CH341442A - Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments - Google Patents

Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments

Info

Publication number
CH341442A
CH341442A CH341442A CH341442A CH341442A CH 341442 A CH341442 A CH 341442A CH 341442 A CH341442 A CH 341442A CH 341442 A CH341442 A CH 341442A CH 341442 A CH341442 A CH 341442A
Authority
CH
Switzerland
Prior art keywords
wire
shafts
over
dependent
heated
Prior art date
Application number
CH341442A
Other languages
German (de)
Inventor
Reinhard Dr Straumann
Original Assignee
Straumann Inst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DEJ12704A priority Critical patent/DE1166230B/en
Priority to NL213929A priority patent/NL104084C/en
Priority to US635430A priority patent/US2973291A/en
Priority to FR1165357D priority patent/FR1165357A/en
Application filed by Straumann Inst Ag filed Critical Straumann Inst Ag
Priority to CH341442A priority patent/CH341442A/en
Publication of CH341442A publication Critical patent/CH341442A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/004Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
    • G04B31/008Jewel bearings
    • G04B31/0082Jewel bearings with jewel hole and cap jewel
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0079Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
    • G04D3/0084Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components for axles, sleeves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ocean & Marine Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Sliding-Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

  

  Verfahren zur Herstellung von mit Lagerspitzen versehenen Wellen für     Spitzenlagerungen     in Apparaten und Instrumenten    Es ist bekannt,     dass    man in verschiedenen Appa  raten und Instrumenten, insbesondere in billigen  Uhren, zur Lagerung von Wellen Spitzenlagerungen  anwendet. Hierzu weisen die Wellen an ihren Enden  Spitzen auf, die in konischen Vertiefungen von La  gersteinen oder Metallagern gelagert sind. Solche  Wellen bestehen aus Stahl und werden durch be  kannte Härteverfahren     martensitisch    gehärtet.

   Ein  grosser Nachteil derselben liegt darin,     dass    ihre Quali  tät bei der Serienherstellung ungleichmässig ausfällt,  so     dass    sie sortiert werden müssen, um nur diejenigen  Lagerspitzen, die den an sie gestellten Anforderungen  genügen, zur Verwendung zuzulassen. Es hat sich  nun gezeigt,     dass    Wellen mit gleichmässig harten  Lagerspitzen aus einem Draht hergestellt werden  können, der nicht     martensitisch    gehärtet, sondern  durch Glühen bei einer<B>8000 C</B> übersteigenden Tem  peratur homogenisiert und dann ohne     martensitische     Härtung abgeschreckt wird.

   Der so behandelte, weich  gebliebene Draht wird anschliessend auf Festigkeits  werte von über 200     kg/MM2    und auf     Vickershärten     von über<B>600</B>     kg/mm2    kalt heruntergezogen. Aus  dem kaltverformten Draht werden dann die mit  Lagerspitzen versehenen Wellen herausgearbeitet.  Um die Festigkeitswerte der Lagerspitzen noch zu  verbessern, kann entweder der Draht vor dem Her  ausarbeiten der Wellen oder dann die herausgearbei  teten Wellen noch einer Wärmebehandlung zwischen  200 und<B>6000 C</B> unterzogen werden.  



  Zur Erläuterung des erfindungsgemässen Verfah  rens dienen folgende Durchführungsbeispiele:  <I>Beispiel<B>1</B></I>  Als Ausgangsmaterial, für die mit Lagerspitzen  versehenen Wellen wird eine     Eisen-Kohlenstofflegie-          rung    mit folgender Zusammensetzung verwendet:         0,93-0,97%        C,        0,2-0,4%        Mn,        0,2-0,4%        Si,     Rest Eisen.  



  Dieses Ausgangsmaterial wird in Drahtform bei  einer Temperatur von etwa<B>9000 C</B> geglüht und an  schliessend an der Luft oder in einem Metallbad auf  etwa<B>5000 C</B> abgeschreckt und nach einer gewissen  Zeit auf Raumtemperatur abgekühlt. Der so behan  delte, weich gebliebene Draht wird anschliessend auf  Festigkeitswerte von über 200     kg/mm2    und auf Här  ten von über<B>600</B>     Vickers    heruntergezogen. Aus  diesem kaltverformten Draht werden die mit Lager  spitzen versehenen Wellen herausgearbeitet und an  schliessend bei einer Temperatur von etwa<B>2500 C</B>  wärmebehandelt. Man erhält demnach Wellen, deren  Lagerspitzen eine Festigkeit von über 200     kg/MM2     bei einer Härte von über<B>600</B>     Vickers    aufweisen.  



