CH343303A - Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process - Google Patents
Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this processInfo
- Publication number
- CH343303A CH343303A CH343303DA CH343303A CH 343303 A CH343303 A CH 343303A CH 343303D A CH343303D A CH 343303DA CH 343303 A CH343303 A CH 343303A
- Authority
- CH
- Switzerland
- Prior art keywords
- shaft
- bearing journals
- unbreakable
- production
- clockworks
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 235000019589 hardness Nutrition 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000010622 cold drawing Methods 0.000 claims 1
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D3/00—Watchmakers' or watch-repairers' machines or tools for working materials
- G04D3/0074—Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
- G04D3/0079—Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
- G04D3/0084—Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components for axles, sleeves
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B13/00—Gearwork
- G04B13/02—Wheels; Pinions; Spindles; Pivots
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sliding-Contact Bearings (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
Verfahren zur Herstellung einer Welle mit bruchfesten Lagerzapfen für Uhrwerke und feinmechanische Apparate und nach diesem Verfahren hergestellte Welle mit bruchfesten Lagerzapfen Es sind bruchfeste Lagerzapfen bekanntgewor den, die im Gegensatz zu den martensitisch gehärte ten brüchigen Zapfen aus patentiertem Stahldraht (Klaviersaitendraht) bestehen, dem durch Kaltziehen Festigkeitswerte von über 200 kg.'mm2 verliehen wurden. Im Schweizer Patent Nr.311285 ist ein Verfahren zur Herstellung eines solchen Lager zapfens beschrieben.
Solche Zapfen haben nun wohl eine grosse Bruchfestigkeit. Sie haben aber den Nachteil, dass sie magnetisch sind und leicht rosten.
Es ist nun gelungen, ein an sich bekanntes rost freies und amagnetisches Drahtmaterial so zu behan deln, dass sich daraus ebenfalls z. B. Unruhwellen anfertigen lassen, die Festigkeitswerte von über 200 kg/mm2 aufweisen und deren Zapfen bruch sicher sind.
Die vorliegende Erfindung betrifft demnach ein Verfahren zur Herstellung einer Welle mit bruch festen Lagerzapfen für Uhrwerke und feinmechani sche Apparate, das sich dadurch kennzeichnet, dass mindestens die Lagerzapfen der Welle aus einem rostsicheren Drahtmaterial hergestellt werden, das nur schwach magnetisch oder amagnetisch ist und bei einer Temperatur von über 1000 erhitzt und abge schreckt und anschliessend auf Festigkeitswerte von über 200 kgmm2 und auf Härten von über 600 Vickers kalt gezogen wird.
Schwach magnetisch wird in diesem Zusammenhang ein Material dann ge nannt, wenn seine Magnetisierung nicht grösser ist als diejenige des sogenannten rostfreien Cr-Ni-Stah- les. Gegebenenfalls findet nachträglich noch eine Wärmebehandlung zwischen 200 und 600 statt.
Eine auf diese Weise hergestellte Unruhwelle mit Zapfen von im Durchmesser 0,09 mm bleibt, wie Versuche gezeigt haben, unbeschädigt, wenn eine mit dieser Unruhwelle versehene Uhr in der ungünstigsten Lage derselben von einer Höhe von 0,8 bis 1 m auf eine Stahlplatte fallen gelassen wird. Die Festigkeit von 200 kg:mm2 genügt somit, um die Zapfen der Unruhwelle praktisch unzerbrechlich zu machen. Das Drahtmaterial lässt sich auf dem Drehautomaten bearbeiten und lässt so eine präzise Massenfertigung zu.
Als Beispiel einer zur Herstellung der Welle ge eigneten Legierung sei hier eine an sich bekannte Legierung erwähnt, die sich für die Herstellung guter Uhrfedern bewährt hat und die sich erfahrungsge mäss auch zu bruchsicheren Lagerzapfen verarbei ten lässt.
Die Zusammensetzung der Legierung ist folgende: 40 % Co, 26 11/o Ni, 10 11/o Cr, 4 % W, 4 0/a Mo, 0,2 % Be, 1,0 % Ti,
2 % Mn + Si, Rest Fe. Ausser dieser Legierung, die nur als ein Beispiel dienen soll, können noch viele andere Legierungen zusammengestellt werden, die rostsicher, schwach oder gar nicht magnetisch sind und sich auf die er wähnte hohe Festigkeit kalt verformen lassen. Solche Legierungen basieren vorzugsweise auf den Elemen ten Fe, Ni, Co, Cr, Mo, W, mit oder ohne Zusätze von Be, Ti, Nb, Ta und C.
Die Wellen um die es sich hier handelt, können verschiedene Formen aufweisen, von denen in den Fig. 1, 2 und 3 der Zeichnung als Beispiele drei gezeigt sind.
