CA3176505A1 - Procede de fabrication d'un ensemble electrode poreuse et separateur, un ensemble electrode poreuse et separateur, et dispositif electrochimique contenant un tel ensemble - Google Patents
Procede de fabrication d'un ensemble electrode poreuse et separateur, un ensemble electrode poreuse et separateur, et dispositif electrochimique contenant un tel ensembleInfo
- Publication number
- CA3176505A1 CA3176505A1 CA3176505A CA3176505A CA3176505A1 CA 3176505 A1 CA3176505 A1 CA 3176505A1 CA 3176505 A CA3176505 A CA 3176505A CA 3176505 A CA3176505 A CA 3176505A CA 3176505 A1 CA3176505 A1 CA 3176505A1
- Authority
- CA
- Canada
- Prior art keywords
- porous
- electrode
- layer
- lithium
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 116
- 239000011148 porous material Substances 0.000 claims abstract description 27
- 239000000446 fuel Substances 0.000 claims abstract description 5
- 239000002105 nanoparticle Substances 0.000 claims description 100
- 238000000576 coating method Methods 0.000 claims description 74
- 239000000725 suspension Substances 0.000 claims description 71
- 239000011248 coating agent Substances 0.000 claims description 70
- 238000000151 deposition Methods 0.000 claims description 52
- 239000003792 electrolyte Substances 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 48
- 229910052744 lithium Inorganic materials 0.000 claims description 47
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 46
- 229910019142 PO4 Inorganic materials 0.000 claims description 46
- 238000010438 heat treatment Methods 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 41
- 229910052782 aluminium Inorganic materials 0.000 claims description 39
- -1 V308 Inorganic materials 0.000 claims description 38
- 230000008021 deposition Effects 0.000 claims description 37
- 239000011230 binding agent Substances 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 32
- 239000004020 conductor Substances 0.000 claims description 32
- 229910001416 lithium ion Inorganic materials 0.000 claims description 32
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 31
- 229920000642 polymer Polymers 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- 239000010936 titanium Substances 0.000 claims description 25
- 229910052719 titanium Inorganic materials 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 24
- 239000002608 ionic liquid Substances 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 24
- 229910052804 chromium Inorganic materials 0.000 claims description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 21
- 229910052720 vanadium Inorganic materials 0.000 claims description 21
- 229910003002 lithium salt Inorganic materials 0.000 claims description 20
- 159000000002 lithium salts Chemical class 0.000 claims description 20
- 229910052726 zirconium Inorganic materials 0.000 claims description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 239000010955 niobium Substances 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 18
- 229910052727 yttrium Inorganic materials 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 17
- 229910052758 niobium Inorganic materials 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 16
- 239000011244 liquid electrolyte Substances 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 14
- 238000007639 printing Methods 0.000 claims description 14
- 238000001962 electrophoresis Methods 0.000 claims description 13
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 13
- 239000003381 stabilizer Substances 0.000 claims description 13
- 229910052787 antimony Inorganic materials 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910010272 inorganic material Inorganic materials 0.000 claims description 12
- 239000011147 inorganic material Substances 0.000 claims description 12
- 239000000010 aprotic solvent Substances 0.000 claims description 11
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 235000021317 phosphate Nutrition 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 11
- 229910052785 arsenic Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 238000003618 dip coating Methods 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 8
- 229910052792 caesium Inorganic materials 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052745 lead Inorganic materials 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 238000007790 scraping Methods 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910014549 LiMn204 Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 239000006259 organic additive Substances 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 238000007766 curtain coating Methods 0.000 claims description 6
- 239000007772 electrode material Substances 0.000 claims description 6
- 238000007641 inkjet printing Methods 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 238000007761 roller coating Methods 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 229910001415 sodium ion Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- SESRATMNYRWUTR-UHFFFAOYSA-N sulfinyltitanium Chemical class [Ti].S=O SESRATMNYRWUTR-UHFFFAOYSA-N 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 229910013461 LiZr2(PO4)3 Inorganic materials 0.000 claims description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 3
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 238000000197 pyrolysis Methods 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 101000690484 Leptodactylus fallax Aggression-stimulating peptide Proteins 0.000 claims description 2
- 229910001357 Li2MPO4F Inorganic materials 0.000 claims description 2
- 229910032387 LiCoO2 Inorganic materials 0.000 claims description 2
- 229910011279 LiCoPO4 Inorganic materials 0.000 claims description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 claims description 2
- 229910013311 LiMPO4F Inorganic materials 0.000 claims description 2
- 229910000668 LiMnPO4 Inorganic materials 0.000 claims description 2
- 229910003012 LixTiS2 Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910010301 TiOySz Inorganic materials 0.000 claims description 2
- 229910003092 TiS2 Inorganic materials 0.000 claims description 2
- 229910021475 bohrium Inorganic materials 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 2
- 150000004770 chalcogenides Chemical class 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 229910021473 hassium Inorganic materials 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- 229910021481 rutherfordium Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052713 technetium Inorganic materials 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 235000014594 pastries Nutrition 0.000 claims 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims 2
- 239000004800 polyvinyl chloride Substances 0.000 claims 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- 229910014143 LiMn2 Inorganic materials 0.000 claims 1
- 150000001720 carbohydrates Chemical class 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 47
- 210000004027 cell Anatomy 0.000 description 35
- 238000011282 treatment Methods 0.000 description 35
- 239000000919 ceramic Substances 0.000 description 24
- 238000007596 consolidation process Methods 0.000 description 24
- 238000005245 sintering Methods 0.000 description 24
- 239000007784 solid electrolyte Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 239000002904 solvent Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 239000011149 active material Substances 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 21
- 150000002500 ions Chemical class 0.000 description 20
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- 238000009826 distribution Methods 0.000 description 17
- 239000011164 primary particle Substances 0.000 description 15
- 238000000231 atomic layer deposition Methods 0.000 description 14
- 239000000976 ink Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000011651 chromium Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 239000007791 liquid phase Substances 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 210000001787 dendrite Anatomy 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 229910001386 lithium phosphate Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 9
- 229920001940 conductive polymer Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 238000005240 physical vapour deposition Methods 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 7
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 7
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 239000011858 nanopowder Substances 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 5
- 230000000712 assembly Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011231 conductive filler Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 239000011532 electronic conductor Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000000930 thermomechanical effect Effects 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000000224 chemical solution deposition Methods 0.000 description 3
- 238000004581 coalescence Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000001652 electrophoretic deposition Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 238000010345 tape casting Methods 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000002103 nanocoating Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 235000011837 pasties Nutrition 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229910012115 Li3(Sc2−xMx)(PO4)3 Inorganic materials 0.000 description 1
- 229910012125 Li3+y(Sc2−xMx) Inorganic materials 0.000 description 1
- 229910001367 Li3V2(PO4)3 Inorganic materials 0.000 description 1
- 229910013351 LiMSO4F Inorganic materials 0.000 description 1
- 229910013084 LiNiPO4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910001194 LixV2O5 Inorganic materials 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003738 black carbon Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0409—Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0414—Methods of deposition of the material by screen printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0457—Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/13915—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
- Inert Electrodes (AREA)
- Cell Separators (AREA)
- Hybrid Cells (AREA)
- Fuel Cell (AREA)
Abstract
L'invention concerne un procédé de fabrication d'un dispositif électrochimique sélectionné dans le groupe formé par les batteries d'une capacité supérieure à 1 mAh, les condensateurs, les super-condensateurs, les résistances, les inductances, les transistors, les cellules photovoltaïques, les piles à combustible, mettant en ?uvre un procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur poreux comprenant une couche poreuse déposée sur un substrat présentant une porosité comprise entre 20 % et 60 % en volume, et des pores de diamètre moyen inférieur à 50 nm.
Description
PROCÉDÉ DE FABRICATION D'UN ENSEMBLE ÉLECTRODE POREUSE ET
SÉPARATEUR, UN ENSEMBLE ÉLECTRODE POREUSE ET SÉPARATEUR, ET
DISPOSITIF ELECTROCHIMIQUE CONTENANT UN TEL ENSEMBLE
Domaine technique de l'invention L'invention concerne le domaine de l'électrochimie, et plus particulièrement les systèmes électrochimiques. Elle concerne plus précisément les ensembles électrode poreuse /
séparateur utilisables dans des dispositifs électrochimiques tels que les batteries à haute puissance (notamment des batteries à ions de lithium) d'une capacité
supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium ¨ air, les piles à
combustible ; et les cellules photovoltaïques. L'invention s'applique aux électrodes négatives et aux électrodes positives. Ces ensembles électrode poreuse / séparateur peuvent être imprégnés d'un électrolyte solide sans phase liquide ou d'un électrolyte liquide.
L'invention concerne également un procédé de préparation d'un tel ensemble électrode poreuse / séparateur qui met en oeuvre des nanoparticules d'un matériau d'électrode et des nanoparticules d'un matériau inorganique qui constituera le séparateur, et les ensembles électrode poreuse / séparateur ainsi obtenus. L'invention concerne également un procédé de fabrication d'un dispositif électrochimique comprenant au moins un de ces ensembles, et les dispositifs ainsi obtenus ; ces dispositifs sont en particulier des batteries à ions de lithium.
État de la technique La batterie idéale pour l'alimentation des dispositifs électriques autonomes (tels que :
téléphones et ordinateurs portables, outils portatifs, capteurs autonomes) ou bien pour la traction des véhicules électriques présenterait une durée de vie élevée, serait capable de stocker à la fois de grandes quantités d'énergie et de puissance, et ne présenterait pas de risque de surchauffe voire d'explosion.
Actuellement ces dispositifs électriques sont alimentés essentiellement par des batteries à
ions de lithium, qui présentent la meilleure densité d'énergie parmi les différentes technologies de stockage proposées. Il existe différentes architectures et compositions chimiques d'électrodes et de séparateurs permettant de réaliser ces batteries.
Les procédés de fabrication des batteries à ions de lithium sont présentés dans de nombreux articles et brevets ; un état des lieux est donné dans l'ouvrage Advances in Lithium-Ion Batteries (ed. W. van Schalkwijk et B. Scrosati), paru en 2002 (Kluever Academic /
Plenum Publishers).
SÉPARATEUR, UN ENSEMBLE ÉLECTRODE POREUSE ET SÉPARATEUR, ET
DISPOSITIF ELECTROCHIMIQUE CONTENANT UN TEL ENSEMBLE
Domaine technique de l'invention L'invention concerne le domaine de l'électrochimie, et plus particulièrement les systèmes électrochimiques. Elle concerne plus précisément les ensembles électrode poreuse /
séparateur utilisables dans des dispositifs électrochimiques tels que les batteries à haute puissance (notamment des batteries à ions de lithium) d'une capacité
supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium ¨ air, les piles à
combustible ; et les cellules photovoltaïques. L'invention s'applique aux électrodes négatives et aux électrodes positives. Ces ensembles électrode poreuse / séparateur peuvent être imprégnés d'un électrolyte solide sans phase liquide ou d'un électrolyte liquide.
L'invention concerne également un procédé de préparation d'un tel ensemble électrode poreuse / séparateur qui met en oeuvre des nanoparticules d'un matériau d'électrode et des nanoparticules d'un matériau inorganique qui constituera le séparateur, et les ensembles électrode poreuse / séparateur ainsi obtenus. L'invention concerne également un procédé de fabrication d'un dispositif électrochimique comprenant au moins un de ces ensembles, et les dispositifs ainsi obtenus ; ces dispositifs sont en particulier des batteries à ions de lithium.
État de la technique La batterie idéale pour l'alimentation des dispositifs électriques autonomes (tels que :
téléphones et ordinateurs portables, outils portatifs, capteurs autonomes) ou bien pour la traction des véhicules électriques présenterait une durée de vie élevée, serait capable de stocker à la fois de grandes quantités d'énergie et de puissance, et ne présenterait pas de risque de surchauffe voire d'explosion.
Actuellement ces dispositifs électriques sont alimentés essentiellement par des batteries à
ions de lithium, qui présentent la meilleure densité d'énergie parmi les différentes technologies de stockage proposées. Il existe différentes architectures et compositions chimiques d'électrodes et de séparateurs permettant de réaliser ces batteries.
Les procédés de fabrication des batteries à ions de lithium sont présentés dans de nombreux articles et brevets ; un état des lieux est donné dans l'ouvrage Advances in Lithium-Ion Batteries (ed. W. van Schalkwijk et B. Scrosati), paru en 2002 (Kluever Academic /
Plenum Publishers).
2 Les électrodes des batteries à ions de lithium peuvent être fabriquées à
l'aide de techniques de revêtement, notamment par enduction au rouleau (en anglais roll coating ), enduction à la racle (en anglais doctor blade ), coulage en bande (en anglais tape casting ), enduction à travers une filière en forme de fente (en anglais slot-die ). Avec ces procédés on dépose sur la surface d'un substrat une encre constituée de particules de matériaux actifs se présentant sous la forme de poudre ; les particules constituant cette poudre présentent une taille moyenne des particules qui se situe typiquement entre 5 pm et 15 pm de diamètre. Ces techniques permettent de réaliser des couches d'une épaisseur comprise entre environ 50 pm et environ 400 pm. La puissance et l'énergie de la batterie peuvent être modulées en adaptant l'épaisseur et la porosité des couches, et la taille des particules actives qui les constituent.
Les encres (ou pâtes) déposées pour former les électrodes contiennent des particules de matériaux actifs, mais également des liants (organiques), de la poudre de carbone permettant d'assurer le contact électrique entre les particules, et des solvants qui sont évaporés lors de l'étape de séchage des électrodes. Pour améliorer la qualité
des contacts électriques entre les particules et pour compacter les couches déposées, une étape de calandrage est réalisée sur les électrodes. Après cette étape de compression, les particules actives des électrodes occupent environ 50 % à 70 c)/0 du volume du dépôt, ce qui signifie qu'il reste généralement 30 % à 50 % de porosités entre les particules.
Pour optimiser au mieux la densité d'énergie volumique des batteries à ions de lithium produites avec des procédés de fabrication conventionnels, il peut être extrêmement utile de réduire la porosité des électrodes ; ainsi on accroît la quantité de matière active par unité de volume d'électrode. Cela peut être réalisé de plusieurs manières.
A l'extrême, on peut utiliser des couches totalement denses, dépourvues de porosité ;
ainsi la densité d'énergie volumique de l'électrode est maximale. De telles couches denses peuvent être réalisées à l'aide de techniques de dépôt sous vide, par exemple par dépôt physique par phase vapeur (abrégé PVD, Physical Vapor Deposition ).
Cependant, puisque ces couches dépourvues de pores (couches dites entièrement solides ) ne peuvent pas contenir un électrolyte liquide pour faciliter le transport ionique, ni de charges conductrices électroniques ( conductive filler ) pour faciliter le transport des charges électriques, leur épaisseur dans une batterie doit rester limitée à quelques micromètres, car autrement elles deviendraient trop résistives. Ces techniques de dépôt sont utilisées pour la fabrication de microbatteries.
On peut aussi chercher à optimiser les techniques d'encrage classiques pour augmenter la densité des couches obtenues après calandrage. Il a été montré qu'en optimisant la distribution en taille des particules déposées on peut atteindre une densité
de la couche
l'aide de techniques de revêtement, notamment par enduction au rouleau (en anglais roll coating ), enduction à la racle (en anglais doctor blade ), coulage en bande (en anglais tape casting ), enduction à travers une filière en forme de fente (en anglais slot-die ). Avec ces procédés on dépose sur la surface d'un substrat une encre constituée de particules de matériaux actifs se présentant sous la forme de poudre ; les particules constituant cette poudre présentent une taille moyenne des particules qui se situe typiquement entre 5 pm et 15 pm de diamètre. Ces techniques permettent de réaliser des couches d'une épaisseur comprise entre environ 50 pm et environ 400 pm. La puissance et l'énergie de la batterie peuvent être modulées en adaptant l'épaisseur et la porosité des couches, et la taille des particules actives qui les constituent.
Les encres (ou pâtes) déposées pour former les électrodes contiennent des particules de matériaux actifs, mais également des liants (organiques), de la poudre de carbone permettant d'assurer le contact électrique entre les particules, et des solvants qui sont évaporés lors de l'étape de séchage des électrodes. Pour améliorer la qualité
des contacts électriques entre les particules et pour compacter les couches déposées, une étape de calandrage est réalisée sur les électrodes. Après cette étape de compression, les particules actives des électrodes occupent environ 50 % à 70 c)/0 du volume du dépôt, ce qui signifie qu'il reste généralement 30 % à 50 % de porosités entre les particules.
Pour optimiser au mieux la densité d'énergie volumique des batteries à ions de lithium produites avec des procédés de fabrication conventionnels, il peut être extrêmement utile de réduire la porosité des électrodes ; ainsi on accroît la quantité de matière active par unité de volume d'électrode. Cela peut être réalisé de plusieurs manières.
A l'extrême, on peut utiliser des couches totalement denses, dépourvues de porosité ;
ainsi la densité d'énergie volumique de l'électrode est maximale. De telles couches denses peuvent être réalisées à l'aide de techniques de dépôt sous vide, par exemple par dépôt physique par phase vapeur (abrégé PVD, Physical Vapor Deposition ).
Cependant, puisque ces couches dépourvues de pores (couches dites entièrement solides ) ne peuvent pas contenir un électrolyte liquide pour faciliter le transport ionique, ni de charges conductrices électroniques ( conductive filler ) pour faciliter le transport des charges électriques, leur épaisseur dans une batterie doit rester limitée à quelques micromètres, car autrement elles deviendraient trop résistives. Ces techniques de dépôt sont utilisées pour la fabrication de microbatteries.
On peut aussi chercher à optimiser les techniques d'encrage classiques pour augmenter la densité des couches obtenues après calandrage. Il a été montré qu'en optimisant la distribution en taille des particules déposées on peut atteindre une densité
de la couche
3 de 70 c)/0 (voir la publication de J. Ma et L.C. Lim, Effect of particle size distribution of sintering of agglomerate-free submicron alumine powder compacts , parue en 2002 dans J. Europ. Ceramic Soc. 22 (13), p. 2197-2208). On peut estimer qu'une électrode ayant 30 % de porosité, contenant des charges conductrices et imprégnée d'un électrolyte conducteur des ions lithium, aurait une densité d'énergie volumique supérieure d'environ 35% par rapport à la même électrode à 50 % de porosité constituée de particules monodisperses en taille. Par ailleurs, du fait de l'imprégnation par des phases fortement conductrices en ions et l'ajout de conducteurs électroniques, l'épaisseur de ces électrodes peut être très largement augmentée en comparaison de ce qu'il est possible de faire avec les techniques de dépôt sous vide, qui conduisent à des couches compactes mais plus résistives. Cet accroissement de l'épaisseur des électrodes augmente la densité d'énergie des cellules batteries ainsi obtenues.
Cependant, bien que permettant d'accroître la densité d'énergie des électrodes, une telle distribution en taille des particules de matériau actif n'est pas sans poser de problèmes.
Des particules de tailles différentes dans une électrode auront des capacités différentes.
Sous l'effet de courants de charge et/ou de décharge identiques elles seront localement plus ou moins chargées et/ou déchargées en fonction de leur taille. Lorsque la batterie ne sera plus sollicitée en courant, les états de charge locaux entre particules seront à
nouveau équilibrés, mais pendant les phases transitoires, les déséquilibres locaux peuvent conduire à solliciter localement des particules en dehors de leurs plages de tension stables. Ces déséquilibres d'états de charge locaux seront d'autant plus prononcés que la densité de courant sera importante Ces déséquilibres induisent par conséquent une perte de performance en cyclage, un risque de sécurité et une limitation de la puissance de la cellule batterie. Il en va de même lorsque les électrodes ont une porosité inhomogène, à-savoir distribuée en taille ; cette inhomogénéité
contribue à
rendre le mouillage des pores des électrodes plus difficile.
Ces effets de la distribution en tailles des particules de matériaux actifs sur les relations courant/tension des électrodes ont été étudiés par simulation numérique dans la publication A study on the Effect of Porosity and !l'article Size Distribution on Li-Ion Battery Performance par S.T. Taleghani et al., parue en 2017 dans la revue J
.
Electrochem. Soc. 164 (11), p. E3179-E3189).
Selon l'état de la technique, on utilise avec les techniques d'encrage des électrodes mentionnées ci-dessus des particules de matériau actif d'une taille typiquement comprise entre 5 pm et 15 pm. Le contact entre chacune des particules est essentiellement ponctuel, et les particules sont liées entre-elles par un liant organique qui est dans la plupart du temps du polyfluorure de vinylidène (abrégé PVDF).
Cependant, bien que permettant d'accroître la densité d'énergie des électrodes, une telle distribution en taille des particules de matériau actif n'est pas sans poser de problèmes.
Des particules de tailles différentes dans une électrode auront des capacités différentes.
Sous l'effet de courants de charge et/ou de décharge identiques elles seront localement plus ou moins chargées et/ou déchargées en fonction de leur taille. Lorsque la batterie ne sera plus sollicitée en courant, les états de charge locaux entre particules seront à
nouveau équilibrés, mais pendant les phases transitoires, les déséquilibres locaux peuvent conduire à solliciter localement des particules en dehors de leurs plages de tension stables. Ces déséquilibres d'états de charge locaux seront d'autant plus prononcés que la densité de courant sera importante Ces déséquilibres induisent par conséquent une perte de performance en cyclage, un risque de sécurité et une limitation de la puissance de la cellule batterie. Il en va de même lorsque les électrodes ont une porosité inhomogène, à-savoir distribuée en taille ; cette inhomogénéité
contribue à
rendre le mouillage des pores des électrodes plus difficile.
Ces effets de la distribution en tailles des particules de matériaux actifs sur les relations courant/tension des électrodes ont été étudiés par simulation numérique dans la publication A study on the Effect of Porosity and !l'article Size Distribution on Li-Ion Battery Performance par S.T. Taleghani et al., parue en 2017 dans la revue J
.
Electrochem. Soc. 164 (11), p. E3179-E3189).
Selon l'état de la technique, on utilise avec les techniques d'encrage des électrodes mentionnées ci-dessus des particules de matériau actif d'une taille typiquement comprise entre 5 pm et 15 pm. Le contact entre chacune des particules est essentiellement ponctuel, et les particules sont liées entre-elles par un liant organique qui est dans la plupart du temps du polyfluorure de vinylidène (abrégé PVDF).
4 Des couches d'électrode mésoporeuses totalement céramiques pour batteries à
ions de lithium peuvent être déposées par électrophorèse ; cela est connu de WO
(I-TEN). Elles peuvent être imprégnées d'un électrolyte liquide, mais leur résistivité
électrique demeure assez élevée.
Les électrolytes liquides utilisés pour l'imprégnation des électrodes poreuses sont constitués de solvants aprotiques dans lesquels des sels de lithium ont été
dissous. Ils sont très inflammables et peuvent donner lieu à des combustions violentes des cellules batteries, surtout lorsque les matériaux actifs de cathodes sont sollicités dans des plages de tensions situées en dehors de leur plage de tension de stabilité, ou lorsque des points chauds apparaissent localement dans la cellule.
Pour trouver une solution à ces problèmes de sécurité inhérents à la structure des cellules de batteries aux ions de lithium, on peut travailler selon trois axes.
Selon un premier axe, on peut remplacer les électrolytes à base de solvants organiques par des liquides ioniques, qui sont extrêmement stables en température.
Cependant, les liquides ioniques ne mouillent pas les surfaces de matériaux organiques, et la présence de PVDF et autres liants organiques dans les électrodes de batteries aux ions de lithium conventionnelles empêche le mouillage des électrodes par ce type d'électrolyte ; la performance des électrodes s'en trouve affectée. Des séparateurs céramiques ont été
développés pour résoudre ce problème au niveau de la jonction électrolytique entre électrodes, mais, il n'en demeure pas moins que la présence de liants organiques dans les électrodes continue de poser des problèmes pour l'utilisation des électrolytes à base de liquides ioniques.
Selon un deuxième axe, on peut chercher à homogénéiser les tailles de particules, afin d'éviter des déséquilibres locaux d'états de charge qui peuvent conduire lors de décharges intensives à solliciter localement des matériaux actifs en dehors de leurs plages de tension de fonctionnement conventionnelles. Cette optimisation se ferait alors au détriment de la densité d'énergie de la cellule.
Selon un troisième axe, on peut chercher à homogénéiser la distribution et répartition en charges conductrices (habituellement du noir de carbone) dans l'électrode, afin d'éviter d'avoir localement des zones plus résistives électriquement qui pourraient conduire à la formation d'un point chaud pendant le fonctionnement en puissance de la batterie.
S'agissant plus particulièrement des procédés de fabrication des électrodes de batteries suivant l'état de la technique, leur coût de fabrication dépend en partie de la nature des solvants et des encres utilisés. Outre le coût intrinsèque des matériaux actifs, le coût de fabrication des électrodes provient essentiellement de la complexité des encres mises en oeuvre (liants, solvants, noir de carbone). Le principal solvant utilisés pour la réalisation des électrodes de batteries à ions de lithium est le N-méthy1-2-pyrrolidone (abrégé NMP).
Le NMP est un excellent solvant pour dissoudre le PVDF qui agit comme liant dans la formulation des encres.
Le séchage du NMP contenu dans les électrodes revêt un réel enjeu économique.
La
ions de lithium peuvent être déposées par électrophorèse ; cela est connu de WO
(I-TEN). Elles peuvent être imprégnées d'un électrolyte liquide, mais leur résistivité
électrique demeure assez élevée.
Les électrolytes liquides utilisés pour l'imprégnation des électrodes poreuses sont constitués de solvants aprotiques dans lesquels des sels de lithium ont été
dissous. Ils sont très inflammables et peuvent donner lieu à des combustions violentes des cellules batteries, surtout lorsque les matériaux actifs de cathodes sont sollicités dans des plages de tensions situées en dehors de leur plage de tension de stabilité, ou lorsque des points chauds apparaissent localement dans la cellule.
Pour trouver une solution à ces problèmes de sécurité inhérents à la structure des cellules de batteries aux ions de lithium, on peut travailler selon trois axes.
Selon un premier axe, on peut remplacer les électrolytes à base de solvants organiques par des liquides ioniques, qui sont extrêmement stables en température.
Cependant, les liquides ioniques ne mouillent pas les surfaces de matériaux organiques, et la présence de PVDF et autres liants organiques dans les électrodes de batteries aux ions de lithium conventionnelles empêche le mouillage des électrodes par ce type d'électrolyte ; la performance des électrodes s'en trouve affectée. Des séparateurs céramiques ont été
développés pour résoudre ce problème au niveau de la jonction électrolytique entre électrodes, mais, il n'en demeure pas moins que la présence de liants organiques dans les électrodes continue de poser des problèmes pour l'utilisation des électrolytes à base de liquides ioniques.
Selon un deuxième axe, on peut chercher à homogénéiser les tailles de particules, afin d'éviter des déséquilibres locaux d'états de charge qui peuvent conduire lors de décharges intensives à solliciter localement des matériaux actifs en dehors de leurs plages de tension de fonctionnement conventionnelles. Cette optimisation se ferait alors au détriment de la densité d'énergie de la cellule.
Selon un troisième axe, on peut chercher à homogénéiser la distribution et répartition en charges conductrices (habituellement du noir de carbone) dans l'électrode, afin d'éviter d'avoir localement des zones plus résistives électriquement qui pourraient conduire à la formation d'un point chaud pendant le fonctionnement en puissance de la batterie.
