CH494285A - Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths - Google Patents

Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths

Info

Publication number
CH494285A
CH494285A CH1801067A CH1801067A CH494285A CH 494285 A CH494285 A CH 494285A CH 1801067 A CH1801067 A CH 1801067A CH 1801067 A CH1801067 A CH 1801067A CH 494285 A CH494285 A CH 494285A
Authority
CH
Switzerland
Prior art keywords
aluminum
titanium
protective layers
bath
oxalate
Prior art date
Application number
CH1801067A
Other languages
German (de)
Inventor
Bosshard Heinrich
Original Assignee
Contraves Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contraves Ag filed Critical Contraves Ag
Priority to CH1801067A priority Critical patent/CH494285A/en
Priority to GB4291468A priority patent/GB1180299A/en
Priority to AT964968A priority patent/AT281531B/en
Priority to FR1587822D priority patent/FR1587822A/fr
Priority to SE1407568A priority patent/SE339370B/xx
Priority to NL6818225A priority patent/NL6818225A/xx
Publication of CH494285A publication Critical patent/CH494285A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

  

  
 



  Verfahren zum Erzeugen von korrosionsbehindernden Schutzschichten an Körpern aus Aluminium oder Aluminium-Legierungen durch anodische Behandlung in sauren Bädern
Zur Erzeugung von korrosionsbehindernden Schutzschichten auf Körpern aus Aluminium oder Aluminiumlegierungen ist ausser dem meistbekannten Elektro Oxydationsverfahren lein   Verwahren    zur   Erzeugung    von opaken, dichten und besonders abriebfesten Schutz   schichten    bekannt.   Dabei      werden      die    Körper   an.    Oxalsäure-Bädern mit Beimengungen von Titan-Zirkoniumoder Thorium-Salzen behandelt. Die beigemengten Salze, z. B.

  Kalium-Titan-Oxalat TiO(KC204)2, hydrolisieren in   der    gebildeten Aluminium-Oxydschicht,   ad.    h. es lagern sich die Hydroxyde der   Metallphasen    in der Oxydschicht ein.



   Bei bestimmten Verwendungen von Körpern aus Aluminium und seinen Legierungen sind zwar korrosionsbehindernde Schutzschichten erwünscht, aber diese Schutzschichten sollten elektrisch leitend sein. Als Beispiele für solche Fälle seien Gehäuse für elektrische, bzw. elektronische Schaltungen und vor allem Drehkondensatoren genannt, bei denen das Vorhandensein eines Dielektrikums mit temperaturabhängigen Eigenschften zwischen den aktiven Belegungen unerwünscht ist.



   Es sind zwar unter den geschützten Namen ALO DINE und BONDER Verfahren zur Erzeugung von elektrisch leitfähigen Schutzschichten auf Alu-Körpern durch blosses Eintauchen dieser Körper in Lösungen von Chemikalien bekannt. Die mit diesen Verfahren erzielbaren Schutzschichten erfüllen zwar ihre Aufgabe,   die    behandelten Körper gegen   atmosphärische    Einflüsse und gegen die Wirkung von gewissen korrodierend wirkenden Flüssigkeiten zu schützen; sie haben aber eine   ,sehir geringe Haftfähigkeit an an der Unterlage und sind    demgemäss   gegen      mechanischen Abrieb    überhaupt   nicht    widerstandsfähig.

  Es hat sich nun gezeigt, dass es durch gewisse Abwandlungen des vorstehend erläuterten EMA TAL-Verfahrens möglich ist, die erzielte opake und dichte   Schutzschicht    eo dünn   ZU      halten    und   darin    ausreichend viele Metallionen einzulagern, dass eine allen Anforderungen genügende elektrische Leitfähigkeit der Schicht gesichert wird, ohne   Idass    dabei   die      Haftfähigkeit    bzw.



  Abriebfestigkeit der erzeugten Schicht gegenüber dem erwähnten EMATAL-Verfahren wesentlich schlechter wird und/oder dass die Schutzwirkung gegen chemische Korrosionswirkungen ungenügend wird.



