CH416259A - Process for increasing the corrosion resistance of parts, of nuclear reactors - Google Patents

Process for increasing the corrosion resistance of parts, of nuclear reactors

Info

Publication number
CH416259A
CH416259A CH1286961A CH1286961A CH416259A CH 416259 A CH416259 A CH 416259A CH 1286961 A CH1286961 A CH 1286961A CH 1286961 A CH1286961 A CH 1286961A CH 416259 A CH416259 A CH 416259A
Authority
CH
Switzerland
Prior art keywords
corrosion resistance
increasing
elements
metal shells
nuclear reactors
Prior art date
Application number
CH1286961A
Other languages
German (de)
Inventor
Berghaus Bernhard
Original Assignee
Berghaus Elektrophysik Anst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berghaus Elektrophysik Anst filed Critical Berghaus Elektrophysik Anst
Priority to CH1287061A priority Critical patent/CH427453A/en
Priority to CH1286961A priority patent/CH416259A/en
Priority to CH1287561A priority patent/CH416853A/en
Priority to GB41966/62A priority patent/GB992677A/en
Publication of CH416259A publication Critical patent/CH416259A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/20Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

  

      Verfahren        zur    Erhöhung des Korrosionswiderstandes von     Teilen,    von Kernreaktoren    Die Erfindung betrifft ein     Verfahren    zur Erhö  hung des Korrosionswiderstandes von Teilen von  Kernreaktoren, wodurch der Wirkungsgrad der Kern  reaktoren erhöht wird. Dieser ist bekanntlich um so  höher, bei je höheren Temperaturender Reaktor be  trieben werden kann. Aus diesem Grund ist man be  reits von der Aluminiumumhüllung des Kernbrenn  stoffes     zu    Umhüllungen mit     Zirkon    und     Zirkonle-          gierungen    übergegangen.  



  Die     Erfahrung    hat aber gezeigt, dass man bei Ver  wendung von Wasser als Kühlmittel über eine Be  triebstemperatur von über 350  C nicht hinaus  kommt. Die Gründe dafür     liegen    in erster Linie     im     Verhalten der     Oberfläche    der Umhüllungen für den  Kernbrennstoff. Diese sind     allgemein    mit einer dün  nen     Oxydhaut        bedeckt,    die zunächst einen     guten    Kor  rosionsschutz bildet.

   Bei 350  C     wird    :aber die     Reak-          tionsgeschwindigkeit    der     Oxydbildung    derartig er  höht, dass das Oxyd nicht mehr in festhaftender  Form abgeschieden werden kann, sondern in Stücken  oder Platten abbröckelt.  



  Die Erfindung betrifft ein Verfahren zur Erhö  hung des Korrosionswiderstandes .der den Kern  brennstoff umgebenden Metallhüllen von Brennstoff  elementen für     Kernreaktoren    und zeichnet sich da  durch     paus,        :dass    die ,Metallhüllen an     ihren    Oberflächen  mit Elementen angereichert werden, die eine Erhö  hung des Korrosionswiderstandes     bewirken,    indem  die Metallhüllen einer ionisierten Gasatmosphäre aus  gesetzt werden, die .diese Elemente enthält.

   Die er  findungsgemässe Anreicherung     wird    mit Vorteil bei  erhöhter Temperatur zwecks     Eindiffundierung    dieser  Elemente in das     Grundmaterial    der Metallhüllen  durchgeführt. Die     Ionisierung    der     Gasatmosphäre     wird vorzugsweise durch     eine    Glimmentladung er  zeugt, wobei die zur Temperaturerhöhung nötige  elektrische Energie impulsweise     zugeführt        wird.    Die    Intensität der     Glimmentladung    soll höher als  0,1     Watt/cm2    liegen.

   Dem eigentlichen erfin  dungsgemässen     Verfahren    soll     .eine        Vorreinigung    der       Metallhüllen    mittels Glimmentladung vorangehen.  



  Im einzelnen wird dazu noch ausgeführt, dass  diese Behandlung in einer ionisierten Gasatmosphäre  für die Erhöhung des Korrosionswiderstandes der  Hüllen besonders geeignet ist, da z. B. die Behand  lung der Hüllenoberfläche durchgeführt werden kann,  wenn     die    Hülle bereits mit dem Kernbrennstoff ge  füllt und geschlossen ist.  