  Anstatt die Wärmebehandlung an den heraus  gearbeiteten Wellen vorzunehmen, kann man sie vor  dem Herausarbeiten der Wellen auch am kaltge  zogenen Draht vornehmen.  



  Wie durch Versuche festgestellt wurde, sind die  so hergestellten Wellen mit Lagerspitzen qualitativ  besser als     martensitisch    gehärtete Wellen und zeigen  überdies bei der Serienherstellung eine bisher un  erreichte Regelmässigkeit bezüglich der Qualität.  



  <I>Beispiel 2</I>  Die nach dem Beispiel<B>1</B> hergestellten Wellen  mit Lagerspitzen sind bezüglich Bruchsicherheit sehr  gut, sind aber rostanfällig und magnetisch. Es ist  nun aber auch gelungen, nach dem gleichen Ver  fahren Wellen herzustellen, die     amagnetisch    und rost  sicher sind, wenn als Ausgangsmaterial eine Legie  rung verwendet wird, die rostfest und schwach  magnetisch oder vollständig     amagnetisch    ist.

   Eine  geeignete Legierung ist die folgende:           40-50%        Co,        10-20%        Cr,        etwa        5019        Mo,        etwa          511ü        W,        0,2-0,4%        Be,        0,8-1,20/9        Ti,        etwa     2     "/o        Mn   <B>+</B>     Si,   <B>0-10</B> %     Fe,    Rest Ni.  



  Es können aber auch andere rostsichere sowie  schwach magnetische Legierungen verwendet werden.  Die als Beispiel angeführte Legierung wird in  Drahtform bei etwa     110011   <B>C</B> geglüht und auf Zim  mertemperatur abgeschreckt. Der so behandelte,  weich gebliebene Draht wird kaltverformt bis auf  Festigkeitswerte von über 200     kg/mm2.    Aus diesem  Draht werden die mit den Lagerspitzen versehenen  'Wellen herausgearbeitet und nachträglich bei 400 bis  <B><I>5000</I> C</B> während 1-4 Stunden     wärinebehandelt.    Die  so hergestellten Wellen haben Festigkeitswerte von  über 200     kg/mm2    und Härten von über<B>650</B>     Vickers.     Auch hier kann die     Wärtnebehandlung    bei 400 bis  

  <B><I>5000 C</I></B> anstatt an den herausgearbeiteten Wellen am  Draht selbst vorgenommen werden.  



  Auf einen erfindungsgemäss behandelten Draht  mit einem Durchmesser von z. B.<B>0,1-0,52</B> mm  kann eine Kanüle aus einem weicheren Material,  wie z. B. Messing, Neusilber,     Berylliumbronze        usw.,     aufgeschoben werden. Aus diesem aus Kern und  Hülse bestehenden Verbunddraht können nun die  mit Lagerspitzen versehenen Wellen herausgearbeitet  werden. Bei solchen Wellen weist also nur der die  spitzen Enden aufweisende     Drahtkem    den vorge  nannten hohen Härtegrad und den hohen Festigkeits  wert auf, was insofern von Vorteil ist, als sich diese  Wellen leichter verarbeiten lassen.



  Process for the production of shafts provided with bearing tips for tip bearings in apparatus and instruments It is known that tip bearings are used in various apparatus and instruments, especially in cheap watches, for bearing shafts. For this purpose, the shafts have tips at their ends, which are mounted in conical recesses of bearing stones or metal bearings. Such shafts are made of steel and are hardened martensitically by known hardening processes.

   A major disadvantage of the same is that their quality in series production is uneven, so that they have to be sorted in order to allow only those bearing tips that meet the requirements placed on them for use. It has now been shown that shafts with evenly hard bearing tips can be manufactured from a wire that is not martensitically hardened, but is homogenized by annealing at a temperature exceeding 8000 C and then quenched without martensitic hardening.

   The wire that has remained soft and treated in this way is then drawn down cold to strength values of over 200 kg / MM2 and to Vickers hardnesses of over 600 kg / mm2. The shafts with bearing tips are then machined from the cold-formed wire. In order to further improve the strength values of the bearing tips, either the wire can be subjected to a heat treatment between 200 and 6000 C before the shafts are machined or the shafts that have been machined out.



