CH341442A - Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments - Google Patents
Process for the production of shafts provided with bearing points for point bearings in apparatus and instrumentsInfo
- Publication number
- CH341442A CH341442A CH341442A CH341442A CH341442A CH 341442 A CH341442 A CH 341442A CH 341442 A CH341442 A CH 341442A CH 341442 A CH341442 A CH 341442A CH 341442 A CH341442 A CH 341442A
- Authority
- CH
- Switzerland
- Prior art keywords
- wire
- shafts
- over
- dependent
- heated
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/08—Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/02—Shafts; Axles
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B13/00—Gearwork
- G04B13/02—Wheels; Pinions; Spindles; Pivots
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/004—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
- G04B31/008—Jewel bearings
- G04B31/0082—Jewel bearings with jewel hole and cap jewel
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D3/00—Watchmakers' or watch-repairers' machines or tools for working materials
- G04D3/0074—Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
- G04D3/0079—Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
- G04D3/0084—Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components for axles, sleeves
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ocean & Marine Engineering (AREA)
- Heat Treatment Of Articles (AREA)
- Sliding-Contact Bearings (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
Verfahren zur Herstellung von mit Lagerspitzen versehenen Wellen für Spitzenlagerungen in Apparaten und Instrumenten Es ist bekannt, dass man in verschiedenen Appa raten und Instrumenten, insbesondere in billigen Uhren, zur Lagerung von Wellen Spitzenlagerungen anwendet. Hierzu weisen die Wellen an ihren Enden Spitzen auf, die in konischen Vertiefungen von La gersteinen oder Metallagern gelagert sind. Solche Wellen bestehen aus Stahl und werden durch be kannte Härteverfahren martensitisch gehärtet.
Ein grosser Nachteil derselben liegt darin, dass ihre Quali tät bei der Serienherstellung ungleichmässig ausfällt, so dass sie sortiert werden müssen, um nur diejenigen Lagerspitzen, die den an sie gestellten Anforderungen genügen, zur Verwendung zuzulassen. Es hat sich nun gezeigt, dass Wellen mit gleichmässig harten Lagerspitzen aus einem Draht hergestellt werden können, der nicht martensitisch gehärtet, sondern durch Glühen bei einer<B>8000 C</B> übersteigenden Tem peratur homogenisiert und dann ohne martensitische Härtung abgeschreckt wird.
Der so behandelte, weich gebliebene Draht wird anschliessend auf Festigkeits werte von über 200 kg/MM2 und auf Vickershärten von über<B>600</B> kg/mm2 kalt heruntergezogen. Aus dem kaltverformten Draht werden dann die mit Lagerspitzen versehenen Wellen herausgearbeitet. Um die Festigkeitswerte der Lagerspitzen noch zu verbessern, kann entweder der Draht vor dem Her ausarbeiten der Wellen oder dann die herausgearbei teten Wellen noch einer Wärmebehandlung zwischen 200 und<B>6000 C</B> unterzogen werden.
Zur Erläuterung des erfindungsgemässen Verfah rens dienen folgende Durchführungsbeispiele: <I>Beispiel<B>1</B></I> Als Ausgangsmaterial, für die mit Lagerspitzen versehenen Wellen wird eine Eisen-Kohlenstofflegie- rung mit folgender Zusammensetzung verwendet: 0,93-0,97% C, 0,2-0,4% Mn, 0,2-0,4% Si, Rest Eisen.
Dieses Ausgangsmaterial wird in Drahtform bei einer Temperatur von etwa<B>9000 C</B> geglüht und an schliessend an der Luft oder in einem Metallbad auf etwa<B>5000 C</B> abgeschreckt und nach einer gewissen Zeit auf Raumtemperatur abgekühlt. Der so behan delte, weich gebliebene Draht wird anschliessend auf Festigkeitswerte von über 200 kg/mm2 und auf Här ten von über<B>600</B> Vickers heruntergezogen. Aus diesem kaltverformten Draht werden die mit Lager spitzen versehenen Wellen herausgearbeitet und an schliessend bei einer Temperatur von etwa<B>2500 C</B> wärmebehandelt. Man erhält demnach Wellen, deren Lagerspitzen eine Festigkeit von über 200 kg/MM2 bei einer Härte von über<B>600</B> Vickers aufweisen.