S'agissant plus particulièrement des procédés de fabrication des électrodes de batteries suivant l'état de la technique, leur coût de fabrication dépend en partie de la nature des solvants et des encres utilisés. Outre le coût intrinsèque des matériaux actifs, le coût de fabrication des électrodes provient essentiellement de la complexité des encres mises en oeuvre (liants, solvants, noir de carbone). Le principal solvant utilisés pour la réalisation des électrodes de batteries à ions de lithium est le N-méthy1-2-pyrrolidone (abrégé NMP).
Le NMP est un excellent solvant pour dissoudre le PVDF qui agit comme liant dans la formulation des encres.
Le séchage du NMP contenu dans les électrodes revêt un réel enjeu économique.
La
5 température d'ébullition élevée du NMP couplée à sa très faible tension de vapeur rend son séchage difficile à réaliser en milieu industriel. Les vapeurs de solvants doivent être collectées et retraitées. Par ailleurs, pour garantir une meilleure adhérence des électrodes sur les substrats, la température de séchage du NMP ne doit pas être trop élevée, ce qui tend à accroître une nouvelle fois le temps de séchage et son coût ; cela est décrit dans la publication "Technical and economic analysis of solvent-based lithium-ion electrode cltying with water and NMP" par D.L. Wood & al., parue dans la revue Drying Technology, vol.
36, n 2 (2018).
D'autres solvants moins coûteux peuvent être utilisés pour réaliser des encres, notamment l'eau et l'éthanol. Cependant leur tension de surface est plus grande que celle du NMP, et ils mouillent doncmoins bien la surface des collecteurs de courant métalliques. De plus, les particules ont tendance à s'agglomérer dans l'eau, surtout les nanoparticules de noir de carbone. Ces agglomérations conduisent à une distribution hétérogène des composants entrant dans la composition de l'électrode (liants, noir de carbone...). De plus, que ce soit avec l'eau ou l'éthanol, des traces d'eau peuvent rester adsorbées à la surface des particules de matériaux actifs, même après séchage.
Enfin, outre les problématiques liées à la formulation des encres pour obtenir une électrode performante à bas coût de fabrication, il faut garder à l'esprit que le rapport entre la densité d'énergie et la densité de puissance des électrodes peut être ajusté en fonction de la taille de particules de matériaux actifs, et indirectement de la porosité des couches d'électrodes et de leur épaisseur. L'article de J. Newman ( Optimization of Porosity and Thickness of a Battety Electrode by Means of A Reaction-Zone Model , J.
Electrochem. Soc., 142 (1), p. 97-101 (1995)) démontre les effets respectifs des épaisseurs des électrodes et de leur porosité sur leur régime de décharge (puissance) et densité d'énergie.
Par ailleurs, lorsqu'on souhaite fabriquer une cellule batterie, il est connu de positionner un séparateur entre les électrodes. Les électrodes et le séparateur de chaque cellule élémentaire sont typiquement imprégnés d'un électrolyte liquide. Les séparateurs utilisés dans les batteries à ions de lithium sont le plus souvent des membranes polymériques dont les pores sont imprégnés par un électrolyte liquide contenant des sels de lithium tel que le LiPF6. Le fait que ces séparateurs soient sous forme polymérique pose des problèmes de mouillabilité des liquides ioniques. Des traitements de surfaces peuvent
36, n 2 (2018).
D'autres solvants moins coûteux peuvent être utilisés pour réaliser des encres, notamment l'eau et l'éthanol. Cependant leur tension de surface est plus grande que celle du NMP, et ils mouillent doncmoins bien la surface des collecteurs de courant métalliques. De plus, les particules ont tendance à s'agglomérer dans l'eau, surtout les nanoparticules de noir de carbone. Ces agglomérations conduisent à une distribution hétérogène des composants entrant dans la composition de l'électrode (liants, noir de carbone...). De plus, que ce soit avec l'eau ou l'éthanol, des traces d'eau peuvent rester adsorbées à la surface des particules de matériaux actifs, même après séchage.
Enfin, outre les problématiques liées à la formulation des encres pour obtenir une électrode performante à bas coût de fabrication, il faut garder à l'esprit que le rapport entre la densité d'énergie et la densité de puissance des électrodes peut être ajusté en fonction de la taille de particules de matériaux actifs, et indirectement de la porosité des couches d'électrodes et de leur épaisseur. L'article de J. Newman ( Optimization of Porosity and Thickness of a Battety Electrode by Means of A Reaction-Zone Model , J.
Electrochem. Soc., 142 (1), p. 97-101 (1995)) démontre les effets respectifs des épaisseurs des électrodes et de leur porosité sur leur régime de décharge (puissance) et densité d'énergie.
Par ailleurs, lorsqu'on souhaite fabriquer une cellule batterie, il est connu de positionner un séparateur entre les électrodes. Les électrodes et le séparateur de chaque cellule élémentaire sont typiquement imprégnés d'un électrolyte liquide. Les séparateurs utilisés dans les batteries à ions de lithium sont le plus souvent des membranes polymériques dont les pores sont imprégnés par un électrolyte liquide contenant des sels de lithium tel que le LiPF6. Le fait que ces séparateurs soient sous forme polymérique pose des problèmes de mouillabilité des liquides ioniques. Des traitements de surfaces peuvent
6 être réalisés sur ces séparateurs, ou des charges minérales peuvent être intégrées au sein de ces séparateurs afin d'accroître leur tenue mécanique et leur propriété de mouillage vis-à-vis des liquides ioniques.
Pour des raisons de tenue mécanique, ces séparateurs ont, typiquement, des épaisseurs de l'ordre de 25 micromètres. Ils doivent résister à la mise sous tension pendant les étapes de fabrication des cellules batteries. Pour cela, ils sont généralement constitués de plusieurs couches de polymères. Il s'agit essentiellement de couches de polyethylène (PE) et de polypropylène (PP) qui assurent respectivement des fonctions de sécurité, notamment la fermeture de la porosité en cas de surchauffe locale, et mécaniques.
Ces séparateurs sont dotés d'une microporosité qui peut être imprégnée par un électrolyte et assurer ainsi la migration des ions. Pendant l'utilisation de la batterie, des dendrites de lithium sont susceptibles de se former dans l'épaisseur du séparateur, ce qui engendre le risque d'emballement thermique. Des nanoparticules conductrices de noir de carbone peuvent également se détacher des électrodes, pénétrer dans le séparateur et créer ainsi un risque de court-circuit interne. Ces risques peuvent être exacerbés par la présence de défauts dans le séparateur.
Par ailleurs, la forte épaisseur des séparateurs diminue la densité d'énergie et de puissance de la batterie les contenant. Plus le séparateur est épais, plus la résistance ionique entre l'électrode négative et l'électrode positive sera importante.
Par ailleurs, le volume occupé par le séparateur ne stocke pas d'énergie ; plus l'épaisseur du séparateur sera réduite, meilleure sera la densité d'énergie spécifique de la cellule élémentaire de la batterie.
Afin de réduire ces risques de sécurité et cette diminution des performances de la batterie, des électrolytes solides, le plus souvent sous forme de polymères ont été
développés. Ces électrolytes solides sont déposés directement sur les électrodes et leur épaisseur peut être réduite ; ainsi la question de leur rigidité pour rester intègre pendant le procédé de fabrication des cellules ne se pose plus.
Cependant, le risque de formation de dendrites dans les électrolytes solides n'est pas complètement résolu. En effet, même en l'absence d'électrolytes liquides, des dendrites peuvent se former dans les électrolytes solides. Cette formation est d'autant plus probable que l'électrolyte solide sera faiblement isolant électrique et que le matériau d'électrolyte sera lithiophobe.
Lorsque l'électrolyte solide est sous forme de polymère, l'absence d'électrolytes liquides dissous dans le polymère (solvaté ou sous forme de liquide ionique à
température ambiante) permet de limiter voire d'éviter l'apparition de dendrites.
Pour des raisons de tenue mécanique, ces séparateurs ont, typiquement, des épaisseurs de l'ordre de 25 micromètres. Ils doivent résister à la mise sous tension pendant les étapes de fabrication des cellules batteries. Pour cela, ils sont généralement constitués de plusieurs couches de polymères. Il s'agit essentiellement de couches de polyethylène (PE) et de polypropylène (PP) qui assurent respectivement des fonctions de sécurité, notamment la fermeture de la porosité en cas de surchauffe locale, et mécaniques.
Ces séparateurs sont dotés d'une microporosité qui peut être imprégnée par un électrolyte et assurer ainsi la migration des ions. Pendant l'utilisation de la batterie, des dendrites de lithium sont susceptibles de se former dans l'épaisseur du séparateur, ce qui engendre le risque d'emballement thermique. Des nanoparticules conductrices de noir de carbone peuvent également se détacher des électrodes, pénétrer dans le séparateur et créer ainsi un risque de court-circuit interne. Ces risques peuvent être exacerbés par la présence de défauts dans le séparateur.
Par ailleurs, la forte épaisseur des séparateurs diminue la densité d'énergie et de puissance de la batterie les contenant. Plus le séparateur est épais, plus la résistance ionique entre l'électrode négative et l'électrode positive sera importante.
Par ailleurs, le volume occupé par le séparateur ne stocke pas d'énergie ; plus l'épaisseur du séparateur sera réduite, meilleure sera la densité d'énergie spécifique de la cellule élémentaire de la batterie.
Afin de réduire ces risques de sécurité et cette diminution des performances de la batterie, des électrolytes solides, le plus souvent sous forme de polymères ont été
développés. Ces électrolytes solides sont déposés directement sur les électrodes et leur épaisseur peut être réduite ; ainsi la question de leur rigidité pour rester intègre pendant le procédé de fabrication des cellules ne se pose plus.
Cependant, le risque de formation de dendrites dans les électrolytes solides n'est pas complètement résolu. En effet, même en l'absence d'électrolytes liquides, des dendrites peuvent se former dans les électrolytes solides. Cette formation est d'autant plus probable que l'électrolyte solide sera faiblement isolant électrique et que le matériau d'électrolyte sera lithiophobe.
Lorsque l'électrolyte solide est sous forme de polymère, l'absence d'électrolytes liquides dissous dans le polymère (solvaté ou sous forme de liquide ionique à
température ambiante) permet de limiter voire d'éviter l'apparition de dendrites.
7 Le risque d'apparition de dendrites de lithium est essentiellement présent lorsque le potentiel de fonctionnement de l'électrode négative est bas. Les électrodes négatives à
base de titanates, fonctionnant à des potentiels de l'ordre de 1,5 V ne présentent pas de risque de formation de dendrites de lithium pendant la recharge de la batterie. Ces électrodes négatives sont d'ailleurs particulièrement bien adaptées pour les applications nécessitant de la recharge rapide.
Pour résoudre ces différents problèmes, des couches d'électrolytes solides, céramiques, mésoporeuses dont les pores peuvent être imprégnés d'un électrolyte liquide tel qu'un liquide ionique ont été développées ; cela est connu de VVO 2019 / 215 411 (I-TEN). Ces électrolytes sont particulièrement bien adaptés pour être utilisés avec une électrode négative fonctionnant à un potentiel d'insertion relativement élevé, car de la sorte, il n'y a aucun risque de formation de dendrites de lithium. Par ailleurs, ces électrolytes utilisent des nanoparticules céramiques stables dans une large gamme de potentiel et sont particulièrement rigides. Ils peuvent ainsi être déposés en fine épaisseur sur les électrodes de batterie à ions de lithium et permettent d'obtenir de très grandes densités d'énergie et de puissance.
Lors de leur fabrication, ces couches d'électrolytes solides, céramiques, mésoporeuses sont frittées en présence d'air. Le traitement thermique utilisé permet de calciner les résidus organiques (solvants et/ou stabilisants et/ou liants utilisés dans les suspensions de nanoparticules) qu'elles contiennent tout en évitant que ces résidus organiques ne se transforment en fine couche de carbone qui nuirait à l'isolation électrique, notamment en mettant les électrodes de polarités opposées en court-circuit. Après ce traitement thermique, le séparateur inorganique obtenu peut facilement être imprégné par un électrolyte liquide (solvaté et/ou un liquide ionique à température ambiante).
Il est particulièrement bien adapté à des électrodes céramiques, pouvant supporter les traitements thermiques.
En revanche, pour la réalisation de cellules batteries à très forte densité
d'énergie, il convient d'utiliser des électrodes négatives insérant le lithium à un potentiel le plus bas possible. Afin d'éviter la formation de dendrites sur de telles cellules très énergétiques, d'autres électrolytes ont été développés et décrits dans la demande \NO
(I-TEN). Ces électrolytes présentent une structure composite homogène comprenant un ratio volumique d'électrolyte solide / PEO supérieur à 35%. Cette architecture permet de réaliser des électrolytes solides, sans risques de formation de dendrites de lithium avec une bonne conductivité ionique, sans sels de lithium dans le PEO.
Le problème que la présente invention cherche à résoudre est de proposer un ensemble électrode poreuse / séparateur pour batterie à ions de lithium dotée d'une électrode ayant
base de titanates, fonctionnant à des potentiels de l'ordre de 1,5 V ne présentent pas de risque de formation de dendrites de lithium pendant la recharge de la batterie. Ces électrodes négatives sont d'ailleurs particulièrement bien adaptées pour les applications nécessitant de la recharge rapide.
Pour résoudre ces différents problèmes, des couches d'électrolytes solides, céramiques, mésoporeuses dont les pores peuvent être imprégnés d'un électrolyte liquide tel qu'un liquide ionique ont été développées ; cela est connu de VVO 2019 / 215 411 (I-TEN). Ces électrolytes sont particulièrement bien adaptés pour être utilisés avec une électrode négative fonctionnant à un potentiel d'insertion relativement élevé, car de la sorte, il n'y a aucun risque de formation de dendrites de lithium. Par ailleurs, ces électrolytes utilisent des nanoparticules céramiques stables dans une large gamme de potentiel et sont particulièrement rigides. Ils peuvent ainsi être déposés en fine épaisseur sur les électrodes de batterie à ions de lithium et permettent d'obtenir de très grandes densités d'énergie et de puissance.
Lors de leur fabrication, ces couches d'électrolytes solides, céramiques, mésoporeuses sont frittées en présence d'air. Le traitement thermique utilisé permet de calciner les résidus organiques (solvants et/ou stabilisants et/ou liants utilisés dans les suspensions de nanoparticules) qu'elles contiennent tout en évitant que ces résidus organiques ne se transforment en fine couche de carbone qui nuirait à l'isolation électrique, notamment en mettant les électrodes de polarités opposées en court-circuit. Après ce traitement thermique, le séparateur inorganique obtenu peut facilement être imprégné par un électrolyte liquide (solvaté et/ou un liquide ionique à température ambiante).
Il est particulièrement bien adapté à des électrodes céramiques, pouvant supporter les traitements thermiques.
En revanche, pour la réalisation de cellules batteries à très forte densité
d'énergie, il convient d'utiliser des électrodes négatives insérant le lithium à un potentiel le plus bas possible. Afin d'éviter la formation de dendrites sur de telles cellules très énergétiques, d'autres électrolytes ont été développés et décrits dans la demande \NO
(I-TEN). Ces électrolytes présentent une structure composite homogène comprenant un ratio volumique d'électrolyte solide / PEO supérieur à 35%. Cette architecture permet de réaliser des électrolytes solides, sans risques de formation de dendrites de lithium avec une bonne conductivité ionique, sans sels de lithium dans le PEO.
Le problème que la présente invention cherche à résoudre est de proposer un ensemble électrode poreuse / séparateur pour batterie à ions de lithium dotée d'une électrode ayant
8 une très forte densité d'énergie couplée à une très forte densité de puissance et d'un séparateur ayant une structure mécanique stable ainsi une bonne stabilité
thermique, qui est capable de fonctionner de manière fiable et qui présente une excellente durée de vie en cyclage ainsi qu'une sécurité accrue.
Un autre problème que la présente invention cherche à résoudre est de fournir un procédé de fabrication d'un tel ensemble électrode poreuse / séparateur qui soit simple, sûr, rapide, facile à mettre en oeuvre, facile à industrialiser et peu coûteux.
Un autre but de l'invention est de fournir un procédé de fabrication d'une batterie comprenant un ensemble électrode poreuse / séparateur selon l'invention.
Un autre but de l'invention est de fournir une batterie de structure rigide possédant une durée de vie élevée, ayant une forte densité de puissance, présentant une fiabilité accrue et capable de résister mécaniquement aux chocs et aux vibrations.
Objets de l'invention La présente invention s'applique aux ensembles constitués d'une électrode poreuse et d'un séparateur poreux. Ledit séparateur peut servir comme structure hôte pour accueillir un électrolyte conducteur d'ions ; ledit électrolyte conducteur d'ions peut aussi envahir ladite électrode poreuse.
Pour résoudre les problèmes de sécurité inhérents à la structure des cellules de batteries à ions de lithium conventionnelles évoquées ci-dessus, les inventeurs ont suivi trois lignes directrices.
Selon une première ligne directrice, on remplace les électrolytes à base de solvants organiques par des mélanges de solvants organiques et de liquides ioniques ou par des liquides ioniques, qui sont extrêmement stables en température. Cependant, les liquides ioniques ne mouillent pas sur les surfaces de matériaux organiques et la présence de PVDF et autres liants organiques dans les électrodes de batteries conventionnelles empêche le mouillage des électrodes par ce type d'électrolyte, et la performance des électrodes s'en trouve affectée. Des séparateurs céramiques ont été développés pour résoudre ce problème au niveau de la jonction électrolytique entre électrodes, mais, il n'en demeure pas moins que la présence de liants organiques dans les électrodes continue de poser des problèmes pour l'utilisation des électrolytes à base de liquides ioniques.
Selon une deuxième ligne directrice, on cherche à homogénéiser les tailles de particules, afin d'éviter des déséquilibres locaux d'états de charge qui peuvent conduire lors de décharges intensives à solliciter localement des matériaux actifs en dehors de leurs plages de tension de fonctionnement conventionnelles.
thermique, qui est capable de fonctionner de manière fiable et qui présente une excellente durée de vie en cyclage ainsi qu'une sécurité accrue.
Un autre problème que la présente invention cherche à résoudre est de fournir un procédé de fabrication d'un tel ensemble électrode poreuse / séparateur qui soit simple, sûr, rapide, facile à mettre en oeuvre, facile à industrialiser et peu coûteux.
Un autre but de l'invention est de fournir un procédé de fabrication d'une batterie comprenant un ensemble électrode poreuse / séparateur selon l'invention.
Un autre but de l'invention est de fournir une batterie de structure rigide possédant une durée de vie élevée, ayant une forte densité de puissance, présentant une fiabilité accrue et capable de résister mécaniquement aux chocs et aux vibrations.
Objets de l'invention La présente invention s'applique aux ensembles constitués d'une électrode poreuse et d'un séparateur poreux. Ledit séparateur peut servir comme structure hôte pour accueillir un électrolyte conducteur d'ions ; ledit électrolyte conducteur d'ions peut aussi envahir ladite électrode poreuse.
Pour résoudre les problèmes de sécurité inhérents à la structure des cellules de batteries à ions de lithium conventionnelles évoquées ci-dessus, les inventeurs ont suivi trois lignes directrices.
Selon une première ligne directrice, on remplace les électrolytes à base de solvants organiques par des mélanges de solvants organiques et de liquides ioniques ou par des liquides ioniques, qui sont extrêmement stables en température. Cependant, les liquides ioniques ne mouillent pas sur les surfaces de matériaux organiques et la présence de PVDF et autres liants organiques dans les électrodes de batteries conventionnelles empêche le mouillage des électrodes par ce type d'électrolyte, et la performance des électrodes s'en trouve affectée. Des séparateurs céramiques ont été développés pour résoudre ce problème au niveau de la jonction électrolytique entre électrodes, mais, il n'en demeure pas moins que la présence de liants organiques dans les électrodes continue de poser des problèmes pour l'utilisation des électrolytes à base de liquides ioniques.
Selon une deuxième ligne directrice, on cherche à homogénéiser les tailles de particules, afin d'éviter des déséquilibres locaux d'états de charge qui peuvent conduire lors de décharges intensives à solliciter localement des matériaux actifs en dehors de leurs plages de tension de fonctionnement conventionnelles.
9 Selon une troisième ligne directrice, on cherche à homogénéiser la distribution et répartition en additifs conducteurs (en anglais conductive fillers ; seul le noir de carbone est utilisé en pratique) dans l'électrode, afin d'éviter d'avoir localement des zones plus résistives électriquement qui pourraient conduire à la formation d'un point chaud pendant le fonctionnement en puissance de la batterie.
Selon l'invention, le problème est résolu par un ensemble constitué d'une électrode poreuse et d'un séparateur pour batterie à ions de lithium qui est totalement poreux, de préférence mésoporeux, dépourvu de liants organiques, et dont la porosité est comprise entre 25 et 50%, et dont la taille des canaux et pores est homogène, au sein de l'ensemble, afin d'assurer un parfait équilibrage dynamique de la cellule.
Les porosités, exprimées en volume poreux relatif, des électrodes et du séparateur peuvent être les mêmes ou peuvent être différentes ; on préfère qu'elles soient différentes. Cela peut être obtenu par une consolidation thermique en deux étapes, une pour l'électrode, qui est déposée avant le séparateur, l'autre pour l'ensemble électrode ¨
séparateur. La porosité de l'électrode est avantageusement comprise entre 25%
et 35%
pour optimiser la densité d'énergie, celle du séparateur entre 40 % et 60 %
(et de préférence entre 45 h et 55 %) pour optimiser la conduction ionique. Dans un mode de réalisation particulièrement avantageux de l'invention, la porosité de l'électrode est d'environ 30 % et celle du séparateur est d'environ 50 %. En dessous d'une valeur de 25 %, l'imprégnation devient difficile et reste incomplète car les porosités peuvent être au moins partiellement fermées.
La structure poreuse, de préférence mésoporeuse, entièrement solide, sans composants organiques, de l'électrode poreuse, respectivement du séparateur, est obtenue par la déposition, sur un substrat, d'agglomérats et/ou agrégats de nanoparticules de matériaux actifs d'électrode P, respectivement de matériau inorganique E pour former le séparateur.
Les tailles des particules primaires constituant ces agglomérats et/ou agrégats sont de l'ordre du nanomètre ou dizaine de nanomètres, et lesdits agglomérats et/ou agrégats contiennent au moins quatre particules primaires.
Ledit substrat peut être, dans un premier mode de réalisation, un substrat capable d'agir comme collecteur de courant électrique, ou être, dans un deuxième mode de réalisation, un substrat intermédiaire, temporaire qui sera explicité plus en détail ci-après.
Le fait d'utiliser des agglomérats de quelques dizaines voire centaines de nanomètres de diamètres plutôt que des particules primaires, non agglomérées avec chacune une taille de l'ordre du nanomètre ou de la dizaine de nanomètre permet d'accroître les épaisseurs de dépôt_ Les agglomérats doivent avoir une taille inférieure à 300 nm. Le frittage des agglomérats de taille supérieure à 500 nm ne permettrait pas d'obtenir un film continu mésoporeux. Dans ce cas, il est observé deux tailles de porosité différente dans le dépôt, à savoir une porosité entre agglomérats et une porosité à l'intérieur des agglomérats.
En effet, on observe que lors du séchage des dépôts de nanoparticules sur un substrat capable d'agir comme collecteur de courant électrique, des fissures apparaissent dans la 5 couche. On constate que l'apparition de ces fissures dépend essentiellement de la taille des particules, de la compacité du dépôt et de son épaisseur. Cette épaisseur limite de fissuration est définie par la relation suivante :
hmax= 0,41 [(GM 4, rcpR3)/2y]
OU hmax désigne l'épaisseur critique, G le module de cisaillement des nanoparticules, M le
Selon l'invention, le problème est résolu par un ensemble constitué d'une électrode poreuse et d'un séparateur pour batterie à ions de lithium qui est totalement poreux, de préférence mésoporeux, dépourvu de liants organiques, et dont la porosité est comprise entre 25 et 50%, et dont la taille des canaux et pores est homogène, au sein de l'ensemble, afin d'assurer un parfait équilibrage dynamique de la cellule.
Les porosités, exprimées en volume poreux relatif, des électrodes et du séparateur peuvent être les mêmes ou peuvent être différentes ; on préfère qu'elles soient différentes. Cela peut être obtenu par une consolidation thermique en deux étapes, une pour l'électrode, qui est déposée avant le séparateur, l'autre pour l'ensemble électrode ¨
séparateur. La porosité de l'électrode est avantageusement comprise entre 25%
et 35%
pour optimiser la densité d'énergie, celle du séparateur entre 40 % et 60 %
(et de préférence entre 45 h et 55 %) pour optimiser la conduction ionique. Dans un mode de réalisation particulièrement avantageux de l'invention, la porosité de l'électrode est d'environ 30 % et celle du séparateur est d'environ 50 %. En dessous d'une valeur de 25 %, l'imprégnation devient difficile et reste incomplète car les porosités peuvent être au moins partiellement fermées.
La structure poreuse, de préférence mésoporeuse, entièrement solide, sans composants organiques, de l'électrode poreuse, respectivement du séparateur, est obtenue par la déposition, sur un substrat, d'agglomérats et/ou agrégats de nanoparticules de matériaux actifs d'électrode P, respectivement de matériau inorganique E pour former le séparateur.
Les tailles des particules primaires constituant ces agglomérats et/ou agrégats sont de l'ordre du nanomètre ou dizaine de nanomètres, et lesdits agglomérats et/ou agrégats contiennent au moins quatre particules primaires.
Ledit substrat peut être, dans un premier mode de réalisation, un substrat capable d'agir comme collecteur de courant électrique, ou être, dans un deuxième mode de réalisation, un substrat intermédiaire, temporaire qui sera explicité plus en détail ci-après.
Le fait d'utiliser des agglomérats de quelques dizaines voire centaines de nanomètres de diamètres plutôt que des particules primaires, non agglomérées avec chacune une taille de l'ordre du nanomètre ou de la dizaine de nanomètre permet d'accroître les épaisseurs de dépôt_ Les agglomérats doivent avoir une taille inférieure à 300 nm. Le frittage des agglomérats de taille supérieure à 500 nm ne permettrait pas d'obtenir un film continu mésoporeux. Dans ce cas, il est observé deux tailles de porosité différente dans le dépôt, à savoir une porosité entre agglomérats et une porosité à l'intérieur des agglomérats.
En effet, on observe que lors du séchage des dépôts de nanoparticules sur un substrat capable d'agir comme collecteur de courant électrique, des fissures apparaissent dans la 5 couche. On constate que l'apparition de ces fissures dépend essentiellement de la taille des particules, de la compacité du dépôt et de son épaisseur. Cette épaisseur limite de fissuration est définie par la relation suivante :
hmax= 0,41 [(GM 4, rcpR3)/2y]
OU hmax désigne l'épaisseur critique, G le module de cisaillement des nanoparticules, M le
10 nombre de coordination, CP rep la fraction volumique de nanoparticules, R
le rayon des particules et y la tension interfaciale entre le solvant et l'air.
Il s'ensuit que l'utilisation d'agglomérats, mésoporeux, constitués de nanoparticules primaires au moins dix fois plus petites que la taille de l'agglomérat, permet d'accroître considérablement l'épaisseur limite de fissuration des couches. De la même manière, il est possible d'ajouter quelques pourcents d'un solvant à plus faible tension de surface (tel que l'alcool isopropylique (abrégé IRA)) dans l'eau ou l'éthanol afin d'améliorer la mouillabilité et l'adhérence du dépôt, et pour réduire le risque de fissuration. Afin d'accroître les épaisseurs de dépôt tout en limitant voire en supprimant l'apparition de fissures, il est possible d'ajouter des liants, des dispersants. Ces additifs et solvants organiques peuvent être éliminés par un traitement thermique sous air, tel que par déliantage, lors d'un traitement de frittage ou lors d'un traitement thermique réalisé
préalablement au traitement de frittage.