In Fig. 1 ist a die aus gewöhnlichem Stahl be stehende Unruhwelle eines Uhrwerkes. Diese Unruh welle a weist in ihren Endteilen Bohrungen auf, in die nach dem obigen Verfahren hergestellte Lager zapfen b eingesetzt sind.
Gemäss Fig. 2 wird über ein nach obigem Ver fahren hergestellter Draht c ein dickwandiges Metall rohr d geschoben, das einem Ziehvorgang unterwor fen wird, bis es auf dem Draht c festsitzt. Das Me tallrohr wird dann entsprechend dem in Fig. 2 ge zeigten Fertigprofil bearbeitet und an seinen Enden bis auf den Durchmesser des Drahtes c abgesetzt, um die Lagerzapfen cl zu bilden.
In Fig. 3 ist eine Welle gezeigt, die einen nach dem obigen Verfahren hergestellten Wellenkörper e aufweist, auf dessen Mittelteil e1 eine darauf aufge schobene, profilierte Metallhülse f sitzt. Der Wellen körper e hat konische Endteile e2, die an ihrem Aussenende als Lagerzapfen e3 ausgebildet sind. An statt konisch könnten die Endteile e2 auch als Rota tionskörper ausgebildet sein, dessen Erzeugende eine kubische Parabel wäre.
Gegebenenfalls könnte die Metallhülse f weggelassen werden und die Unruh mit ihrer Nabe direkt auf dem Mittelteil e1 des Wellenkörpers aufgeschoben sein.
Process for the production of a shaft with break-proof bearing journals for clockworks and precision mechanical devices and shaft with break-proof bearing journals produced according to this process Strength values of over 200 kg.'mm2 have been awarded. In Swiss Patent No. 311285 a method for producing such a bearing pin is described.
Such pegs now have a high breaking strength. However, they have the disadvantage that they are magnetic and rust easily.
It has now been possible to treat a known rust-free and non-magnetic wire material in such a way that it also z. B. have balance shafts made that have strength values of over 200 kg / mm2 and whose journals are safe to break.
The present invention therefore relates to a method for producing a shaft with break-proof bearing journals for clockworks and feinmechani cal apparatus, which is characterized in that at least the bearing journals of the shaft are made of a rustproof wire material that is only weakly magnetic or non-magnetic and at a Heated and quenched to a temperature of over 1000 and then cold drawn to strength values of over 200 kgmm2 and hardnesses of over 600 Vickers.
In this context, a material is called weakly magnetic if its magnetization is not greater than that of the so-called stainless Cr-Ni steel. If necessary, heat treatment between 200 and 600 takes place afterwards.
As tests have shown, a balance shaft made in this way with pins 0.09 mm in diameter remains undamaged if a watch fitted with this balance shaft falls in the most unfavorable position of the same from a height of 0.8 to 1 m on a steel plate is left. The strength of 200 kg: mm2 is sufficient to make the journals of the balance shaft practically unbreakable. The wire material can be processed on the automatic lathe and thus enables precise mass production.
As an example of an alloy suitable for the production of the shaft, an alloy known per se should be mentioned which has proven itself for the production of good watch springs and which, according to experience, can also be processed into unbreakable bearing journals.
The composition of the alloy is as follows: 40% Co, 26 11 / o Ni, 10 11 / o Cr, 4% W, 4 0 / a Mo, 0.2% Be, 1.0% Ti,
2% Mn + Si, remainder Fe. In addition to this alloy, which is only intended to serve as an example, many other alloys can be put together that are rust-proof, weak or non-magnetic and can be cold deformed to the high strength mentioned. Such alloys are preferably based on the elements Fe, Ni, Co, Cr, Mo, W, with or without additions of Be, Ti, Nb, Ta and C.
The shafts involved here can have various shapes, three of which are shown as examples in FIGS. 1, 2 and 3 of the drawing.
In Fig. 1 a is made of ordinary steel be standing balance shaft of a clockwork. This balance shaft a has bores in its end parts, in the bearing pin b produced by the above method are used.
2, a thick-walled metal tube d is pushed over a wire c produced according to the above Ver drive, which is subjected to a drawing process until it is stuck on the wire c. The Me tallrohr is then processed according to the finished profile shown in Fig. 2 and deposited at its ends to the diameter of the wire c to form the bearing pin cl.
In Fig. 3, a shaft is shown, which has a shaft body e produced by the above method, on the middle part e1 of a pushed up, profiled metal sleeve f sits. The shaft body e has conical end parts e2 which are designed as bearing journals e3 at their outer end. Instead of conical, the end parts e2 could also be designed as a rotary body, the generatrix of which would be a cubic parabola.
If necessary, the metal sleeve f could be omitted and the balance wheel with its hub pushed directly onto the middle part e1 of the shaft body.