Anstatt die Wärmebehandlung an den heraus gearbeiteten Wellen vorzunehmen, kann man sie vor dem Herausarbeiten der Wellen auch am kaltge zogenen Draht vornehmen.
Wie durch Versuche festgestellt wurde, sind die so hergestellten Wellen mit Lagerspitzen qualitativ besser als martensitisch gehärtete Wellen und zeigen überdies bei der Serienherstellung eine bisher un erreichte Regelmässigkeit bezüglich der Qualität.
<I>Beispiel 2</I> Die nach dem Beispiel<B>1</B> hergestellten Wellen mit Lagerspitzen sind bezüglich Bruchsicherheit sehr gut, sind aber rostanfällig und magnetisch. Es ist nun aber auch gelungen, nach dem gleichen Ver fahren Wellen herzustellen, die amagnetisch und rost sicher sind, wenn als Ausgangsmaterial eine Legie rung verwendet wird, die rostfest und schwach magnetisch oder vollständig amagnetisch ist.
Eine geeignete Legierung ist die folgende: 40-50% Co, 10-20% Cr, etwa 5019 Mo, etwa 511ü W, 0,2-0,4% Be, 0,8-1,20/9 Ti, etwa 2 "/o Mn <B>+</B> Si, <B>0-10</B> % Fe, Rest Ni.
Es können aber auch andere rostsichere sowie schwach magnetische Legierungen verwendet werden. Die als Beispiel angeführte Legierung wird in Drahtform bei etwa 110011 <B>C</B> geglüht und auf Zim mertemperatur abgeschreckt. Der so behandelte, weich gebliebene Draht wird kaltverformt bis auf Festigkeitswerte von über 200 kg/mm2. Aus diesem Draht werden die mit den Lagerspitzen versehenen 'Wellen herausgearbeitet und nachträglich bei 400 bis <B><I>5000</I> C</B> während 1-4 Stunden wärinebehandelt. Die so hergestellten Wellen haben Festigkeitswerte von über 200 kg/mm2 und Härten von über<B>650</B> Vickers. Auch hier kann die Wärtnebehandlung bei 400 bis
<B><I>5000 C</I></B> anstatt an den herausgearbeiteten Wellen am Draht selbst vorgenommen werden.
Auf einen erfindungsgemäss behandelten Draht mit einem Durchmesser von z. B.<B>0,1-0,52</B> mm kann eine Kanüle aus einem weicheren Material, wie z. B. Messing, Neusilber, Berylliumbronze usw., aufgeschoben werden. Aus diesem aus Kern und Hülse bestehenden Verbunddraht können nun die mit Lagerspitzen versehenen Wellen herausgearbeitet werden. Bei solchen Wellen weist also nur der die spitzen Enden aufweisende Drahtkem den vorge nannten hohen Härtegrad und den hohen Festigkeits wert auf, was insofern von Vorteil ist, als sich diese Wellen leichter verarbeiten lassen.
Process for the production of shafts provided with bearing tips for tip bearings in apparatus and instruments It is known that tip bearings are used in various apparatus and instruments, especially in cheap watches, for bearing shafts. For this purpose, the shafts have tips at their ends, which are mounted in conical recesses of bearing stones or metal bearings. Such shafts are made of steel and are hardened martensitically by known hardening processes.
A major disadvantage of the same is that their quality in series production is uneven, so that they have to be sorted in order to allow only those bearing tips that meet the requirements placed on them for use. It has now been shown that shafts with evenly hard bearing tips can be manufactured from a wire that is not martensitically hardened, but is homogenized by annealing at a temperature exceeding 8000 C and then quenched without martensitic hardening.
The wire that has remained soft and treated in this way is then drawn down cold to strength values of over 200 kg / MM2 and to Vickers hardnesses of over 600 kg / mm2. The shafts with bearing tips are then machined from the cold-formed wire. In order to further improve the strength values of the bearing tips, either the wire can be subjected to a heat treatment between 200 and 6000 C before the shafts are machined or the shafts that have been machined out.
The following implementation examples serve to explain the method according to the invention: <I> Example<B>1</B> </I> An iron-carbon alloy with the following composition is used as the starting material for the shafts provided with bearing tips: 0.93 -0.97% C, 0.2-0.4% Mn, 0.2-0.4% Si, balance iron.