  The following implementation examples serve to explain the method according to the invention: <I> Example<B>1</B> </I> An iron-carbon alloy with the following composition is used as the starting material for the shafts provided with bearing tips: 0.93 -0.97% C, 0.2-0.4% Mn, 0.2-0.4% Si, balance iron.



  This starting material is annealed in wire form at a temperature of about 9000 C and then quenched in air or in a metal bath to about 5000 C and cooled to room temperature after a certain time . The wire, which has remained soft and treated in this way, is then pulled down to strength values of over 200 kg / mm2 and to a hardness of over <B> 600 </B> Vickers. The shafts with bearing tips are machined from this cold-formed wire and then heat-treated at a temperature of around <B> 2500 C </B>. Accordingly, shafts are obtained whose bearing tips have a strength of over 200 kg / MM2 with a hardness of over <B> 600 </B> Vickers.



  Instead of performing the heat treatment on the shafts that have been worked out, it can also be done on the cold-drawn wire before the shafts are worked out.



  As has been established through tests, the shafts with bearing tips produced in this way are qualitatively better than martensitically hardened shafts and, moreover, show a regularity with regard to quality not previously achieved in series production.



  <I> Example 2 </I> The shafts with bearing tips produced according to example <B> 1 </B> are very good with regard to break resistance, but are susceptible to rust and magnetic. But it has now also succeeded in using the same method to produce shafts that are non-magnetic and rust-proof if an alloy is used as the starting material that is rust-proof and weakly magnetic or completely non-magnetic.

   A suitable alloy is the following: 40-50% Co, 10-20% Cr, about 5019 Mo, about 511 W, 0.2-0.4% Be, 0.8-1.20 / 9 Ti, about 2 "/ o Mn <B> + </B> Si, <B> 0-10 </B>% Fe, balance Ni.



  However, other rust-proof and weakly magnetic alloys can also be used. The alloy cited as an example is annealed in wire form at around 110011 <B> C </B> and quenched to room temperature. The wire that has remained soft and treated in this way is cold-formed to strength values of over 200 kg / mm2. The shafts with the bearing tips are worked out from this wire and subsequently heat-treated at 400 to <B> <I> 5000 </I> C </B> for 1-4 hours. The shafts produced in this way have strength values of over 200 kg / mm2 and hardnesses of over <B> 650 </B> Vickers. Here, too, the heat treatment at 400 to

  <B> <I> 5000 C </I> </B> can be made on the wire itself instead of the carved waves.



  On a wire treated according to the invention with a diameter of, for. B. 0.1-0.52 </B> mm, a cannula made of a softer material, such as. B. brass, nickel silver, beryllium bronze, etc., are postponed. The shafts provided with bearing tips can now be worked out from this composite wire consisting of core and sleeve. In such waves, therefore, only the wire core having the pointed ends has the aforementioned high degree of hardness and high strength value, which is advantageous in that these waves can be processed more easily.

 

Claims (1)

