in the presence of activators such as, for example, initiators of the formation of free radicals. Chromium and manganese derivatives which can be used in the above oxidation process include, for example, CrO2 or chromic acid, MnO2 or permanganates. Preferably, chromium trioxide or manganese dioxide is used (see for example J. Org.



  Chem. 26, 4814 (1961)). MnO2 is an inexpensive oxidizer that can be used at room temperature in an inert solvent such as pentane or hexane.



  When used to convert III to II, the geometric isomerism of the product to be oxidized is retained (III alcohols in cis- or trans-011 form or diapers of both forms). When CrOs is used, preferably in the presence of an organic base such as pyridine, isomerization may occur and the ketone resulting from the oxidation of III alcohols (cis- or trans- form) may have the structure trans-. The derivatives IV themselves can be prepared by analogy with various known processes, some examples of which are illustrated by the following schemes B and C in which the R 'have the meaning already described, ME represents a reactive metal function and r denotes a reaction d '' addition of an organometallic reagent to a ketone (see for example DJ



  Cram and G.S. Hammond, Organic Chemistry, McGraw-Hill, New York (1959) p. 294).



  Schema B:
EMI3.1
 Scheme C: b: Carroll reaction (see for example J. Chem. Soc. Pp. 704, 1266 (1940), p. 507 (1941)).



  c: Various reactions for converting methylheptenones into corresponding citrals (see for example Bedoukian,
Perfumery and Flavoring Synthetics, Elsevier, New York (1967) p. 102-103)).
EMI3.2


<tb>



   <SEP> R '<SEP> R'
<tb> <SEP> b
<tb> R <SEP>,;) <SEP> ss <SEP> + <SEP> R
<tb> <SEP> Cooi <SEP> t
<tb> <SEP> R <SEP> '
<tb> <SEP> derivs <SEP> from <SEP> the <SEP> methyl
<tb> <SEP> R '<SEP> heptenone
<tb> <SEP> R ') I <SEP>,> <SEP> CHO
<tb> <SEP> 1 <SEP> IV
<tb> <SEP> R <SEP> '<S
<tb>
Pseudo-ketones II can also be prepared from methylheptenone derivatives (see scheme C above) by means of a process illustrated by scheme D below in which the symbols R 'have the meaning already indicated above. An operating mode of this process is detailed in the special part of the present description.



  Schema D:
EMI4.1

EMI4.2


<tb> 7
<tb> n <SEP> thynylatton
<tb>
EMI4.3
 1) alkyl-MgBr
EMI4.4
 2) RCH = CR-CHXR CuCl2 / KOH
X = halogen
EMI4.5


<tb> <SEP> RT
<tb> CHR-CH = CHR
<tb> <SEP> OH
<tb> <SEP> RT
<tb> <SEP> anhydride <SEP> acet <SEP> ic
<tb> <SEP> h <SEP> 8 <SEP>,
<tb> <SEP> b
<tb> <SEP> -H-CR: CHR
<tb> <SEP> R
<tb> <SEP> 1 <SEP> i
<tb> <SEP> OAc
<tb> <SEP> R '
<tb> <SEP> CuAc2
<tb> <SEP> v
<tb> <SEP> RfMÄK <SEP> c; O-CR: OR-CH2R
<tb> <SEP> R <SEP> CO-CR = CR-CH, R
<tb> <SEP> YII
<tb>
The examples which follow illustrate the invention in more detail. In said examples, temperatures are shown in degrees centigrade.



  Example 1:
Preparation of 2,6,6-trimethyl-1- (4-methylcrotonyl) -2-cyclohexene a) Under nitrogen atmosphere or added dropwise, at 0-50, 75 g of 7,11-dimethyl-5 -oxo-3,6,10-do- decatriene (also containing some 7,11-dimethyl-5-oxo-3,7,10-dodecatriene and 1-methyl-7-methylene-5-oxo-3 , 10-dodecadiene) to a well-stirred solution of 30 g of stannic chloride in 350 ml of dry benzene. Stirring was continued at 30-35 until complete disappearance of the triene compounds (2-3 h), the change being checked periodically by analysis by gas chromatography. It was then poured over ice. It was extracted with ether and the extract was washed with water until neutral. After drying the extract, it was concentrated under reduced pressure to obtain 72 g of crude residue.

  The latter distilled 22.6 (30%) of trans-2,6,6-trimethyl-1- (4-methylcrotonoyl) -2-cyclohexene, Eb. 75-770 / 0.1 Torr; = 1.4925; D20 = 0.9821.