       Verwendet    man z. B.     Zirkon    und     Zirkonlegie-          rungen    als Umhüllungsmaterial, so kann .durch diese  Behandlung eine Betriebstemperatur des Kernreak  tors bei Verwendung von Wasser als Kühlmittel von  mindestens 500  C erwartet     werden.  



      Method for increasing the corrosion resistance of parts of nuclear reactors The invention relates to a method for increasing the corrosion resistance of parts of nuclear reactors, whereby the efficiency of the nuclear reactors is increased. As is known, the higher the temperature, the higher the reactor can be operated at. For this reason, there has already been a transition from the aluminum coating of the nuclear fuel to coatings with zirconium and zirconium alloys.



  Experience has shown, however, that using water as a coolant does not go beyond an operating temperature of more than 350 C. The reasons for this lie primarily in the behavior of the surface of the cladding for the nuclear fuel. These are generally covered with a thin oxide skin, which initially forms a good corrosion protection.

   At 350 C, however, the reaction speed of the oxide formation is increased to such an extent that the oxide can no longer be deposited in firmly adhering form, but crumbles off in pieces or plates.



  The invention relates to a method for increasing the corrosion resistance of the metal shells surrounding the core fuel of fuel elements for nuclear reactors and is characterized by: that the metal shells are enriched on their surfaces with elements that cause an increase in the corrosion resistance, by exposing the metal shells to an ionized gas atmosphere which contains these elements.

   The enrichment according to the invention is advantageously carried out at an elevated temperature for the purpose of diffusing these elements into the base material of the metal shells. The ionization of the gas atmosphere is preferably generated by a glow discharge, the electrical energy required to increase the temperature being supplied in pulses. The intensity of the glow discharge should be higher than 0.1 watt / cm2.

   The actual process according to the invention should be preceded by a pre-cleaning of the metal shells by means of a glow discharge.



  In addition, it is stated in detail that this treatment in an ionized gas atmosphere is particularly suitable for increasing the corrosion resistance of the casings, since z. B. the treatment of the shell surface can be carried out when the shell is already filled with the nuclear fuel and closed.



       If you use z. If, for example, zirconium and zirconium alloys are used as the coating material, an operating temperature of the nuclear reactor of at least 500 C can be expected through this treatment when water is used as the coolant.

 

Claims (1)

PATENTANSPRUCH Verfahren zur Erhöhung des Korrosionswider standes der den Kernbrennstoff umgebenden Metall hüllen von Brennstoffelementen für Kernreaktoren, dadurch gekennzeichnet, dass die Metallhüllen an ihren Oberflächen mit Elementen angereichert wer den, die eine Erhöhung des Korrosionswiderstandes bewirken, indem die Metallhüllen einer ionisierten Gasatmosphäre ausgesetzt werden, die diese Elemente enthält. UNTERANSPRÜCHE 1. A method for increasing the corrosion resistance of the metal shells surrounding the nuclear fuel of fuel elements for nuclear reactors, characterized in that the metal shells are enriched on their surfaces with elements which increase the corrosion resistance by exposing the metal shells to an ionized gas atmosphere which contains these elements. SUBCLAIMS 1. Verfahren nach Patentanspruch, dadurch ge kennzeichnet, dass die Anreicherung bei erhöhter Temperatur zwecks Eindiffundierungdieser Elemente in das Grundmaterial der Metallhüllen durchgeführt wird. 2. Verfahren nach Patentanspruch, dadurch ge kennzeichnet, dass die Ionisierung durch eine Glimm- entladung erzeugt wird. 3. Method according to claim, characterized in that the enrichment is carried out at an elevated temperature for the purpose of diffusing these elements into the base material of the metal shells. 2. The method according to claim, characterized in that the ionization is generated by a glow discharge. 3. Verfahren nach Unteranspruch 1, dadurch ge- kennzeichnet, dass die zur Temperaturerhöhung nö tige elektrische ]Energie impulsweise zugeführt wird. 4. Verfahren nach Patentanspruch, dadurch ge- kennzeichnet, dass eine Vorreinigung mittels Glimm- entladung vorgenommen wird. 5. Method according to dependent claim 1, characterized in that the electrical] energy necessary for increasing the temperature is supplied in pulses. 4. The method according to claim, characterized in that a pre-cleaning is carried out by means of a glow discharge. 5. Verfahren nach Unteranspruch Z, dadurch ge kennzeichnet, dass .die Intensität der Glimmentla- dung höher als 0,1 Watt/cm2 ist. Method according to dependent claim Z, characterized in that .the intensity of the glow discharge is higher than 0.1 watt / cm2.
CH1286961A 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of parts, of nuclear reactors CH416259A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CH1287061A CH427453A (en) 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of metal parts
CH1286961A CH416259A (en) 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of parts, of nuclear reactors
CH1287561A CH416853A (en) 1961-11-06 1961-11-06 Process for improving the efficiency of nuclear reactors
GB41966/62A GB992677A (en) 1961-11-06 1962-11-06 Method of increasing the efficiency of nuclear reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1286961A CH416259A (en) 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of parts, of nuclear reactors

