CH343303A - Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process - Google Patents

Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process

Info

Publication number
CH343303A
CH343303A CH343303DA CH343303A CH 343303 A CH343303 A CH 343303A CH 343303D A CH343303D A CH 343303DA CH 343303 A CH343303 A CH 343303A
Authority
CH
Switzerland
Prior art keywords
shaft
bearing journals
unbreakable
production
clockworks
Prior art date
Application number
Other languages
German (de)
Inventor
Reinhard Straumann
Original Assignee
Straumann Inst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Straumann Inst Ag filed Critical Straumann Inst Ag
Publication of CH343303A publication Critical patent/CH343303A/en

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0079Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
    • G04D3/0084Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components for axles, sleeves
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

  

  Verfahren zur Herstellung einer Welle mit bruchfesten Lagerzapfen       für    Uhrwerke     und        feinmechanische    Apparate       und    nach diesem Verfahren hergestellte Welle mit bruchfesten Lagerzapfen    Es sind bruchfeste Lagerzapfen bekanntgewor  den, die im Gegensatz zu den     martensitisch    gehärte  ten brüchigen Zapfen aus patentiertem Stahldraht       (Klaviersaitendraht)    bestehen, dem durch Kaltziehen  Festigkeitswerte von über 200     kg.'mm2    verliehen  wurden. Im Schweizer Patent     Nr.311285    ist ein       Verfahren    zur Herstellung eines solchen Lager  zapfens beschrieben.  



  Solche Zapfen haben nun wohl eine grosse  Bruchfestigkeit. Sie haben aber den Nachteil, dass sie  magnetisch sind und leicht rosten.  



  Es ist nun gelungen, ein an sich bekanntes rost  freies und     amagnetisches    Drahtmaterial so zu behan  deln, dass sich daraus ebenfalls z. B.     Unruhwellen     anfertigen lassen, die Festigkeitswerte von über  200     kg/mm2    aufweisen und deren Zapfen bruch  sicher sind.  



  Die vorliegende Erfindung betrifft demnach ein  Verfahren     zur    Herstellung einer Welle mit bruch  festen Lagerzapfen für Uhrwerke und feinmechani  sche Apparate, das sich dadurch kennzeichnet, dass  mindestens die Lagerzapfen der Welle aus einem  rostsicheren Drahtmaterial hergestellt werden, das  nur schwach magnetisch oder     amagnetisch    ist und bei  einer Temperatur von über 1000  erhitzt und abge  schreckt und anschliessend auf Festigkeitswerte von  über 200     kgmm2    und auf Härten von über 600       Vickers    kalt gezogen wird.

   Schwach magnetisch wird  in diesem Zusammenhang ein Material dann ge  nannt, wenn seine     Magnetisierung    nicht grösser ist  als diejenige des sogenannten rostfreien     Cr-Ni-Stah-          les.        Gegebenenfalls    findet nachträglich noch eine  Wärmebehandlung zwischen 200 und 600      statt.     



  Eine auf diese Weise hergestellte     Unruhwelle     mit Zapfen von im Durchmesser 0,09 mm bleibt,    wie Versuche gezeigt haben, unbeschädigt, wenn       eine        mit    dieser     Unruhwelle    versehene Uhr in der  ungünstigsten Lage derselben von einer Höhe von  0,8 bis 1 m auf eine Stahlplatte fallen gelassen wird.  Die Festigkeit von 200     kg:mm2        genügt    somit, um  die Zapfen der     Unruhwelle    praktisch unzerbrechlich  zu machen. Das Drahtmaterial lässt sich auf dem  Drehautomaten bearbeiten und lässt so eine präzise       Massenfertigung    zu.  



  Als Beispiel einer zur Herstellung der Welle ge  eigneten Legierung sei hier eine an sich bekannte       Legierung    erwähnt, die sich für die Herstellung guter  Uhrfedern bewährt hat und die sich erfahrungsge  mäss auch zu bruchsicheren Lagerzapfen verarbei  ten lässt.

