CH471837A - Process for the preparation of complexes of transition metals without carbonyl liganols - Google Patents

Process for the preparation of complexes of transition metals without carbonyl liganols

Info

Publication number
CH471837A
CH471837A CH1371167A CH1371167A CH471837A CH 471837 A CH471837 A CH 471837A CH 1371167 A CH1371167 A CH 1371167A CH 1371167 A CH1371167 A CH 1371167A CH 471837 A CH471837 A CH 471837A
Authority
CH
Switzerland
Prior art keywords
compounds
transition metals
complexes
group
carbonyl
Prior art date
Application number
CH1371167A
Other languages
German (de)
Inventor
Wilke Guenther Dr Prof
Willi Dr Mueller
Michael Dr Kroener
Paul Dr Heimbach
Heinz Dr Breil
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1960ST016427 external-priority patent/DE1191375C2/en
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Priority to CH1371167A priority Critical patent/CH471837A/en
Publication of CH471837A publication Critical patent/CH471837A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2291Olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • C07C2/44Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion of conjugated dienes only
    • C07C2/46Catalytic processes
    • C07C2/465Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/50Diels-Alder conversion
    • C07C2/52Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/324Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  

  Verfahren zur Herstellung von Komplexen der Übergangsmetalle ohne     Carbonyl-Liganolen       Die Erfindung bezieht sich auf die Herstellung von  neuen Komplexen der Übergangsmetalle.  



  Komplexe der Übergangsmetalle sind in den verschie  denartigsten Formen bekannt. So entsteht     z.B.    bei der  gleichzeitigen Einwirkung von     Chrom-IH-chlorid,    Alu  miniumchlorid und metallischem Aluminium auf Benzol  bei Temperaturen um 150 C und unter Druck das     Di-          benzolchrom-I-aluminiumtetrachlorid,    das bei     anschlies-          sender    Reduktion     z.B.    durch     nascierenden    Wasserstoff  in     Dibenzolchrom    (nullwertig) übergeführt werden kann.  Diese Verbindung stellt einen typischen     Aromatenkom-          plex    dar.  



  Eine zweite bekannte Methode zur Darstellung der  artiger Komplexe besteht darin, dass die     Carbonylver-          bindungen    der Übergangsmetalle bei erhöhten Tempe  raturen mit aromatischen     Kohlenwasserstoffen    umge  setzt werden. Unter Verdrängung eines oder mehrerer       Kohlenoxydmoleküle    entstehen auf diesem Wege dem       Dibenzolchrom    analog gebaute     Aromatenkomplexe    oder  aber Komplexe, in denen sowohl aromatische Systeme  wie auch CO-Moleküle am Übergangsmetall gebunden  sind.  



  Weiterhin ist bekannt, dass aus     Metallcarbonylen     und     Olefinen,        z.B.    aus     Nickeltetracarbonyl    und     Cyclo-          octa-trien    oder aus     Eisenpentacarbonyl    und     Cycloocta-          tetraen    Komplexe gebildet werden können, in denen so  wohl     Olefinmoleküle    als auch     Kohlenoxydmoleküle    an  formal nullwertiges Nickel bzw. Eisen gebunden vor  liegen.  



  Alle diese Verfahren bedienen sich entweder sehr  robuster Reaktionsbedingungen, die zur Herstellung emp  findlicher Komplexe ungeeignet sind, oder aber sie füh  ren zu Komplexen, in denen mindestens ein beziehungs  weise mehrere     Kohlenoxydmoleküle    an das Übergangs  metallatom gebunden sind.  



  Die vorliegende Erfindung betrifft nun ein Verfahren  zur Herstellung von Komplexen der Übergangsmetalle,  die frei sind von     Carbonyl-Liganolen.    Sie ist dadurch  gekennzeichnet, dass man     Ionenverbindungen    der Über  gangsmetalle mit     Alkyl-        bzw.        Arylverbindungen    oder         heterocyclischen    Verbindungen der Elemente der Grup  pe Va des Periodischen Systems, in welchen die Elemente  der Gruppe Va ein einsames Elektronenpaar besitzen  und mit     C-C-Mehrfachbindungen    enthaltenden     Stoffen     in Gegenwart von metallorganischen Verbindungen der  I.

   bis     III.    Hauptgruppe des Periodischen Systems bzw.  von     Zinkdialkylen    als Reduktionsmittel umsetzt.  