Par ailleurs, pour la même taille de particules primaires, il est possible durant leur synthèse par précipitation de modifier la taille des agglomérats en modulant la quantité de ligands (par exemple le poly vinyl pyrrolidone, abrégé PVP) dans le réacteur de synthèse.
Ainsi, on peut réaliser une encre contenant des agglomérats très dispersés en taille ou ayant deux populations en taille complémentaires, de manière à maximiser la compacité
du dépôt d'agglomérats. Contrairement au frittage de nanoparticules non agglomérées, les conditions de frittages entre les agglomérats de tailles différentes ne seront pas modifiées. Ce sont les nanoparticules primaires, qui constituent les agglomérats qui vont se souder. Ces nanoparticules primaires ont des tailles identiques quelle que soit la taille de l'agglomérat. La distribution en taille des agglomérats permettra d'améliorer la compacité des dépôts et de multiplier les points de contact entre nanoparticules, mais ne modifiera pas la température de consolidation.
le rayon des particules et y la tension interfaciale entre le solvant et l'air.
Il s'ensuit que l'utilisation d'agglomérats, mésoporeux, constitués de nanoparticules primaires au moins dix fois plus petites que la taille de l'agglomérat, permet d'accroître considérablement l'épaisseur limite de fissuration des couches. De la même manière, il est possible d'ajouter quelques pourcents d'un solvant à plus faible tension de surface (tel que l'alcool isopropylique (abrégé IRA)) dans l'eau ou l'éthanol afin d'améliorer la mouillabilité et l'adhérence du dépôt, et pour réduire le risque de fissuration. Afin d'accroître les épaisseurs de dépôt tout en limitant voire en supprimant l'apparition de fissures, il est possible d'ajouter des liants, des dispersants. Ces additifs et solvants organiques peuvent être éliminés par un traitement thermique sous air, tel que par déliantage, lors d'un traitement de frittage ou lors d'un traitement thermique réalisé
préalablement au traitement de frittage.
Par ailleurs, pour la même taille de particules primaires, il est possible durant leur synthèse par précipitation de modifier la taille des agglomérats en modulant la quantité de ligands (par exemple le poly vinyl pyrrolidone, abrégé PVP) dans le réacteur de synthèse.
Ainsi, on peut réaliser une encre contenant des agglomérats très dispersés en taille ou ayant deux populations en taille complémentaires, de manière à maximiser la compacité
du dépôt d'agglomérats. Contrairement au frittage de nanoparticules non agglomérées, les conditions de frittages entre les agglomérats de tailles différentes ne seront pas modifiées. Ce sont les nanoparticules primaires, qui constituent les agglomérats qui vont se souder. Ces nanoparticules primaires ont des tailles identiques quelle que soit la taille de l'agglomérat. La distribution en taille des agglomérats permettra d'améliorer la compacité des dépôts et de multiplier les points de contact entre nanoparticules, mais ne modifiera pas la température de consolidation.
11 Après frittage partiel, on obtient une couche poreuse, de préférence mésoporeuse, ou une plaque, sans noir de carbone, ni composés organiques, dans lequel toutes les nanoparticules sont soudées entre-elles (par le phénomène de necking, connu par ailleurs).
Le procédé de fabrication d'un dépôt mésoporeux, tel que décrit ci-dessus, a été utilisé
pour réaliser l'électrode poreuse ainsi que le séparateur de l'ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention.
La couche poreuse, de préférence mésoporeuse ainsi obtenue est entièrement solide et céramique. Il n'y a plus de risque de pertes de contact électrique entre les particules de matériaux actifs pendant le cyclage ce qui est de nature à améliorer les performances en cyclage de la batterie. Par ailleurs, après frittage, l'électrode est parfaitement adhérente sur le substrat métallique sur lequel elle a été déposée ou transférée (dans le cas d'un dépôt initial sur un substrat intermédiaire).
Les traitements thermiques réalisés à haute température pour fritter les nanoparticules entre elles permettent de sécher parfaitement l'électrode et d'éliminer toutes les traces d'eau ou de solvants ou d'autres additifs organiques (stabilisants, liants) adsorbées à la surface des particules de matériau actif. Le traitement thermique à haute température (frittage) peut être précédé d'un traitement thermique à température plus basse (déliantage) pour sécher l'électrode posée ou déposée et pour éliminer les traces d'eau ou de solvants ou d'autres additifs organiques (stabilisants, liants) adsorbées à la surface des particules de matériau actif ; ce déliantage peut être effectué en atmosphère oxydante.
En fonction des temps et température de frittage, il est possible d'ajuster la porosité de l'électrode finale. En fonction des besoins en densité d'énergie, cette dernière peut être ajustée dans une plage comprise entre 50 h et 25% de porosité.
Dans tous les cas, la densité de puissance des électrodes ainsi obtenues reste extrêmement élevée du fait de la mésoporosité. Par ailleurs, indépendamment de la taille des mésopores dans la matière active (sachant qu'après le frittage la notion de nanoparticule ne s'applique plus au matériau qui présente alors une structure tridimensionnelle avec un réseau de canaux et de mésopores), l'équilibrage dynamique de la cellule reste parfait, ce qui contribue à maximiser les densités puissance et durées de vie de la cellule batterie.
L'électrode de l'ensemble selon l'invention présente une haute surface spécifique, qui réduit la résistance ionique de l'électrode. Cependant, pour que cette électrode délivre un maximum de puissance, encore faut-il qu'elle possède une très bonne conductivité
Le procédé de fabrication d'un dépôt mésoporeux, tel que décrit ci-dessus, a été utilisé
pour réaliser l'électrode poreuse ainsi que le séparateur de l'ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention.
La couche poreuse, de préférence mésoporeuse ainsi obtenue est entièrement solide et céramique. Il n'y a plus de risque de pertes de contact électrique entre les particules de matériaux actifs pendant le cyclage ce qui est de nature à améliorer les performances en cyclage de la batterie. Par ailleurs, après frittage, l'électrode est parfaitement adhérente sur le substrat métallique sur lequel elle a été déposée ou transférée (dans le cas d'un dépôt initial sur un substrat intermédiaire).
Les traitements thermiques réalisés à haute température pour fritter les nanoparticules entre elles permettent de sécher parfaitement l'électrode et d'éliminer toutes les traces d'eau ou de solvants ou d'autres additifs organiques (stabilisants, liants) adsorbées à la surface des particules de matériau actif. Le traitement thermique à haute température (frittage) peut être précédé d'un traitement thermique à température plus basse (déliantage) pour sécher l'électrode posée ou déposée et pour éliminer les traces d'eau ou de solvants ou d'autres additifs organiques (stabilisants, liants) adsorbées à la surface des particules de matériau actif ; ce déliantage peut être effectué en atmosphère oxydante.
En fonction des temps et température de frittage, il est possible d'ajuster la porosité de l'électrode finale. En fonction des besoins en densité d'énergie, cette dernière peut être ajustée dans une plage comprise entre 50 h et 25% de porosité.
Dans tous les cas, la densité de puissance des électrodes ainsi obtenues reste extrêmement élevée du fait de la mésoporosité. Par ailleurs, indépendamment de la taille des mésopores dans la matière active (sachant qu'après le frittage la notion de nanoparticule ne s'applique plus au matériau qui présente alors une structure tridimensionnelle avec un réseau de canaux et de mésopores), l'équilibrage dynamique de la cellule reste parfait, ce qui contribue à maximiser les densités puissance et durées de vie de la cellule batterie.
L'électrode de l'ensemble selon l'invention présente une haute surface spécifique, qui réduit la résistance ionique de l'électrode. Cependant, pour que cette électrode délivre un maximum de puissance, encore faut-il qu'elle possède une très bonne conductivité
12 électronique pour éviter les pertes ohmiques dans la batterie. Cette amélioration de la conductivité électronique de la cellule sera d'autant plus critique que l'épaisseur de l'électrode sera importante. Par ailleurs, cette conductivité électronique doit être parfaitement homogène dans toute l'électrode afin d'éviter la formation locale de points chauds.
Selon l'invention, on dépose, sur et à l'intérieur des pores de la couche poreuse obtenue à partir de matière active, un revêtement d'un matériau conducteur électronique. Ce matériau conducteur électronique peut être déposé par la technique de dépôt de couches atomiques (abrégé ALD, Atomic Layer Deposition) ou à partir d'un précurseur liquide.
Ledit matériau conducteur électronique peut être du carbone. Ce dépôt d'un matériau conducteur électronique n'est effectué que sur l'électrode et non sur le séparateur.
Pour déposer une couche de carbone à partir d'un précurseur liquide, la couche mésoporeuse peut être immergée dans une solution riche d'un précurseur de carbone (par exemple une solution de saccharose). Ensuite l'électrode est séchée et soumise à un traitement thermique sous azote à une température suffisante pour pyroliser le précurseur de carbone. Ainsi se forme un revêtement très mince de carbone sur toute la surface interne de l'électrode, parfaitement répartie. Ce revêtement confère à
l'électrode une bonne conduction électronique, quelle que soit son épaisseur. On note que ce traitement est possible après frittage car électrode est entièrement solide, sans résidus organiques, et résiste aux cycles thermiques imposés par les différents traitements thermiques.
Le séparateur de l'ensemble selon l'invention est ensuite obtenu conformément au procédé de fabrication d'un dépôt mésoporeux, tel que décrit précédemment sur l'électrode poreuse de l'ensemble.
Le séparateur ainsi obtenu est entièrement solide, céramique et présente une bonne tenue mécanique. Par ailleurs, après frittage, le dépôt de la couche inorganique est parfaitement adhérent sur l'électrode poreuse de manière à former l'ensemble selon l'invention.
Les traitements thermiques réalisés à haute température pour fritter les nanoparticules entre elles permettent de sécher parfaitement le séparateur et d'éliminer toutes les traces d'eau adsorbées à la surface des particules de matériau inorganique E qui constitue le séparateur. En fonction de la durée et de la température de frittage, il est possible d'ajuster la porosité du séparateur.
L'ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention peut, avantageusement, être assemblé à une électrode ou à un autre ensemble selon l'invention, de manière à obtenir une batterie fonctionnelle.
Selon l'invention, on dépose, sur et à l'intérieur des pores de la couche poreuse obtenue à partir de matière active, un revêtement d'un matériau conducteur électronique. Ce matériau conducteur électronique peut être déposé par la technique de dépôt de couches atomiques (abrégé ALD, Atomic Layer Deposition) ou à partir d'un précurseur liquide.
Ledit matériau conducteur électronique peut être du carbone. Ce dépôt d'un matériau conducteur électronique n'est effectué que sur l'électrode et non sur le séparateur.
Pour déposer une couche de carbone à partir d'un précurseur liquide, la couche mésoporeuse peut être immergée dans une solution riche d'un précurseur de carbone (par exemple une solution de saccharose). Ensuite l'électrode est séchée et soumise à un traitement thermique sous azote à une température suffisante pour pyroliser le précurseur de carbone. Ainsi se forme un revêtement très mince de carbone sur toute la surface interne de l'électrode, parfaitement répartie. Ce revêtement confère à
l'électrode une bonne conduction électronique, quelle que soit son épaisseur. On note que ce traitement est possible après frittage car électrode est entièrement solide, sans résidus organiques, et résiste aux cycles thermiques imposés par les différents traitements thermiques.
Le séparateur de l'ensemble selon l'invention est ensuite obtenu conformément au procédé de fabrication d'un dépôt mésoporeux, tel que décrit précédemment sur l'électrode poreuse de l'ensemble.
Le séparateur ainsi obtenu est entièrement solide, céramique et présente une bonne tenue mécanique. Par ailleurs, après frittage, le dépôt de la couche inorganique est parfaitement adhérent sur l'électrode poreuse de manière à former l'ensemble selon l'invention.
Les traitements thermiques réalisés à haute température pour fritter les nanoparticules entre elles permettent de sécher parfaitement le séparateur et d'éliminer toutes les traces d'eau adsorbées à la surface des particules de matériau inorganique E qui constitue le séparateur. En fonction de la durée et de la température de frittage, il est possible d'ajuster la porosité du séparateur.
L'ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention peut, avantageusement, être assemblé à une électrode ou à un autre ensemble selon l'invention, de manière à obtenir une batterie fonctionnelle.
13 Un premier objet de l'invention est un procédé de fabrication d'un ensemble constitué
d'une électrode poreuse et d'un séparateur poreux, notamment pour un dispositif électrochimique sélectionné dans le groupe formé par: les batteries à ions de lithium d'une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium ¨
air, les cellules photovoltaïques, les piles à combustible, ladite électrode comprenant une couche poreuse déposée sur un substrat, ladite couche étant exempte de liant, présentant une porosité comprise entre 20 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à
50 nm, ledit séparateur comprenant une couche inorganique poreuse déposée sur ladite électrode, ladite couche inorganique poreuse étant exempte de liant, présentant une porosité comprise entre 25 % et 60% en volume, de préférence entre 30 c)/0 et 50 %, et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication étant caractérisé en ce que:
(a) on approvisionne un substrat, une première suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d'au moins un matériau actif d'électrode P, de diamètre primaire moyen 050 compris entre environ 2 nm et environ 150 nm, de préférence entre environ 2 nm et environ 100 nm, préférentiellement entre 2 nm et environ 60 nm, et encore plus préférentiellement entre 2 nm et 50 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre environ 50 nm et environ 300 nm (de préférence entre environ nm et environ 200 nm), et une seconde suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules d'au moins un matériau inorganique E, de diamètre primaire moyen D50 compris entre environ 2 nm et environ 100 nm, de préférence entre environ 2 nm et environ 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen 050 compris entre environ 50 nm et environ 300 nm (de préférence entre environ 100 nm et environ 200 nm) ;
(b) on dépose sur au moins une face dudit substrat une couche à partir de ladite première suspension colloïdale ou pâte approvisionnée à l'étape (a), par une technique sélectionnée de préférence dans le groupe formé par:
l'électrophorèse, un procédé d'impression, notamment l'impression par jet d'encre ou l'impression flexographique, et un procédé d'enduction, notamment l'enduction par raclage, l'enduction au rouleau, l'enduction au rideau, l'enduction par trempage et l'enduction par extrusion à travers une filière en forme de fente ;
(c) on sèche ladite couche obtenue à l'étape (b), le cas échéant avant ou après avoir séparée ladite couche de son substrat intermédiaire, puis, optionnellement on traite thermiquement, de préférence sous atmosphère oxydante, la dite couche séchée, et
d'une électrode poreuse et d'un séparateur poreux, notamment pour un dispositif électrochimique sélectionné dans le groupe formé par: les batteries à ions de lithium d'une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium ¨
air, les cellules photovoltaïques, les piles à combustible, ladite électrode comprenant une couche poreuse déposée sur un substrat, ladite couche étant exempte de liant, présentant une porosité comprise entre 20 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à
50 nm, ledit séparateur comprenant une couche inorganique poreuse déposée sur ladite électrode, ladite couche inorganique poreuse étant exempte de liant, présentant une porosité comprise entre 25 % et 60% en volume, de préférence entre 30 c)/0 et 50 %, et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication étant caractérisé en ce que:
(a) on approvisionne un substrat, une première suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d'au moins un matériau actif d'électrode P, de diamètre primaire moyen 050 compris entre environ 2 nm et environ 150 nm, de préférence entre environ 2 nm et environ 100 nm, préférentiellement entre 2 nm et environ 60 nm, et encore plus préférentiellement entre 2 nm et 50 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre environ 50 nm et environ 300 nm (de préférence entre environ nm et environ 200 nm), et une seconde suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules d'au moins un matériau inorganique E, de diamètre primaire moyen D50 compris entre environ 2 nm et environ 100 nm, de préférence entre environ 2 nm et environ 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen 050 compris entre environ 50 nm et environ 300 nm (de préférence entre environ 100 nm et environ 200 nm) ;
(b) on dépose sur au moins une face dudit substrat une couche à partir de ladite première suspension colloïdale ou pâte approvisionnée à l'étape (a), par une technique sélectionnée de préférence dans le groupe formé par:
l'électrophorèse, un procédé d'impression, notamment l'impression par jet d'encre ou l'impression flexographique, et un procédé d'enduction, notamment l'enduction par raclage, l'enduction au rouleau, l'enduction au rideau, l'enduction par trempage et l'enduction par extrusion à travers une filière en forme de fente ;
(c) on sèche ladite couche obtenue à l'étape (b), le cas échéant avant ou après avoir séparée ladite couche de son substrat intermédiaire, puis, optionnellement on traite thermiquement, de préférence sous atmosphère oxydante, la dite couche séchée, et
14 on la consolide, par pressage et/ou chauffage, pour obtenir une couche poreuse, de préférence inorganique et mésoporeuse ;
(d) on dépose, sur et à l'intérieur des pores de la couche poreuse, un revêtement d'un matériau conducteur électronique, de manière à former ladite électrode poreuse ;
(e) on dépose sur ladite électrode poreuse obtenue à l'étape (d), une couche inorganique poreuse à partir de ladite deuxième suspension colloïdale approvisionnée à l'étape (a), par une technique sélectionnée de préférence dans le groupe formé par: l'électrophorèse, un procédé d'impression, notamment l'impression par jet d'encre ou l'impression flexographique, ou un procédé
d'enduction, notamment l'enduction par raclage, l'enduction au rouleau, l'enduction au rideau, l'enduction par trempage et l'enduction par extrusion à travers une filière en forme de fente ;
(f) on sèche ladite couche inorganique poreuse de la structure obtenue à
l'étape (e), de préférence sous flux d'air et on réalise, sous air, un traitement thermique à
une température inférieure à 500 C, de préférence à environ 400 C afin d'obtenir ledit ensemble constitué d'une électrode poreuse et d'un séparateur poreux, sachant que ledit substrat peut être un substrat capable d'agir comme collecteur de courant électrique, ou un substrat intermédiaire.
Avantageusement, après le traitement thermique à l'étape (f), on imprègne ledit ensemble constitué d'une électrode poreuse et d'un séparateur, par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné dans le groupe formé par:
o un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
o un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ; et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse.
Avantageusement, après l'étape d) l'électrode obtenue peut être revêtue d'une couche conductrice ionique afin d'améliorer la durée de vie des batteries et leur performance. La couche conductrice ionique peut être du Lit3A10,3Tii ,7(PO4)3, du nafion, du Li3B03, du PEO, ou encore un mélange de PEO et d'une phase porteuse d'ions de lithium, telle que des sels de lithium.
A l'étape (b) le dépôt peut se faire une ou sur les deux faces du substrat.
Avantageusement, lorsque ledit substrat est un substrat intermédiaire, ladite couche est séparée à l'étape (c) dudit substrat intermédiaire, pour former, après consolidation, une 5 plaque poreuse. Cette étape de séparation peut être réalisée avant ou après le séchage de la couche obtenue à l'étape b).
Avantageusement, lorsque ledit substrat est un substrat intermédiaire, après l'étape c) et avant l'étape d), on approvisionne une feuille électriquement conductrice, recouverte sur au moins une face, respectivement sur ses deux faces, d'une couche mince de colle 10 conductrice ou d'une couche mince de nanoparticules d'au moins un matériau actif d'électrode P, puis on colle au moins une plaque poreuse sur une face, de préférence sur chacune des faces, de la feuille électriquement conductrice, de manière à
obtenir une couche poreuse, de préférence mésoporeuse sur un substrat capable d'agir comme collecteur de courant.
(d) on dépose, sur et à l'intérieur des pores de la couche poreuse, un revêtement d'un matériau conducteur électronique, de manière à former ladite électrode poreuse ;
(e) on dépose sur ladite électrode poreuse obtenue à l'étape (d), une couche inorganique poreuse à partir de ladite deuxième suspension colloïdale approvisionnée à l'étape (a), par une technique sélectionnée de préférence dans le groupe formé par: l'électrophorèse, un procédé d'impression, notamment l'impression par jet d'encre ou l'impression flexographique, ou un procédé
d'enduction, notamment l'enduction par raclage, l'enduction au rouleau, l'enduction au rideau, l'enduction par trempage et l'enduction par extrusion à travers une filière en forme de fente ;
(f) on sèche ladite couche inorganique poreuse de la structure obtenue à
l'étape (e), de préférence sous flux d'air et on réalise, sous air, un traitement thermique à
une température inférieure à 500 C, de préférence à environ 400 C afin d'obtenir ledit ensemble constitué d'une électrode poreuse et d'un séparateur poreux, sachant que ledit substrat peut être un substrat capable d'agir comme collecteur de courant électrique, ou un substrat intermédiaire.
Avantageusement, après le traitement thermique à l'étape (f), on imprègne ledit ensemble constitué d'une électrode poreuse et d'un séparateur, par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné dans le groupe formé par:
o un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
o un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ; et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse.
Avantageusement, après l'étape d) l'électrode obtenue peut être revêtue d'une couche conductrice ionique afin d'améliorer la durée de vie des batteries et leur performance. La couche conductrice ionique peut être du Lit3A10,3Tii ,7(PO4)3, du nafion, du Li3B03, du PEO, ou encore un mélange de PEO et d'une phase porteuse d'ions de lithium, telle que des sels de lithium.
A l'étape (b) le dépôt peut se faire une ou sur les deux faces du substrat.
Avantageusement, lorsque ledit substrat est un substrat intermédiaire, ladite couche est séparée à l'étape (c) dudit substrat intermédiaire, pour former, après consolidation, une 5 plaque poreuse. Cette étape de séparation peut être réalisée avant ou après le séchage de la couche obtenue à l'étape b).
Avantageusement, lorsque ledit substrat est un substrat intermédiaire, après l'étape c) et avant l'étape d), on approvisionne une feuille électriquement conductrice, recouverte sur au moins une face, respectivement sur ses deux faces, d'une couche mince de colle 10 conductrice ou d'une couche mince de nanoparticules d'au moins un matériau actif d'électrode P, puis on colle au moins une plaque poreuse sur une face, de préférence sur chacune des faces, de la feuille électriquement conductrice, de manière à
obtenir une couche poreuse, de préférence mésoporeuse sur un substrat capable d'agir comme collecteur de courant.
15 Avantageusement, lorsque ladite suspension colloïdale ou pâte approvisionnée à l'étape (a) comprend des additifs organiques, tels que des ligands, stabilisants, liants ou solvants organiques résiduels, on traite thermiquement, de préférence sous atmosphère oxydante, ladite couche séchée à l'étape c) et/ou ladite couche inorganique poreuse lors de l'étape f). Ce traitement thermique, permettant le déliantage, peut être réalisé en même temps que la consolidation (frittage) lorsqu'elle est effectuée sous atmosphère oxydante ou avant l'étape de consolidation de la couche séchée à l'étape c).
Dans un premier mode de réalisation, ledit substrat est un substrat capable d'agir comme collecteur de courant électrique. Ledit substrat sur lequel est déposée ladite couche assure dans l'électrode la fonction de collecteur de courant. Sa nature chimique doit être compatible avec la température du traitement thermique de l'étape (c) du procédé de fabrication de l'électrode poreuse (traitements thermiques de déliantage et/ou de frittage) ;
en particulier, il ne doit pas fondre ou former une couche d'oxyde qui présenterait une résistance électrique trop importante, ou réagir avec les matériaux d'électrode. De manière avantageuse, on choisit un substrat métallique, qui peut notamment être en tungstène, molybdène, chrome, titane, tantale, acier inoxydable, ou un alliage de deux ou plusieurs de ces matériaux. De tels substrats métalliques sont assez onéreux et peuvent fortement augmenter le coût de la batterie. On peut aussi revêtir ce substrat métallique d'un oxyde conducteur ou semi-conducteur avant le dépôt de la couche de matériau P, ce qui permet notamment de protéger des substrats moins nobles tels que le cuivre et le nickel. L'épaisseur de la couche après l'étape (c) est avantageusement comprise entre
Dans un premier mode de réalisation, ledit substrat est un substrat capable d'agir comme collecteur de courant électrique. Ledit substrat sur lequel est déposée ladite couche assure dans l'électrode la fonction de collecteur de courant. Sa nature chimique doit être compatible avec la température du traitement thermique de l'étape (c) du procédé de fabrication de l'électrode poreuse (traitements thermiques de déliantage et/ou de frittage) ;
en particulier, il ne doit pas fondre ou former une couche d'oxyde qui présenterait une résistance électrique trop importante, ou réagir avec les matériaux d'électrode. De manière avantageuse, on choisit un substrat métallique, qui peut notamment être en tungstène, molybdène, chrome, titane, tantale, acier inoxydable, ou un alliage de deux ou plusieurs de ces matériaux. De tels substrats métalliques sont assez onéreux et peuvent fortement augmenter le coût de la batterie. On peut aussi revêtir ce substrat métallique d'un oxyde conducteur ou semi-conducteur avant le dépôt de la couche de matériau P, ce qui permet notamment de protéger des substrats moins nobles tels que le cuivre et le nickel. L'épaisseur de la couche après l'étape (c) est avantageusement comprise entre
16 environ 1 pm et environ 300 pm, de préférence entre 1 pm et 150 pm, plus préférentiellement entre 10 pm et 50 pm, voire entre 10 pm et 30 pm. Lorsque le substrat employé est un substrat capable d'agir comme collecteur de courant électrique, l'épaisseur de la couche après l'étape (c) est limitée afin d'éviter tout problème de fissuration.
Dans un deuxième mode de réalisation, ledit substrat est un substrat intermédiaire, temporaire, tel qu'un substrat souple, qui peut être un film de polymère. Dans ce deuxième mode de réalisation, l'étape de dépôt se fait, avantageusement, sur une face dudit substrat intermédiaire afin de faciliter la séparation ultérieure de la couche de son substrat. Dans ce deuxième mode de réalisation, on peut séparer la couche de son substrat après séchage, de préférence avant de la chauffer, mais au plus tard à la fin de l'étape (c). L'épaisseur de la couche après l'étape (c) est avantageusement inférieure ou égale à 5 mm, avantageusement comprise entre environ 1 pm et environ 500 pm.
L'épaisseur de la couche après l'étape (c) est avantageusement inférieure à
300 pm, de préférence, comprise entre environ 5 pm et environ 300 pm, préférentiellement entre 5 prrl et 150 pm.
Avantageusement, ladite couche poreuse obtenue à l'issue de l'étape (c) présente une surface spécifique comprise entre environ 10 m2/g et environ 500 m2/g. Son épaisseur est avantageusement comprise entre 1 et 500 pm, de préférence comprise entre environ 4 pm et environ 400 pm.
Le dépôt obtenu à l'issue de l'étape (e) présente avantageusement une épaisseur comprise entre environ 3 pm et environ 20 pm, et de préférence entre environ 5 pm et environ 10 pm.
Avantageusement, ladite couche inorganique poreuse obtenue à l'issue de l'étape (f) présente une surface spécifique comprise entre environ 10 m2/g et environ 500 m2/g. Son épaisseur se situe avantageusement entre 3 pm et 20 pm, et de préférence entre 5 pm et 10 pm.