   Die Zusammensetzung der Legierung ist  folgende:       40        %        Co,        26        11/o        Ni,        10        11/o        Cr,    4     %        W,    4     0/a        Mo,          0,2        %        Be,        1,0        %        Ti,

      2     %        Mn        +        Si,        Rest        Fe.     Ausser dieser Legierung, die nur als ein Beispiel  dienen soll, können noch viele andere Legierungen       zusammengestellt    werden, die rostsicher, schwach  oder gar nicht magnetisch     sind    und sich auf die er  wähnte hohe Festigkeit kalt verformen lassen. Solche  Legierungen basieren vorzugsweise auf den Elemen  ten Fe, Ni, Co,     Cr,    Mo, W, mit oder ohne Zusätze  von     Be,        Ti,        Nb,        Ta    und C.  



  Die Wellen um die es sich hier handelt, können  verschiedene Formen aufweisen, von denen in den       Fig.    1, 2 und 3 der Zeichnung als Beispiele drei  gezeigt sind.  



  In     Fig.    1 ist a die aus     gewöhnlichem        Stahl    be  stehende     Unruhwelle        eines        Uhrwerkes.    Diese Unruh  welle a weist in ihren     Endteilen    Bohrungen auf,     in         die nach dem obigen Verfahren hergestellte Lager  zapfen b eingesetzt sind.  



  Gemäss     Fig.    2 wird über ein nach obigem Ver  fahren hergestellter Draht c ein dickwandiges Metall  rohr d geschoben, das einem Ziehvorgang unterwor  fen wird, bis es auf dem Draht c festsitzt. Das Me  tallrohr wird dann entsprechend dem in     Fig.    2 ge  zeigten     Fertigprofil    bearbeitet und an seinen Enden  bis auf den Durchmesser des Drahtes c abgesetzt,  um die Lagerzapfen cl zu bilden.  



       In        Fig.    3 ist eine Welle gezeigt, die einen nach  dem obigen Verfahren hergestellten Wellenkörper e  aufweist, auf dessen Mittelteil     e1    eine darauf aufge  schobene,     profilierte    Metallhülse f     sitzt.    Der Wellen  körper e hat     konische        Endteile    e2, die an ihrem  Aussenende als Lagerzapfen     e3    ausgebildet sind. An  statt konisch könnten die Endteile e2 auch als Rota  tionskörper ausgebildet sein, dessen Erzeugende eine  kubische Parabel wäre.

   Gegebenenfalls könnte die       Metallhülse        f    weggelassen werden und die Unruh  mit ihrer Nabe direkt auf dem Mittelteil     e1    des  Wellenkörpers aufgeschoben sein.



  Process for the production of a shaft with break-proof bearing journals for clockworks and precision mechanical devices and shaft with break-proof bearing journals produced according to this process Strength values of over 200 kg.'mm2 have been awarded. In Swiss Patent No. 311285 a method for producing such a bearing pin is described.



  Such pegs now have a high breaking strength. However, they have the disadvantage that they are magnetic and rust easily.



  It has now been possible to treat a known rust-free and non-magnetic wire material in such a way that it also z. B. have balance shafts made that have strength values of over 200 kg / mm2 and whose journals are safe to break.



  The present invention therefore relates to a method for producing a shaft with break-proof bearing journals for clockworks and feinmechani cal apparatus, which is characterized in that at least the bearing journals of the shaft are made of a rustproof wire material that is only weakly magnetic or non-magnetic and at a Heated and quenched to a temperature of over 1000 and then cold drawn to strength values of over 200 kgmm2 and hardnesses of over 600 Vickers.

   In this context, a material is called weakly magnetic if its magnetization is not greater than that of the so-called stainless Cr-Ni steel. If necessary, heat treatment between 200 and 600 takes place afterwards.