   Erfindungsgemäss ist ein   Verfahren    zur   Erzeugung    von korrosionsbehindernden Schutzschichten auf Körpern aus   Aluminium    oder Aluminiumlegierungen lurch anodische Behandlung in sauren Bädern, in welchen Verbindungen von   Titan,      Zirkon    oder Thorium   sind,    dadurch gekennzeichnet, dass einem Chromsäurebad die Titan-Thorium-   oder    Zirkon-Verbindungen   beigemischt    werden   und      dass    die Körper   darin    bis zur   Erzielung    von elektrisch-leitenden Korrosionsschutzschichten anodisch   behandelt    werden.



   Ein Ausführungsbeispiel des erfindungsgemässen Verfahrens zur Herstellung einer elektrisch leitfähigen   Korrosionsschutzschicht    auf Körpern aus Aluminium oder Aluminiumlegierungen wird nachstehend beschrieben:
Die benötigte Menge von entionisiertem (reinem) Wasser wird auf eine Temperatur von 30 bis 40 C erwärmt und es werden darin pro 1000 g Wasser folgende   Zusätze gelöst:   
30-60 g Kaliumtitan-IV-oxalat K2TiO(C2O4)2+2H2O in einem kleinen Teil des Wassers vorgelöst
4- 5 g Kobalt-Azetat: Co(CH3COO)2 + 4H2O
3- 4 g   Chromsäure-Anhydrid    CrO3
1- 1,8 g Nickelacetat: Ni(CH3COO)2 + 4H2O oder
1- 1,5 g Nickelsulfat:   NiSO4      +    7H20
Zusatz zum Lösen des K-Ti-Oxalates: pro kg Kaliumtitan-IV-Oxalat 10-20 cm  konzentr.

  Schwefelsäure pH-Wert 0,5-1  
Unter Beibehaltung der Temperatur von 35 bis 40  C und unter dauernder   Bewegung      bzw    Umwälzung des Elektrolyten durch ein mechanisches Rührwerk, bes   ser      durch      dauernde      Einleitung    von Luft,   wird    das Bad durch Behandlung einer Probecharge eingearbeitet, bzw.



     aktiviert.    Dabei   werden    diie Körper der Probecharge in bekannter Weise an Klemmhaltern angesteckt und daran nach vorgängiger   Entfettung    als anoden im Bad an die Stromquellen angeschlossen. Die Betriebspannung soll nasch auf den   Wert    von 130   bis    140 V gesteigert   werden.   



  Während   einer    Behandlungszeit von 4 bis 15 Minuten entstehen dabei auf den vorher blanken Körperoberflächen opake, Id. h.   matte      Schichten    von 2 bis 6   u      Dicke    und grauer Farbe. Die Schicht bildet dabei ein   A1203-    Gitter mit darin eingelagerten Titan-Chrom-Kobalt- und Nickelatomen, welche die Schicht verdichten und ihr eine gute elektrische Leitfähigkeit erteilen, ohne die den anodisch erzeugten Oxydschichten eigene Haftfähigkeit zu beeinträchtigen. Infolge der grossen Reaktionsfähigkeit des beschriebenen Bades kann es bei der beschribenen Einarbeitung des Bades mit einer Probecharge örtlich zu übermässigen Stromdichten kommen, wodurch an solcher Stelle Verfärbungen entstehen. 

  Dies kommt aber nicht   mehr      vor,      wenn    nach erfolgter Einarbeitung für die Nutzchargen das Bad durch Zugabe von 0,5 bis 1 g Borsäure H3BO3 pro Liter Elektrolyt ge   puffert    wird. Es ist wesentlich,   dass    entweder das Biad dauernd produktiv   benützt    wird, oder   idass    es wenigstens in den Benützungspausen häufig, eventuell dauernd innerlich bewegt bzw. umgewälzt wird, um seine Homogenität   aufrecht    zu erhalten. 