La distribution de taille des particules primaires du matériau actif P et/ou du matériau inorganique E est de préférence étroite. De manière préférée, lesdits agglomérats comprennent de préférence au moins trois particules primaires. La distribution de taille desdits agglomérats est de préférence polydisperse. Dans un mode de réalisation, la distribution de la taille des agglomérats est bimodale, c'est-à-dire qu'elle présente deux pics de distribution de taille, ces deux tailles étant appelées D1 et D2 où D1 > D2; le rapport D2/D1 peut être compris par exemple entre 3 et 7 et de préférence entre 4 et 6;
Dans un deuxième mode de réalisation, ledit substrat est un substrat intermédiaire, temporaire, tel qu'un substrat souple, qui peut être un film de polymère. Dans ce deuxième mode de réalisation, l'étape de dépôt se fait, avantageusement, sur une face dudit substrat intermédiaire afin de faciliter la séparation ultérieure de la couche de son substrat. Dans ce deuxième mode de réalisation, on peut séparer la couche de son substrat après séchage, de préférence avant de la chauffer, mais au plus tard à la fin de l'étape (c). L'épaisseur de la couche après l'étape (c) est avantageusement inférieure ou égale à 5 mm, avantageusement comprise entre environ 1 pm et environ 500 pm.
L'épaisseur de la couche après l'étape (c) est avantageusement inférieure à
300 pm, de préférence, comprise entre environ 5 pm et environ 300 pm, préférentiellement entre 5 prrl et 150 pm.
Avantageusement, ladite couche poreuse obtenue à l'issue de l'étape (c) présente une surface spécifique comprise entre environ 10 m2/g et environ 500 m2/g. Son épaisseur est avantageusement comprise entre 1 et 500 pm, de préférence comprise entre environ 4 pm et environ 400 pm.
Le dépôt obtenu à l'issue de l'étape (e) présente avantageusement une épaisseur comprise entre environ 3 pm et environ 20 pm, et de préférence entre environ 5 pm et environ 10 pm.
Avantageusement, ladite couche inorganique poreuse obtenue à l'issue de l'étape (f) présente une surface spécifique comprise entre environ 10 m2/g et environ 500 m2/g. Son épaisseur se situe avantageusement entre 3 pm et 20 pm, et de préférence entre 5 pm et 10 pm.
La distribution de taille des particules primaires du matériau actif P et/ou du matériau inorganique E est de préférence étroite. De manière préférée, lesdits agglomérats comprennent de préférence au moins trois particules primaires. La distribution de taille desdits agglomérats est de préférence polydisperse. Dans un mode de réalisation, la distribution de la taille des agglomérats est bimodale, c'est-à-dire qu'elle présente deux pics de distribution de taille, ces deux tailles étant appelées D1 et D2 où D1 > D2; le rapport D2/D1 peut être compris par exemple entre 3 et 7 et de préférence entre 4 et 6;
17 cela évite la formation de grosses cavités et assure une bonne compacité de la couche mésoporeuse.
La suspension de nanoparticules peut être réalisée dans l'eau ou dans l'éthanol, ou dans un mélange d'eau et d'éthanol, ou encore dans un mélange d'éthanol et d'alcool isopropylique (avec moins de 3 h d'alcool isopropylique). Elle ne contient pas de noir de carbone.
Pour utiliser les techniques d'enduction par trempage ou d'enduction au rideau, la suspension est avantageusement caractérisée par un extrait sec d'au moins 15 %
et de préférence d'au moins 50%.
Le dépôt dudit revêtement de matériau conducteur électronique peut être effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
Ledit précurseur est avantageusement un composé riche en carbone, tels qu'un glucide glucide, notamment un polysaccharide (par exemple le saccharose, le lactose, le glucose), et ladite transformation en matériau conducteur électronique est dans ce cas effectuée par pyrolyse, de préférence sous atmosphère inerte (par exemple azote). Ledit matériau conducteur électronique peut être le carbone. Il peut être déposé
notamment par ALD ou par immersion dans une phase liquide comportant un précurseur du carbone.
Dans ledit deuxième mode de réalisation, le procédé de fabrication de l'électrode poreuse pour batterie utilise un substrat intermédiaire en polymère (tel que le PET) et conduit à une bande dit bande à cru . Cette bande à cru est ensuite séparée de son substrat ;
elle forme alors des plaques ou feuilles (on utilise ici par la suite le terme plaque , quelle que soit son épaisseur). Après découpe, ces plaques peuvent être séparées de leur substrat intermédiaire. Ces plaques sont ensuite calcinées afin d'éliminer les constituants organiques. Ces plaques sont ensuite frittées afin de consolider les nanoparticules jusqu'à l'obtention d'une structure céramique mésoporeuse avec une porosité comprise entre 25 et 50%. Ladite plaque poreuse obtenue à l'étape (c) présente une épaisseur avantageusement inférieure ou égale à 5 mm, de préférence comprise entre environ 1 pm et environ 500 pm. L'épaisseur de la couche après l'étape (c) est avantageusement inférieure à 300 pm, de préférence, comprise entre environ 5 pm et environ 300 pm, préférentiellement entre 5 pm et 150 pm. Un revêtement d'un matériau conducteur électronique est, ensuite, déposé sur et à l'intérieur des pores de la couche poreuse ou de la plaque poreuse, de préférence mésoporeuse, comme cela vient d'être décrit.
La suspension de nanoparticules peut être réalisée dans l'eau ou dans l'éthanol, ou dans un mélange d'eau et d'éthanol, ou encore dans un mélange d'éthanol et d'alcool isopropylique (avec moins de 3 h d'alcool isopropylique). Elle ne contient pas de noir de carbone.
Pour utiliser les techniques d'enduction par trempage ou d'enduction au rideau, la suspension est avantageusement caractérisée par un extrait sec d'au moins 15 %
et de préférence d'au moins 50%.
Le dépôt dudit revêtement de matériau conducteur électronique peut être effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
Ledit précurseur est avantageusement un composé riche en carbone, tels qu'un glucide glucide, notamment un polysaccharide (par exemple le saccharose, le lactose, le glucose), et ladite transformation en matériau conducteur électronique est dans ce cas effectuée par pyrolyse, de préférence sous atmosphère inerte (par exemple azote). Ledit matériau conducteur électronique peut être le carbone. Il peut être déposé
notamment par ALD ou par immersion dans une phase liquide comportant un précurseur du carbone.
Dans ledit deuxième mode de réalisation, le procédé de fabrication de l'électrode poreuse pour batterie utilise un substrat intermédiaire en polymère (tel que le PET) et conduit à une bande dit bande à cru . Cette bande à cru est ensuite séparée de son substrat ;
elle forme alors des plaques ou feuilles (on utilise ici par la suite le terme plaque , quelle que soit son épaisseur). Après découpe, ces plaques peuvent être séparées de leur substrat intermédiaire. Ces plaques sont ensuite calcinées afin d'éliminer les constituants organiques. Ces plaques sont ensuite frittées afin de consolider les nanoparticules jusqu'à l'obtention d'une structure céramique mésoporeuse avec une porosité comprise entre 25 et 50%. Ladite plaque poreuse obtenue à l'étape (c) présente une épaisseur avantageusement inférieure ou égale à 5 mm, de préférence comprise entre environ 1 pm et environ 500 pm. L'épaisseur de la couche après l'étape (c) est avantageusement inférieure à 300 pm, de préférence, comprise entre environ 5 pm et environ 300 pm, préférentiellement entre 5 pm et 150 pm. Un revêtement d'un matériau conducteur électronique est, ensuite, déposé sur et à l'intérieur des pores de la couche poreuse ou de la plaque poreuse, de préférence mésoporeuse, comme cela vient d'être décrit.
18 Dans ce deuxième mode de réalisation on approvisionne également une feuille électriquement conductrice, recouverte sur ses deux faces d'une couche mince intermédiaire de nanoparticules de préférence identiques à celles constituants la plaque d'électrode ou recouverte sur ses deux faces d'une couche mince de colle conductrice.
Lesdites couches minces présentent, de préférence, une épaisseur inférieure à
1 pm.
Cette feuille peut être un feuillard métallique ou une feuille de graphite.
Cette feuille électriquement conductrice est ensuite intercalée entre deux plaques d'électrodes poreuses obtenues précédemment, respectivement entre deux plaques poreuses obtenues après l'étape c). L'ensemble est ensuite thermopressé de manière à
ce que ladite couche mince intermédiaire de nanoparticules se transforme par frittage et vienne consolider l'ensemble électrode / substrat / électrode, respectivement l'ensemble plaque poreuse / substrat / plaque poreuse pour obtenir un sous-ensemble rigide et monobloc. Lors de ce frittage la liaison entre la couche d'électrode, respectivement la plaque poreuse, et la couche intermédiaire s'établit par diffusion d'atomes ;
ce phénomène est connu sous le terme anglais diffusion bonding . Cet assemblage se fait avec deux plaques d'électrodes, respectivement deux plaques poreuses, de même polarité (typiquement entre deux anodes ou entre deux cathodes), et la feuille métallique entre ces deux plaques d'électrodes, respectivement deux plaques poreuses, de même polarité établit entre elles une connexion en parallèle.
Un des avantages du deuxième mode de réalisation est qu'il permet d'utiliser des substrats peu couteux comme les feuillards d'aluminium, les feuillards en cuivre ou en graphite. En effet, ces feuillards ne résisteraient pas aux traitements thermiques de consolidation des couches déposées ; le fait de les coller sur les plaques d'électrodes après leur traitement thermique permet aussi d'éviter leur oxydation.
Selon une autre variante du deuxième mode de réalisation, lorsqu'un ensemble plaque poreuse / substrat / plaque poreuse est obtenu, le revêtement d'un matériau conducteur électronique peut, ensuite, avantageusement être déposé sur et à l'intérieur des pores des plaques poreuses, de préférence mésoporeuses, de l'ensemble plaque poreuse /
substrat / plaque poreuse, comme cela a été décrit précédemment, notamment lorsque les plaques poreuses employées sont épaisses.
Le dépôt dudit revêtement de matériau conducteur électronique peut être effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche poreuse dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
Lesdites couches minces présentent, de préférence, une épaisseur inférieure à
1 pm.
Cette feuille peut être un feuillard métallique ou une feuille de graphite.
Cette feuille électriquement conductrice est ensuite intercalée entre deux plaques d'électrodes poreuses obtenues précédemment, respectivement entre deux plaques poreuses obtenues après l'étape c). L'ensemble est ensuite thermopressé de manière à
ce que ladite couche mince intermédiaire de nanoparticules se transforme par frittage et vienne consolider l'ensemble électrode / substrat / électrode, respectivement l'ensemble plaque poreuse / substrat / plaque poreuse pour obtenir un sous-ensemble rigide et monobloc. Lors de ce frittage la liaison entre la couche d'électrode, respectivement la plaque poreuse, et la couche intermédiaire s'établit par diffusion d'atomes ;
ce phénomène est connu sous le terme anglais diffusion bonding . Cet assemblage se fait avec deux plaques d'électrodes, respectivement deux plaques poreuses, de même polarité (typiquement entre deux anodes ou entre deux cathodes), et la feuille métallique entre ces deux plaques d'électrodes, respectivement deux plaques poreuses, de même polarité établit entre elles une connexion en parallèle.
Un des avantages du deuxième mode de réalisation est qu'il permet d'utiliser des substrats peu couteux comme les feuillards d'aluminium, les feuillards en cuivre ou en graphite. En effet, ces feuillards ne résisteraient pas aux traitements thermiques de consolidation des couches déposées ; le fait de les coller sur les plaques d'électrodes après leur traitement thermique permet aussi d'éviter leur oxydation.
Selon une autre variante du deuxième mode de réalisation, lorsqu'un ensemble plaque poreuse / substrat / plaque poreuse est obtenu, le revêtement d'un matériau conducteur électronique peut, ensuite, avantageusement être déposé sur et à l'intérieur des pores des plaques poreuses, de préférence mésoporeuses, de l'ensemble plaque poreuse /
substrat / plaque poreuse, comme cela a été décrit précédemment, notamment lorsque les plaques poreuses employées sont épaisses.
Le dépôt dudit revêtement de matériau conducteur électronique peut être effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche poreuse dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
19 Cet assemblage par diffusion bonding peut être réalisé séparément comme cela vient d'être décrit, et les sous-ensembles électrode / substrat / électrode ainsi obtenus peuvent être utilisés pour fabriquer une batterie. Cet assemblage par diffusion bonding peut aussi être réalisé par empilement et thermopressage de l'ensemble de la structure de la batterie ; dans ce cas on assemble un empilement multicouche comprenant une première couche d'anode poreuse, son substrat métallique, une deuxième couche d'anode poreuse, une couche d'électrolyte solide, une première couche de cathode, son substrat métallique, une deuxième couche de cathode, une nouvelle couche d'électrolyte solide, et ainsi de suite.
Plus précisément, on peut soit coller des plaques d'électrodes, céramiques mésoporeuses sur les deux faces d'un substrat métallique (on retrouve alors la même configuration que celle issue des dépôts sur les deux faces d'un substrat métallique).
Ce sous-ensemble électrode/substratJélectrode peut être obtenu par collage des plaques d'électrodes sur une feuille électriquement conductrice capable d'agir ultérieurement comme collecteur de courant électrique, ou par dépôt puis frittage de couches sur un substrat capable d'agir comme collecteur de courant électrique, notamment un substrat métallique.
Quel que soit le mode de réalisation du sous-ensemble électrode/substratJélectrode, sur ce dernier on vient ensuite déposer le film d'électrolyte (séparateur).
Les découpes nécessaires pour réaliser une batterie à plusieurs cellules élémentaires peuvent être réalisées avant le dépôt sur chaque sous-ensemble électrode/substrat/électrode, d'un film d'électrolyte (séparateur), puis on empile les sous-ensembles (typiquement en mode tête bêche ) et on réalise la thermocompression pour souder les électrodes entre elles au niveau du film d'électrolyte (séparateur).
La soudure par thermocompression se fait à une température relativement basse, ce qui est possible grâce à la très faible taille des nanoparticules. De ce fait on n'observe pas d'oxydation des couches métalliques du substrat.
Dans d'autres modes de réalisation de l'assemblage, qui seront décrit ci-dessous, on utilise une colle conductrice (chargée en graphite) ou un dépôt de type sol-gel chargé en particules conductrices, ou encore des feuillards métalliques, de préférence à
bas point de fusion (par exemple l'aluminium) ; lors du traitement thermomécanique (thermopressage) le feuillard métallique peut se déformer par fluage et venir faire cette soudure entre les plaques.
Si l'électrode doit être utilisée dans une batterie, on choisit de préférence un matériau actif P qui est dimensionnellement stable lors des cycles de charge et décharge. Il peut être en particulier être sélectionné dans le groupe formé par:
o les oxydes LiMn204, Li1-ExMn2,(04. avec 0 < x <0,15, LiCo02, LiNi02, LiMn1,5Nio,504, 5 LiMni,5Ni0,X,<04 où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où
0 < x < 0,1, LiMn2_xMx04 avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces éléments et où 0 < x < 0,4, LiFe02, LiMni13Mit30011302, ,LiNi0.8Coo.15A10.0502, LiAlxMn2,04. avec 0 x < 0,15, LiNii/xColiyMnii.02 avec x+y+z 10 =10;
o LixMy02 où 0.6y0.85; 0x+y2; et M est choisi parmi Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Sn, and Sb ou un mélange de ces éléments ;
Li12oNb0.20Mno.8002 ;
O Lii-rxNbyMezAp02 où Me est au moins un métal de transition choisi parmi :
Sc, Ti, V, 15 Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, VV, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs et Mt, et où 0.6<x<1; 0<y<0.5; 0.25z<1;
avec A # Me et A # Nb, et OpÉ0.2 ;
o LixNby_aNaMz_bPb02_cFc où 1.2<x1.75; Oy<0.55; 0.1<z<1; 0a<0.5; 01D<1;
0c<0.8; et où M, N, et P sont chacun au moins un des éléments choisi dans le
Plus précisément, on peut soit coller des plaques d'électrodes, céramiques mésoporeuses sur les deux faces d'un substrat métallique (on retrouve alors la même configuration que celle issue des dépôts sur les deux faces d'un substrat métallique).
Ce sous-ensemble électrode/substratJélectrode peut être obtenu par collage des plaques d'électrodes sur une feuille électriquement conductrice capable d'agir ultérieurement comme collecteur de courant électrique, ou par dépôt puis frittage de couches sur un substrat capable d'agir comme collecteur de courant électrique, notamment un substrat métallique.
Quel que soit le mode de réalisation du sous-ensemble électrode/substratJélectrode, sur ce dernier on vient ensuite déposer le film d'électrolyte (séparateur).
Les découpes nécessaires pour réaliser une batterie à plusieurs cellules élémentaires peuvent être réalisées avant le dépôt sur chaque sous-ensemble électrode/substrat/électrode, d'un film d'électrolyte (séparateur), puis on empile les sous-ensembles (typiquement en mode tête bêche ) et on réalise la thermocompression pour souder les électrodes entre elles au niveau du film d'électrolyte (séparateur).
La soudure par thermocompression se fait à une température relativement basse, ce qui est possible grâce à la très faible taille des nanoparticules. De ce fait on n'observe pas d'oxydation des couches métalliques du substrat.
Dans d'autres modes de réalisation de l'assemblage, qui seront décrit ci-dessous, on utilise une colle conductrice (chargée en graphite) ou un dépôt de type sol-gel chargé en particules conductrices, ou encore des feuillards métalliques, de préférence à
bas point de fusion (par exemple l'aluminium) ; lors du traitement thermomécanique (thermopressage) le feuillard métallique peut se déformer par fluage et venir faire cette soudure entre les plaques.
Si l'électrode doit être utilisée dans une batterie, on choisit de préférence un matériau actif P qui est dimensionnellement stable lors des cycles de charge et décharge. Il peut être en particulier être sélectionné dans le groupe formé par:
o les oxydes LiMn204, Li1-ExMn2,(04. avec 0 < x <0,15, LiCo02, LiNi02, LiMn1,5Nio,504, 5 LiMni,5Ni0,X,<04 où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où
0 < x < 0,1, LiMn2_xMx04 avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces éléments et où 0 < x < 0,4, LiFe02, LiMni13Mit30011302, ,LiNi0.8Coo.15A10.0502, LiAlxMn2,04. avec 0 x < 0,15, LiNii/xColiyMnii.02 avec x+y+z 10 =10;
o LixMy02 où 0.6y0.85; 0x+y2; et M est choisi parmi Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Sn, and Sb ou un mélange de ces éléments ;
Li12oNb0.20Mno.8002 ;
O Lii-rxNbyMezAp02 où Me est au moins un métal de transition choisi parmi :
Sc, Ti, V, 15 Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, VV, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs et Mt, et où 0.6<x<1; 0<y<0.5; 0.25z<1;
avec A # Me et A # Nb, et OpÉ0.2 ;
o LixNby_aNaMz_bPb02_cFc où 1.2<x1.75; Oy<0.55; 0.1<z<1; 0a<0.5; 01D<1;
0c<0.8; et où M, N, et P sont chacun au moins un des éléments choisi dans le
20 groupe constitué par Ti, Ta, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Zr, Y, Mo, Ru, Rh, et Sb;
o Lii.25N1D0.25Mno5002 ;
Lii.3Nb0.3Mno.4.002 ; Lii 3N1D0.3Fe0.4.002 ; Lii.3Nb0.43Nio 2702 ;
Lii N b0.4.3Coo.2702 ; b0.2M n0.5302 ;
O LixNi0.2Mno.60y où 0.00x1.52; 1.07y<2.4 ; Li1.2Ni0.2Mn0.802;
o LiNixCoyMn1-x-y02 où 0 x et y 0.5; LiNixCe7CoyMn1-x-y02 où 0 x et y 0.5 et 0 z ;
o les phosphates LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4, Li3V2(PO4)3 ; Li2MPO4F
avec M = Fe, Co, Ni ou un mélange de ces différents éléments, LiMPO4F avec M =
V, Fe, T ou un mélange de ces différents éléments ; les phosphates de formule LiMM'PO4., avec M et M' (M M') sélectionnés parmi Fe, Mn, Ni, Co, V tels que le LiFexCo1_xPO4 et où 0 < x < 1;
O les oxyfluorures de type Fe0,9CoolOF ; LiMSO4F avec M = Fe, Co, Ni, Mn, Zn, Mg;
O toutes les formes lithiées des chalcogénides suivants : V205, V308, TiS2, les oxysulfures de titane (TiOySz avec z=2-y et 0,35y1), les oxysulfures de tungstène (VVOySz avec 0.6<y<3 et 0.1<z<2), CuS, CuS2, de préférence LixV205 avec 0 <)(2, LixV308 avec 0 < x 1,7, LixTiS2 avec 0 < x 1, les oxysulfures de titane et de
o Lii.25N1D0.25Mno5002 ;
Lii.3Nb0.3Mno.4.002 ; Lii 3N1D0.3Fe0.4.002 ; Lii.3Nb0.43Nio 2702 ;
Lii N b0.4.3Coo.2702 ; b0.2M n0.5302 ;
O LixNi0.2Mno.60y où 0.00x1.52; 1.07y<2.4 ; Li1.2Ni0.2Mn0.802;
o LiNixCoyMn1-x-y02 où 0 x et y 0.5; LiNixCe7CoyMn1-x-y02 où 0 x et y 0.5 et 0 z ;
o les phosphates LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4, Li3V2(PO4)3 ; Li2MPO4F
avec M = Fe, Co, Ni ou un mélange de ces différents éléments, LiMPO4F avec M =
V, Fe, T ou un mélange de ces différents éléments ; les phosphates de formule LiMM'PO4., avec M et M' (M M') sélectionnés parmi Fe, Mn, Ni, Co, V tels que le LiFexCo1_xPO4 et où 0 < x < 1;
O les oxyfluorures de type Fe0,9CoolOF ; LiMSO4F avec M = Fe, Co, Ni, Mn, Zn, Mg;
O toutes les formes lithiées des chalcogénides suivants : V205, V308, TiS2, les oxysulfures de titane (TiOySz avec z=2-y et 0,35y1), les oxysulfures de tungstène (VVOySz avec 0.6<y<3 et 0.1<z<2), CuS, CuS2, de préférence LixV205 avec 0 <)(2, LixV308 avec 0 < x 1,7, LixTiS2 avec 0 < x 1, les oxysulfures de titane et de
21 lithium LixTiOySz avec z=2-y, 0,3y-1 et 0 < x 1, LixVVOySz avec z=2-y, 0,Uy1 et 0 < x 1, LixCuS avec 0 < x 1, LixCuS2 avec 0 < x 1.
Une couche poreuse selon l'invention, réalisée avec l'un de ces matériaux, peut assurer la fonction d'électrode positive dans une batterie, et notamment dans une batterie aux ions de lithium.
Ledit matériau P peut aussi être sélectionné dans le groupe formé par:
o Li4Ti5012, Li4Ti5_xMx012 avec M = V, Zr, Hf, Nb, Ta et 0 <x < 0,25.
o les oxydes de niobium et les oxydes mixtes de niobium avec le titane, le germanium, le cérium ou le tungstène, et de préférence dans le groupe formé
par:
o Nb2O5, Nb18VV16093 6 NID16W506518 avec 0 x < 1 et 0 8 2, LiNb03, o TiNb207 O, LiTiNb207 avec NivO, Tii_xMlxNb2_yM2y07 O ou LiwTi 1 -xlM 1 XN
b2-yM2y07 5 dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, VV, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1 et M2 pouvant être identiques ou différents l'un de l'autre, et dans lesquels 0 w 5 et 0 x 1 et 0 y 2 et 0 8 0,3;
o M,Ti1_2,N b207 = dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où
0<xD0.20 et -0.3 <13;
GamoTiosoNb2.1007 ;
Feu oT io.8oN b2.11307 ;
o MxTi2-2N bi o-Ex029 .5 = dans lequel M est un élément dont le degré d'oxydation est +111, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où
0<x<).40 et -0.0 ô ;
o o Tii_xMlxNb2_yM2y07_,M3, ou Li,,,,Tii_xMlxNb2-yM2y07_zM3z dans lesquels = MI et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, = M1 et M2 pouvant être identiques ou différents l'un de l'autre, = M3 est au moins un halogène, = et dans lequel 0 w 5 et 0 x 1 et 0 y 2 et z 0,3;
Une couche poreuse selon l'invention, réalisée avec l'un de ces matériaux, peut assurer la fonction d'électrode positive dans une batterie, et notamment dans une batterie aux ions de lithium.
Ledit matériau P peut aussi être sélectionné dans le groupe formé par:
o Li4Ti5012, Li4Ti5_xMx012 avec M = V, Zr, Hf, Nb, Ta et 0 <x < 0,25.
o les oxydes de niobium et les oxydes mixtes de niobium avec le titane, le germanium, le cérium ou le tungstène, et de préférence dans le groupe formé
par:
o Nb2O5, Nb18VV16093 6 NID16W506518 avec 0 x < 1 et 0 8 2, LiNb03, o TiNb207 O, LiTiNb207 avec NivO, Tii_xMlxNb2_yM2y07 O ou LiwTi 1 -xlM 1 XN
b2-yM2y07 5 dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, VV, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1 et M2 pouvant être identiques ou différents l'un de l'autre, et dans lesquels 0 w 5 et 0 x 1 et 0 y 2 et 0 8 0,3;
o M,Ti1_2,N b207 = dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où
0<xD0.20 et -0.3 <13;
GamoTiosoNb2.1007 ;
Feu oT io.8oN b2.11307 ;
o MxTi2-2N bi o-Ex029 .5 = dans lequel M est un élément dont le degré d'oxydation est +111, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où
0<x<).40 et -0.0 ô ;
o o Tii_xMlxNb2_yM2y07_,M3, ou Li,,,,Tii_xMlxNb2-yM2y07_zM3z dans lesquels = MI et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, = M1 et M2 pouvant être identiques ou différents l'un de l'autre, = M3 est au moins un halogène, = et dans lequel 0 w 5 et 0 x 1 et 0 y 2 et z 0,3;
22 o TiNb207_zM3z ou LiwTiNb207.zM3z dans lesquels M3 est au moins un halogène, de préférence choisi parmi F, Cl, Br, I ou un mélange de ceux-ci, et 0 < z 0,3;
o Tii_xGexNb2M1,07 ,, b2_yM1y07 , , Til_xCeõN
MI 07 dans lesquels y y z = M1 et M2 sont au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, AI, Zr, Si, Sr, K, Cs et Sn;
= 0 w 5 et 0 x 1 et 0 y 2 et z O,3;
o Ti1_.Ge,<Nb2_yM1,07_zM2z , LiwTi1_.GexNb2_yM1y07_zM2z, M2z, xCexKlb2_yMly07_zM2z , dans lesquels = M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, AI, Zr, Si, Sr, K, Cs, Ce et Sn, = M1 et M2 pouvant être identiques ou différents l'un de l'autre, = et dans lesquels 0 w 5 et 0 x 1 et 0 y 2 et z 0,3;
o TiO2;
o LiSiTON.
Une couche poreuse selon l'invention, réalisée avec l'un de ces matériaux, peut assurer la fonction d'électrode négative dans une batterie, et notamment dans une batterie aux ions de lithium. Pour utilisation comme électrode négative dans une batterie à
ions de lithium, on utilise avantageusement un matériau d'électrode négative qui présente un potentiel d'insertion du lithium supérieur à 1 V; cela permet une recharge très rapide de la batterie.
L'électrode négative peut être en titanate et/ou oxydes mixtes de titane. De manière préférée, les électrodes de l'ensemble selon l'invention sont imprégnées par un liquide ionique contenant un sel de lithium. Lorsque ledit liquide ionique comporte des atomes de soufre, le substrat, capable d'agir comme collecteur de courant électrique, est, de préférence, un métal noble. Une telle batterie présente l'avantage de pouvoir fonctionner à température élevée.