   The 7,11-dimethyl-5-oxo-3,6,10-dodecatriene used as the starting material was prepared as follows: b) To 200.456 g (3 moles) of dehydrolinalool were added to a fresh solution of 220g (3.9 moles) of KOH, 30g of K2CO3 and 20g of Cu2Cl2 in 1500 ml of methanol. Then, with vigorous stirring and maintaining the temperature below 500, 352 g (3.9 moles) of 3-chloro-1-butene were added dropwise.

 

  After a further 3 h of stirring, the methanol was removed under reduced pressure and the residue shaken with about 1 liter of water. Extraction was carried out with ether and the extract, treated as usual, gave by distillation, at 44 g of dehydrolinalool, 530 g of an 85:15 mixture of 7,11-dimethyl. -2,10-dodecadiene-5-ine-7-ol (A) and 3,6,10-trimethyl-1,9-undecadiene-4-ine-6-ol (B). These two acetylenic alcohols were separated by distillation on a rotating band column. Body A (400 g) exhibited the following constants: Eb. 84-5% / 0.1 Torr; n20 = 1.4824; d20 = 0.8872. Characteristic IR absorptions 3380, 2235, 960 cm-1
For alcohol B (80 g), Eb was measured. 800 / 0.1 Torr; nD30 = 1.4789; d240 = 0.8944. IR bands, 3380, 2235, 915, 1640 cm-1.



   c) 400 g of alcohol A, prepared according to the method of the preceding paragraph, were heated for 3 hours at 1300 in the presence of 700 g of acetic anhydride and 60 g of sodium acetate. The excess of 50 anhydride was removed under reduced pressure and the residue treated with water as usual. It was extracted with petroleum ether and then the extract was washed with sodium carbonate solution. After drying the extract, 414 g (90%) of the acetate of alcohol A were obtained by distillation, the characteristics of which were as follows: Eb. 88-90% 0.1 Torr; nD20 = 1.4732; d420 = 0.9122. IR absorption bands, 1740, 2240, 965 cm-1.



   d) Was heated for 5 hours at 90 248 of the acetate prepared according to the method of the previous paragraph with 50 ml of acetic acid, 10 g of copper acetate. It was then found by gas chromatographic analysis that the starting acetate had been completely transformed. After concentrating the mixture under reduced pressure, the residue was shaken with 300 ml of water and the mixture extracted with petroleum ether. After neutralization, washing and drying of the extract as usual, 190 g of a mixture of 7,11-dimethyl-5-oxo-3,6,10-dodecatriene and isomeric ketones 7,11 were obtained by distillation. -dimethyl-5-oxo-3,7,10-dodecatriene and 11methyl-7-methylene-5-oxo-3,10-dodecatriene.

  Said mixture used directly for the cyclization according to the method of paragraph a) above presented the following constants: Eb. 88-970 / 0.1 Torr; nD20 = 1.4932 d240 = 0.8919.



  Example 2:
Preparation of 2,6,6-trimethyl-1- (2-methylcrotonoyl) -2-cyclohexene a) At 30, the cyclization was carried out, according to the method described in Example 1, paragraph a), of 25 g 3,6,10-trimethyl-4-oxo-2,5,9-undecatriene (which was accompanied by the isomeric ketones 3,6,10-trimethyl-4oxo-2,6,9-undecatriene and 3,10-dimethyl -6-methylene-4oxo-2,9-undecadiene) in the presence of 50 ml of dry benzene and 10 g of SnCl4, Was obtained by distillation of 2 g of crude product, 12.8 g of an oily substance which, purified by gas chromatography, provided 8.8 g of 2,6,6-trimethyl-1- (2-methylcrotonoyl) -2-cyclohexene. The following constants were measured for this product: Eb. 70-71 / 0.1 Torr; nD20 = 1.4818; d420 = 0.9249. IR absorption bands: 1720, 1630, 825, 810 cm-1.



   The mixture of starting ketones was prepared as follows: b) 50 g of alcohol B obtained in Example 1, paragraph b) were acetylated with 84 g of acetic anhydride in the presence of 8 g of acetate. sodium hydroxide under the same conditions as those described in Example 2, paragraph c). There was thus obtained 54 g (90%) of 3,6,10-trimethyl-1,9-undecadiene-4-ine-6-yl acetate. IR absorption: 245, 1745, 1640, 915 cm-1.



   c) 37 g of the acetate prepared according to the method described in the previous paragraph were isomerized by heating for 5 hours at 900 in the presence of 75 ml of acetic acid and 1.5 g of copper acetate. There was thus obtained 26 g (85%) of 3,6,10-trimethyl-4-oxo-2,5,9-undecatriene, together with the other two isomeric ketones. This mixture was used directly for Ja cyclization according to the method described in paragraph a) above. Constants: Eb. 7577 / 0.1 Torr; nD20 = 1.4899; d420 = 0.8890.