  
 



  Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths
For the production of anti-corrosion protective layers on bodies made of aluminum or aluminum alloys, apart from the most well-known electro-oxidation process, lein storage for producing opaque, dense and particularly abrasion-resistant protective layers is known. In doing so, the bodies become involved. Oxalic acid baths treated with admixtures of titanium, zirconium or thorium salts. The added salts, e.g. B.

  Potassium titanium oxalate TiO (KC204) 2, hydrolyze in the aluminum oxide layer formed, ad. H. the hydroxides of the metal phases are embedded in the oxide layer.



   In certain uses of bodies made of aluminum and its alloys, although corrosion-inhibiting protective layers are desired, these protective layers should be electrically conductive. Examples of such cases are housings for electrical or electronic circuits and, above all, variable capacitors, in which the presence of a dielectric with temperature-dependent properties between the active assignments is undesirable.



   Processes for producing electrically conductive protective layers on aluminum bodies by simply immersing these bodies in solutions of chemicals are known under the registered names ALO DINE and BONDER. The protective layers that can be achieved with this method fulfill their task of protecting the treated body against atmospheric influences and against the action of certain corrosive liquids; However, they have a very low level of adhesion to the substrate and are accordingly not at all resistant to mechanical abrasion.

  It has now been shown that certain modifications of the EMA TAL process explained above make it possible to keep the achieved opaque and dense protective layer eo thin and to store a sufficient number of metal ions therein that an electrical conductivity of the layer that meets all requirements is ensured, without the adhesion or



  The abrasion resistance of the layer produced becomes significantly worse than the aforementioned EMATAL process and / or that the protective effect against chemical corrosion effects is insufficient.



   According to the invention, a method for producing corrosion-preventing protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths in which there are compounds of titanium, zirconium or thorium, is characterized in that the titanium-thorium or zirconium compounds are added to a chromic acid bath and that the bodies therein are anodically treated until electrically conductive anti-corrosion layers are obtained.



   An exemplary embodiment of the method according to the invention for producing an electrically conductive corrosion protection layer on bodies made of aluminum or aluminum alloys is described below:
The required amount of deionized (pure) water is heated to a temperature of 30 to 40 C and the following additives are dissolved in it per 1000 g of water:
30-60 g potassium titanium IV oxalate K2TiO (C2O4) 2 + 2H2O pre-dissolved in a small part of the water
4- 5 g cobalt acetate: Co (CH3COO) 2 + 4H2O
3-4 g chromic acid anhydride CrO3
1- 1.8 g nickel acetate: Ni (CH3COO) 2 + 4H2O or
1- 1.5 g nickel sulfate: NiSO4 + 7H20
Additive to dissolve the K-Ti oxalate: per kg of potassium titanium IV oxalate 10-20 cm concentr.

  Sulfuric acid pH 0.5-1
While maintaining the temperature of 35 to 40 C and with constant movement or circulation of the electrolyte by a mechanical agitator, better by continuously introducing air, the bath is incorporated by treating a sample batch or



     activated. The bodies of the sample charge are attached to clamp holders in a known manner and, after prior degreasing, connected to the power sources as anodes in the bath. The operating voltage should soon be increased to a value of 130 to 140 V.



  During a treatment time of 4 to 15 minutes, opaque, Id. H. matte layers from 2 to 6 u thick and gray in color. The layer forms an A1203 grid with embedded titanium-chromium-cobalt and nickel atoms, which compact the layer and give it good electrical conductivity without impairing the adhesive properties of the anodically generated oxide layers. As a result of the great reactivity of the bath described, the above-mentioned incorporation of the bath with a sample charge can lead to local excessive current densities, which causes discoloration at such a point.

  However, this no longer occurs if the bath is buffered by adding 0.5 to 1 g of boric acid H3BO3 per liter of electrolyte after it has been incorporated into the useful batch. It is essential that either the pool is continuously used productively or that it is at least frequently, possibly continuously, internally moved or circulated during breaks in use in order to maintain its homogeneity.