Le matériau inorganique E comprend avantageusement un matériau isolant électroniquement, de préférence choisi parmi :
o l'A1203, SiO2, ZrO2, et/ou o un matériau sélectionné dans le groupe formé par les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3PO4;
le
o Tii_xGexNb2M1,07 ,, b2_yM1y07 , , Til_xCeõN
MI 07 dans lesquels y y z = M1 et M2 sont au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, AI, Zr, Si, Sr, K, Cs et Sn;
= 0 w 5 et 0 x 1 et 0 y 2 et z O,3;
o Ti1_.Ge,<Nb2_yM1,07_zM2z , LiwTi1_.GexNb2_yM1y07_zM2z, M2z, xCexKlb2_yMly07_zM2z , dans lesquels = M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, AI, Zr, Si, Sr, K, Cs, Ce et Sn, = M1 et M2 pouvant être identiques ou différents l'un de l'autre, = et dans lesquels 0 w 5 et 0 x 1 et 0 y 2 et z 0,3;
o TiO2;
o LiSiTON.
Une couche poreuse selon l'invention, réalisée avec l'un de ces matériaux, peut assurer la fonction d'électrode négative dans une batterie, et notamment dans une batterie aux ions de lithium. Pour utilisation comme électrode négative dans une batterie à
ions de lithium, on utilise avantageusement un matériau d'électrode négative qui présente un potentiel d'insertion du lithium supérieur à 1 V; cela permet une recharge très rapide de la batterie.
L'électrode négative peut être en titanate et/ou oxydes mixtes de titane. De manière préférée, les électrodes de l'ensemble selon l'invention sont imprégnées par un liquide ionique contenant un sel de lithium. Lorsque ledit liquide ionique comporte des atomes de soufre, le substrat, capable d'agir comme collecteur de courant électrique, est, de préférence, un métal noble. Une telle batterie présente l'avantage de pouvoir fonctionner à température élevée.
Le matériau inorganique E comprend avantageusement un matériau isolant électroniquement, de préférence choisi parmi :
o l'A1203, SiO2, ZrO2, et/ou o un matériau sélectionné dans le groupe formé par les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3PO4;
le
23 LiP03; le Li3A10,4Scri,e(PO4)3 appelés L_ASP ; le Lii,Zr2,Cax(PO4)3 avec 0 x 0,25; le Li 1+2x-=7r 2-x- na. -x,= -(Po 4,3 avec 0 < x 0,25 tel que le Li1,2Zr1,9Cao,l(PO4)3 ou le Li1,4Zr1,8Cao,2(PO4)3; le LiZr2(PO4)3 ; le Lii-,32r2(Pi-xSix04)3 avec 1,8 <x < 2,3; le Lii-E6xZr2(Pi_xBx04)3 avec 0 x 0,25 ; le Li3(Sc2-xMx)(PO4)3 avec M=A1 ou Y et 0 x 1 ; le Lii-ExMx(Sc)2_x(PO4)3 avec M = Al, Y, Ga ou un mélange de ces trois éléments et 0 5 X 5 0,8 ; le Lii-,,M,(Gai_yScy)2_ x(PO4)3 avec 0 x 0,8; 0 y < 1 et M= Al et/ou Y; le Lii-ExMx(Ga)2-x(PO4)3 avec M = Al et/ou Y et 0 x 0,8 ; le Lii+,AI,Ti2.,(PO4)3 avec 0 x 1 appelés LATP ; ou le Lii.,<AlxGe2_x(PO4)3 avec 0 x 1 appelés LAGP ; ou le Lii+x-kzMx(Gei yTiy)2xSizP3_z012 avec 0x0,8 et Oy-1,0 et 0z),6 et M= Al, Ga ou Y ou un mélange de deux ou trois de ces éléments ; le Li3-,y(Sc2_.Mx)QyP3_ y0 12 avec M = AI et/ou Y et Q = Si et/ou Se, 0 x 0,8 et 0 y 1 ; ou le Lii_Ex_EyM,Scz_xQyP3_y012 avec M = Al, Y, Ga ou un mélange de ces trois éléments et Q = Si et/ou Se, 0 x 0,8 et 0 y 1 ; ou le Lii-,x+y-,zMx(Gai-ySoy)2-xQzP3-z012 avec 0 x 0,8, 0y 1 , 0 z 0,6 avec M = Al et/ou Y et Q= Si et/ou Se ;
ou le Lii-ExZr2ax(PO4)3 avec 0 x 0,25; ou Lii-ExM3xM2-xP3012 avec 0 x 1 et M3= Cr, V, Ca, B, Mg, Bi et/ou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces éléments.
Une couche poreuse selon l'invention, réalisée avec l'un de ces matériaux, peut assurer la fonction de séparateur dans une batterie, et notamment dans une batterie aux ions de lithium.
Un autre objet de la présente invention est un ensemble constitué d'une électrode poreuse et d'un séparateur poreux susceptible d'être obtenu par le procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur poreux selon l'invention. Cet ensemble poreux est avantageusement exempt de liant. Sa porosité est de préférence comprise entre 20 % et 60% en volume, et le diamètre moyen de ses pores est inférieur à 50 nm. Elle peut être destinée à agir comme un ensemble électrode positive / séparateur ou comme ensemble électrode négative / séparateur dans un dispositif électrochimique.
Une électrode de l'ensemble selon l'invention permet de réaliser une batterie à ions de lithium qui présente à la fois une forte densité d'énergie et une haute densité de puissance. Cette performance est la résultante d'une porosité limitée (ce qui accroît la densité d'énergie), d'une surface spécifique très élevée (qui est favorisée par la très faible taille des particules primaires de l'électrode, et qui conduit à
l'accroissement de la surface d'échange, ce qui diminue la résistance ionique), de l'absence de liant organique (le liant
ou le Lii-ExZr2ax(PO4)3 avec 0 x 0,25; ou Lii-ExM3xM2-xP3012 avec 0 x 1 et M3= Cr, V, Ca, B, Mg, Bi et/ou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces éléments.
Une couche poreuse selon l'invention, réalisée avec l'un de ces matériaux, peut assurer la fonction de séparateur dans une batterie, et notamment dans une batterie aux ions de lithium.
Un autre objet de la présente invention est un ensemble constitué d'une électrode poreuse et d'un séparateur poreux susceptible d'être obtenu par le procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur poreux selon l'invention. Cet ensemble poreux est avantageusement exempt de liant. Sa porosité est de préférence comprise entre 20 % et 60% en volume, et le diamètre moyen de ses pores est inférieur à 50 nm. Elle peut être destinée à agir comme un ensemble électrode positive / séparateur ou comme ensemble électrode négative / séparateur dans un dispositif électrochimique.
Une électrode de l'ensemble selon l'invention permet de réaliser une batterie à ions de lithium qui présente à la fois une forte densité d'énergie et une haute densité de puissance. Cette performance est la résultante d'une porosité limitée (ce qui accroît la densité d'énergie), d'une surface spécifique très élevée (qui est favorisée par la très faible taille des particules primaires de l'électrode, et qui conduit à
l'accroissement de la surface d'échange, ce qui diminue la résistance ionique), de l'absence de liant organique (le liant
24 pouvant localement masquer l'accès du lithium à la surface des matériaux actifs). Selon une caractéristique essentielle de l'invention, on dépose, sur et à
l'intérieur des pores de la couche poreuse de matière active constitutive de l'électrode, un revêtement d'un matériau conducteur électronique. Ce revêtement diminue la résistance série de la batterie.
Encore un autre objet de l'invention est l'utilisation d'un procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention pour la fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur dans des dispositifs électroniques, électriques ou électrotechniques. Ces dispositifs sont sélectionnés dans le groupe formé par les batteries à ions de lithium d'une capacité
supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium ¨
air, les cellules photovoltaïques, les piles à combustible.
Encore un autre objet de l'invention est un procédé de fabrication d'une batterie mettant en uvre le procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention, ou mettant en oeuvre un ensemble constitué
d'une électrode poreuse et d'un séparateur selon l'invention. Ladite batterie est avantageusement une batterie à ions de lithium. En particulier, ce procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur peut être mis en oeuvre pour fabriquer un ensemble dont l'électrode poreuse est une électrode positive ou une électrode négative. Ce procédé de fabrication d'une batterie peut comprendre une étape dans laquelle ledit ensemble constitué d'une électrode poreuse et d'un séparateur est imprégné par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné dans le groupe formé par:
o un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
o un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ; et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse.
Lesdits liquides ioniques peuvent être des sels fondus à température ambiante (ces produits sont connus sous la désignation RTIL, Room Temperature lonic Liquid), ou des liquides ioniques qui sont solides à la température ambiante. Ces liquides ioniques solides à la température ambiante doivent être chauffés pour les liquéfier pour imprégner les électrodes ; ils se solidifient dans la couche poreuse.
Un dernier objet de l'invention est dispositif électrochimique sélectionné
dans le groupe formé par: les batteries à ions de lithium d'une capacité supérieure à 1 mAh, les batteries 5 à ions de sodium, les batteries lithium ¨ air, les cellules photovoltaïques, les piles à
combustible, susceptible d'être obtenue par le procédé de fabrication selon l'invention.
Description détaillée 10 1. Définitions Dans le cadre du présent document, la taille d'une particule est définie par sa plus grande dimension. Par nanoparticule , on entend toute particule ou objet de taille nanométrique présentant au moins une de ses dimensions inférieure ou égale à
100 nm.
Par liquide ionique on entend tout sel liquide, apte à transporter de l'électricité, se 15 différenciant de l'ensemble des sels fondus par une température de fusion inférieure à
100 C. Certains de ces sels restent liquides à température ambiante et ne se solidifient pas, même à très basse température. De tels sels sont appelés liquides ioniques à
température ambiante .
Par matériaux mésoporeux , on entend tout solide qui présente au sein de sa structure 20 des pores dites mésopores possédant une taille intermédiaire entre celle des micropores (largeur inférieure à 2 nm) et celle des macropores (largeur supérieure à 50 nm), à savoir une taille comprise entre 2 nm et 50 nm. Cette terminologie correspond à
celle adoptée par IUPAC (International Union for Pure and Applied Chemistry), qui fait référence pour l'homme du métier. On n'utilise donc ici pas le terme nanopore , même
l'intérieur des pores de la couche poreuse de matière active constitutive de l'électrode, un revêtement d'un matériau conducteur électronique. Ce revêtement diminue la résistance série de la batterie.
Encore un autre objet de l'invention est l'utilisation d'un procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention pour la fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur dans des dispositifs électroniques, électriques ou électrotechniques. Ces dispositifs sont sélectionnés dans le groupe formé par les batteries à ions de lithium d'une capacité
supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium ¨
air, les cellules photovoltaïques, les piles à combustible.
Encore un autre objet de l'invention est un procédé de fabrication d'une batterie mettant en uvre le procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention, ou mettant en oeuvre un ensemble constitué
d'une électrode poreuse et d'un séparateur selon l'invention. Ladite batterie est avantageusement une batterie à ions de lithium. En particulier, ce procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur peut être mis en oeuvre pour fabriquer un ensemble dont l'électrode poreuse est une électrode positive ou une électrode négative. Ce procédé de fabrication d'une batterie peut comprendre une étape dans laquelle ledit ensemble constitué d'une électrode poreuse et d'un séparateur est imprégné par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné dans le groupe formé par:
o un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
o un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ; et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse.
Lesdits liquides ioniques peuvent être des sels fondus à température ambiante (ces produits sont connus sous la désignation RTIL, Room Temperature lonic Liquid), ou des liquides ioniques qui sont solides à la température ambiante. Ces liquides ioniques solides à la température ambiante doivent être chauffés pour les liquéfier pour imprégner les électrodes ; ils se solidifient dans la couche poreuse.
Un dernier objet de l'invention est dispositif électrochimique sélectionné
dans le groupe formé par: les batteries à ions de lithium d'une capacité supérieure à 1 mAh, les batteries 5 à ions de sodium, les batteries lithium ¨ air, les cellules photovoltaïques, les piles à
combustible, susceptible d'être obtenue par le procédé de fabrication selon l'invention.
Description détaillée 10 1. Définitions Dans le cadre du présent document, la taille d'une particule est définie par sa plus grande dimension. Par nanoparticule , on entend toute particule ou objet de taille nanométrique présentant au moins une de ses dimensions inférieure ou égale à
100 nm.
Par liquide ionique on entend tout sel liquide, apte à transporter de l'électricité, se 15 différenciant de l'ensemble des sels fondus par une température de fusion inférieure à
100 C. Certains de ces sels restent liquides à température ambiante et ne se solidifient pas, même à très basse température. De tels sels sont appelés liquides ioniques à
température ambiante .
Par matériaux mésoporeux , on entend tout solide qui présente au sein de sa structure 20 des pores dites mésopores possédant une taille intermédiaire entre celle des micropores (largeur inférieure à 2 nm) et celle des macropores (largeur supérieure à 50 nm), à savoir une taille comprise entre 2 nm et 50 nm. Cette terminologie correspond à
celle adoptée par IUPAC (International Union for Pure and Applied Chemistry), qui fait référence pour l'homme du métier. On n'utilise donc ici pas le terme nanopore , même
25 si les mésopores telles que définies ci-dessus présentent des dimensions nanometriques au sens de la définition des nanoparticules, sachant les pores de taille inférieure à celle des mésopores sont appelées par l'homme du métier des micropores .
Une présentation des concepts de porosité (et de la terminologie qui vient d'être exposée ci-dessus) est donnée dans l'article Texture des matériaux pulvérulents ou poreux par F. Rouquerol et al. parue dans la collection Techniques de l'ingénieur , traité Analyse et Caractérisation, fascicule P 1050; cet article décrit également les techniques de caractérisation de la porosité, notamment la méthode BET.
Au sens de la présente invention, on entend par couche mésoporeuse une couche qui présente des mésopores. Comme cela sera expliqué ci-dessous, dans ces couches les mésopores contribuent de manière significative au volume poreux total ; cet état de fait est traduit par l'expression couche mésoporeuse de porosité mésoporeuse supérieure à
Une présentation des concepts de porosité (et de la terminologie qui vient d'être exposée ci-dessus) est donnée dans l'article Texture des matériaux pulvérulents ou poreux par F. Rouquerol et al. parue dans la collection Techniques de l'ingénieur , traité Analyse et Caractérisation, fascicule P 1050; cet article décrit également les techniques de caractérisation de la porosité, notamment la méthode BET.
Au sens de la présente invention, on entend par couche mésoporeuse une couche qui présente des mésopores. Comme cela sera expliqué ci-dessous, dans ces couches les mésopores contribuent de manière significative au volume poreux total ; cet état de fait est traduit par l'expression couche mésoporeuse de porosité mésoporeuse supérieure à
26 X % en volume utilisée dans la description ci-dessous, et applicable à
l'électrode poreuse et au séparateur employé dans l'ensemble selon l'invention.
Le terme agrégat signifie, selon les définitions de l'IUPAC un assemblage faiblement lié de particules primaires. En l'occurrence, ces particules primaires sont des nanoparticules présentant un diamètre qui peut être déterminé par microscopie électronique à transmission. Un agrégat de nanoparticules primaires agrégées peut normalement être détruit (i.e. réduit à des nanoparticules primaires) en suspension dans une phase liquide sous l'effet d'ultrasons, selon une technique connue de l'homme du métier.
Le terme agglomérat signifie, selon les définitions de l'IUPAC un assemblage fortement lié de particules primaires ou d'agrégats.
2. Préparation des suspensions de nanoparticules Le procédé de préparation des électrodes poreuses et du séparateur selon l'invention part d'une suspension de nanoparticules. Il est préférable de ne pas préparer ces suspensions de nanoparticules à partir de nanopoudres sèches. On peut les préparer par broyage de poudres ou nanopoudres en phase liquide, et/ou à l'aide d'un traitement aux ultrasons pour désagglomérer les nanoparticules.
Dans un autre mode de réalisation de l'invention les nanoparticules sont préparées en suspension directement par précipitation. La synthèse de nanoparticules par précipitation permet d'obtenir des nanoparticules primaires de taille très homogène avec une distribution de taille unimodale i.e. très resserrée et monodisperse, de bonne cristallinité
et pureté. L'utilisation de ces nanoparticules de taille très homogène et de distribution étroite permet d'obtenir après dépôt une structure poreuse de porosité
contrôlée et ouverte. La structure poreuse obtenue après dépôt de ces nanoparticules présente peu, de préférence ne présente pas de pores fermés.
Dans un mode de réalisation encore plus préféré de l'invention les nanoparticules sont préparées directement à leur taille primaire par synthèse hydrothermale ou solvothermale ; cette technique permet d'obtenir des nanoparticules avec une distribution de taille très étroite, appelées nanoparticules monodisperses . La taille de ces nanopoudres /
nanoparticules non agrégrées ou non agglomérées est appelée la taille primaire. Elle est typiquement comprise entre 2 nm et 150 nm. Elle est avantageusement comprise entre 10 nm et 50 nm, de préférence entre 10 nm et 30 nm ; cela favorise lors des étapes de procédé ultérieures la formation d'un réseau mésoporeux interconnecté, grâce au phénomène de necking . La conduction électronique et ionique de l'électrode poreuse
l'électrode poreuse et au séparateur employé dans l'ensemble selon l'invention.
Le terme agrégat signifie, selon les définitions de l'IUPAC un assemblage faiblement lié de particules primaires. En l'occurrence, ces particules primaires sont des nanoparticules présentant un diamètre qui peut être déterminé par microscopie électronique à transmission. Un agrégat de nanoparticules primaires agrégées peut normalement être détruit (i.e. réduit à des nanoparticules primaires) en suspension dans une phase liquide sous l'effet d'ultrasons, selon une technique connue de l'homme du métier.
Le terme agglomérat signifie, selon les définitions de l'IUPAC un assemblage fortement lié de particules primaires ou d'agrégats.
2. Préparation des suspensions de nanoparticules Le procédé de préparation des électrodes poreuses et du séparateur selon l'invention part d'une suspension de nanoparticules. Il est préférable de ne pas préparer ces suspensions de nanoparticules à partir de nanopoudres sèches. On peut les préparer par broyage de poudres ou nanopoudres en phase liquide, et/ou à l'aide d'un traitement aux ultrasons pour désagglomérer les nanoparticules.
Dans un autre mode de réalisation de l'invention les nanoparticules sont préparées en suspension directement par précipitation. La synthèse de nanoparticules par précipitation permet d'obtenir des nanoparticules primaires de taille très homogène avec une distribution de taille unimodale i.e. très resserrée et monodisperse, de bonne cristallinité
et pureté. L'utilisation de ces nanoparticules de taille très homogène et de distribution étroite permet d'obtenir après dépôt une structure poreuse de porosité
contrôlée et ouverte. La structure poreuse obtenue après dépôt de ces nanoparticules présente peu, de préférence ne présente pas de pores fermés.
Dans un mode de réalisation encore plus préféré de l'invention les nanoparticules sont préparées directement à leur taille primaire par synthèse hydrothermale ou solvothermale ; cette technique permet d'obtenir des nanoparticules avec une distribution de taille très étroite, appelées nanoparticules monodisperses . La taille de ces nanopoudres /
nanoparticules non agrégrées ou non agglomérées est appelée la taille primaire. Elle est typiquement comprise entre 2 nm et 150 nm. Elle est avantageusement comprise entre 10 nm et 50 nm, de préférence entre 10 nm et 30 nm ; cela favorise lors des étapes de procédé ultérieures la formation d'un réseau mésoporeux interconnecté, grâce au phénomène de necking . La conduction électronique et ionique de l'électrode poreuse
27 selon l'invention s'effectue grâce au phénomène de necking formant le réseau mésoporeux interconnecté.
Dans un mode de réalisation avantageux, la suspension de nanoparticules monodisperses est réalisée en présence de ligands ou de stabilisants organiques de manière à éviter l'agrégation, voire l'agglomération des nanoparticules. Des liants peuvent aussi être ajoutés dans la suspension de nanoparticules pour faciliter la réalisation de dépôts ou de bandes à cru, notamment de dépôts épais sans fissures. En effet, dans le cadre de la présente invention, il s'avère préférable de partir d'une suspension de particules primaires non agglomérées, au sein de laquelle l'agglomération est ensuite induite ou provoquée, plutôt que de laisser l'agglomération des particules primaires se faire spontanément au stade de la préparation de la suspension.
Cette suspension de nanoparticules monodisperses peut être purifiée pour enlever tous les ions potentiellement gênants. En fonction du degré de purification elle peut ensuite être traitée spécialement pour former des agrégats ou des agglomérats d'une dimension contrôlée. Plus précisément, la formation d'agrégats ou d'agglomérats peut résulter de la déstabilisation de la suspension provoquée notamment par des ions, par l'accroissement de l'extrait sec de la suspension, par changement du solvant de la suspension, par l'ajout d'agent de déstabilisation. Si la suspension a été totalement purifiée elle est stable, et on ajoute des ions pour la déstabiliser, typiquement sous la forme d'un sel ; ces ions sont de préférence des ions de lithium (ajoutés de préférence sous la forme de Li0H).
Si la suspension n'a pas été totalement purifiée la formation des agrégats ou des agglomérats peut se faire toute seule de manière spontanée ou par vieillissement. Cette manière de procéder est plus simple car elle implique moins d'étapes de purification, mais il est plus difficile de contrôler la taille des agrégats ou des agglomérats.
Un des aspects essentiels pour la fabrication d'électrodes et de séparateur de l'ensemble selon l'invention consiste à bien maîtriser la taille des particules primaires des matériaux d'électrode P
et/ou de matériaux inorganiques E et leur degré d'agrégation ou d'agglomération.
Si la stabilisation de la suspension de nanoparticules intervient après la formation d'agglomérats, ces derniers resteront sous forme d'agglomérats ; la suspension obtenue pourra être utilisée pour faire des dépôts mésoporeux.
C'est cette suspension d'agrégats ou d'agglomérats de nanoparticules qui est ensuite utilisée pour déposer par électrophorèse, par le procédé d'impression par jet d'encre (appelé ink jet en anglais), par impression flexographique, par enduction par raclage (appelé doctor blade en anglais), par enduction au rouleau (appelé roll coating en anglais), par enduction au rideau (appelé curtain coating en anglais), par enduction par extrusion à travers une filière en forme de fente (appelée slot die en anglais), ou
Dans un mode de réalisation avantageux, la suspension de nanoparticules monodisperses est réalisée en présence de ligands ou de stabilisants organiques de manière à éviter l'agrégation, voire l'agglomération des nanoparticules. Des liants peuvent aussi être ajoutés dans la suspension de nanoparticules pour faciliter la réalisation de dépôts ou de bandes à cru, notamment de dépôts épais sans fissures. En effet, dans le cadre de la présente invention, il s'avère préférable de partir d'une suspension de particules primaires non agglomérées, au sein de laquelle l'agglomération est ensuite induite ou provoquée, plutôt que de laisser l'agglomération des particules primaires se faire spontanément au stade de la préparation de la suspension.
Cette suspension de nanoparticules monodisperses peut être purifiée pour enlever tous les ions potentiellement gênants. En fonction du degré de purification elle peut ensuite être traitée spécialement pour former des agrégats ou des agglomérats d'une dimension contrôlée. Plus précisément, la formation d'agrégats ou d'agglomérats peut résulter de la déstabilisation de la suspension provoquée notamment par des ions, par l'accroissement de l'extrait sec de la suspension, par changement du solvant de la suspension, par l'ajout d'agent de déstabilisation. Si la suspension a été totalement purifiée elle est stable, et on ajoute des ions pour la déstabiliser, typiquement sous la forme d'un sel ; ces ions sont de préférence des ions de lithium (ajoutés de préférence sous la forme de Li0H).
Si la suspension n'a pas été totalement purifiée la formation des agrégats ou des agglomérats peut se faire toute seule de manière spontanée ou par vieillissement. Cette manière de procéder est plus simple car elle implique moins d'étapes de purification, mais il est plus difficile de contrôler la taille des agrégats ou des agglomérats.
Un des aspects essentiels pour la fabrication d'électrodes et de séparateur de l'ensemble selon l'invention consiste à bien maîtriser la taille des particules primaires des matériaux d'électrode P
et/ou de matériaux inorganiques E et leur degré d'agrégation ou d'agglomération.
Si la stabilisation de la suspension de nanoparticules intervient après la formation d'agglomérats, ces derniers resteront sous forme d'agglomérats ; la suspension obtenue pourra être utilisée pour faire des dépôts mésoporeux.
C'est cette suspension d'agrégats ou d'agglomérats de nanoparticules qui est ensuite utilisée pour déposer par électrophorèse, par le procédé d'impression par jet d'encre (appelé ink jet en anglais), par impression flexographique, par enduction par raclage (appelé doctor blade en anglais), par enduction au rouleau (appelé roll coating en anglais), par enduction au rideau (appelé curtain coating en anglais), par enduction par extrusion à travers une filière en forme de fente (appelée slot die en anglais), ou
28 par enduction par trempage (appelé dip-coating en anglais), ou encore par coulage en bande (en anglais tape casting ) les couches d'électrode poreuses, de préférence mésoporeuses, et les couches inorganiques, i.e. le séparateur de l'ensemble selon l'invention.
Selon les constatations de la demanderesse, avec un diamètre moyen des agrégats ou des agglomérats de nanoparticules compris entre 80 nm et 300 nm (de préférence entre 100 nm à 200 nm) on obtient, lors des étapes de procédé ultérieures, une couche mésoporeuse présentant un diamètre moyen des mésopores compris entre 2 nm et nm.
La couche d'électrode poreuse, respectivement la couche inorganique correspondant au séparateur de l'ensemble selon l'invention, peut être déposée par le procédé
d'enduction par trempage, par le procédé d'impression par jet d'encre, par enduction au rouleau, par enduction au rideau ou par raclage, et ce à partir d'une suspension assez concentrée comprenant des agrégats ou des agglomérats de nanoparticules du matériau actif P, respectivement du matériau inorganique E.
Pour l'électrophorèse, on utilise une suspension moins concentrée contenant des agglomérats de nanoparticules du matériau actif P, respectivement du matériau inorganique E pour réaliser la couche d'électrode poreuse, respectivement pour réaliser la couche inorganique correspondant au séparateur de l'ensemble selon l'invention.
Les procédés de dépôt d'agrégats ou d'agglomérats de nanoparticules par voie électrophorétique, par le procédé d'enduction par trempage, par jet d'encre, par enduction au rouleau, par enduction au rideau ou par raclage sont des procédés simples, sûrs, facile à mettre en oeuvre, à industrialiser et permettant d'obtenir une couche poreuse finale homogène. Le dépôt par voie électrophorétique est une technique qui permet de déposer de manière uniforme sur de larges surfaces avec des vitesses de dépôt élevées.
Les techniques d'enduction, notamment par trempage, au rouleau, au rideau ou par raclage, permettent de simplifier la gestion des bains par rapport aux techniques de dépôt par voie électrophorétique. Le dépôt par impression par jet d'encre permet de faire des dépôts localisés.
Des couches poreuses en couche épaisse ou des séparateurs en couche épaisse peuvent être réalisé(e)s en une seule étape par enduction au rouleau, par enduction au rideau, par enduction à travers une fente (appelée slot die coating en anglais), ou par raclage (i.e. à la racle).