  Example 3:
Preparation of 2,6,6-trimethyl-1- (3-methylcrotonoyl) -2-cyclohexene a) Following the method described in Example 1, paragraph a), 20 g of 2,6,10-trimethyl were cyclized -4-Oxo-2,5,9-undecatriene by means of 7 g of SnCl4 in 100 ml of dry benzene. The temperature was kept below 150 during the addition of the ketone, then stirring was continued for 4 hours at 40. Following the usual method, 6.8 g (34%) of product purified by gas chromatography was obtained. The following constants were measured: Eb. 67-68 / 0.1 Torr; nD20 = 1.4818; d420 = 0.9249. IR absorption bands: 1670, 1615, 826, 805 cm-1.



   The starting product, which is accompanied by the ketones isomers 2,6,10-trimethyl-4-oxo-2,6,78-undeca-triene and 2,10-dimethyl-6-methylene-4-oxo-2,9- undecadiene, was prepared as follows: b) Under a nitrogen atmosphere, 100 g of methallyl chloride were added in small portions to a solution containing 60 g of KOH, 500 ml of methanol, 10 g of K2CO3 and 7 g of CO2Cl3. During the addition, the temperature was kept at about 400. Stirred for a further 3 hours, then concentrated in vacuo and the residue treated with 500 ml of water and 300 ml of petroleum ether.



  The extract was purified as described in Example 2, paragraph b) and 35 g of dehydrolinalool and 152 g (90%) of 2,6,10-trimethyl-2,10-undecadien-7- were obtained. ine6-ol, the characteristics of which are as follows: Eb. 70720 / 0.1 Torr; nD20 = 1.4818; d420 = 0.8941. IR absorption bands: 3350, 2245, 1650, 890 cm-1.



   c) 103 g of the alcohol prepared according to the method described in the previous paragraph were acetylated with 200 g of acetanhydride and 20 g of sodium acetate under the conditions indicated in Example 2, paragraph c). 112 g (90%) of acetate were thus obtained, the physical constants of which are as follows: Eb. 80 / 0.01 Torr; nD20 = 1.4709: d420 = 0.9173. IR spectrum: 2245, 1740, 1645, 890 cm-1.

 

   d) 248 g of the acetate prepared according to the method described in the previous paragraph were isomerized with 400 ml of acetic acid and 15 g of copper acetate. The procedure was as described in Example 1, paragraph d) and 187 g of the mixture containing 2,6,6-trimethyl-4-oxo-2,5,9-undecatriene and the two other isomeric ketones were isolated. This mixture was used as for the cyclization reaction described in paragraph a) above. Constants of the above product: Eb. 90-97 / 0.1 Torr; nD20 = 1.5075; d420 = 0.8915.

 

Claims (1)

REVENDICATION CLAIM Procédé pour la préparation de composés de formule: EMI6.1 dans laquelle les pointillés representent une double liaison en position 1 ou 2, dans laquelle l'un des symboles R represente un reste alcoyle, et les autres R l'hydrogene et dans laquelle les symboles R' représentant soit l'hydrogène soit l'un d'entre eux un alcoyle, et les autres l'hydrogène, caractérisé en ce qu'on cyclise au moyen d'un agent cyclisant acide une pseudo cétone de formule: EMI6.2 dans laquelle les symboles R et R' ont le sens defini ci-dessus. Process for the preparation of compounds of the formula: EMI6.1 in which the dotted lines represent a double bond in position 1 or 2, in which one of the symbols R represents an alkyl residue, and the other R represents hydrogen and in which the symbols R 'represent either hydrogen or one of them an alkyl, and the others hydrogen, characterized in that one cyclizes by means of an acid cyclizing agent a pseudo ketone of formula: EMI6.2 in which the symbols R and R 'have the meaning defined above. SOUS-REVENDICATIONS 1. Procéde suivant la revendication, caractérisé en ce qu'on utilise comme agent cyclisant acide un acide de Lewis tel le SnCl4 dans un solvant inerte tel le benzene ou le toluene. SUB-CLAIMS 1. Process according to claim, characterized in that one uses as acid cyclizing agent a Lewis acid such as SnCl4 in an inert solvent such as benzene or toluene. 2. Procédé suivant la revendication, caractérisé en ce qu'on utilise comme agent cyclisant un acide protonique comme, par exemple, H2SO4, HCI ou H3PO4. 2. Method according to claim, characterized in that the cyclizing agent used is a protonic acid such as, for example, H2SO4, HCl or H3PO4.
CH1805270A 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones CH513097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH1805270A CH513097A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH697669A CH520767A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805270A CH513097A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones

Publications (1)

Publication Number Publication Date
CH513097A true CH513097A (en) 1971-09-30

Family

ID=4317983

Family Applications (8)

Application Number Title Priority Date Filing Date
CH1805370A CH513094A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805470A CH521298A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805170A CH513096A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805570A CH513098A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805270A CH513097A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH697669A CH520767A (en) 1967-11-09 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805070A CH521099A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1804970A CH528225A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CH1805370A CH513094A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805470A CH521298A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805170A CH513096A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805570A CH513098A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones

Family Applications After (3)

Application Number Title Priority Date Filing Date
CH697669A CH520767A (en) 1967-11-09 1969-05-07 Unsaturated cycloaliphatic ketones
CH1805070A CH521099A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones
CH1804970A CH528225A (en) 1969-05-07 1969-05-07 Unsaturated cycloaliphatic ketones

Country Status (1)

Country Link
CH (8) CH513094A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546515B1 (en) * 1983-05-27 1986-03-28 Rhone Poulenc Sante PROCESS FOR THE PREPARATION OF ADPDIETHYTLENIC CARBONYL COMPOUNDS
EP0676393B1 (en) * 1994-04-08 1998-08-19 Firmenich Sa Cyclic ketones and their use in perfumery

Also Published As

Publication number Publication date
CH521099A (en) 1972-04-15
CH521298A (en) 1972-04-15
CH513094A (en) 1971-09-30
CH513096A (en) 1971-09-30
CH513098A (en) 1971-09-30
CH528225A (en) 1972-09-30
CH520767A (en) 1972-03-31

Similar Documents

Publication Publication Date Title
EP1838652B1 (en) Novel odorant compounds, synthesis method, and uses of said compounds
CH621706A5 (en)
EP2203417B1 (en) Substituted octane(ene) nitriles, methods for the synthesis thereof and uses thereof in perfumery
EP0004968B1 (en) Norbornene(-ane) derivatives, process for their preparation and their use as perfuming agents
EP0033959B1 (en) Unsaturated spiro-compound, its use in perfumes and aromas and process for its preparation
CH635810A5 (en) UNSATURATED ALICYCLIC COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE.
EP0007486B1 (en) Oxygenated compounds derived from tricyclo(6.2.1.0)undecane, their utilization as perfumes or fragrances, and compositions containing these compounds
CH513097A (en) Unsaturated cycloaliphatic ketones
CH627462A5 (en) Spiran compounds, their use as fragrance and flavouring ingredients and process for preparing them
CH637359A5 (en) 8-EXO-HYDROXYMETHYL-ENDO-TRICYCLO (5.2.1.O (2,6)) - DECANE DERIVATIVES.
CH537352A (en) Unsaturated cycloaliphatic ketones
CH645337A5 (en) UNSATURATED CYCLOALIPHATIC COMPOUNDS, PROCESS FOR THEIR PREPARATION AND PERFUMING COMPOSITION CONTAINING THEM.
CH516494A (en) Olefinic alcohols prodn - by rearrangement of olefinic ethers
EP0282798B1 (en) Aliphatic bicyclic alcools and their use as flavouring compounds
CH650242A5 (en) PERFUMING INGREDIENTS MADE OF ALCOHOLS AND ALIPHATIC ESTERS.
CH603071A5 (en) Di:methyl-cyclohexene-alkenone cpds.
CH626533A5 (en)
EP0360127B1 (en) Oxygenated bicyclic derivatives and their use as perfuming ingredients
CH577445A5 (en) Flowery scenting dodeca-4,8-diene-1,12 dialdehyde prodn. - by ozonolysis of cyclododeca-1,5,9-triene followed by reduction of ozonide
CH529082A (en) Oxygen-contng decalin derivs - for use in perfumery
CH575362A5 (en) Tricyclic undecane derivs - useful as perfume ingredients and organoleptic modifiers to replace natural etherial oils
CH537452A (en) Unsaturated cycloaliphatic ketones
CH622946A5 (en) Use of novel sesquiterpenoids as fragrance materials
CH648838A5 (en) ALIPHATIC EPOXIDE AND PERFUMING INGREDIENT CONTAINING THE SAME.
CH563950A5 (en) Unsatd cycloaliphatic ketones - by treating diols with acid dehydrating agents

Legal Events

Date Code Title Description
PL Patent ceased