 

Claims (1)

PATENTANSPRUCH PATENT CLAIM Verfahren zur Erzeugung von korrosionsbehindernden Schutzschichten sauf Körpern aus Aluminium oder Aluminiumlegierungen durch anodische Behandlung in sauren Bädern, in denen Verbindungen von Titan, Zir kon oder Thorium gelöst sind, dadurch gekennzeichnet, dass einem Chromsäurebad die Titan-, Thorium- oder Zirkon-Verbindungen beigegeben werden, und dass die Körper darin bis zur Bildung von elektrisch leitenden Korrosionsschutzschichten anodisch behandelt werden. Process for the production of corrosion-preventing protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths in which compounds of titanium, zirconium or thorium are dissolved, characterized in that the titanium, thorium or zirconium compounds are added to a chromic acid bath , and that the bodies therein are anodically treated until electrically conductive anti-corrosion layers are formed. UNTERANSPRUCH Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass das Bad in folgender Weise zusammengesetzt ist und betrieben wird: pro 1000 g reinem Wasser: 30-60 g Kalium-Titan-IV-oxalat 4- 5 g Kobalt-Acetat Co(CH3COO)p + 4 H2O 3- 4 g Chromsäure-Anhydrid CrO3 1- 1,8 g Nickelacetat Ni(CH3COO)2 + 4H2O oder 1- 1,5 g Nickelsulfat NiSO4 + 7H2O Zusatz zum Lösen des K-Ti-Oxalates: pro kg Kaliumtitan-IV-Oxalat 10-20 cm konzentr. Schwefelsäure pH-Wert 0,5-1 Betriebsspannung 130-140 V Behandlungszeit 4-15 Minuten, nach erfolgter Einarbei tung durch Behandlung einer Probecharge Pufferung des Bades durch Zugabe von 0,5-1 g Borsäure H3BO3 pro Liter Elektrolyt SUBClaim Method according to claim, characterized in that the bath is composed and operated in the following way: per 1000 g of pure water: 30-60 g potassium titanium IV oxalate 4- 5 g cobalt acetate Co (CH3COO) p + 4 H2O 3-4 g chromic acid anhydride CrO3 1- 1.8 g nickel acetate Ni (CH3COO) 2 + 4H2O or 1- 1.5 g nickel sulphate NiSO4 + 7H2O Additive to dissolve the K-Ti oxalate: per kg of potassium titanium IV oxalate 10-20 cm concentr. Sulfuric acid pH value 0.5-1, operating voltage 130-140 V, treatment time 4-15 minutes, after familiarization has been completed by treating a sample charge, the bath is buffered by adding 0.5-1 g Boric acid H3BO3 per liter of electrolyte
CH1801067A 1967-12-21 1967-12-21 Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths CH494285A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CH1801067A CH494285A (en) 1967-12-21 1967-12-21 Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths
GB4291468A GB1180299A (en) 1967-12-21 1968-09-10 A Method for Producing Corrosion-Preventing Protective Layers on Bodies of Aluminium or Aluminium Alloys by Anodising in Acid Baths
AT964968A AT281531B (en) 1967-12-21 1968-10-03 Process for the anodic production of a corrosion-preventing and electrically conductive layer on bodies made of aluminum or aluminum alloys
FR1587822D FR1587822A (en) 1967-12-21 1968-10-07
SE1407568A SE339370B (en) 1967-12-21 1968-10-18
NL6818225A NL6818225A (en) 1967-12-21 1968-12-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1801067A CH494285A (en) 1967-12-21 1967-12-21 Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths
CH487968 1968-04-02

Publications (1)

Publication Number Publication Date
CH494285A true CH494285A (en) 1970-07-31

Family

ID=25696456

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1801067A CH494285A (en) 1967-12-21 1967-12-21 Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths

Country Status (5)