This starting material is annealed in wire form at a temperature of about 9000 C and then quenched in air or in a metal bath to about 5000 C and cooled to room temperature after a certain time . The wire, which has remained soft and treated in this way, is then pulled down to strength values of over 200 kg / mm2 and to a hardness of over <B> 600 </B> Vickers. The shafts with bearing tips are machined from this cold-formed wire and then heat-treated at a temperature of around <B> 2500 C </B>. Accordingly, shafts are obtained whose bearing tips have a strength of over 200 kg / MM2 with a hardness of over <B> 600 </B> Vickers.
Instead of performing the heat treatment on the shafts that have been worked out, it can also be done on the cold-drawn wire before the shafts are worked out.
As has been established through tests, the shafts with bearing tips produced in this way are qualitatively better than martensitically hardened shafts and, moreover, show a regularity with regard to quality not previously achieved in series production.
<I> Example 2 </I> The shafts with bearing tips produced according to example <B> 1 </B> are very good with regard to break resistance, but are susceptible to rust and magnetic. But it has now also succeeded in using the same method to produce shafts that are non-magnetic and rust-proof if an alloy is used as the starting material that is rust-proof and weakly magnetic or completely non-magnetic.
A suitable alloy is the following: 40-50% Co, 10-20% Cr, about 5019 Mo, about 511 W, 0.2-0.4% Be, 0.8-1.20 / 9 Ti, about 2 "/ o Mn <B> + </B> Si, <B> 0-10 </B>% Fe, balance Ni.
However, other rust-proof and weakly magnetic alloys can also be used. The alloy cited as an example is annealed in wire form at around 110011 <B> C </B> and quenched to room temperature. The wire that has remained soft and treated in this way is cold-formed to strength values of over 200 kg / mm2. The shafts with the bearing tips are worked out from this wire and subsequently heat-treated at 400 to <B> <I> 5000 </I> C </B> for 1-4 hours. The shafts produced in this way have strength values of over 200 kg / mm2 and hardnesses of over <B> 650 </B> Vickers. Here, too, the heat treatment at 400 to
<B> <I> 5000 C </I> </B> can be made on the wire itself instead of the carved waves.
On a wire treated according to the invention with a diameter of, for. B. 0.1-0.52 </B> mm, a cannula made of a softer material, such as. B. brass, nickel silver, beryllium bronze, etc., are postponed. The shafts provided with bearing tips can now be worked out from this composite wire consisting of core and sleeve. In such waves, therefore, only the wire core having the pointed ends has the aforementioned high degree of hardness and high strength value, which is advantageous in that these waves can be processed more easily.
Claims (1)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEJ12704A DE1166230B (en) | 1957-06-07 | 1957-01-16 | Process for the production of bearing parts in the form of pointed pins and shafts from rustproof and at most weakly magnetic wire material |
NL213929A NL104084C (en) | 1957-06-07 | 1957-01-22 | PROCESS FOR THE MANUFACTURE OF SHAFTS WITH CONICAL TIPS AND WITH BLUTT POINTED TIPS FOR MACHINES IN EQUIPMENT AND INSTRUMENTS, AS WELL AS AXLES MANUFACTURED ACCORDING TO THE PROCEDURE |
US635430A US2973291A (en) | 1957-06-07 | 1957-01-22 | Manufacture of point bearings in instruments |
FR1165357D FR1165357A (en) | 1957-06-07 | 1957-01-28 | Process for the manufacture of pivots and axes, in particular for watches |
CH341442A CH341442A (en) | 1957-06-07 | 1957-06-07 | Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH341442A CH341442A (en) | 1957-06-07 | 1957-06-07 | Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments |
Publications (1)
Publication Number | Publication Date |
---|---|
CH341442A true CH341442A (en) | 1959-09-30 |
Family
ID=4505787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH341442A CH341442A (en) | 1957-06-07 | 1957-06-07 | Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments |
Country Status (5)