Publications (1)

Publication Number Publication Date
CH416259A true CH416259A (en) 1966-06-30

Family

ID=4387146

Family Applications (3)

Application Number Title Priority Date Filing Date
CH1287061A CH427453A (en) 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of metal parts
CH1286961A CH416259A (en) 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of parts, of nuclear reactors
CH1287561A CH416853A (en) 1961-11-06 1961-11-06 Process for improving the efficiency of nuclear reactors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CH1287061A CH427453A (en) 1961-11-06 1961-11-06 Process for increasing the corrosion resistance of metal parts

Family Applications After (1)

Application Number Title Priority Date Filing Date
CH1287561A CH416853A (en) 1961-11-06 1961-11-06 Process for improving the efficiency of nuclear reactors

Country Status (1)

Country Link
CH (3) CH427453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154559A2 (en) * 1984-03-08 1985-09-11 Hitachi, Ltd. Zirconium-base alloy structural member and process for its preparation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652591B1 (en) * 1989-10-03 1993-10-08 Framatome PROCESS OF SURFACE OXIDATION OF A PASSIVABLE METAL PART, AND FUEL ASSEMBLY ELEMENTS COATED WITH A METAL ALLOY COATED WITH A PROTECTIVE OXIDE LAYER.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154559A2 (en) * 1984-03-08 1985-09-11 Hitachi, Ltd. Zirconium-base alloy structural member and process for its preparation
EP0154559A3 (en) * 1984-03-08 1987-07-29 Hitachi, Ltd. Zirconium-base alloy structural member and process for its preparation

Also Published As

Publication number Publication date
CH416853A (en) 1966-07-15
CH427453A (en) 1966-12-31

Similar Documents

Publication Publication Date Title
CH416259A (en) Process for increasing the corrosion resistance of parts, of nuclear reactors
DE659388C (en) Process for the production of mass cores
DE691691C (en) Dielectric material made from a textile material consisting mainly of asbestos and treated in an acid solution
DE410376C (en) Process for the production of electric cooking and heating plates from ceramic material
AT110212B (en) Process for protecting the windings of electrical machines against chemical influences from the surrounding atmosphere.
AT205612B (en) Process for carrying out thermonuclear fusion reactions
AT119766B (en) Electric cable.
AT236850B (en) Method of making an electric igniter
DE967148C (en) Process for vulcanizing cable sheaths made of natural or synthetic rubber made semiconducting using electrical energy
AT118972B (en) End winding attachment composed of cap and bandage for rotors of turbo generators.
DE740427C (en) Molten salt bathtubs
DE842229C (en) Method of manufacturing selenium AC rectifiers
DE504015C (en) Process for the production of mass cores for Pupin coils u. like
DE758242C (en) Process for the production of glow discharge tubes for the purpose of maintaining a constant voltage
JPS5562642A (en) Manufacturing method of electron tube heater
DE528592C (en) Process for the production of power cables with lead sheath
DE403008C (en) Inhaler with electrical heating
DE904674C (en) Process for insulating the inside of electric hotplates
DE739536C (en) Manufacture of flux pastes for arc welding electrodes
CH416854A (en) Process for high cleaning of the surface of the cladding of fuel elements for nuclear reactors
DE500075C (en) Acid-proof lining of vessels
DE656704C (en) Process for the production of encased welding electrodes, the clamping end of which is subsequently freed from the encasing compound
DE546470C (en) Process for the conversion of photographic silver images into dye images by oxidation and using leuco compounds
DE750855C (en) Compressible, thin-walled sleeve, capsule, tube or the like made of hard lead, which is provided with a tin coating of very low thickness
DE1097694B (en) Process for the production of grid plates for electrical accumulators from lead-antimony alloys