Country Link
CH (1) CH494285A (en)
FR (1) FR1587822A (en)
GB (1) GB1180299A (en)
NL (1) NL6818225A (en)
SE (1) SE339370B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043479A1 (en) * 2007-09-12 2009-03-19 Valeo Schalter Und Sensoren Gmbh Process for the surface treatment of aluminum and a layer structure of a component made of aluminum with an electrical contact
WO2018050395A1 (en) * 2016-09-16 2018-03-22 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Frame for a brake control device of a railbound vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111763A (en) * 1977-07-18 1978-09-05 Swiss Aluminium Ltd. Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
CN102312263A (en) * 2011-08-22 2012-01-11 吴江市精工铝字制造厂 Porcelain oxidation method of aluminum piece
CN110219031B (en) * 2019-06-06 2020-12-08 北京航空航天大学 Anodic oxidation electrolyte and method, and aluminum or aluminum alloy with anodic oxidation film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043479A1 (en) * 2007-09-12 2009-03-19 Valeo Schalter Und Sensoren Gmbh Process for the surface treatment of aluminum and a layer structure of a component made of aluminum with an electrical contact
WO2018050395A1 (en) * 2016-09-16 2018-03-22 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Frame for a brake control device of a railbound vehicle

Also Published As

Publication number Publication date
GB1180299A (en) 1970-02-04
NL6818225A (en) 1969-06-24
SE339370B (en) 1971-10-04
FR1587822A (en) 1970-03-27

Similar Documents

Publication Publication Date Title
DE655700C (en) Process for the production of opaque, enamel-like protective layers on aluminum and its alloys
DE639447C (en) Process for the production of phosphate-containing coatings on metals
DE1446002C3 (en) Process for the production of evenly colored oxide layers on aluminum and aluminum alloys by anodic oxidation
DE1279424B (en) Bath for the galvanic coating of metals with iridium
EP0090268A2 (en) Process for anodising aluminium products and aluminised parts
CH494285A (en) Process for producing corrosion-inhibiting protective layers on bodies made of aluminum or aluminum alloys by anodic treatment in acidic baths
US3479260A (en) Treatment for ferrous surfaces
AT133115B (en) Process for the production of corrosion-resistant coatings on light metals.
DE856663C (en) Process for the manufacture of selenium rectifiers
DE1220937B (en) Method for producing an electrolytic capacitor with a sintered body made of titanium
DE2724730A1 (en) PROCESS AND ELECTROLYTE FOR DEPOSITING CHROME CONTAINING CONVERSION PROTECTION COATINGS
DE1421994A1 (en) Process, device and means for cleaning metal surfaces
DE1521464A1 (en) Process for applying adhesive deposits of metals of the platinum group to objects made of titanium
AT281531B (en) Process for the anodic production of a corrosion-preventing and electrically conductive layer on bodies made of aluminum or aluminum alloys
DE763283C (en) Bath for the production of a corrosion-resistant protective layer on magnesium and its alloys
DE2432044C3 (en) Process for the electrolytic post-treatment of chromated or metallic chrome-plated sheet steel surfaces
DE1758124C3 (en) Application of a heat treatment process to improve the erosion-corrosion resistance of ferrous copper alloys
DE2034863C3 (en) Process for the surface treatment of zirconium and zirconium alloys for fuel elements or other nuclear reactor components
DE2439656C2 (en) Aqueous acid bath for the electrodeposition of a tin-nickel alloy
DE692124C (en) Process for the electrolytic oxidation of iron and steel
DE2141004C3 (en) Process for the production of dielectrically acting oxide layers on anode foils made of aluminum for electrolytic capacitors
DE2027575C3 (en) Use of a lead alloy for anodes in acidic galvanic chrome-plating baths
DE349227C (en) Process for coloring metallic surfaces
DE1621124B2 (en) PROCESS FOR ANODIC OXIDIZATION OF ALUMINUM AND ALUMINUM ALLOYS
DE2413149C3 (en) Process for cathodic direct current painting of anodic oxide layers on aluminum or aluminum alloys

Legal Events

Date Code Title Description
PL Patent ceased