  As tests have shown, a balance shaft made in this way with pins 0.09 mm in diameter remains undamaged if a watch fitted with this balance shaft falls in the most unfavorable position of the same from a height of 0.8 to 1 m on a steel plate is left. The strength of 200 kg: mm2 is sufficient to make the journals of the balance shaft practically unbreakable. The wire material can be processed on the automatic lathe and thus enables precise mass production.



  As an example of an alloy suitable for the production of the shaft, an alloy known per se should be mentioned which has proven itself for the production of good watch springs and which, according to experience, can also be processed into unbreakable bearing journals.

   The composition of the alloy is as follows: 40% Co, 26 11 / o Ni, 10 11 / o Cr, 4% W, 4 0 / a Mo, 0.2% Be, 1.0% Ti,

      2% Mn + Si, remainder Fe. In addition to this alloy, which is only intended to serve as an example, many other alloys can be put together that are rust-proof, weak or non-magnetic and can be cold deformed to the high strength mentioned. Such alloys are preferably based on the elements Fe, Ni, Co, Cr, Mo, W, with or without additions of Be, Ti, Nb, Ta and C.



  The shafts involved here can have various shapes, three of which are shown as examples in FIGS. 1, 2 and 3 of the drawing.



  In Fig. 1 a is made of ordinary steel be standing balance shaft of a clockwork. This balance shaft a has bores in its end parts, in the bearing pin b produced by the above method are used.



  2, a thick-walled metal tube d is pushed over a wire c produced according to the above Ver drive, which is subjected to a drawing process until it is stuck on the wire c. The Me tallrohr is then processed according to the finished profile shown in Fig. 2 and deposited at its ends to the diameter of the wire c to form the bearing pin cl.



       In Fig. 3, a shaft is shown, which has a shaft body e produced by the above method, on the middle part e1 of a pushed up, profiled metal sleeve f sits. The shaft body e has conical end parts e2 which are designed as bearing journals e3 at their outer end. Instead of conical, the end parts e2 could also be designed as a rotary body, the generatrix of which would be a cubic parabola.

   If necessary, the metal sleeve f could be omitted and the balance wheel with its hub pushed directly onto the middle part e1 of the shaft body.

 

Claims (1)

PATENTANSPRt1CHE 1. Verfahren zur Herstellung einer Welle mit bruchfesten Lagerzapfen für Uhrwerke und fein mechanische Apparate, dadurch gekennzeichnet, dass mindestens die Lagerzapfen der Welle aus einem rostsicheren und schwach magnetischen oder amagne- tischen Drahtmaterial hergestellt werden, das bei einer Temperatur von über 1000 erhitzt und abge schreckt und anschliessend auf Festigkeitswerte von über 200 kgmm2 und auf Härten von über 600 Vickers kalt gezogen wird. Il. Nach dem Verfahren gemäss Patentanspruch 1 hergestellte Welle mit bruchfesten Lagerzapfen. PATENT CLAIM 1. A process for the production of a shaft with break-proof bearing journals for clockworks and fine mechanical devices, characterized in that at least the bearing journals of the shaft are made of a rustproof and weakly magnetic or amagnetic wire material that is heated and heated to a temperature of over 1000 quenched and then cold drawn to strength values of over 200 kgmm2 and hardnesses of over 600 Vickers. Il. Shaft produced by the method according to claim 1 with break-proof bearing journals. UNTERANSPRUCH Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass das Drahtmaterial nach dem Kalt ziehen einer Wärmebehandlung zwischen 200 und 600 unterzogen wird. SUBCLAIM Method according to claim 1, characterized in that the wire material is subjected to a heat treatment between 200 and 600 after cold drawing.
CH343303D 1956-01-24 1956-01-24 Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process CH343303A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1164982X 1956-01-24
CH343303T 1956-01-24

Publications (1)

Publication Number Publication Date
CH343303A true CH343303A (en) 1959-12-15

Family

ID=67220601

Family Applications (1)

Application Number Title Priority Date Filing Date
CH343303D CH343303A (en) 1956-01-24 1956-01-24 Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process

Country Status (3)