On note que les suspensions colloïdales dans l'eau et/ou l'éthanol et/ou IPA
et leurs mélanges sont plus fluides que celles obtenues dans le NMP. Il est ainsi possible d'accroître l'extrait sec de la suspension en agglomérats de nanoparticules.
Ces
Selon les constatations de la demanderesse, avec un diamètre moyen des agrégats ou des agglomérats de nanoparticules compris entre 80 nm et 300 nm (de préférence entre 100 nm à 200 nm) on obtient, lors des étapes de procédé ultérieures, une couche mésoporeuse présentant un diamètre moyen des mésopores compris entre 2 nm et nm.
La couche d'électrode poreuse, respectivement la couche inorganique correspondant au séparateur de l'ensemble selon l'invention, peut être déposée par le procédé
d'enduction par trempage, par le procédé d'impression par jet d'encre, par enduction au rouleau, par enduction au rideau ou par raclage, et ce à partir d'une suspension assez concentrée comprenant des agrégats ou des agglomérats de nanoparticules du matériau actif P, respectivement du matériau inorganique E.
Pour l'électrophorèse, on utilise une suspension moins concentrée contenant des agglomérats de nanoparticules du matériau actif P, respectivement du matériau inorganique E pour réaliser la couche d'électrode poreuse, respectivement pour réaliser la couche inorganique correspondant au séparateur de l'ensemble selon l'invention.
Les procédés de dépôt d'agrégats ou d'agglomérats de nanoparticules par voie électrophorétique, par le procédé d'enduction par trempage, par jet d'encre, par enduction au rouleau, par enduction au rideau ou par raclage sont des procédés simples, sûrs, facile à mettre en oeuvre, à industrialiser et permettant d'obtenir une couche poreuse finale homogène. Le dépôt par voie électrophorétique est une technique qui permet de déposer de manière uniforme sur de larges surfaces avec des vitesses de dépôt élevées.
Les techniques d'enduction, notamment par trempage, au rouleau, au rideau ou par raclage, permettent de simplifier la gestion des bains par rapport aux techniques de dépôt par voie électrophorétique. Le dépôt par impression par jet d'encre permet de faire des dépôts localisés.
Des couches poreuses en couche épaisse ou des séparateurs en couche épaisse peuvent être réalisé(e)s en une seule étape par enduction au rouleau, par enduction au rideau, par enduction à travers une fente (appelée slot die coating en anglais), ou par raclage (i.e. à la racle).
On note que les suspensions colloïdales dans l'eau et/ou l'éthanol et/ou IPA
et leurs mélanges sont plus fluides que celles obtenues dans le NMP. Il est ainsi possible d'accroître l'extrait sec de la suspension en agglomérats de nanoparticules.
Ces
29 agglomérats ont de préférence des tailles inférieures ou égales à 200 nm et sont de tailles polydisperses, voir avec deux populations en tailles différentes.
Par rapport à l'état de la technique, la formulation des encres et pâtes pour la réalisation des électrodes est simplifiée. Il n'y a plus de risques de formation d'agglomérats de noirs de carbone dans la suspension en augmentant l'extrait sec.
Nous allons présenter ci-après la réalisation d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention.
3. Dépôt des couches et leur consolidation D'une manière générale, on dépose une couche d'une suspension de nanoparticules sur un substrat, par toute technique appropriée, et en particulier par un procédé
sélectionné
dans le groupe formé par : l'électrophorèse, un procédé d'impression et de préférence l'impression par jet d'encre ou l'impression flexographique, un procédé
d'enduction et de préférence à la racle, au rouleau, au rideau, par trempage, ou à travers une filière en forme de fente. La suspension se présente typiquement sous la forme d'une encre, c'est-à-dire d'un liquide assez fluide, mais peut aussi avoir une consistance pâteuse. La technique de dépôt et la conduite du procédé de dépôt doit être compatible avec la viscosité de la suspension, et vice versa.
La couche déposée sera ensuite séchée. La couche est ensuite consolidée pour obtenir la structure mésoporeuse céramique recherchée. Cette consolidation sera décrite ci-dessous. Elle peut être réalisée par un traitement thermique, par un traitement thermique précédé d'un traitement mécanique, et éventuellement par un traitement thermomécanique, typiquement une thermocompression. Au cours de ce traitement thermomécanique ou thermique la couche d'électrode sera débarrassée de tout constituant et résidu organique (tel que la phase liquide de la suspension des nanoparticules et d'éventuels produits tensioactifs) : elle devient une couche inorganique (céramique). La consolidation d'une plaque est de préférence effectuée après sa séparation de son substrat intermédiaire, car ce dernier risquerait d'être dégradé lors de ce traitement.
Le dépôt des couches, leur séchage et leur consolidation sont susceptibles de soulever certains problèmes qui seront discutés maintenant. Ces problèmes sont liés en partie au fait que lors de la consolidation des couches il se produit un retreint qui génère des contraintes internes.
3.1 Substrat capable d'agir comme collecteur de courant Selon un premier mode de réalisation, on dépose les couches d'électrodes chacune sur un substrat capable d'agir comme collecteur de courant électrique. On peut déposer sur ses deux faces des couches comportant la suspension de nanoparticules ou 5 d'agglomérats de nanoparticules, par les techniques de dépôt indiquées ci-dessus. Le substrat servant de collecteur de courant au sein des batteries employant des électrodes poreuses selon l'invention peut être métallique, par exemple un feuillard métallique (i.e.
une feuille de métal laminée). Le substrat est de préférence choisi parmi des feuillards en tungstène, molybdène, chrome, titane, tantale, acier inoxydable, ou un alliage de deux ou 10 plusieurs de ces matériaux. Les substrats moins nobles comme le cuivre ou le nickel peuvent recevoir un revêtement conducteur et protecteur de l'oxydation.
La feuille métallique peut être revêtue d'une couche de métal noble, notamment choisi parmi l'or, le platine, le palladium, le titane ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d'une couche de matériau conducteur de type 15 ITO (qui a l'avantage d'agir également comme barrière de diffusion).
D'une manière générale, ce substrat capable d'agir comme collecteur de courant électrique doit résister aux conditions de traitement thermique de la couche déposée, et aux conditions de fonctionnement au sein de la cellule batterie. A ce titre, le cuivre et le nickel conviennent en contact avec le matériau d'anode ; ils risquent de s'oxyder à la 20 cathode.
En ce qui concerne le dépôt des couches, on peut utiliser le procédé
d'électrophorèse (surtout dans l'eau). Dans ce cas particulier, le substrat est soumis à une polarisation électrochimique qui conduit soit à son oxydation soit à sa dissolution dans la suspension de nanoparticules. Dans ce cas, seuls les substrats ne présentant pas de phénomènes 25 d'anodisation et/ou de corrosion peuvent être utilisés. C'est notamment le cas de l'acier inoxydable et des métaux nobles.
Lorsque le dépôt des nanoparticules et/ou agglomérats est réalisé par l'une des autres techniques citées ci-dessous (telles que enduction, impression) alors il est possible d'élargir le choix des substrats. Ce choix se fera alors plutôt en fonction de la stabilité du
Par rapport à l'état de la technique, la formulation des encres et pâtes pour la réalisation des électrodes est simplifiée. Il n'y a plus de risques de formation d'agglomérats de noirs de carbone dans la suspension en augmentant l'extrait sec.
Nous allons présenter ci-après la réalisation d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention.
3. Dépôt des couches et leur consolidation D'une manière générale, on dépose une couche d'une suspension de nanoparticules sur un substrat, par toute technique appropriée, et en particulier par un procédé
sélectionné
dans le groupe formé par : l'électrophorèse, un procédé d'impression et de préférence l'impression par jet d'encre ou l'impression flexographique, un procédé
d'enduction et de préférence à la racle, au rouleau, au rideau, par trempage, ou à travers une filière en forme de fente. La suspension se présente typiquement sous la forme d'une encre, c'est-à-dire d'un liquide assez fluide, mais peut aussi avoir une consistance pâteuse. La technique de dépôt et la conduite du procédé de dépôt doit être compatible avec la viscosité de la suspension, et vice versa.
La couche déposée sera ensuite séchée. La couche est ensuite consolidée pour obtenir la structure mésoporeuse céramique recherchée. Cette consolidation sera décrite ci-dessous. Elle peut être réalisée par un traitement thermique, par un traitement thermique précédé d'un traitement mécanique, et éventuellement par un traitement thermomécanique, typiquement une thermocompression. Au cours de ce traitement thermomécanique ou thermique la couche d'électrode sera débarrassée de tout constituant et résidu organique (tel que la phase liquide de la suspension des nanoparticules et d'éventuels produits tensioactifs) : elle devient une couche inorganique (céramique). La consolidation d'une plaque est de préférence effectuée après sa séparation de son substrat intermédiaire, car ce dernier risquerait d'être dégradé lors de ce traitement.
Le dépôt des couches, leur séchage et leur consolidation sont susceptibles de soulever certains problèmes qui seront discutés maintenant. Ces problèmes sont liés en partie au fait que lors de la consolidation des couches il se produit un retreint qui génère des contraintes internes.
3.1 Substrat capable d'agir comme collecteur de courant Selon un premier mode de réalisation, on dépose les couches d'électrodes chacune sur un substrat capable d'agir comme collecteur de courant électrique. On peut déposer sur ses deux faces des couches comportant la suspension de nanoparticules ou 5 d'agglomérats de nanoparticules, par les techniques de dépôt indiquées ci-dessus. Le substrat servant de collecteur de courant au sein des batteries employant des électrodes poreuses selon l'invention peut être métallique, par exemple un feuillard métallique (i.e.
une feuille de métal laminée). Le substrat est de préférence choisi parmi des feuillards en tungstène, molybdène, chrome, titane, tantale, acier inoxydable, ou un alliage de deux ou 10 plusieurs de ces matériaux. Les substrats moins nobles comme le cuivre ou le nickel peuvent recevoir un revêtement conducteur et protecteur de l'oxydation.
La feuille métallique peut être revêtue d'une couche de métal noble, notamment choisi parmi l'or, le platine, le palladium, le titane ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d'une couche de matériau conducteur de type 15 ITO (qui a l'avantage d'agir également comme barrière de diffusion).
D'une manière générale, ce substrat capable d'agir comme collecteur de courant électrique doit résister aux conditions de traitement thermique de la couche déposée, et aux conditions de fonctionnement au sein de la cellule batterie. A ce titre, le cuivre et le nickel conviennent en contact avec le matériau d'anode ; ils risquent de s'oxyder à la 20 cathode.
En ce qui concerne le dépôt des couches, on peut utiliser le procédé
d'électrophorèse (surtout dans l'eau). Dans ce cas particulier, le substrat est soumis à une polarisation électrochimique qui conduit soit à son oxydation soit à sa dissolution dans la suspension de nanoparticules. Dans ce cas, seuls les substrats ne présentant pas de phénomènes 25 d'anodisation et/ou de corrosion peuvent être utilisés. C'est notamment le cas de l'acier inoxydable et des métaux nobles.
Lorsque le dépôt des nanoparticules et/ou agglomérats est réalisé par l'une des autres techniques citées ci-dessous (telles que enduction, impression) alors il est possible d'élargir le choix des substrats. Ce choix se fera alors plutôt en fonction de la stabilité du
30 métal au potentiel de fonctionnement des électrodes qui lui sont associées et au contact des électrolytes. Cependant, en fonction de la voie de synthèse utilisée pour la réalisation des nanoparticules, des traitements thermiques plus ou moins agressifs doivent être réalisés pour la consolidation et l'éventuelle recristallisation des nanopoudres : cet aspect sera approfondi dans la section 5 ci-dessous.
Dans tous les cas, un traitement thermique de consolidation est nécessaire pour obtenir ces électrodes mésoporeuses. Il est fondamental que le substrat capable d'agir comme
Dans tous les cas, un traitement thermique de consolidation est nécessaire pour obtenir ces électrodes mésoporeuses. Il est fondamental que le substrat capable d'agir comme
31 collecteur de courant électrique puisse résister à ces traitements thermiques sans s'oxyder. Aussi plusieurs stratégies peuvent être employées.
Lorsque les nanopoudres déposées sur le substrat par encrage sont amorphes et/ou avec de nombreux défauts ponctuels, il est nécessaire de réaliser un traitement thermique qui outre la consolidation permettra également de recristalliser le matériau dans la bonne phase cristalline avec la bonne stoechiométrie. Pour cela, il est généralement nécessaire de réaliser des traitements thermiques à des températures situées entre 500 et 700 C. Le substrat devra alors résister à ce type de traitement thermique, et il est nécessaire d'utiliser des matériaux résistant à ces traitements haute température. Des feuillards en acier inoxydable, en titane, molybdène, tungstène, tantale, chrome, ainsi que leurs alliages peuvent être utilisés par exemple.
Lorsque les nanopoudres et/ou agglomérats sont cristallisés, obtenus par synthèse hydro-solvothermales avec la bonne phase et structure cristalline, alors il est possible d'utiliser des traitements thermiques de consolidations sous atmosphère contrôlée, ce qui permettra d'utiliser des substrats moins nobles comme le nickel, le cuivre, l'aluminium, et du fait de la très faible taille des particules primaires obtenues par synthèse hydrothermale, il sera également possible de réduire la température et/ou la durée du traitement thermique de consolidation à des valeurs proches de 350 ¨ 500 C, ce qui permet également d'élargir le choix des substrats. Toutefois, ces substrats moins nobles doivent, résister au traitement thermique permettant d'éliminer les additifs organiques éventuellement contenus dans la suspension de nanoparticules employée tels que des ligands, stabilisants, liants ou solvants organiques résiduels (déliantage), ce traitement thermique étant avantageusement réalisé sous atmosphère oxydante.
II est également possible que des synthèses pseudo-hydrothermales donnent des nanoparticules amorphes qui auront besoin d'être recristallisées par la suite.
Ces substrats capables d'agir comme collecteur de courant électrique peuvent éventuellement être recouverts d'un film mince d'oxyde conducteur. Cet oxyde pouvant avoir la même composition que l'électrode. Ces films minces peuvent être réalisés par sol-gel. Cette interface à base d'oxyde permet de limiter la corrosion du substrat et assure une meilleure base d'accroche pour l'électrode avec le substrat.
En ce qui concerne les conditions de fonctionnement au sein de la cellule batterie, on note tout d'abord que dans les batteries employant des électrodes poreuses selon l'invention, les électrolytes liquides qui viennent imprégner l'électrode poreuse sont en contact direct avec le substrat capable d'agir comme collecteur de courant.
Cependant, lorsque ces électrolytes sont en contact avec les substrats capable d'agir comme
Lorsque les nanopoudres déposées sur le substrat par encrage sont amorphes et/ou avec de nombreux défauts ponctuels, il est nécessaire de réaliser un traitement thermique qui outre la consolidation permettra également de recristalliser le matériau dans la bonne phase cristalline avec la bonne stoechiométrie. Pour cela, il est généralement nécessaire de réaliser des traitements thermiques à des températures situées entre 500 et 700 C. Le substrat devra alors résister à ce type de traitement thermique, et il est nécessaire d'utiliser des matériaux résistant à ces traitements haute température. Des feuillards en acier inoxydable, en titane, molybdène, tungstène, tantale, chrome, ainsi que leurs alliages peuvent être utilisés par exemple.
Lorsque les nanopoudres et/ou agglomérats sont cristallisés, obtenus par synthèse hydro-solvothermales avec la bonne phase et structure cristalline, alors il est possible d'utiliser des traitements thermiques de consolidations sous atmosphère contrôlée, ce qui permettra d'utiliser des substrats moins nobles comme le nickel, le cuivre, l'aluminium, et du fait de la très faible taille des particules primaires obtenues par synthèse hydrothermale, il sera également possible de réduire la température et/ou la durée du traitement thermique de consolidation à des valeurs proches de 350 ¨ 500 C, ce qui permet également d'élargir le choix des substrats. Toutefois, ces substrats moins nobles doivent, résister au traitement thermique permettant d'éliminer les additifs organiques éventuellement contenus dans la suspension de nanoparticules employée tels que des ligands, stabilisants, liants ou solvants organiques résiduels (déliantage), ce traitement thermique étant avantageusement réalisé sous atmosphère oxydante.
II est également possible que des synthèses pseudo-hydrothermales donnent des nanoparticules amorphes qui auront besoin d'être recristallisées par la suite.
Ces substrats capables d'agir comme collecteur de courant électrique peuvent éventuellement être recouverts d'un film mince d'oxyde conducteur. Cet oxyde pouvant avoir la même composition que l'électrode. Ces films minces peuvent être réalisés par sol-gel. Cette interface à base d'oxyde permet de limiter la corrosion du substrat et assure une meilleure base d'accroche pour l'électrode avec le substrat.
En ce qui concerne les conditions de fonctionnement au sein de la cellule batterie, on note tout d'abord que dans les batteries employant des électrodes poreuses selon l'invention, les électrolytes liquides qui viennent imprégner l'électrode poreuse sont en contact direct avec le substrat capable d'agir comme collecteur de courant.
Cependant, lorsque ces électrolytes sont en contact avec les substrats capable d'agir comme
32 collecteur de courant, i.e. les substrats métalliques et polarisés à des potentiels très anodiques pour la cathode et très cathodique pour l'anode, ces électrolytes sont susceptibles d'induire une dissolution du collecteur de courant. Ces réactions parasites peuvent dégrader la durée de vie de la batterie et accélérer son autodécharge.
Pour éviter cela, des substrats capables d'agir comme collecteur de courant tels que des collecteurs de courant en aluminium sont utilisés à la cathode, dans toutes les batteries à ions de lithium. L'aluminium a cette particularité de s'anodiser aux potentiels très anodiques, et la couche d'oxyde ainsi formée à sa surface le protège de la dissolution.
Cependant l'aluminium présente une température de fusion proche de 600 C et ne peut être utilisé
pour la fabrication de batteries selon l'invention, si les traitements de consolidation des électrodes risquent de faire fondre le collecteur de courant.
Ainsi, pour éviter les réactions parasites pouvant dégrader la durée de vie de la batterie et accélérer son autodécharge, un feuillard de titane est avantageusement utilisé
comme collecteur de courant à la cathode. Lors du fonctionnement de la batterie, le feuillard en titane va, comme l'aluminium, s'anodiser et sa couche d'oxyde va empêcher les éventuelles réactions parasites de dissolution du titane au contact de l'électrolyte liquide.
De plus, comme le titane présente un point de fusion beaucoup plus élevé que l'aluminium, des électrodes entièrement solides selon l'invention, peuvent être réalisées directement sur ce type de feuillard.
L'emploi de ces matériaux massifs, notamment de feuillards en titane, permet également de protéger les bords de découpe des électrodes de batteries des phénomènes de corrosion. L'emploi de feuillards en cuivre permet avantageusement de protéger les bords de découpe des anodes de batteries des phénomènes de corrosion.
L'acier inoxydable peut également être employé comme collecteur de courant, notamment lorsqu'il contient du titane ou de l'aluminium comme élément d'alliage, ou lorsqu'il présente en surface une fine couche d'oxyde protecteur.
D'autres substrats servant de collecteur de courant peuvent être utilisés tels que des feuillards métalliques moins nobles recouverts d'un revêtement protecteur, permettant d'éviter l'éventuelle dissolution de ces feuillards induite par la présence d'électrolytes à
leur contact.
Ces feuillards métalliques moins nobles peuvent être des feuillards en Cuivre, en Nickel ou des feuillards d'alliages métalliques tels que des feuillards en acier inoxydable, des feuillards d'alliage Fe-Ni, d'alliage Be-Ni-Cr, d'alliage Ni-Cr ou d'alliage Ni-Ti.
Le revêtement pouvant être utilisé pour protéger les substrats servant de collecteurs de courant peut être de différentes natures. Il peut être
Pour éviter cela, des substrats capables d'agir comme collecteur de courant tels que des collecteurs de courant en aluminium sont utilisés à la cathode, dans toutes les batteries à ions de lithium. L'aluminium a cette particularité de s'anodiser aux potentiels très anodiques, et la couche d'oxyde ainsi formée à sa surface le protège de la dissolution.
Cependant l'aluminium présente une température de fusion proche de 600 C et ne peut être utilisé
pour la fabrication de batteries selon l'invention, si les traitements de consolidation des électrodes risquent de faire fondre le collecteur de courant.
Ainsi, pour éviter les réactions parasites pouvant dégrader la durée de vie de la batterie et accélérer son autodécharge, un feuillard de titane est avantageusement utilisé
comme collecteur de courant à la cathode. Lors du fonctionnement de la batterie, le feuillard en titane va, comme l'aluminium, s'anodiser et sa couche d'oxyde va empêcher les éventuelles réactions parasites de dissolution du titane au contact de l'électrolyte liquide.
De plus, comme le titane présente un point de fusion beaucoup plus élevé que l'aluminium, des électrodes entièrement solides selon l'invention, peuvent être réalisées directement sur ce type de feuillard.
L'emploi de ces matériaux massifs, notamment de feuillards en titane, permet également de protéger les bords de découpe des électrodes de batteries des phénomènes de corrosion. L'emploi de feuillards en cuivre permet avantageusement de protéger les bords de découpe des anodes de batteries des phénomènes de corrosion.
L'acier inoxydable peut également être employé comme collecteur de courant, notamment lorsqu'il contient du titane ou de l'aluminium comme élément d'alliage, ou lorsqu'il présente en surface une fine couche d'oxyde protecteur.
D'autres substrats servant de collecteur de courant peuvent être utilisés tels que des feuillards métalliques moins nobles recouverts d'un revêtement protecteur, permettant d'éviter l'éventuelle dissolution de ces feuillards induite par la présence d'électrolytes à
leur contact.
Ces feuillards métalliques moins nobles peuvent être des feuillards en Cuivre, en Nickel ou des feuillards d'alliages métalliques tels que des feuillards en acier inoxydable, des feuillards d'alliage Fe-Ni, d'alliage Be-Ni-Cr, d'alliage Ni-Cr ou d'alliage Ni-Ti.
Le revêtement pouvant être utilisé pour protéger les substrats servant de collecteurs de courant peut être de différentes natures. Il peut être
33 = une couche mince obtenue par procédé sol-gel du même matériau que celui de l'électrode. L'absence de porosité dans ce film permet d'éviter les contacts entre l'électrolyte et le collecteur de courant métallique ;
= une couche mince obtenue par dépôt sous vide, notamment par dépôt physique en phase vapeur (abrégé PVD, en anglais Physical Vapor Deposition) ou par dépôt chimique en phase vapeur (abrégé CVD, en anglais Chemical Vapor Deposition), du même matériau que celui de l'électrode ;
= une couche mince métallique, dense, sans défaut, telle qu'une couche mince métallique d'or, de titane, de platine, de palladium, de tungstène ou de molybdène.
Ces métaux peuvent être utilisés pour protéger les collecteurs de courant car ils ont de bonnes propriétés de conduction et peuvent résister aux traitements thermiques lors du procédé subséquent de fabrication des électrodes. Cette couche peut notamment être réalisée par électrochimie, PVD, CVD, évaporation, ALD ;
= une couche mince de carbone tel que du carbone diamant, graphique, déposé
par ALD, PVD, CVD ou par encrage d'une solution sol-gel permettant d'obtenir après traitement thermique une phase inorganique dopée en carbone pour la rendre conductrice, = une couche d'oxydes conducteurs ou semi-conducteurs, telle qu'une couche d'ITO
(oxyde d'indium-étain) uniquement déposée sur le substrat cathodique car les oxydes se réduisent aux faibles potentiels ;
= une couche de nitrures conducteurs telle qu'une couche de TiN uniquement déposée sur le substrat cathodique car les nitrures insèrent le lithium aux faibles potentiels.
Le revêtement pouvant être utilisé pour protéger les substrats servant de collecteurs de courant doit être conducteur électronique pour ne pas nuire au fonctionnement de l'électrode déposée ultérieurement sur ce revêtement, en la rendant trop résistive.
D'une manière générale, pour ne pas impacter trop lourdement le fonctionnement des cellules batteries, les courants de dissolution max mesurés sur les substrats pouvant agir comme collecteur de courant, aux potentiels de fonctionnement des électrodes, exprimés en pA/cm2, doivent être 1000 fois inférieurs aux capacités surfaciques des électrodes exprimées en pAh/cm2.
Lorsque l'on cherche à augmenter l'épaisseur des électrodes, on observe que le retreint généré par la consolidation peut conduire soit à la fissuration des couches, soit à une contrainte de cisaillement au niveau de l'interface entre le substrat (qui est de dimension
= une couche mince obtenue par dépôt sous vide, notamment par dépôt physique en phase vapeur (abrégé PVD, en anglais Physical Vapor Deposition) ou par dépôt chimique en phase vapeur (abrégé CVD, en anglais Chemical Vapor Deposition), du même matériau que celui de l'électrode ;
= une couche mince métallique, dense, sans défaut, telle qu'une couche mince métallique d'or, de titane, de platine, de palladium, de tungstène ou de molybdène.
Ces métaux peuvent être utilisés pour protéger les collecteurs de courant car ils ont de bonnes propriétés de conduction et peuvent résister aux traitements thermiques lors du procédé subséquent de fabrication des électrodes. Cette couche peut notamment être réalisée par électrochimie, PVD, CVD, évaporation, ALD ;
= une couche mince de carbone tel que du carbone diamant, graphique, déposé
par ALD, PVD, CVD ou par encrage d'une solution sol-gel permettant d'obtenir après traitement thermique une phase inorganique dopée en carbone pour la rendre conductrice, = une couche d'oxydes conducteurs ou semi-conducteurs, telle qu'une couche d'ITO
(oxyde d'indium-étain) uniquement déposée sur le substrat cathodique car les oxydes se réduisent aux faibles potentiels ;
= une couche de nitrures conducteurs telle qu'une couche de TiN uniquement déposée sur le substrat cathodique car les nitrures insèrent le lithium aux faibles potentiels.
Le revêtement pouvant être utilisé pour protéger les substrats servant de collecteurs de courant doit être conducteur électronique pour ne pas nuire au fonctionnement de l'électrode déposée ultérieurement sur ce revêtement, en la rendant trop résistive.
D'une manière générale, pour ne pas impacter trop lourdement le fonctionnement des cellules batteries, les courants de dissolution max mesurés sur les substrats pouvant agir comme collecteur de courant, aux potentiels de fonctionnement des électrodes, exprimés en pA/cm2, doivent être 1000 fois inférieurs aux capacités surfaciques des électrodes exprimées en pAh/cm2.
Lorsque l'on cherche à augmenter l'épaisseur des électrodes, on observe que le retreint généré par la consolidation peut conduire soit à la fissuration des couches, soit à une contrainte de cisaillement au niveau de l'interface entre le substrat (qui est de dimension
34 fixe) et l'électrode céramique. Lors que cette contrainte de cisaillement dépasse un seuil, la couche se décroche de son substrat.
Pour éviter ce phénomène, on préfère réaliser l'accroissement de l'épaisseur des électrodes par une succession d'opération de dépôt ¨ frittage. Cette première variante du premier mode de réalisation du dépôt des couches donne un bon résultat, mais est peu productif. Alternativement, dans une deuxième variante, on dépose des couches d'une épaisseur plus importante, sur les deux faces d'un substrat perforé. Les perforations doivent avoir un diamètre suffisant pour que les deux couches du recto et du verso soient en contact au niveau des perforations. Ainsi, lors de la consolidation, les nanoparticules et/ou agglomérats de nanoparticules de matériau d'électrode en contact à
travers les perforations dans le substrat se soudent, formant un point d'accroche (point de soudure entre les dépôts des deux faces). Cela limite la perte d'adhérence des couches sur le substrat pendant les étapes de consolidation.