<B>PATENTANSPRÜCHE</B> <B>1.</B> Verfahren zur Herstellung von mit Lager spitzen versehenen Wellen für Spitzenlagerungen in Apparaten und Instrumenten, dadurch gekennzeich net, dass die Wellen aus einem Draht herausgearbeitet werden, der auf eine Temperatur von über 80011 <B>C</B> erhitzt und ohne martensitische Härtung abgeschreckt und anschliessend kalt bis auf eine Vickershärte von über<B>600</B> kg/mm9 und auf eine Festigkeit von über 200 kg/mm2 heruntergezogen wurde. II. Nach dem Verfahren gemäss Patentanspruch<B>1</B> hergestellte, mit Lagerspitzen versehene Welle. <B> PATENT CLAIMS </B> <B> 1. </B> Process for the production of shafts provided with bearing tips for point bearings in apparatus and instruments, characterized in that the shafts are machined from a wire which is heated to a temperature of over 80011 <B> C </B> and quenched without martensitic hardening and then cold drawn down to a Vickers hardness of over <B> 600 </B> kg / mm9 and a strength of over 200 kg / mm2. II. Shaft provided with bearing tips manufactured according to the method according to claim <B> 1 </B>. <B>UNTERANSPRÜCHE</B> <B>1.</B> Verfahren nach Patentanspruch<B>1,</B> dadurch gekennzeichnet, dass der Draht nach der Kaltver- forinung einer Wärmebehandlung im Temperatur bereich zwischen 200 und 60011 <B>C</B> ausgesetzt wird. 2. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass die aus dem kaltverfonnten Draht herausgearbeiteten Wellen mit Lagerspitzen einer Wärmebehandlung im Temperaturbereich zwischen 200 und 60011 <B>C</B> ausgesetzt werden. <B> SUBClaims </B> <B> 1. </B> Method according to patent claim <B> 1, </B> characterized in that, after cold forging, the wire is subjected to a heat treatment in the temperature range between 200 and 60011 < B> C </B> is suspended. 2. The method according to claim 1, characterized in that the shafts with bearing tips worked out of the cold-formed wire are subjected to a heat treatment in the temperature range between 200 and 60 011 <B> C </B>. <B>3.</B> Verfahren nach Patentanspruch<B>1,</B> dadurch ge kennzeichnet, dass man einen Draht verwendet, der aus einer Eisen-Kohlenstofflegierung besteht. 4. Verfahren nach Unteranspruch<B>3,</B> dadurch ge kennzeichnet, dass der Draht nach dem Erhitzen auf die Temperatur von über 80011 <B>C</B> patentiert wird. <B> 3. </B> Method according to claim <B> 1 </B> characterized in that a wire is used which consists of an iron-carbon alloy. 4. The method according to dependent claim 3, characterized in that the wire is patented after it has been heated to a temperature of over 80011 <B> C </B>. <B>5.</B> Verfahren nach Unteranspruch 4, dadurch ge kennzeichnet, dass man einen Draht verwendet, der aus einer Eisen-Kohlenstofflegierung folgender Zu- sammensetzung besteht: <B> 5. </B> Method according to dependent claim 4, characterized in that a wire is used which consists of an iron-carbon alloy of the following composition: 0,93-0,97% C, 0,2 bis 0,4% Mn, 0,2-0,4% Si, Rest Fe. <B>6.</B> Verfahren nach Unteranspruch 4, dadurch ge kennzeichnet, dass man den Draht auf etwa<B>9000 C</B> erhitzt und dann bei etwa<B>5001> C</B> patentiert. <B>7.</B> Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass man einen Draht verwendet, der aus einer Legierung besteht, die rostfest und höch stens schwach magnetisch ist. 0.93-0.97% C, 0.2-0.4% Mn, 0.2-0.4% Si, balance Fe. <B> 6. </B> Method according to dependent claim 4, characterized in that the wire is heated to about <B> 9000 C </B> and then patented at about <B> 5001> C </B>. <B> 7. </B> Method according to claim I, characterized in that a wire is used which consists of an alloy which is rust-resistant and extremely weakly magnetic. <B>8.</B> Verfahren nach Unteranspruch<B>7,</B> dadurch ge kennzeichnet, dass man einen Draht verwendet, der aus einer Legierung folgender Zusammensetzung be- .steht: 40-5011/g Co, 10-20% Cr, etwa 5% Mo, etwa 511/o W, 0,2-0,4% Be, 0,8-1,211/9 Ti, <B> 8. </B> Method according to dependent claim <B> 7 </B> characterized in that a wire is used which consists of an alloy of the following composition: 40-5011 / g Co, 10 -20% Cr, about 5% Mo, about 511 / o W, 0.2-0.4% Be, 0.8-1.211 / 9 Ti, etwa 2'/o Mn + Si, 0-10% Fe, Rest Ni. <B>9.</B> Verfahren nach Unteranspruch<B>7,</B> dadurch ge kennzeichnet, dass man den Draht auf etwa<B>11001, C</B> erhitzt und dann auf Zimmertemperatur abschreckt. about 2% Mn + Si, 0-10% Fe, balance Ni. <B> 9. </B> Method according to dependent claim <B> 7 </B> characterized in that the wire is heated to about <B> 11001, C </B> and then quenched to room temperature.
CH341442A 1957-06-07 1957-06-07 Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments CH341442A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DEJ12704A DE1166230B (en) 1957-06-07 1957-01-16 Process for the production of bearing parts in the form of pointed pins and shafts from rustproof and at most weakly magnetic wire material
NL213929A NL104084C (en) 1957-06-07 1957-01-22 PROCESS FOR THE MANUFACTURE OF SHAFTS WITH CONICAL TIPS AND WITH BLUTT POINTED TIPS FOR MACHINES IN EQUIPMENT AND INSTRUMENTS, AS WELL AS AXLES MANUFACTURED ACCORDING TO THE PROCEDURE
US635430A US2973291A (en) 1957-06-07 1957-01-22 Manufacture of point bearings in instruments
FR1165357D FR1165357A (en) 1957-06-07 1957-01-28 Process for the manufacture of pivots and axes, in particular for watches
CH341442A CH341442A (en) 1957-06-07 1957-06-07 Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH341442A CH341442A (en) 1957-06-07 1957-06-07 Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments

Publications (1)

Publication Number Publication Date
CH341442A true CH341442A (en) 1959-09-30

Family

ID=4505787

Family Applications (1)

Application Number Title Priority Date Filing Date
CH341442A CH341442A (en) 1957-06-07 1957-06-07 Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments

Country Status (5)

Country Link
US (1) US2973291A (en)
CH (1) CH341442A (en)
DE (1) DE1166230B (en)
FR (1) FR1165357A (en)
NL (1) NL104084C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211774A (en) * 1963-01-22 1965-10-12 Du Pont Process for preparing aromatic esters of chloroformic acid
FR2155860A1 (en) * 1971-10-11 1973-05-25 Pissarevsky Gregory Precision cast watch case - made of cobalt-chromium alloy
CH589240A5 (en) * 1975-02-10 1977-06-30 Straumann Inst Ag
US12006556B2 (en) 2020-02-04 2024-06-11 Rolex Sa Method for heat treating a horological component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA480487A (en) * 1952-01-22 E. Harder Oscar Cobalt-chromium-nickel-base alloy
US1881997A (en) * 1930-01-02 1932-10-11 Vere B Browne Method of making noncorrodible springs
US2072910A (en) * 1935-05-17 1937-03-09 Cons Car Heating Co Inc Alloy
US2072911A (en) * 1935-05-17 1937-03-09 Cons Car Heating Co Inc Alloy
US2527521A (en) * 1947-01-10 1950-10-31 Armco Steel Corp Spring and method

Also Published As

Publication number Publication date
FR1165357A (en) 1958-10-21
US2973291A (en) 1961-02-28
DE1166230B (en) 1964-03-26
NL104084C (en) 1963-03-15

Similar Documents

Publication Publication Date Title
DE19546204C1 (en) High strength steel object prodn.,esp. leaf spring
CH341442A (en) Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments
DE2023064B2 (en) METHOD FOR PRODUCING PARTS OF A BEARING, IN PARTICULAR BALL BEARING, MOSTLY THE INNER RING THEREOF
DE69431200T2 (en) Oil hardened wires and process for their manufacture
AT200805B (en) Process for the production of non-magnetic and rustproof bearing parts in the form of pointed journals and shafts for point bearings in apparatus and instruments of all kinds
CH389331A (en) Rolling elements and process for their manufacture
DE2225517B2 (en) METHOD FOR MANUFACTURING A BEARING ELEMENT
AT246204B (en) Rapid process for soft annealing, especially of ball bearing steels, in continuous furnaces
DE1179969B (en) Process for the heat treatment and deformation of steel
CH343303A (en) Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process
DE1433797A1 (en) High strength steel product, especially sheet metal, and process for its manufacture
DE102023210067A1 (en) Process for heat treatment of a steel component
DE973413C (en) Process to achieve a hardness of at least 54RC with high impact resistance
AT246206B (en) Rapid process for soft annealing, in particular of unalloyed and low-alloy tool steels, in continuous furnaces
DE1212306B (en) Age-hardening, corrosion-resistant steel alloy
AT291323B (en) Process for the production of spring wires from heat-resistant alloy steels
DE2263603A1 (en) PROCEDURES FOR CASE HARDENING OR FOR USE CARBON
DE1408520B2 (en) USE OF AN ALLOY TO MAKE SPRING MATERIAL
DE928651C (en) Process for the production of objects with high quality values from alloyed or unalloyed steels
DE609906C (en) Process for the production of springs with increased service life for upholstered furniture
DE860113C (en) Process for the production of magnetogram carriers
DE1904162C3 (en) Procedure for adjusting a structure made of ferrite
DE1458325A1 (en) Heat-hardenable, stainless, alloyed chrome-nickel-molybdenum steel
AT268346B (en) Hardenable chrome-nickel steel
DE1225217B (en) Process for increasing the nitriding depth of steel