Claims (1)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH1164982X | 1956-01-24 | ||
| CH343303T | 1956-01-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CH343303A true CH343303A (en) | 1959-12-15 |
Family
ID=67220601
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CH343303D CH343303A (en) | 1956-01-24 | 1956-01-24 | Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process |
Country Status (3)
| Country | Link |
|---|---|
| CH (1) | CH343303A (en) |
| DE (1) | DE1174518B (en) |
| FR (1) | FR1164982A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1698615B1 (en) * | 1961-11-08 | 1972-06-29 | Agfa Gevaert Ag | ROCKWAVE BEARING WITH BACK |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH707503A2 (en) | 2013-01-17 | 2014-07-31 | Omega Sa | Pivoting axle i.e. non-magnetic balance axle, for clockwork movement of timepiece, has pivot made of composite material having metal matrix charged with hard particles in order to limit sensitivity of axle to magnetic fields |
| EP2784602B1 (en) | 2013-03-26 | 2018-12-05 | Montres Breguet SA | Arbour of a mobile with optimised geometry in magnetic environment |
| EP2784601B1 (en) * | 2013-03-26 | 2017-09-13 | Montres Breguet SA | Arbor of a pivotable clock mobile |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH299223A (en) * | 1952-01-14 | 1954-05-31 | Reinhard Dr Straumann | Process for the production of a mainspring for watches and mainspring obtained by this process. |
| CH306697A (en) * | 1952-02-12 | 1955-04-30 | Reinhard Dr Straumann | Iron-nickel-cobalt alloy, particularly suitable for watch springs. |
| CH311285A (en) | 1953-11-28 | 1955-11-30 | Reinhard Dr Straumann | Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical apparatus and a shaft with unbreakable bearing journals produced by this process. |
-
1956
- 1956-01-24 CH CH343303D patent/CH343303A/en unknown
-
1957
- 1957-01-10 DE DEI12683A patent/DE1174518B/en active Pending
- 1957-01-22 FR FR1164982D patent/FR1164982A/en not_active Expired
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1698615B1 (en) * | 1961-11-08 | 1972-06-29 | Agfa Gevaert Ag | ROCKWAVE BEARING WITH BACK |
Also Published As
| Publication number | Publication date |
|---|---|
| DE1174518B (en) | 1964-07-23 |
| FR1164982A (en) | 1958-10-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE3310693A1 (en) | CORROSION-RESISTANT CHROME STEEL AND METHOD FOR THE PRODUCTION THEREOF | |
| DE3628395C1 (en) | Use of steel for plastic molds | |
| DE1219239B (en) | Sintered, steel-bonded carbide hard alloy | |
| CH369481A (en) | Process for increasing the creep resistance of chrome steel | |
| CH343303A (en) | Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process | |
| DE545166C (en) | Process for the production of age-resistant iron or steel | |
| CH389331A (en) | Rolling elements and process for their manufacture | |
| AT200805B (en) | Process for the production of non-magnetic and rustproof bearing parts in the form of pointed journals and shafts for point bearings in apparatus and instruments of all kinds | |
| DE1166230B (en) | Process for the production of bearing parts in the form of pointed pins and shafts from rustproof and at most weakly magnetic wire material | |
| DE870039C (en) | Clockspring | |
| DE891626C (en) | Process for the production of magnetogram carriers | |
| AT246204B (en) | Rapid process for soft annealing, especially of ball bearing steels, in continuous furnaces | |
| AT139090B (en) | Process for the manufacture of articles, e.g. B. valve cones for internal combustion engines, hot tools such as dies, mandrels, etc. | |
| DE609906C (en) | Process for the production of springs with increased service life for upholstered furniture | |
| AT147996B (en) | Manufacture of rolls made of alloyed steels, with or without subsequent surface hardening, for cold rolling metals, in particular steel and iron alloys. | |
| AT291323B (en) | Process for the production of spring wires from heat-resistant alloy steels | |
| CH310314A (en) | Shaft intended for precision mechanical apparatus and instruments with unbreakable bearing journals and process for manufacturing this shaft. | |
| AT158878B (en) | Ring travelers for ring spinning and ring twisting machines and processes for their production. | |
| DE2119669A1 (en) | PROCESS FOR MANUFACTURING OBJECTS MADE FROM NICKEL-CHROME IRON ALLOYS THAT ARE RESISTANT TO INTER-CRYSTALLINE CORROSION | |
| CH286912A (en) | Spring, in particular for clocks. | |
| DE899507C (en) | Application of the process to improve the thermoelastic coefficient with low secondary errors in the manufacture of compensation spiral springs for watches on iron alloys | |
| AT268346B (en) | Hardenable chrome-nickel steel | |
| DE971412C (en) | Use of a cobalt-chromium-nickel alloy for watch winding springs | |
| CH372600A (en) | Wristwatch with a balance wheel that is largely secured against shocks | |
| CH377537A (en) | Heat-resistant alloy |