Pour éviter ce phénomène, i.e. afin d'accroître les épaisseurs de dépôt tout en limitant voire en supprimant l'apparition de fissures, il est possible d'ajouter des liants, des dispersants. Ces additifs et solvants organiques peuvent être éliminés par un traitement thermique, de préférence sous atmosphère oxydante, tel que par déliantage, lors d'un traitement de frittage ou lors d'un traitement thermique réalisé préalablement au traitement de frittage.
3.2 Substrat intermédiaire Selon un deuxième mode de réalisation, on ne dépose pas les couches d'électrode sur un substrat capable d'agir comme collecteur de courant électrique, mais sur un substrat intermédiaire, temporaire. En particulier, on peut déposer, à partir de suspensions plus concentrées en nanoparticules et/ou agglomérats de nanoparticules (i.e. moins fluides, de préférence pâteuses), des couches assez épaisses (appelées green sheet en anglais). On dépose ces couches épaisses par exemple par un procédé
d'enduction, de préférence à la racle (technique connue en anglais sous le terme doctor blade ou tape casting ) ou à travers une filière en forme de fente (en anglais slot-die ). Ledit substrat intermédiaire peut être une feuille polymère, par exemple du poly(téréphtalate d'éthylène), abrégé PET. Lors du séchage, ces couches ne se fissurent pas, notamment lorsque le séchage intervient après la séparation de la couche obtenue à
l'étape (b) de son substrat intermédiaire. Pour la consolidation par traitement thermique (et de préférence déjà pour leur séchage) elles peuvent être détachées de leur substrat ; on obtient ainsi des plaques après découpe d'électrodes dites crues qui après traitement thermique de calcination et frittage partiel donneront des plaques céramiques mésoporeuses et autoportées.
On réalise ensuite un empilement de trois couches, à savoir deux plaques d'électrodes de même polarité séparées par une feuille électriquement conductrice capable d'agir comme 5 collecteur de courant électrique, telle qu'une feuille métallique ou une feuille de graphite.
Cet empilement est ensuite assemblé par un traitement thermomécanique, comprenant un pressage et un traitement thermique, de préférence réalisés simultanément.
Dans une variante, pour faciliter le collage entre les plaques de céramique et la feuille métallique, l'interface peut être revêtue d'une couche permettant un collage conducteur électronique.
10 Cette couche peut être une couche sol-gel (de préférence de type permettant à obtenir après traitement thermique la composition chimique des électrodes) possiblement chargée de particules d'un matériau conducteur électronique, qui fera une soudure céramique entre l'électrode mésoporeuse et la feuille métallique. Cette couche peut également être constituée d'une couche mince de nanoparticules d'électrode non frittés, 15 ou d'une couche mince d'une colle conductrice (chargée de particules de graphite par exemple), ou encore une couche métallique d'un métal à bas point de fusion.
Lorsque ladite feuille électriquement conductrice est métallique, elle est de préférence une feuille laminée, i.e. obtenue par laminage. Le laminage peut éventuellement être suivi par un recuit final, qui peut être un recuit d'adoucissement (total ou partiel) ou de 20 recristallisation, selon la terminologie de la métallurgie. On peut aussi utiliser une feuille déposée par voie électrochimique, par exemple une feuille de cuivre électrodéposée ou une feuille de nickel électrodéposée.
En tous les cas, on obtient une électrode céramique, sans liant organique, mésoporeuse, située de part et d'autre d'un substrat métallique servant comme collecteur de courant 25 électronique.
4. Dépôt des couches de matériau actif P
D'une manière générale et comme cela a déjà été mentionné, les électrodes selon l'invention peuvent être fabriquées à partir de suspensions de nanoparticules, à l'aide de 30 techniques de revêtement connues. Ces techniques utilisables sont les mêmes techniques d'impression et d'enduction que celles présentées ci-dessus dans le sous-chapitre intitulé Préparation des suspensions de nanoparticules .
Pour toutes ces techniques, il est avantageux que l'extrait sec de la suspension soit supérieur à 20 %, et de préférence supérieur à 40 A ; cela diminue le risque de
Pour éviter ce phénomène, on préfère réaliser l'accroissement de l'épaisseur des électrodes par une succession d'opération de dépôt ¨ frittage. Cette première variante du premier mode de réalisation du dépôt des couches donne un bon résultat, mais est peu productif. Alternativement, dans une deuxième variante, on dépose des couches d'une épaisseur plus importante, sur les deux faces d'un substrat perforé. Les perforations doivent avoir un diamètre suffisant pour que les deux couches du recto et du verso soient en contact au niveau des perforations. Ainsi, lors de la consolidation, les nanoparticules et/ou agglomérats de nanoparticules de matériau d'électrode en contact à
travers les perforations dans le substrat se soudent, formant un point d'accroche (point de soudure entre les dépôts des deux faces). Cela limite la perte d'adhérence des couches sur le substrat pendant les étapes de consolidation.
Pour éviter ce phénomène, i.e. afin d'accroître les épaisseurs de dépôt tout en limitant voire en supprimant l'apparition de fissures, il est possible d'ajouter des liants, des dispersants. Ces additifs et solvants organiques peuvent être éliminés par un traitement thermique, de préférence sous atmosphère oxydante, tel que par déliantage, lors d'un traitement de frittage ou lors d'un traitement thermique réalisé préalablement au traitement de frittage.
3.2 Substrat intermédiaire Selon un deuxième mode de réalisation, on ne dépose pas les couches d'électrode sur un substrat capable d'agir comme collecteur de courant électrique, mais sur un substrat intermédiaire, temporaire. En particulier, on peut déposer, à partir de suspensions plus concentrées en nanoparticules et/ou agglomérats de nanoparticules (i.e. moins fluides, de préférence pâteuses), des couches assez épaisses (appelées green sheet en anglais). On dépose ces couches épaisses par exemple par un procédé
d'enduction, de préférence à la racle (technique connue en anglais sous le terme doctor blade ou tape casting ) ou à travers une filière en forme de fente (en anglais slot-die ). Ledit substrat intermédiaire peut être une feuille polymère, par exemple du poly(téréphtalate d'éthylène), abrégé PET. Lors du séchage, ces couches ne se fissurent pas, notamment lorsque le séchage intervient après la séparation de la couche obtenue à
l'étape (b) de son substrat intermédiaire. Pour la consolidation par traitement thermique (et de préférence déjà pour leur séchage) elles peuvent être détachées de leur substrat ; on obtient ainsi des plaques après découpe d'électrodes dites crues qui après traitement thermique de calcination et frittage partiel donneront des plaques céramiques mésoporeuses et autoportées.
On réalise ensuite un empilement de trois couches, à savoir deux plaques d'électrodes de même polarité séparées par une feuille électriquement conductrice capable d'agir comme 5 collecteur de courant électrique, telle qu'une feuille métallique ou une feuille de graphite.
Cet empilement est ensuite assemblé par un traitement thermomécanique, comprenant un pressage et un traitement thermique, de préférence réalisés simultanément.
Dans une variante, pour faciliter le collage entre les plaques de céramique et la feuille métallique, l'interface peut être revêtue d'une couche permettant un collage conducteur électronique.
10 Cette couche peut être une couche sol-gel (de préférence de type permettant à obtenir après traitement thermique la composition chimique des électrodes) possiblement chargée de particules d'un matériau conducteur électronique, qui fera une soudure céramique entre l'électrode mésoporeuse et la feuille métallique. Cette couche peut également être constituée d'une couche mince de nanoparticules d'électrode non frittés, 15 ou d'une couche mince d'une colle conductrice (chargée de particules de graphite par exemple), ou encore une couche métallique d'un métal à bas point de fusion.
Lorsque ladite feuille électriquement conductrice est métallique, elle est de préférence une feuille laminée, i.e. obtenue par laminage. Le laminage peut éventuellement être suivi par un recuit final, qui peut être un recuit d'adoucissement (total ou partiel) ou de 20 recristallisation, selon la terminologie de la métallurgie. On peut aussi utiliser une feuille déposée par voie électrochimique, par exemple une feuille de cuivre électrodéposée ou une feuille de nickel électrodéposée.
En tous les cas, on obtient une électrode céramique, sans liant organique, mésoporeuse, située de part et d'autre d'un substrat métallique servant comme collecteur de courant 25 électronique.
4. Dépôt des couches de matériau actif P
D'une manière générale et comme cela a déjà été mentionné, les électrodes selon l'invention peuvent être fabriquées à partir de suspensions de nanoparticules, à l'aide de 30 techniques de revêtement connues. Ces techniques utilisables sont les mêmes techniques d'impression et d'enduction que celles présentées ci-dessus dans le sous-chapitre intitulé Préparation des suspensions de nanoparticules .
Pour toutes ces techniques, il est avantageux que l'extrait sec de la suspension soit supérieur à 20 %, et de préférence supérieur à 40 A ; cela diminue le risque de
35 fissuration au séchage.
On peut également utiliser l'électrophorèse.
On peut également utiliser l'électrophorèse.
36 Dans un premier mode de réalisation, le procédé selon l'invention utilise avantageusement l'électrophorèse de suspensions de nanoparticules comme technique de dépôt des couches d'électrode poreuse, de préférence mésoporeuse. Le procédé de dépôt de couches d'électrodes à partir d'une suspension de nanoparticules est connu en tant que tel (voir par exemple EP 2 774 194 B1). Le substrat peut être métallique, par exemple une feuille métallique. Le substrat servant de collecteur de courant au sein des batteries employant des électrodes poreuses selon l'invention est de préférence choisi parmi des feuillards en titane, en cuivre, en acier inoxydable ou en molybdène.
On peut par exemple utiliser une feuille d'acier inoxydable d'une épaisseur de 5 pm. La feuille métallique peut être revêtue d'une couche de métal noble, notamment choisi parmi l'or, le platine, le palladium, le titane ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d'une couche de matériau conducteur de type ITO (qui a l'avantage d'agir également comme barrière de diffusion).
Dans un mode de réalisation particulier on dépose sur la couche de métal une couche, de préférence une couche mince, d'un matériau d'électrode ; ce dépôt doit être très mince (typiquement quelques dizaines de nanomètres, et plus généralement compris entre 10 nm et 100 nm). Il peut être réalisé par un procédé sol-gel. On peut utiliser par exemple du LiMn204 pour une cathode poreuse de LiMn204.
Pour que l'électrophorèse puisse avoir lieu, on pose une contre-électrode dans la suspension et on applique une tension entre le substrat conducteur et ladite contre-électrode.
Dans un mode de réalisation avantageux, le dépôt électrophorétique des agrégats ou des agglomérats de nanoparticules est effectué par électrodéposition galvanostatique en mode pulsé ; on applique des impulsions de courant à haute fréquence, cela évite la formation de bulles à la surface des couches déposées et les variations du champ électrique dans la suspension pendant le dépôt. L'épaisseur de la couche ainsi déposée par électrophorèse, de préférence par électrodéposition galvanostatique en mode pulsé
est avantageusement inférieure à 10 pm, de préférence inférieure à 8 pm, et se situe encore plus préférentiellement entre 1 pm et 6 pm.
Dans un autre mode de réalisation on peut déposer des agrégats ou des agglomérats de nanoparticules par le procédé d'enduction par trempage (appelé dip-coating en anglais), et ce, quel que soit la nature chimique des nanoparticules employées. Ce procédé de dépôt est préféré lorsque les nanoparticules employées sont peu ou pas chargées électriquement. Afin d'obtenir une couche d'une épaisseur désirée, l'étape de dépôt par dip-coating des agrégats ou des agglomérats de nanoparticules suivie de l'étape de séchage de la couche obtenue sont répétées autant que nécessaire.
Afin
On peut par exemple utiliser une feuille d'acier inoxydable d'une épaisseur de 5 pm. La feuille métallique peut être revêtue d'une couche de métal noble, notamment choisi parmi l'or, le platine, le palladium, le titane ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d'une couche de matériau conducteur de type ITO (qui a l'avantage d'agir également comme barrière de diffusion).
Dans un mode de réalisation particulier on dépose sur la couche de métal une couche, de préférence une couche mince, d'un matériau d'électrode ; ce dépôt doit être très mince (typiquement quelques dizaines de nanomètres, et plus généralement compris entre 10 nm et 100 nm). Il peut être réalisé par un procédé sol-gel. On peut utiliser par exemple du LiMn204 pour une cathode poreuse de LiMn204.
Pour que l'électrophorèse puisse avoir lieu, on pose une contre-électrode dans la suspension et on applique une tension entre le substrat conducteur et ladite contre-électrode.
Dans un mode de réalisation avantageux, le dépôt électrophorétique des agrégats ou des agglomérats de nanoparticules est effectué par électrodéposition galvanostatique en mode pulsé ; on applique des impulsions de courant à haute fréquence, cela évite la formation de bulles à la surface des couches déposées et les variations du champ électrique dans la suspension pendant le dépôt. L'épaisseur de la couche ainsi déposée par électrophorèse, de préférence par électrodéposition galvanostatique en mode pulsé
est avantageusement inférieure à 10 pm, de préférence inférieure à 8 pm, et se situe encore plus préférentiellement entre 1 pm et 6 pm.
Dans un autre mode de réalisation on peut déposer des agrégats ou des agglomérats de nanoparticules par le procédé d'enduction par trempage (appelé dip-coating en anglais), et ce, quel que soit la nature chimique des nanoparticules employées. Ce procédé de dépôt est préféré lorsque les nanoparticules employées sont peu ou pas chargées électriquement. Afin d'obtenir une couche d'une épaisseur désirée, l'étape de dépôt par dip-coating des agrégats ou des agglomérats de nanoparticules suivie de l'étape de séchage de la couche obtenue sont répétées autant que nécessaire.
Afin
37 d'accroitre l'épaisseur des couches exemptes de fissures, il est avantageux d'utiliser dans la suspension colloïdale ou la pâte déposée, au moins un additif organique tel que des ligands, des stabilisants, des épaississants, des liants ou des solvants organiques résiduels.
Bien que cette succession d'étapes d'enduction par trempage / séchage soit chronophage, le procédé de dépôt par dip-coating est un procédé simple, sûr, facile à
mettre en oeuvre, à industrialiser et permettant d'obtenir une couche finale homogène et compacte.
5. Traitement de consolidation des couches déposées Le traitement de consolidation s'applique à la couche d'électrode.
Les couches déposées doivent être séchées ; le séchage ne doit pas induire la formation de fissures. Pour cette raison, il est préféré de l'effectuer dans des conditions d'humidité
et de température contrôlées ou d'utiliser, pour réaliser la couche poreuse, des suspensions colloïdales et/ou des pâtes comprenant, outre des agrégats ou des agglomérats de nanoparticules primaires monodisperses, d'au moins un matériau actif d'électrode P selon l'invention, des additifs organiques tels que des ligands, des stabilisants, des épaississants, des liants ou solvants organiques résiduels.
Les couches séchées peuvent être consolidées par une étape de pressage et/ou de chauffage (traitement thermique). Dans un mode de réalisation très avantageux de l'invention ce traitement conduit à une coalescence partielle des nanoparticules primaires dans les agrégats, ou les agglomérats, et entre agrégats ou agglomérats voisins ; ce phénomène est appelé necking ou neck formation . Il est caractérisé par la coalescence partielle de deux particules en contact, qui restent séparées mais reliées par un col (retreint). Les ions de lithium et les électrons sont mobiles au sein de ces cols et peuvent diffuser d'une particule à l'autre sans rencontrer des joints de grains. Les nanoparticules se soudent entre elles pour assurer la conduction des électrons d'une particule à l'autre. Ainsi se forme un réseau tridimensionnel de particules interconnectées à forte mobilité ionique et conduction électronique ; ce réseau comporte des pores, de préférence des mésopores où la notion de particule disparaît après traitement thermique.
La température nécessaire pour obtenir du necking dépend du matériau ;
compte tenu du caractère diffusif du phénomène qui conduit au necking, la durée du traitement dépend de la température. Ce procédé peut être appelé un frittage ; selon sa durée et sa température on obtient une coalescence (necking) plus ou moins prononcée, qui se répercute sur la porosité. Il est ainsi possible de descendre à 30% (ou même à
25 %) de porosité tout en conservant une taille de canal parfaitement homogène.
Bien que cette succession d'étapes d'enduction par trempage / séchage soit chronophage, le procédé de dépôt par dip-coating est un procédé simple, sûr, facile à
mettre en oeuvre, à industrialiser et permettant d'obtenir une couche finale homogène et compacte.
5. Traitement de consolidation des couches déposées Le traitement de consolidation s'applique à la couche d'électrode.
Les couches déposées doivent être séchées ; le séchage ne doit pas induire la formation de fissures. Pour cette raison, il est préféré de l'effectuer dans des conditions d'humidité
et de température contrôlées ou d'utiliser, pour réaliser la couche poreuse, des suspensions colloïdales et/ou des pâtes comprenant, outre des agrégats ou des agglomérats de nanoparticules primaires monodisperses, d'au moins un matériau actif d'électrode P selon l'invention, des additifs organiques tels que des ligands, des stabilisants, des épaississants, des liants ou solvants organiques résiduels.
Les couches séchées peuvent être consolidées par une étape de pressage et/ou de chauffage (traitement thermique). Dans un mode de réalisation très avantageux de l'invention ce traitement conduit à une coalescence partielle des nanoparticules primaires dans les agrégats, ou les agglomérats, et entre agrégats ou agglomérats voisins ; ce phénomène est appelé necking ou neck formation . Il est caractérisé par la coalescence partielle de deux particules en contact, qui restent séparées mais reliées par un col (retreint). Les ions de lithium et les électrons sont mobiles au sein de ces cols et peuvent diffuser d'une particule à l'autre sans rencontrer des joints de grains. Les nanoparticules se soudent entre elles pour assurer la conduction des électrons d'une particule à l'autre. Ainsi se forme un réseau tridimensionnel de particules interconnectées à forte mobilité ionique et conduction électronique ; ce réseau comporte des pores, de préférence des mésopores où la notion de particule disparaît après traitement thermique.
La température nécessaire pour obtenir du necking dépend du matériau ;
compte tenu du caractère diffusif du phénomène qui conduit au necking, la durée du traitement dépend de la température. Ce procédé peut être appelé un frittage ; selon sa durée et sa température on obtient une coalescence (necking) plus ou moins prononcée, qui se répercute sur la porosité. Il est ainsi possible de descendre à 30% (ou même à
25 %) de porosité tout en conservant une taille de canal parfaitement homogène.
38 Le traitement thermique peut également servir à éliminer les additifs organiques éventuellement contenus dans la suspension de nanoparticules employée tels que des ligands, stabilisants, liants ou solvants organiques résiduels. Selon une autre variante, un traitement thermique additionnel, sous atmosphère oxydante, peut être réalisé
pour éliminer ces additifs organiques éventuellement contenus dans la suspension de nanoparticules employée. Ce traitement thermique additionnel est avantageusement réalisé avant le traitement de consolidation de l'étape c) permettant d'obtenir une couche poreuse, de préférence mésoporeuse.
6. Dépôt du revêtement de matériau conducteur électronique Selon une caractéristique essentielle de la présente invention, on dépose, sur et à
l'intérieur des pores de ladite couche poreuse, un revêtement d'un matériau conducteur électronique de manière à obtenir l'électrode poreuse de l'ensemble selon l'invention.
En effet, comme expliqué ci-dessus, le procédé selon l'invention, qui fait intervenir obligatoirement une étape de dépôt de nanoparticules agglomérés de matériau d'électrode (matière active), fait que les nanoparticules se soudent naturellement entre elles pour générer, après consolidation tel qu'un recuit, une structure poreuse, rigide, tridimensionnelle, sans liant organique ; cette couche poreuse, de préférence mésoporeuse, est parfaitement bien adaptée à l'application d'un traitement de surface, par voie gazeuse ou liquide, qui rentre dans la profondeur de la structure poreuse ouverte de la couche.
De manière très avantageuse ce dépôt est réalisé par une technique permettant un revêtement enrobant (appelé aussi dépôt conforme ), i.e. un dépôt qui reproduit fidèlement la topographie atomique du substrat sur lequel il est appliqué, et qui rentre profondément dans le réseau de porosité ouverte de la couche. Ledit matériau conducteur électronique peut être du carbone.
Les techniques de ALD (Atomic Layer Deposition) ou de CSD (Chemical Solution Deposition), connues en tant que telles, peuvent convenir. Elles peuvent être mises en uvre sur les couches poreuses après fabrication, avant le dépôt des particules de séparateur et avant l'assemblage de la cellule. La technique de dépôt par ALD
se fait couche par couche, par un procédé cyclique, et permet de réaliser un revêtement enrobant qui reproduit fidèlement la topographie du substrat ; le revêtement tapisse la totalité de la surface des électrodes. Ce revêtement enrobant présente typiquement une épaisseur comprise entre 1 nm et 5 nm.
Le dépôt par ALD est réalisé à une température typiquement comprise entre 100 C et 300 C. Il est important que les couches soient exemptes de matières organiques : elles
pour éliminer ces additifs organiques éventuellement contenus dans la suspension de nanoparticules employée. Ce traitement thermique additionnel est avantageusement réalisé avant le traitement de consolidation de l'étape c) permettant d'obtenir une couche poreuse, de préférence mésoporeuse.
6. Dépôt du revêtement de matériau conducteur électronique Selon une caractéristique essentielle de la présente invention, on dépose, sur et à
l'intérieur des pores de ladite couche poreuse, un revêtement d'un matériau conducteur électronique de manière à obtenir l'électrode poreuse de l'ensemble selon l'invention.
En effet, comme expliqué ci-dessus, le procédé selon l'invention, qui fait intervenir obligatoirement une étape de dépôt de nanoparticules agglomérés de matériau d'électrode (matière active), fait que les nanoparticules se soudent naturellement entre elles pour générer, après consolidation tel qu'un recuit, une structure poreuse, rigide, tridimensionnelle, sans liant organique ; cette couche poreuse, de préférence mésoporeuse, est parfaitement bien adaptée à l'application d'un traitement de surface, par voie gazeuse ou liquide, qui rentre dans la profondeur de la structure poreuse ouverte de la couche.
De manière très avantageuse ce dépôt est réalisé par une technique permettant un revêtement enrobant (appelé aussi dépôt conforme ), i.e. un dépôt qui reproduit fidèlement la topographie atomique du substrat sur lequel il est appliqué, et qui rentre profondément dans le réseau de porosité ouverte de la couche. Ledit matériau conducteur électronique peut être du carbone.
Les techniques de ALD (Atomic Layer Deposition) ou de CSD (Chemical Solution Deposition), connues en tant que telles, peuvent convenir. Elles peuvent être mises en uvre sur les couches poreuses après fabrication, avant le dépôt des particules de séparateur et avant l'assemblage de la cellule. La technique de dépôt par ALD
se fait couche par couche, par un procédé cyclique, et permet de réaliser un revêtement enrobant qui reproduit fidèlement la topographie du substrat ; le revêtement tapisse la totalité de la surface des électrodes. Ce revêtement enrobant présente typiquement une épaisseur comprise entre 1 nm et 5 nm.
Le dépôt par ALD est réalisé à une température typiquement comprise entre 100 C et 300 C. Il est important que les couches soient exemptes de matières organiques : elles
39 ne doivent pas comporter de liant organique, les éventuels résidus de ligands stabilisants utilisés pour stabiliser la suspension doivent avoir été éliminés par purification de la suspension et/ou lors du traitement thermique de la couche après séchage. En effet, à la température du dépôt ALD, les matériaux organiques formant le liant organique (par exemple les polymères contenus dans les électrodes réalisées par tape casting d'encre) risquent de se décomposer et vont polluer le réacteur ALD. Par ailleurs, la présence de polymères résiduels au contact des particules de matière active d'électrode peut empêcher le revêtement ALD d'enrober la totalité des surfaces de particules, ce qui nuit à
son efficacité.
La technique de dépôt par CSD permet également de réaliser un revêtement enrobant avec un précurseur du matériau conducteur électronique qui reproduit fidèlement la topographie du substrat ; il tapisse la totalité de la surface des électrodes.
Ce revêtement enrobant présente typiquement une épaisseur inférieure à 5 nm, de préférence comprise entre 1 nm et 5 nm. Il doit ensuite être transformé en matériau conducteur électronique.
Dans le cas d'un précurseur de carbone cela sera fait par pyrolyse, de préférence sous gaz inerte (tel quel l'azote).
Dans cette variante de dépôt d'une nanocouche de matériau conducteur électronique, il est préférable que le diamètre D50 des particules primaires de matériau d'électrode soit d'au moins 10 nm afin d'éviter que la couche conductrice ne bouche la porosité
ouverte de la couche.
7. Réalisation du séparateur (couche de matériau inorganique E) sur l'électrode poreuse Sur l'électrode poreuse, de préférence mésoporeuse, comprenant un revêtement d'un matériau conducteur électronique est déposée, de préférence après séchage, une couche d'au moins un matériau inorganique E, à partir de suspensions de nanoparticules de matériau inorganique E, à l'aide de techniques de revêtement connues comme indiqué
dans le paragraphe 4 ci-dessus. Le procédé de dépôt de couches inorganiques poreuses à partir d'une suspension de nanoparticules est connu en tant que tel (voir par exemple VVO 2019/215411 A1).
Dans un mode de réalisation, le matériau employé pour la fabrication de couches poreuses pouvant servir comme séparateur selon l'invention est choisi parmi les matériaux inorganiques à bas point de fusion, isolant électroniques et stables au contact des électrodes pendant les étapes de pressage à chaud. Plus les matériaux seront réfractaires, plus il sera nécessaire de chauffer au niveau des interfaces électrode /
séparateur électrolytique, à des températures élevées risquant ainsi de modifier les interfaces avec les matériaux d'électrodes, notamment par interdiffusion, ce qui engendre des réactions parasites et crée des couches de déplétion dont les propriétés électrochimiques diffèrent de celles que l'on trouve dans le même matériau à
une plus grande profondeur à partir de l'interface. Les matériaux comprenant du lithium sont à
privilégier car ils permettent d'éviter voire d'éliminer ces phénomènes d'appauvrissement 5 en lithium.