Country | Link |
---|---|
US (1) | US2973291A (en) |
CH (1) | CH341442A (en) |
DE (1) | DE1166230B (en) |
FR (1) | FR1165357A (en) |
NL (1) | NL104084C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3211774A (en) * | 1963-01-22 | 1965-10-12 | Du Pont | Process for preparing aromatic esters of chloroformic acid |
FR2155860A1 (en) * | 1971-10-11 | 1973-05-25 | Pissarevsky Gregory | Precision cast watch case - made of cobalt-chromium alloy |
CH589240A5 (en) * | 1975-02-10 | 1977-06-30 | Straumann Inst Ag | |
US12006556B2 (en) | 2020-02-04 | 2024-06-11 | Rolex Sa | Method for heat treating a horological component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA480487A (en) * | 1952-01-22 | E. Harder Oscar | Cobalt-chromium-nickel-base alloy | |
US1881997A (en) * | 1930-01-02 | 1932-10-11 | Vere B Browne | Method of making noncorrodible springs |
US2072910A (en) * | 1935-05-17 | 1937-03-09 | Cons Car Heating Co Inc | Alloy |
US2072911A (en) * | 1935-05-17 | 1937-03-09 | Cons Car Heating Co Inc | Alloy |
US2527521A (en) * | 1947-01-10 | 1950-10-31 | Armco Steel Corp | Spring and method |
-
1957
- 1957-01-16 DE DEJ12704A patent/DE1166230B/en active Pending
- 1957-01-22 US US635430A patent/US2973291A/en not_active Expired - Lifetime
- 1957-01-22 NL NL213929A patent/NL104084C/en active
- 1957-01-28 FR FR1165357D patent/FR1165357A/en not_active Expired
- 1957-06-07 CH CH341442A patent/CH341442A/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR1165357A (en) | 1958-10-21 |
US2973291A (en) | 1961-02-28 |
DE1166230B (en) | 1964-03-26 |
NL104084C (en) | 1963-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19546204C1 (en) | High strength steel object prodn.,esp. leaf spring | |
CH341442A (en) | Process for the production of shafts provided with bearing points for point bearings in apparatus and instruments | |
DE2023064B2 (en) | METHOD FOR PRODUCING PARTS OF A BEARING, IN PARTICULAR BALL BEARING, MOSTLY THE INNER RING THEREOF | |
DE69431200T2 (en) | Oil hardened wires and process for their manufacture | |
AT200805B (en) | Process for the production of non-magnetic and rustproof bearing parts in the form of pointed journals and shafts for point bearings in apparatus and instruments of all kinds | |
CH389331A (en) | Rolling elements and process for their manufacture | |
DE2225517B2 (en) | METHOD FOR MANUFACTURING A BEARING ELEMENT | |
AT246204B (en) | Rapid process for soft annealing, especially of ball bearing steels, in continuous furnaces | |
DE1179969B (en) | Process for the heat treatment and deformation of steel | |
CH343303A (en) | Process for the production of a shaft with unbreakable bearing journals for clockworks and precision mechanical devices and a shaft with unbreakable bearing journals produced by this process | |
DE1433797A1 (en) | High strength steel product, especially sheet metal, and process for its manufacture | |
DE102023210067A1 (en) | Process for heat treatment of a steel component | |
DE973413C (en) | Process to achieve a hardness of at least 54RC with high impact resistance | |
AT246206B (en) | Rapid process for soft annealing, in particular of unalloyed and low-alloy tool steels, in continuous furnaces | |
DE1212306B (en) | Age-hardening, corrosion-resistant steel alloy | |
AT291323B (en) | Process for the production of spring wires from heat-resistant alloy steels | |
DE2263603A1 (en) | PROCEDURES FOR CASE HARDENING OR FOR USE CARBON | |
DE1408520B2 (en) | USE OF AN ALLOY TO MAKE SPRING MATERIAL | |
DE928651C (en) | Process for the production of objects with high quality values from alloyed or unalloyed steels | |
DE609906C (en) | Process for the production of springs with increased service life for upholstered furniture | |
DE860113C (en) | Process for the production of magnetogram carriers | |
DE1904162C3 (en) | Procedure for adjusting a structure made of ferrite | |
DE1458325A1 (en) | Heat-hardenable, stainless, alloyed chrome-nickel-molybdenum steel | |
AT268346B (en) | Hardenable chrome-nickel steel | |
DE1225217B (en) | Process for increasing the nitriding depth of steel |