  Besonders gut erhält man nach diesem Verfahren  Komplexverbindungen von Übergangsmetallen der I.,  IV., V.,     VI.,        VII.    und speziell der     VIII.    Gruppe des  Periodischen Systems.  



  Bei dem erfindungsgemässen Verfahren wirken die  Verbindungen, die     C-C-Mehrfachbindungen,    also     C=C-          bzw.        C=C-Bindungen    enthalten, als     Elektronen-Dona=          toren.    Als solche Verbindungen eignen sich     z.B.        Cyclo-          octadien    und     Stilben.    Es ist aber auch möglich,

   dass  sich solche     C-C-Mehrfachbindungen    enthaltende     Elek-          tronendonatoren    aus dem verwendeten Reduktionsmittel  im Verlaufe der Reduktion bilden und über die     7u-Elek-          tronen    an das     übergangsmetallatom    gebunden werden,  so dass es nicht unbedingt erforderlich ist, derartige       Elektronen-Donatoren    von Anfang an dem Reaktions  gemisch zuzusetzen.

   So bildet sich     z.B.    bei Verwendung  von     Äthoxydiäthylaluminium    als Reduktionsmittel inter  mediär Äthylen, dessen     n-Elektronen    mit Metallen, wie       z.B.    Nickel, eine Bindung vermitteln, sofern keine an  deren     Elektronen-Donatoren    in wesentlich grösserer  Menge oder mit erheblich stärkerem Bindungsvermögen  gleichzeitig im Reaktionsgemenge vorliegen und damit  die komplexe Anlagerung des Äthylens verhindern.  



  Als Übergangsmetalle werden bevorzugt Metalle der  Eisengruppe, insbesondere Nickel, ferner     Vanadin,     Chrom und Mangan verwendet.  



  Als     übergangsmetallverbindungen    können solche ein  gesetzt werden, die entweder anorganische oder aber  auch organische Reste als Anionen enthalten. Mit beson  derem Vorteil werden solche Verbindungen verwandt,  die in den gegebenenfalls als Lösungsmittel verwandten  Systemen löslich sind. Dies gilt insbesondere für die       Übergangsmetallverbindungen    mit organischen Resten      wie zum Beispiel die     Acetylacetonate,        Acetessigesteren-          olate,        Alkoholate,    Salze schwacher organischer Säuren  oder     Dimethylglyoximverbindungen.     



  Als     metallorganische    Verbindungen werden     erfin-          dungsgemäss    Verbindungen der Metalle der 1. bis 3.  Hauptgruppe verwandt, insbesondere     Alkyl-,        Cycloal-          kyl-,        Aryl-    oder     Aralkylverbindungen    zum Beispiel       Lithiumbutyl,    Äthyl- beziehungsweise     Phenylmagnesium-          halogenide    und insbesondere     Aluminiumtrialkyle    oder  auch     Alkoxy-aluminiumalkyle,    sowie     Zinkdialkyle,

      wie  zum Beispiel     Zinkdiäthyl.     



  Die Herstellung der Komplexe wird am besten in der  Weise durchgeführt, dass die Verbindungen der über  gangsmetalle entweder als Suspension oder aber in einem  entsprechenden Lösungsmittel gelöst mit den Verbindun  gen der Elemente der Gruppe Va und den     C-C-Mehr-          fachbindungen    enthaltenden Stoffen gemischt werden  und dass zu dieser Mischung die metallorganische Ver  bindung zugefügt wird. Die möglicherweise auftretende  Reaktionswärme kann durch Kühlen abgeführt werden.  Nach beendeter Reaktion können die entstandenen Kom  plexverbindungen von den     Beiprodukten        z.B.    entweder  durch Waschen mit Wasser beziehungsweise verdünnter  Säure oder aber durch Destillation, Sublimation oder  Kristallisation abgetrennt werden.

   Als     Lösungsmittel    für  derartige Umsetzungen haben sich     aliphatische,        alicy-          clische    oder aromatische     Kohlenwasserstoffe    wie zum  Beispiel     Hexan,        Cyclohexan    oder Benzol bewährt. Mit  gleich gutem Erfolg können aber auch Äther oder     cycli-          sche    Äther verwandt werden. Die jeweils angewandten  Reaktionstemperaturen hängen von der Stabilität der  als Komplexe anfallenden Verbindungen ab. Im allge  meinen haben sich Temperaturen zwischen - 80  und  +100 C, vorzugsweise -40  und +5 C, bewährt.  



  Der besondere Vorteil des     erfindungsgemässen    Ver  fahrens liegt darin, dass unter sehr milden Bedingungen  Komplexverbindungen der Übergangsmetalle hergestellt  werden können, die nach den bisher bekannten oder ge  schilderten Verfahren nicht zu erhalten sind, da entwe  der die Reaktionsbedingungen der genannten Verfahren  für die Darstellung empfindlicher Komplexverbindungen  zu robust sind, oder aber dass insbesondere beim Um  satz von     Metallcarbonylen    nicht alle CO-Gruppen durch  die neu einzuführenden     Elektronen-Donator-Moleküle     verdrängt werden können.  



  Die neuen Komplexverbindungen der     übergangsme-          talle,    die     erfindungsgemäss    hergestellt werden können,  sind durchweg aktive Katalysatoren für die     Di-    bezie  hungsweise     Trimerisation    von     1,3-Diolefinen    und besit  zen daher hohes technisches Interesse.

      <I>Beispiel 1</I>    Man löst 5 g     Nickelacetylacetonat    und 10,24 g     Tri-          phenylphosphin    in 200 ccm absolutem Äther und redu  ziert bei 0 C mit 8 ccm     Äthoxydiäthylaluminium.    Es  entsteht eine rotbraune Lösung, aus der sich nach halb  stündigem Stehen rotbraune Kristalle ausscheiden. Durch  Kühlen werden die Kristalle vollständig aus der Lösung  abgeschieden. Man filtriert, saugt die Lösung ab, wäscht  die Kristalle mit Äther, trocknet sie anschliessend. Man  erhält 7,5 g     (50%    der Theorie) rotbrauner Kristalle, de  ren Elementaranalyse mit der Formel     C@H,Ni[P(CIHI)3]2     übereinstimmt.

   Die Verbindung ist luftempfindlich; sie  katalysiert die Bildung von     Cyclooctadien    aus     Butadien.       <I>Beispiel 2</I>  Man löst 5 g     Nickelacetylacetonat    und 10,24 g     Tri-          phenylphosphin    und 2,12 g     Cyclooctadien    in 150 ccm  absoluten Äther und reduziert bei 0 C mit 8 ccm     Äth-          oxydiäthylaluminium.    Man erhält eine rotbraune Lö  sung, aus der sich nach halbstündigem Stehen rotbraune  Kristalle ausscheiden. Es wird wie in Beispiel 5 aufge  arbeitet.

   Man erhält 7,6 g     (50%    der Theorie) rotbrauner  Kristalle, deren Elementaranalyse mit der Formel       C8H1ZNi[P(CGH5).31z    übereinstimmt. Die Verbindung ist  luftempfindlich, sie     katalysiert    die Bildung von     Cyclo-          octadien    aus     Butadien.       <I>Beispiel 3</I>    Man arbeitet wie in Beispiel 1, setzt jedoch der     äthe          rischen    Lösung des     Nickelacetylacetonats    10,24 g     Tri          phenylphosphin    und 3,5 g     trans-Stilben    zu.

   Bei der Re       duktion    bildet sich ein voluminöser gelbbraun gefärbte:  Niederschlag, der sich nach mehrtägigem Stehen     unte:     Äther in dunkelrote Kristalle verwandelt, deren     Zusam          mensetzung    der     CIIH12Ni[P(C@Hs)3]@    entspricht. Aus       beute:        13,4        g        =        90%        der        Theorie.  



  Process for the preparation of complexes of the transition metals without carbonyl liganols The invention relates to the preparation of new complexes of the transition metals.



  Complexes of transition metals are known in the most varied of forms. E.g. With the simultaneous action of chromium-IH-chloride, aluminum chloride and metallic aluminum on benzene at temperatures around 150 ° C and under pressure the dibenzene-chromium-I-aluminum tetrachloride, which, upon subsequent reduction, e.g. can be converted into dibenzene chromium (zero-valent) by nascent hydrogen. This compound represents a typical aromatic complex.



  A second known method for the preparation of such complexes is that the carbonyl compounds of the transition metals are reacted with aromatic hydrocarbons at elevated temperatures. With the displacement of one or more carbon oxide molecules, aromatic complexes built analogously to dibenzene chromium or complexes in which both aromatic systems and CO molecules are bound to the transition metal are formed in this way.



  It is also known that from metal carbonyls and olefins, e.g. Complexes can be formed from nickel tetracarbonyl and cyclooctatriene or from iron pentacarbonyl and cyclooctate tetraene in which both olefin molecules and carbon oxide molecules are bound to formally zero-valent nickel or iron.



  All of these processes either make use of very robust reaction conditions, which are unsuitable for the production of sensitive complexes, or they lead to complexes in which at least one or more carbon oxide molecules are bound to the transition metal atom.



  The present invention now relates to a process for the preparation of complexes of transition metals which are free from carbonyl liganols. It is characterized in that ionic compounds of the transition metals with alkyl or aryl compounds or heterocyclic compounds of the elements of the group Va of the Periodic Table, in which the elements of group Va have a lone pair of electrons and substances containing CC multiple bonds in the presence of organometallic compounds of I.

   to III. Main group of the Periodic Table or of zinc dialkyls as reducing agents.



  Complex compounds of transition metals of the I., IV., V., VI., VII. And especially the VIII. Group of the Periodic Table are obtained particularly well by this process.



  In the process according to the invention, the compounds which contain C-C multiple bonds, that is to say C = C or C = C bonds, act as electron donors. Suitable such compounds are e.g. Cyclooctadiene and stilbene. But it is also possible

   that such electron donors containing CC multiple bonds form from the reducing agent used in the course of the reduction and are bonded to the transition metal atom via the 7u electrons, so that it is not absolutely necessary to have such electron donors from the beginning of the reaction add mixture.

   E.g. when using Äthoxydiethylaluminium as reducing agent intermediate ethylene, whose n-electrons with metals, such as B. Nickel, mediate a bond, as long as none of their electron donors are present in the reaction mixture in a significantly larger amount or with a significantly stronger binding capacity and thus prevent the complex addition of ethylene.



  Metals of the iron group, in particular nickel, also vanadium, chromium and manganese are preferably used as transition metals.



  As transition metal compounds, those can be set which contain either inorganic or organic radicals as anions. With particular advantage, those compounds are used which are soluble in the systems that may be used as solvents. This applies in particular to the transition metal compounds with organic radicals such as, for example, the acetylacetonates, acetoacetic ester olates, alcoholates, salts of weak organic acids or dimethylglyoxime compounds.



  According to the invention, compounds of the metals of main groups 1 to 3 are used as organometallic compounds, in particular alkyl, cycloalkyl, aryl or aralkyl compounds, for example lithium butyl, ethyl or phenyl magnesium halides and in particular aluminum trialkyls or also alkoxyaluminum alkyls , as well as zinc dialkyls,

      such as zinc diet.



  The preparation of the complexes is best carried out in such a way that the compounds of the transition metals either as a suspension or dissolved in an appropriate solvent are mixed with the compounds of the elements of group Va and the substances containing CC multiple bonds and that the organometallic compound is added to this mixture. The heat of reaction that may occur can be removed by cooling. After the reaction has ended, the complex compounds formed can be removed from the by-products e.g. be separated either by washing with water or dilute acid or by distillation, sublimation or crystallization.

   Aliphatic, alicyclic or aromatic hydrocarbons such as, for example, hexane, cyclohexane or benzene have proven suitable as solvents for such reactions. However, ethers or cyclic ethers can also be used with equally good success. The reaction temperatures used in each case depend on the stability of the compounds obtained as complexes. In general, temperatures between -80 and +100 C, preferably -40 and +5 C, have proven useful.



  The particular advantage of the process according to the invention is that complex compounds of the transition metals can be prepared under very mild conditions which cannot be obtained by the previously known or described processes, since either the reaction conditions of the processes mentioned for the preparation of sensitive complex compounds are robust, or that not all CO groups can be displaced by the newly introduced electron donor molecules, in particular when using metal carbonyls.



  The new complex compounds of the transition metals which can be prepared according to the invention are all active catalysts for the di- or trimerization of 1,3-diolefins and are therefore of great technical interest.

      <I> Example 1 </I> 5 g of nickel acetylacetonate and 10.24 g of triphenylphosphine are dissolved in 200 cc of absolute ether and reduced at 0 C with 8 cc of ethoxydiethylaluminum. A red-brown solution is formed from which red-brown crystals separate out after standing for half an hour. The crystals are completely separated from the solution by cooling. It is filtered, the solution is filtered off with suction, the crystals are washed with ether and then dried. 7.5 g (50% of theory) of red-brown crystals are obtained, whose elemental analysis corresponds to the formula C @ H, Ni [P (CIHI) 3] 2.

   The connection is sensitive to air; it catalyzes the formation of cyclooctadiene from butadiene. <I> Example 2 </I> Dissolve 5 g of nickel acetylacetonate and 10.24 g of triphenylphosphine and 2.12 g of cyclooctadiene in 150 cc of absolute ether and reduce at 0 C with 8 cc of ethoxy diethylaluminum. A red-brown solution is obtained from which red-brown crystals precipitate after standing for half an hour. It is worked up as in Example 5.

   7.6 g (50% of theory) of red-brown crystals are obtained, the elemental analysis of which agrees with the formula C8H1ZNi [P (CGH5) .31z. The compound is sensitive to air, it catalyzes the formation of cyclooctadiene from butadiene. <I> Example 3 </I> The procedure is as in Example 1, but 10.24 g of triphenylphosphine and 3.5 g of trans-stilbene are added to the ethereal solution of the nickel acetylacetonate.

   During the reduction, a voluminous yellow-brown colored precipitate is formed which, after standing under the ether for several days, transforms into dark red crystals, the composition of which corresponds to that of CIIH12Ni [P (C @ Hs) 3] @. From booty: 13.4 g = 90% of theory.

 

Claims (1)

PATENTANSPRUCH Verfahren zur Herstellung von Komplexen der über gangsmetalle ohne Carbonyl-Liganolen, dadurch gekenn zeichnet, dass Ionenverbindungen der Übergangsmetalle mit Alkyl- bzw. Arylverbindungen oder heterocyclischen Verbindungen der Elemente der Gruppe Va des Perio dischen Systems, in welchen die Elemente der Gruppe Va ein einsames Elektronenpaar besitzen, und mit C-C- Mehrfachbindungen enthaltenden Stoffen in Gegenwart von metallorganischen Verbindungen der I. bis 11I. Hauptgruppe des Periodischen Systems bzw. PATENT CLAIM Process for the production of complexes of transition metals without carbonyl liganols, characterized in that ionic compounds of transition metals with alkyl or aryl compounds or heterocyclic compounds of the elements of group Va of the periodic system in which the elements of group Va are solitary Have electron pairs, and with substances containing CC multiple bonds in the presence of organometallic compounds of I. to 11I. Main group of the periodic table or von Zink- dialkylen als Reduktionsmittel umsetzt. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch gekenn zeichnet, dass man von Verbindungen der Übergangs metalle der I., IV., V., VI., VII. und insbesondere der VIII. Gruppe des Periodischen Systems ausgeht. 2. Verfahren nach Patentanspruch, dadurch gekenn zeichnet, dass die Umsetzung in Gegenwart von alipha- tischen, alicyclischen oder aromatischen Kohlenwasser stoffen oder Äthern als Lösungsmittel durchgeführt wird. 3. of zinc dialkylene as a reducing agent. SUBClaims 1. Method according to claim, characterized in that compounds of the transition metals of the I., IV., V., VI., VII. And in particular the VIII. Group of the Periodic Table are assumed. 2. The method according to claim, characterized in that the reaction is carried out in the presence of aliphatic, alicyclic or aromatic hydrocarbons or ethers as solvents. 3. Verfahren nach Patentanspruch, dadurch gekenn zeichnet, dass bei - 80 bis + 100 C, vorzugsweise -40 C bis +5 C, gearbeitet wird. 4. Verfahren nach Patentanspruch, dadurch gekenn zeichnet, dass man die Verbindungen der Übergangs metalle in einem Lösungsmittel suspendiert oder löst, dann mit den Verbindungen der Elemente der Gruppe Va und den C-C-Mehrfachbindungen enthaltenden Stof fen vermischt und zu dieser Mischung eine entsprechen de Metallalkylkomponente als Reduktionsmittel zugibt. Process according to patent claim, characterized in that at -80 to + 100 C, preferably -40 C to +5 C, is carried out. 4. The method according to claim, characterized in that the compounds of the transition metals are suspended or dissolved in a solvent, then mixed with the compounds of the elements of group Va and the substances containing CC multiple bonds and a corresponding metal alkyl component for this mixture as a reducing agent.
CH1371167A 1959-12-22 1961-04-17 Process for the preparation of complexes of transition metals without carbonyl liganols CH471837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH1371167A CH471837A (en) 1959-12-22 1961-04-17 Process for the preparation of complexes of transition metals without carbonyl liganols