Le matériau employé pour la fabrication de couches inorganiques poreuses selon l'invention peut être un matériau conducteur ionique tel qu'un électrolyte solide comprenant du lithium afin d'éviter la formation de zones de déplétion en lithium aux interfaces électrode / séparateur électrolytique. Le matériau inorganique E
comprend, 10 avantageusement, un matériau isolant électroniquement, de préférence choisi parmi les matériaux sélectionnés dans le groupe formé par les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3PO4; le LiP03; le Li3A13,4Scie(PO4)3 appelés LASP ; le Lii-ExZr2_xCax(PO4.)3 avec 0 x 5 0,25;
le Lii-E2xZr2-xCax(PO4)3 avec 0 x 5 0,25 tel que le Lii,2Zrt9Cao,i(PO4)3 ou le Lii,4ZrieCa0,2(PO4.)3; le 15 LiZr2(PO4)3; le Li1-E3xZr2(Pi-xSix0.4)3 avec 1,8 < x < 2,3 ; le Lii+exZr2(Pi-xBx0.4)3 avec 0 x 0,25 ; le Li3(Sc2,<Mx)(PO4.)3 avec M=A1 ou Y et 0 x 1 ; le Li1-ExMx(Sc)2_x(PO4.)3 avec M =
Al, Y, Ga ou un mélange de ces trois éléments et 0 5 x 5 0,8; le Li I\A (nn Se= 1 (Po avec 0 x 5 0,8; 0 <y 5 1 et M= Al et/ou Y; le Lii+,<Mx(Ga)2_x(P0.4)3 avec M = Al et/ou Y et 0 x 5 0,8 ; le Lii+,<A1xTi2,(PO4)3 avec 0 x 1 appelés LATP ; ou le Li1+xAlxGe2_ 20 x(PO4)3 avec 0 x 1 appelés LAGP ; ou le Lii,Mx(Gel-yTiy)2-xSi,P3_,012 avec 05x50,8 et 05y51,0 et 05z50,6 et M= Al, Ga ou Y ou un mélange de deux ou trois de ces éléments ; le Li3+y(Sc2_xMx)QyP3_y012 avec M = Al et/ou Y et Q = Si et/ou Se, 0 x 5 0,8 et 0 5 y 5 1 ; ou le Lii+x-,,,MxSc2-xQyP3_y012 avec M = Al, Y, Ga ou un mélange de ces trois éléments et Q = Si et/ou Se, 0 x 5 0,8 et 0 5 y 5 1 ; ou le Lii-Ex+y-E,Mx(Gai_yScy)2_xQzP3-z012 25 avec 0 x 5 0,8 , 0 5 y 5 1 , 0 z 5 0,6 avec M = Al et/ou Y et Q= Si et/ou Se ; ou le x¨xx= 312 Lii 2r2,Bx(PO4)3 avec 0 x 5 0,25; ou Lii+Ivl3¨ 2- P o avec 0 x 5 1 et M3= Cr, V, Ca, B, Mg, Bi et/ou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces éléments. Le Li3PO4.est particulièrement préféré.
Cette couche inorganique est un film céramique poreux, de préférence mésoporeux, qui 30 assure la fonction de séparation électrolytique. Les nanoparticules céramiques utilisées pour fabriquer le séparateur de l'ensemble selon l'invention, doivent être stables électrochimiquement au contact des électrodes et être isolantes électroniquement, et de préférence conductrices des ions lithium. Le fait de déposer cette couche inorganique (film céramique mésoporeux) permet de réduire l'épaisseur du film électrolytique. Cette 35 couche présente d'excellentes propriétés mécaniques. Cette réduction d'épaisseur permet d'accroître la densité d'énergie volumique des batteries.
Le caractère totalement céramique et/ou vitrocéramique de cette couche inorganique poreuse, sans éléments organiques, permet de garantir une excellente tenue mécanique, un parfait mouillage par des électrolytes liquides, même par des liquides ioniques à
température ambiante, et permet également d'assurer le fonctionnement des cellules batteries dans de très larges gammes de températures (pas de risques de fonte et/ou de cassure du séparateur).
La réalisation d'une telle couche inorganique poreuse, i.e. d'un tel séparateur, sur les électrodes poreuses reste très difficile à réaliser. En effet, la performance des électrodes poreuses selon l'invention vient en partie du fait qu'elles sont recouvertes en surface par un revêtement d'un matériau conducteur électronique, tel que du carbone.
Cependant, les dépôts d'agglomérats de nanoparticules inorganiques E servant à assurer la fonction de séparation électrolytique sont après dépôt, riches en matières organiques. Ces matières organiques se trouvant dans le solvant adsorbée en surface des nanoparticules ainsi que dans les stabilisants organiques utilisées dans la formulation de la suspension de nanoparticules inorganiques E. Ainsi, avant d'imprégner l'ensemble constitué
d'une électrode poreuse et d'un séparateur selon l'invention, il convient d'éliminer ces résidus organiques du séparateur. Pour cela il est nécessaire de réaliser des traitements de calcination. Ces traitements de calcination sont réalisés par recuit sous air afin de transformer ces organiques en CO2 et les éliminer. Cependant, pour garantir les performances de l'électrode poreuse associée à ce séparateur céramique, il est fondamental que le revêtement de matériau conducteur électronique, tel que le revêtement de carbone présent à la surface des électrodes poreuses ne soit pas éliminé
par le traitement de calcination des organiques. Pour cela, la demanderesse a identifié
des conditions de traitement qui permettent d'éliminer les organiques tout en conservant le revêtement de matériau conducteur électronique, tel que le revêtement de carbone sur l'électrode poreuse, sans qu'il y ait de dépôt de carbone dans le séparateur qui pourrait nuire à l'isolation électrique de la cellule, notamment son autodécharge.
Ce traitement thermique est fait sous air, à une température modérée, afin de permettre l'élimination des organiques contenu dans le dépôt de séparateur électrolytique sous forme de CO2 tout en conservant le revêtement de matériau conducteur électronique, tel que le revêtement de carbone présent à la surface des électrodes poreuses.
Pour cela, un traitement thermique à moins de 500 C et préférentiellement à une température comprise entre environ 250 C et environ 450 C, et manière optimale) environ 400 C, est réalisé.
Après traitement thermique, un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention est obtenu.
8. Imprégnation de l'ensemble par un électrolyte afin d'obtenir un organe fonctionnel d'une batterie Selon un premier mode de réalisation de l'invention, l'ensemble est imprégné
avec un polymère contenant des sels de lithium, et qui est donc un conducteur ionique, l'espèce d'ion transportée étant les ions de lithium.
Selon un deuxième mode de réalisation de l'invention, l'ensemble est imprégné
avec un électrolyte liquide ; il peut s'agir par exemple d'un liquide ionique ou d'un solvant aprotique dans lequel on a dissout un ou plusieurs sels de lithium. On peut aussi utiliser un polyliquide ionique (en anglais poly(ionic liquid) , abrégé PIL).
Plus précisément, l'ensemble selon l'invention (avant son imprégnation) ne contient pas de composés organiques, et cette absence de composés organiques couplée à une structure mésoporeuse favorise le mouillage par un électrolyte conducteur des ions lithium. Cet électrolyte peut alors indifféremment être sélectionné dans le groupe formé
par: un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium, un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium, un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium, un polymère conducteur ionique contenant au moins un sel de lithium, ou encore un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium. Ledit polymère est avantageusement sélectionné
dans le groupe formé par : le poly(éthylène oxyde) (couramment abrégé PEO), le poly(propylène oxyde), le polydiméthylsiloxane (couramment abrégé PDMS), le polyacrylonitrile (couramment abrégé PAN), le poly(méthyl méthacrylate) (couramment abrégé
PMMA), le poly(vinyl ch bride) (couramment abrégé PVC), le poly(vinylidène fluoride) (couramment abrégé PVDF), le PVDF-hexafluoropropylène.
Ledit polymère, contenant ou non des sels de lithium, est typiquement solide à
la température ambiante et peut être fondu et cette phase fondue peut ensuite être imprégnée dans la mésoporosité de l'ensemble. Une fois refroidi, un ensemble comprenant une électrode et un électrolyte solide est obtenu.
Cet ensemble comprenant une électrode et un électrolyte solide peut être utilisé de plusieurs manières pour réaliser des cellules élémentaires de batteries.
9. Utilisation de l'ensemble comprenant une électrode poreuse et un électrolyte solide pour réaliser des cellules élémentaires de batteries Comme indiqué précédemment, l'ensemble selon l'invention peut être imprégné
par une phase fondue comprenant un polymère conducteur ionique, et optionnellement des sels de lithium. Une fois refroidi, un ensemble comprenant une électrode poreuse pour électrode et un électrolyte solide est obtenu. Cet ensemble comprenant une électrode et un électrolyte solide peut être utilisé de plusieurs façons pour réaliser des cellules élémentaires de batteries, et, in fine, des batteries.
Cet ensemble comprenant une électrode et un électrolyte solide peut être adossé :
- à un autre ensemble comprenant une électrode et un électrolyte solide, ou - à une électrode dense, ou - à une électrode poreuse préalablement imprégnée par un polymère, ou - à une électrode dense préalablement recouverte d'une couche d'électrolyte, ou - à une électrode poreuse préalablement recouverte d'un électrolyte poreux dont l'ensemble est imprégné par un polymère.
Les empilements obtenus sont ensuite thermocomprimés à chaud de manière à
assembler les cellules élémentaires des batteries. Lors de la thermocompression, le polymère conducteur ionique imprégné va se ramollir et permettre de faire la soudure entre l'ensemble comprenant une électrode et un électrolyte solide et le sous-système auquel il est adossé.
Pour fiabiliser la réalisation de la soudure, pendant la thermocompression, entre l'ensemble comprenant une électrode et un électrolyte solide et le sous-système auquel il est adossé, il est également possible de déposer sur l'ensemble comprenant une électrode et un électrolyte solide, et/ou sur le sous-système auquel il sera adossé, une fine couche du même polymère conducteur ionique utilisé pour imprégner l'ensemble selon l'invention. Ceci permet d'accroître la plage de température de fonctionnement de la batterie finale.
Dans le même but, il est aussi possible de déposer sur l'ensemble comprenant une électrode et un électrolyte solide, et/ou sur le sous-système auquel il sera adossé, une fine couche de particules coeur-écorce dont le coeur est réalisé à partir du même matériau inorganique E que celui utilisé pour réaliser le séparateur de l'ensemble selon l'invention, et l'écorce est réalisée à partir du même polymère conducteur ionique employé
lors de l'imprégnation de l'ensemble selon l'invention. Ceci permet d'accroître les propriétés mécaniques du séparateur ainsi que son adhérence au sous-système auquel il est adossé.
L'ensemble constitué d'une électrode positive poreuse et d'un séparateur selon l'invention et imprégné par un polymère conducteur ionique, est particulièrement bien adapté à la réalisation de cellule batterie de très haute densité d'énergie utilisant des électrodes négatives en lithium métallique. En effet, pour utiliser des électrodes négatives en lithium métallique il est impératif que la cellule soit entièrement solide, dépourvue d'électrolyte liquide et/ou de poches d'électrolyte liquides piégées dans des polymères ou autres phases. Ces phases liquides sont des zones privilégiées de précipitation du lithium métallique.
Dans un autre mode de réalisation, il est également possible d'adosser puis d'assembler l'ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention et imprégné par un polymère conducteur ionique comprenant ou non des sels de lithium :
- avec une électrode poreuse de signe opposée, ou - avec une électrode poreuse de signe opposée recouverte d'un séparateur poreux, ou - avec un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention.
L'assemblage de l'empilement obtenu doit être effectué par thermopressage à
chaud.
Dans le cas où il n'y aurait pas d'organiques pour faire la liaison entre les différents sous-ensembles, les températures de pressage devront être relativement élevées et préférentiellement supérieure à 400 C. Aussi, ces traitements devront être réalisés sous atmosphère inerte ou sous vide pour éviter d'altérer le revêtement de matériau conducteur électronique présent sur l'électrode poreuse de l'ensemble selon l'invention.
L'assemblage obtenu peut être imprégné ultérieurement avec un électrolyte, qu'il soit solide ou liquide. L'imprégnation par un électrolyte solide, tel qu'un polymère conducteur ionique comprenant des sels de lithium sans phase liquide permet de réaliser des batteries fonctionnant avec des électrodes négatives à bas potentiel d'insertion sans former de dendrites de lithium.
EXEMPLES
Exemple 1 : Réalisation d'une électrode positive poreuse à base de LiMn204 :
On a préparé une suspension de nanoparticules de LiMn204 par synthèse hydrothermale selon le procédé décrit dans l'article de Liddle et al. intitulée A new one pot hydrothermal synthesis and electrochemical charactérisation of Li1,Mn204 spinel structured compounds , Energy & Environmental Science (2010) vol.3, page 1339-1346:
14,85 g de Li0H,H20 ont été dissous dans 500 ml d'eau. On a ajouté à cette solution 43,1g de KMn04 et versé cette phase liquide dans un autoclave. Sous agitation on a ajouté 28 ml d'isobutyraldéhyde, 25g/I de polyvinylpyrrolidone (PVP) à 40 000 g/mol, et de l'eau jusqu'à atteindre un volume total de 3,54 I. L'autoclave a ensuite été
chauffé à
180 C et maintenu à cette température pendant 6 heures. Après un lent refroidissement, on a obtenu un précipité noir en suspension dans le solvant. Ce précipité a été soumis à
une succession d'étapes de centrifugation - redispersion dans l'eau, jusqu'à
obtenir une suspension agrégée. Les agrégats obtenus étaient constitués de particules primaires agrégées de taille de 10 à 20 nm. Les agrégats obtenus avaient une forme sphérique et un diamètre moyen d'environ 150 nm. La quantité de PVP ajoutée au milieu réactionnel a permis d'ajuster la taille et la forme des agglomérats obtenus.
On a ensuite ajouté à la suspension aqueuse d'agrégats environ 10 à 15 % en masse de 5 polyvinylpyrrolidone (PVP) à 360 000 g/mol. L'eau a ensuite été évaporée jusqu'à ce que la suspension aqueuse d'agrégats ait un extrait sec de 10%. L'encre ainsi obtenue a ensuite été appliquée sur un feuillard en acier inoxydable (316L) d'une épaisseur de 5 pm.
Le dépôt obtenu a ensuite été séché dans une étuve contrôlée en température et d'humidité afin d'éviter la formation de fissures au séchage. On a ainsi obtenu un dépôt 10 d'environ 10 pm d'épaisseur.
Le dépôt obtenu a ensuite été consolidé à 600 C pendant 1 h dans l'air afin de souder les nanoparticules entre elles, d'améliorer l'adhérence au substrat et de parfaire la recristallisation du LiMn204. Le film poreux obtenu présente une porosité
ouverte d'environ 45 % en volume avec des pores d'une taille comprise entre 10 nm et 20 nm.
15 Le film poreux a ensuite été imprégné par une solution aqueuse de saccharose à environ 20 g/I, puis a été recuit à 400 C sous N2 afin d'obtenir un nano-revêtement de carbone sur la totalité de la surface accessible du film poreux.
Exemple 2: Fabrication d'un ensemble électrode poreuse et séparateur électrolytique 20 intégré en utilisant l'électrode selon l'exemple 1 Une cathode a été réalisée selon l'exemple 1. Cette électrode a été recouverte d'une couche poreuse à partir d'une suspension de nanoparticules de Li3PO4 comme indiqué ci-dessous.
25 Réalisation d'une suspension de nanoparticules de Li3PO4 Deux solutions ont été préparées :
11,44 g de CH3COOLi, 2H20 ont été dissous dans 112 ml d'eau, puis 56 ml d'eau ont été
ajoutés sous vive agitation au milieu afin d'obtenir une solution A.
4,0584g de H3PO4 ont été dilués dans 105,6 ml d'eau, puis 45,6 ml d'éthanol ont été
30 ajoutés à cette solution afin d'obtenir une seconde solution appelée ci-après solution B.
La solution B a ensuite été ajoutée, sous vive agitation, à la solution A.
La solution obtenue, parfaitement limpide après disparition des bulles formées au cours du mélange, a été ajoutée à 1,2 litres d'acétone sous action d'un homogénéisateur de type UltraturraxTm afin d'homogénéiser le milieu. On a immédiatement observé
une 35 précipitation blanche en suspension dans la phase liquide.
Le milieu réactionnel a été homogénéisé pendant 5 minutes puis a été maintenu minutes sous agitation magnétique. On a laissé décanter pendant 1 à 2 heures.
Le surnageant a été écarté puis la suspension restante a été centrifugée 10 minutes à
6000 rpm. Ensuite on a ajouté 300 ml d'eau pour remettre le précipité en suspension (utilisation d'une sonotrode, agitation magnétique). Sous vive agitation, on a ajouté 125 ml d'une solution de tripolyphosphate de sodium à 100g/I à la suspension colloïdale ainsi obtenue. La suspension est ainsi devenue plus stable. La suspension a ensuite été
soniquée à l'aide d'une sonotrode. La suspension a ensuite été centrifugée 15 minutes à
8000 rpm. Le culot a ensuite été redispersé dans 150 ml d'eau. Puis la suspension obtenue a de nouveau été centrifugée 15 minutes à 8000 rpm et les culots obtenus redispersés dans 300 ml d'éthanol afin d'obtenir une suspension apte à la réalisation d'un dépôt électrophorétique.
Des agglomérats d'environ 100 nm constitués de particules primaires de Li3PO4 de 15 nm ont ainsi été obtenus en suspension dans l'éthanol, avec le Bis(Monoacylglycero)Phosphate (abrégé BMP) comme stabilisant.
Réalisation sur la cathode précédemment élaborée d'une couche poreuse à partir de la suspension de nanoparticules de Li3PO4 précédemment décrite Une couche mince poreuse de Li3PO4 a ensuite été déposée par enduction par trempage dans la suspension de nanoparticules de Li3PO4 précédemment obtenue, contenant g/L de nanoparticules agglomérées, avec une vitesse de dépôt d'environ 10 mm/s. On obtient ainsi une couche d'une épaisseur d'environ 3 pm à 4 pm sur l'électrode. La couche a ensuite été séchée à l'air à 120 C puis un traitement de calcination à environ 350 C à 400 C pendant 60 minutes a été effectué sur cette couche préalablement séchée afin d'éliminer toute trace de résidus organiques du séparateur tout en conservant le nano-revêtement de carbone de l'électrode poreuse.
son efficacité.
La technique de dépôt par CSD permet également de réaliser un revêtement enrobant avec un précurseur du matériau conducteur électronique qui reproduit fidèlement la topographie du substrat ; il tapisse la totalité de la surface des électrodes.
Ce revêtement enrobant présente typiquement une épaisseur inférieure à 5 nm, de préférence comprise entre 1 nm et 5 nm. Il doit ensuite être transformé en matériau conducteur électronique.
Dans le cas d'un précurseur de carbone cela sera fait par pyrolyse, de préférence sous gaz inerte (tel quel l'azote).
Dans cette variante de dépôt d'une nanocouche de matériau conducteur électronique, il est préférable que le diamètre D50 des particules primaires de matériau d'électrode soit d'au moins 10 nm afin d'éviter que la couche conductrice ne bouche la porosité
ouverte de la couche.
7. Réalisation du séparateur (couche de matériau inorganique E) sur l'électrode poreuse Sur l'électrode poreuse, de préférence mésoporeuse, comprenant un revêtement d'un matériau conducteur électronique est déposée, de préférence après séchage, une couche d'au moins un matériau inorganique E, à partir de suspensions de nanoparticules de matériau inorganique E, à l'aide de techniques de revêtement connues comme indiqué
dans le paragraphe 4 ci-dessus. Le procédé de dépôt de couches inorganiques poreuses à partir d'une suspension de nanoparticules est connu en tant que tel (voir par exemple VVO 2019/215411 A1).
Dans un mode de réalisation, le matériau employé pour la fabrication de couches poreuses pouvant servir comme séparateur selon l'invention est choisi parmi les matériaux inorganiques à bas point de fusion, isolant électroniques et stables au contact des électrodes pendant les étapes de pressage à chaud. Plus les matériaux seront réfractaires, plus il sera nécessaire de chauffer au niveau des interfaces électrode /
séparateur électrolytique, à des températures élevées risquant ainsi de modifier les interfaces avec les matériaux d'électrodes, notamment par interdiffusion, ce qui engendre des réactions parasites et crée des couches de déplétion dont les propriétés électrochimiques diffèrent de celles que l'on trouve dans le même matériau à
une plus grande profondeur à partir de l'interface. Les matériaux comprenant du lithium sont à
privilégier car ils permettent d'éviter voire d'éliminer ces phénomènes d'appauvrissement 5 en lithium.
Le matériau employé pour la fabrication de couches inorganiques poreuses selon l'invention peut être un matériau conducteur ionique tel qu'un électrolyte solide comprenant du lithium afin d'éviter la formation de zones de déplétion en lithium aux interfaces électrode / séparateur électrolytique. Le matériau inorganique E
comprend, 10 avantageusement, un matériau isolant électroniquement, de préférence choisi parmi les matériaux sélectionnés dans le groupe formé par les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3PO4; le LiP03; le Li3A13,4Scie(PO4)3 appelés LASP ; le Lii-ExZr2_xCax(PO4.)3 avec 0 x 5 0,25;
le Lii-E2xZr2-xCax(PO4)3 avec 0 x 5 0,25 tel que le Lii,2Zrt9Cao,i(PO4)3 ou le Lii,4ZrieCa0,2(PO4.)3; le 15 LiZr2(PO4)3; le Li1-E3xZr2(Pi-xSix0.4)3 avec 1,8 < x < 2,3 ; le Lii+exZr2(Pi-xBx0.4)3 avec 0 x 0,25 ; le Li3(Sc2,<Mx)(PO4.)3 avec M=A1 ou Y et 0 x 1 ; le Li1-ExMx(Sc)2_x(PO4.)3 avec M =
Al, Y, Ga ou un mélange de ces trois éléments et 0 5 x 5 0,8; le Li I\A (nn Se= 1 (Po avec 0 x 5 0,8; 0 <y 5 1 et M= Al et/ou Y; le Lii+,<Mx(Ga)2_x(P0.4)3 avec M = Al et/ou Y et 0 x 5 0,8 ; le Lii+,<A1xTi2,(PO4)3 avec 0 x 1 appelés LATP ; ou le Li1+xAlxGe2_ 20 x(PO4)3 avec 0 x 1 appelés LAGP ; ou le Lii,Mx(Gel-yTiy)2-xSi,P3_,012 avec 05x50,8 et 05y51,0 et 05z50,6 et M= Al, Ga ou Y ou un mélange de deux ou trois de ces éléments ; le Li3+y(Sc2_xMx)QyP3_y012 avec M = Al et/ou Y et Q = Si et/ou Se, 0 x 5 0,8 et 0 5 y 5 1 ; ou le Lii+x-,,,MxSc2-xQyP3_y012 avec M = Al, Y, Ga ou un mélange de ces trois éléments et Q = Si et/ou Se, 0 x 5 0,8 et 0 5 y 5 1 ; ou le Lii-Ex+y-E,Mx(Gai_yScy)2_xQzP3-z012 25 avec 0 x 5 0,8 , 0 5 y 5 1 , 0 z 5 0,6 avec M = Al et/ou Y et Q= Si et/ou Se ; ou le x¨xx= 312 Lii 2r2,Bx(PO4)3 avec 0 x 5 0,25; ou Lii+Ivl3¨ 2- P o avec 0 x 5 1 et M3= Cr, V, Ca, B, Mg, Bi et/ou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces éléments. Le Li3PO4.est particulièrement préféré.
Cette couche inorganique est un film céramique poreux, de préférence mésoporeux, qui 30 assure la fonction de séparation électrolytique. Les nanoparticules céramiques utilisées pour fabriquer le séparateur de l'ensemble selon l'invention, doivent être stables électrochimiquement au contact des électrodes et être isolantes électroniquement, et de préférence conductrices des ions lithium. Le fait de déposer cette couche inorganique (film céramique mésoporeux) permet de réduire l'épaisseur du film électrolytique. Cette 35 couche présente d'excellentes propriétés mécaniques. Cette réduction d'épaisseur permet d'accroître la densité d'énergie volumique des batteries.
Le caractère totalement céramique et/ou vitrocéramique de cette couche inorganique poreuse, sans éléments organiques, permet de garantir une excellente tenue mécanique, un parfait mouillage par des électrolytes liquides, même par des liquides ioniques à
température ambiante, et permet également d'assurer le fonctionnement des cellules batteries dans de très larges gammes de températures (pas de risques de fonte et/ou de cassure du séparateur).
La réalisation d'une telle couche inorganique poreuse, i.e. d'un tel séparateur, sur les électrodes poreuses reste très difficile à réaliser. En effet, la performance des électrodes poreuses selon l'invention vient en partie du fait qu'elles sont recouvertes en surface par un revêtement d'un matériau conducteur électronique, tel que du carbone.
Cependant, les dépôts d'agglomérats de nanoparticules inorganiques E servant à assurer la fonction de séparation électrolytique sont après dépôt, riches en matières organiques. Ces matières organiques se trouvant dans le solvant adsorbée en surface des nanoparticules ainsi que dans les stabilisants organiques utilisées dans la formulation de la suspension de nanoparticules inorganiques E. Ainsi, avant d'imprégner l'ensemble constitué
d'une électrode poreuse et d'un séparateur selon l'invention, il convient d'éliminer ces résidus organiques du séparateur. Pour cela il est nécessaire de réaliser des traitements de calcination. Ces traitements de calcination sont réalisés par recuit sous air afin de transformer ces organiques en CO2 et les éliminer. Cependant, pour garantir les performances de l'électrode poreuse associée à ce séparateur céramique, il est fondamental que le revêtement de matériau conducteur électronique, tel que le revêtement de carbone présent à la surface des électrodes poreuses ne soit pas éliminé
par le traitement de calcination des organiques. Pour cela, la demanderesse a identifié
des conditions de traitement qui permettent d'éliminer les organiques tout en conservant le revêtement de matériau conducteur électronique, tel que le revêtement de carbone sur l'électrode poreuse, sans qu'il y ait de dépôt de carbone dans le séparateur qui pourrait nuire à l'isolation électrique de la cellule, notamment son autodécharge.
Ce traitement thermique est fait sous air, à une température modérée, afin de permettre l'élimination des organiques contenu dans le dépôt de séparateur électrolytique sous forme de CO2 tout en conservant le revêtement de matériau conducteur électronique, tel que le revêtement de carbone présent à la surface des électrodes poreuses.
Pour cela, un traitement thermique à moins de 500 C et préférentiellement à une température comprise entre environ 250 C et environ 450 C, et manière optimale) environ 400 C, est réalisé.
Après traitement thermique, un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention est obtenu.
8. Imprégnation de l'ensemble par un électrolyte afin d'obtenir un organe fonctionnel d'une batterie Selon un premier mode de réalisation de l'invention, l'ensemble est imprégné
avec un polymère contenant des sels de lithium, et qui est donc un conducteur ionique, l'espèce d'ion transportée étant les ions de lithium.
Selon un deuxième mode de réalisation de l'invention, l'ensemble est imprégné
avec un électrolyte liquide ; il peut s'agir par exemple d'un liquide ionique ou d'un solvant aprotique dans lequel on a dissout un ou plusieurs sels de lithium. On peut aussi utiliser un polyliquide ionique (en anglais poly(ionic liquid) , abrégé PIL).
Plus précisément, l'ensemble selon l'invention (avant son imprégnation) ne contient pas de composés organiques, et cette absence de composés organiques couplée à une structure mésoporeuse favorise le mouillage par un électrolyte conducteur des ions lithium. Cet électrolyte peut alors indifféremment être sélectionné dans le groupe formé
par: un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium, un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium, un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium, un polymère conducteur ionique contenant au moins un sel de lithium, ou encore un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium. Ledit polymère est avantageusement sélectionné
dans le groupe formé par : le poly(éthylène oxyde) (couramment abrégé PEO), le poly(propylène oxyde), le polydiméthylsiloxane (couramment abrégé PDMS), le polyacrylonitrile (couramment abrégé PAN), le poly(méthyl méthacrylate) (couramment abrégé
PMMA), le poly(vinyl ch bride) (couramment abrégé PVC), le poly(vinylidène fluoride) (couramment abrégé PVDF), le PVDF-hexafluoropropylène.
Ledit polymère, contenant ou non des sels de lithium, est typiquement solide à
la température ambiante et peut être fondu et cette phase fondue peut ensuite être imprégnée dans la mésoporosité de l'ensemble. Une fois refroidi, un ensemble comprenant une électrode et un électrolyte solide est obtenu.
Cet ensemble comprenant une électrode et un électrolyte solide peut être utilisé de plusieurs manières pour réaliser des cellules élémentaires de batteries.
9. