CH227684A - Process for the production of magnetic cores for high frequency purposes. - Google Patents

Process for the production of magnetic cores for high frequency purposes.

Info

Publication number
CH227684A
CH227684A CH227684DA CH227684A CH 227684 A CH227684 A CH 227684A CH 227684D A CH227684D A CH 227684DA CH 227684 A CH227684 A CH 227684A
Authority
CH
Switzerland
Prior art keywords
high frequency
production
particles
magnetic cores
cores
Prior art date
Application number
Other languages
German (de)
Inventor
Haftung Licentia Beschraenkter
Original Assignee
Licentia Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Gmbh filed Critical Licentia Gmbh
Publication of CH227684A publication Critical patent/CH227684A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

  

  Verfahren zur Herstellung von Magnetkernen für     Hochfrequenzzwecke.       Die     Erfindung    bezieht sich auf ein Ver  fahren zur     Herstellung    von Magnetkernen  für     Hochfrequenzzwecke.    Die Magnetkerne  bestehen aus pulverförmigen Magnetteilchen,  beispielsweise aus Eisenteilchen, welche aus       Eisenkarbonyl    hergestellt sind. Bekanntlich  müssen die Magnetteilchen gegeneinander iso  liert werden, um     Wirbelstromverluste    zu  vermeiden     bezw.    klein zu halten.

   Es sind  schon verschiedene     Isoliermittel    hierfür     be-          Imnnt,    insbesondere gehören dazu Wasser  glas sowie Kunstharze. Wasserglas und ähn  liche wärmebeständige Isolierstoffe werden  meist dann     verwendet,    wenn die gepressten  Kerne noch höheren Temperaturen von bei  spielsweise 300-600  C ausgesetzt werden  müssen.  



  Die vorliegende Erfindung bezieht sich  indessen auf     Kerne,    bei denen eine solche  Wärmebehandlung nicht vorgesehen ist. Die  lerne sind für     Hochfrequenzzwecke    be  stimmt, d. h. sie müssen ausserordentlich    kleine     Wirbelstromverluste    haben, ausserdem  soll die wirksame     Permeahilität    möglichst  hoch sein. Eine hohe wirksame     Permeabilität     erreicht man am einfachsten dadurch, dass  man den Anteil des Isolier- und     Bindemittels     möglichst niedrig wählt.

   Es liegt auf der  Hand, dass     hierdurch    die Gefahr besteht, dass  die einzelnen Teilchen nicht mehr hinreichend  gegeneinander     isoliert    sind, so dass die Wir  belstromverluste ansteigen.  



       Hochfrequenzmasseke.rne    hat man daher  bisher meist unter Verwendung erheblicher  Mengen von Isoliermaterial hergestellt. Bei  spielsweise betrug die     Isoliermenge    4 bis  8 Gewichtsprozente an     Kunstharz.    Trotz die  ser hohen Isoliermenge und der entsprechend  niedrigen     wirksamen        Permeahilität    gelang  es aber meist nicht, die     Wirbelstromverluste     genügend klein zu halten.

   Dies äussert sich  beispielsweise darin, dass eine Messung des       Ohmschen    Widerstandes an der Oberfläche  des Kernes nur Werte von wenigen 100 Ohm      .ergibt. Ähnliche Resultate ergeben sich, wenn  man als Isolierur     ittel        Wasserglas        verwendet.     Die erzielten Ergebnisse können auch nicht  dadurch wesentlich verbessert werden, dass  man mehrere Schichten einer     Masserglas-          isolieriiiig    aufbringt und alle Feuchtigkeit  austreibt.  



  Es wurde nun gefunden, dass man  überraschenderweise     Hochfrequenzmassekerne     höchster Qualität dadurch herstellen kann,  dass man die     magnetisierbaren    Teilchen  zwecks Isolierung zunächst mit einer Was  sergla.slösung und dann bei Temperaturen von  150 bis 300  behandelt. Die Isolierschicht  wird dabei erhärtet, und es kann eine zusätz  liche isolierende     Oxydschicht    auf den     magne-          tisierbaren    Teilchen erzielt werden. Die so  vorbehandelten Teilchen werden sodann unter  Zusatz eines organischen Bindemittels unter  hohem     Druck    zu Fernen gepresst, wobei die  Gesamtmenge an Isolier- und Bindemittel  weniger als 1 Gewichtsprozent beträgt.