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DEM0069381 1959-12-22
DE1960ST016427 DE1191375C2 (en) 1959-12-22 1960-04-28 Process for the production of CO- and NO-free complex compounds of the transition metals
CH1371167A CH471837A (en) 1959-12-22 1961-04-17 Process for the preparation of complexes of transition metals without carbonyl liganols
CH1529365A CH464915A (en) 1959-12-22 1961-04-17 Process for the preparation of transition metal complexes without carbonyl ligands
US53290066A 1966-03-09 1966-03-09
US05/573,198 US4017526A (en) 1959-12-22 1975-04-30 Metal complexes

Publications (1)

Publication Number Publication Date
CH471837A true CH471837A (en) 1969-04-30

Family

ID=27543884

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1371167A CH471837A (en) 1959-12-22 1961-04-17 Process for the preparation of complexes of transition metals without carbonyl liganols

Country Status (1)

Country Link
CH (1) CH471837A (en)

Similar Documents

Publication Publication Date Title
DE60100252T2 (en) METHOD FOR PRODUCING HEX-1-EN
DE1144268B (en) Process for the preparation of cyclooctadiene (1, 5) from butadiene
DE1191375C2 (en) Process for the production of CO- and NO-free complex compounds of the transition metals
DE1668326A1 (en) Process for the preparation of a butadiene dimer
CH471837A (en) Process for the preparation of complexes of transition metals without carbonyl liganols
DE1468271C3 (en)
DE2406554A1 (en) METATHESIS CATALYSTS, THEIR PRODUCTION AND USE
DE1668300A1 (en) New organometallic complexes and their application in the manufacture of catalysts for the oligomerization, polymerization and copolymerization of unsaturated hydrocarbons
DE4205115C1 (en)
DE1096615B (en) Process for polymerizing butadiene
DE1443634C (en) Process for the preparation of a granular hydrogenation catalyst
DE2112644A1 (en) Magnesium Grignard compounds and their use
DE1158510B (en) Process for the preparation of metal carbonyls partially substituted by cyclopentadienyl or indenyl radicals
DE1297608B (en) Process for the production of nickel (o) organophosphite complex compounds
AT232984B (en) Process for the catalytic dimerization or trimerization of 1,3-diolefins
DE2202262C3 (en) Process for the production of organic alkaline earth compounds
DE2153314A1 (en) Rhodium and indium complexes
AT244350B (en) Process for the production of new carbon monoxide-free complex compounds
DE1643071C (en)
AT232495B (en) Process for the catalytic mixed oligomerization of unsaturated compounds
DD253810A1 (en) PROCESS FOR PREPARING IMIDAZOL-CONTAINING COMPLEXES
DE1468708C (en)
DE1303635B (en)
DE1163814B (en) Process for the preparation of bis-triaryl-phosphine-nickel (II) -cyanides
DE1568476A1 (en) Process for the preparation of aryl, aralkyl and cyclopropyllithium compounds

Legal Events

Date Code Title Description
PL Patent ceased