Country Link
CH (1) CH343303A (en)
DE (1) DE1174518B (en)
FR (1) FR1164982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1698615B1 (en) * 1961-11-08 1972-06-29 Agfa Gevaert Ag ROCKWAVE BEARING WITH BACK

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH707503A2 (en) 2013-01-17 2014-07-31 Omega Sa Pivoting axle i.e. non-magnetic balance axle, for clockwork movement of timepiece, has pivot made of composite material having metal matrix charged with hard particles in order to limit sensitivity of axle to magnetic fields
EP2784602B1 (en) 2013-03-26 2018-12-05 Montres Breguet SA Arbour of a mobile with optimised geometry in magnetic environment
EP2784601B1 (en) * 2013-03-26 2017-09-13 Montres Breguet SA Arbor of a pivotable clock mobile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH299223A (en) * 1952-01-14 1954-05-31 Reinhard Dr Straumann Process for the production of a mainspring for watches and mainspring obtained by this process.
CH306697A (en) * 1952-02-12 1955-04-30 Reinhard Dr Straumann Iron-nickel-cobalt alloy, particularly suitable for watch springs.
CH311285A (en) 1953-11-28 1955-11-30 Reinhard Dr Straumann Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical apparatus and a shaft with unbreakable bearing journals produced by this process.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1698615B1 (en) * 1961-11-08 1972-06-29 Agfa Gevaert Ag ROCKWAVE BEARING WITH BACK

Also Published As

Publication number Publication date
DE1174518B (en) 1964-07-23
FR1164982A (en) 1958-10-16

Similar Documents

Publication Publication Date Title
DE3310693A1 (en) CORROSION-RESISTANT CHROME STEEL AND METHOD FOR THE PRODUCTION THEREOF
DE3628395C1 (en) Use of steel for plastic molds
DE1219239B (en) Sintered, steel-bonded carbide hard alloy
CH369481A (en) Process for increasing the creep resistance of chrome steel
CH343303A (en) Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process
DE545166C (en) Process for the production of age-resistant iron or steel
CH389331A (en) Rolling elements and process for their manufacture
AT200805B (en) Process for the production of non-magnetic and rustproof bearing parts in the form of pointed journals and shafts for point bearings in apparatus and instruments of all kinds
DE1166230B (en) Process for the production of bearing parts in the form of pointed pins and shafts from rustproof and at most weakly magnetic wire material
DE870039C (en) Clockspring
DE891626C (en) Process for the production of magnetogram carriers
AT246204B (en) Rapid process for soft annealing, especially of ball bearing steels, in continuous furnaces
AT139090B (en) Process for the manufacture of articles, e.g. B. valve cones for internal combustion engines, hot tools such as dies, mandrels, etc.
DE609906C (en) Process for the production of springs with increased service life for upholstered furniture
AT147996B (en) Manufacture of rolls made of alloyed steels, with or without subsequent surface hardening, for cold rolling metals, in particular steel and iron alloys.
AT291323B (en) Process for the production of spring wires from heat-resistant alloy steels
CH310314A (en) Shaft intended for precision mechanical apparatus and instruments with unbreakable bearing journals and process for manufacturing this shaft.
AT158878B (en) Ring travelers for ring spinning and ring twisting machines and processes for their production.
DE2119669A1 (en) PROCESS FOR MANUFACTURING OBJECTS MADE FROM NICKEL-CHROME IRON ALLOYS THAT ARE RESISTANT TO INTER-CRYSTALLINE CORROSION
CH286912A (en) Spring, in particular for clocks.
DE899507C (en) Application of the process to improve the thermoelastic coefficient with low secondary errors in the manufacture of compensation spiral springs for watches on iron alloys
AT268346B (en) Hardenable chrome-nickel steel
DE971412C (en) Use of a cobalt-chromium-nickel alloy for watch winding springs
CH372600A (en) Wristwatch with a balance wheel that is largely secured against shocks
CH377537A (en) Heat-resistant alloy