   Als  Bindemittel kommen vorwiegend     Kunstharze     in Frage, beispielsweise     Pheno1-Formaldehyd-          Kondensationsprodukte    oder solche, welche  unter dem Handelsnamen     Neoresit    bekannt  sind. Der     Pressdruck    beträgt üblicherweise  15<B>000</B> bis     1h    000 Atmosphären. Nach Aus  härtung des Kunstharzes zeichnen sich die  so     bergestellten    Kerne durch einen sehr     ;e-          ringen    Verlustfaktor bei hohen Frequenzen  aus.

   Der     Ohmsche    Widerstand des gepress  ten Kernes ist beispielsweise grösser als  50 000 Ohm.     Bemerkenswerterweise    wird  dieses Ergebnis auch dann erzielt, wenn die         Zusätze    an     Isolier-    und     Bindemittel    extrem  niedrig gehalten     werden.    So genügt beispiels  weise ein Zusatz von     0,7    Gewichtsprozent  einer     wässrigen        Wasserglaslösung,    von der  nach der     Wärmebehandlung    nur noch etwa       0,

  25ö        zurückbleiben.    Der Zusatz des zum  Beispiel in Azeton gelösten Kunstharzes  konnte bis zu 0,25 Gewichtsprozent reduziert  werden, von denen nach Verdunsten des Lö  sungsmittels nur etwa 0,1 bis 0,15     %    zurück  bleiben. Der verbleibende Restgehalt an Iso  lier- und Bindemittel zusammen beträgt also  nur 0,3 bis 0,4 Gewichtsprozent. Dementspre  chend ist die erzielte     Permea.bilität    sehr hoch.



  Process for the production of magnetic cores for high frequency purposes. The invention relates to a process for the production of magnetic cores for high frequency purposes. The magnetic cores consist of powdery magnetic particles, for example iron particles made of iron carbonyl. As is known, the magnetic particles must be insulated against each other to avoid eddy current losses BEZW. to keep it small.

   Various insulating materials have already been used for this, in particular water glass and synthetic resins. Water glass and similar heat-resistant insulating materials are mostly used when the pressed cores have to be exposed to higher temperatures of 300-600 C, for example.



  The present invention, however, relates to cores in which such heat treatment is not provided. The learning is intended for high frequency purposes, i.e. H. they must have extremely small eddy current losses, and the effective permeahilicity should be as high as possible. The easiest way to achieve a high effective permeability is to choose the proportion of the insulating and binding agent as low as possible.

   It is obvious that this creates the risk that the individual particles are no longer sufficiently isolated from one another, so that the eddy current losses increase.



       High frequency mass ke.rne has therefore hitherto mostly been produced using considerable amounts of insulating material. For example, the amount of insulation was 4 to 8 percent by weight of synthetic resin. Despite this high amount of insulation and the correspondingly low effective permeability, it was usually not possible to keep the eddy current losses sufficiently small.

   This is expressed, for example, in the fact that a measurement of the ohmic resistance on the surface of the core only gives values of a few 100 ohms. Similar results are obtained if water glass is used as the insulating material. The results obtained cannot be significantly improved by applying several layers of a mason jar insulating layer and driving out all moisture.



  It has now been found that, surprisingly, high-frequency mass cores of the highest quality can be produced by first treating the magnetizable particles with a water solution and then at temperatures of 150 to 300 for the purpose of isolation. The insulating layer is hardened in the process, and an additional insulating oxide layer can be achieved on the magnetizable particles. The particles pretreated in this way are then pressed under high pressure with the addition of an organic binder, the total amount of insulating and binder being less than 1 percent by weight.

   Synthetic resins are predominantly suitable as binders, for example phenol-formaldehyde condensation products or those which are known under the trade name Neoresit. The pressing pressure is usually 15,000 to 1,000,000 atmospheres. After the synthetic resin has cured, the cores placed in this way are characterized by a very low loss factor at high frequencies.

   The ohmic resistance of the pressed core is, for example, greater than 50,000 ohms. Remarkably, this result is also achieved when the additions of insulating and binding agents are kept extremely low. For example, it is sufficient to add 0.7 percent by weight of an aqueous waterglass solution, of which only about 0, after the heat treatment

  Stay behind. The addition of the synthetic resin dissolved in acetone, for example, could be reduced by up to 0.25 percent by weight, of which only about 0.1 to 0.15% remain after the solvent has evaporated. The remaining content of insulation and binding agent together is therefore only 0.3 to 0.4 percent by weight. Accordingly, the permeability achieved is very high.

 

Claims (1)

PATENTANSPRüCHE: I. Verfahren zur Herstellung von Magnet kernen für ffochfrequenzzweeke aus zusam- mengepressten voneinander isolierten magne- tisierba.ren Teilchen, dadurch gekennzeichnet, dass die Teilchen zwecks Isolierung zunächst mit einer Wassei-glaslösung und danach bei Temperaturen zwischen 150 und 3iü1 behan delt werden, dass die Teilchen sodann unter Zusatz eines organischen Bindemittels unter hohem Druck zu Kernen gepresst werden, PATENT CLAIMS: I. Process for the production of magnetic cores for high frequency purposes from compressed magnetizable particles isolated from one another, characterized in that the particles are first treated with a water-glass solution and then at temperatures between 150 and 3 ° for the purpose of isolation that the particles are then pressed into cores under high pressure with the addition of an organic binder, wobei die Gesamtmenge an Isolier- und Bindemittel weniger als 1 Gewichtsprozent beträgt. II. Nach dem Verfahren des Patent- a.nspruclies 1 hergestellter Magnetkern. wherein the total amount of insulating and binding agent is less than 1 percent by weight. II. Magnetic core produced according to the method of patent a.nspruclies 1.
CH227684D 1940-09-26 1941-08-06 Process for the production of magnetic cores for high frequency purposes. CH227684A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE227684X 1940-09-26

Publications (1)

Publication Number Publication Date
CH227684A true CH227684A (en) 1943-06-30

Family

ID=5866772

Family Applications (1)

Application Number Title Priority Date Filing Date
CH227684D CH227684A (en) 1940-09-26 1941-08-06 Process for the production of magnetic cores for high frequency purposes.

Country Status (1)

Country Link
CH (1) CH227684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE975863C (en) * 1949-02-02 1962-11-08 Siemens Ag Process for the production of homogeneous magnetizable cores from powder particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE975863C (en) * 1949-02-02 1962-11-08 Siemens Ag Process for the production of homogeneous magnetizable cores from powder particles

Similar Documents

Publication Publication Date Title
DE2654981A1 (en) HARD PLATE PRODUCT AND METHOD AND DEVICE FOR ITS MANUFACTURING
DE962326C (en) Layered asbestos product with aluminum phosphate as a binder and process for its manufacture
CH662206A5 (en) ELECTRIC SHEET FOR PRODUCING LAMINATED IRON CORES FOR STATIC OR DYNAMIC ELECTRICAL MACHINES.
CH227684A (en) Process for the production of magnetic cores for high frequency purposes.
DE703669C (en) Magnetic core and method of making the material for the same
DE642724C (en) Process for producing isolated powders and for producing mass cores
DE882130C (en) Device for the production of molding compounds under high pressure and exposure to high-frequency alternating fields
DE565685C (en) Magnetisable core that is divided for applying or introducing the winding
DE587312C (en) Process for the isolation of finely divided, magnetizable material for mass cores
DE401485C (en) Process for the production of micanite articles
DE716473C (en) Process for the production of mass cores
AT155499B (en) Armor made of fiber.
DE700751C (en) Process for the production of iron powder for mass cores
DE497139C (en) Process for the production of a magnetic body which is composed of isolated individual parts of small thickness of a highly permeable iron-nickel alloy
DE426993C (en) Insulating material with great electrical and mechanical strength
DE670719C (en) Insulating material for electrotechnical purposes
DE619064C (en) Insulated, ferromagnetic, fine-grained powder for mass cores, the individual particles of which are coated with an insulating mass, which consists of a binder with asbestos powder as an admixture
DE472623C (en) Process for the production of magnetic cores
AT130548B (en) Process for the production of cores for transformers, transmitters and the like like
AT155016B (en) Process for manufacturing magnetic material and magnetic cores.
DE968608C (en) Process for the production of ferromagnetic mass cores from iron powder for inductivities with an almost linear temperature response
DE476065C (en) Process for the production of magnetically stable cores from pressed magnetic powder for induction coils u. like
DE512977C (en) Process for the production of mass cores of high permeability by pressing metal powders mixed with insulating agents, especially those obtained from their carbonyl compounds
AT70002B (en) Process for the production of silk-like cotton.
DE717103C (en) Electrical insulating material made of soaked fiber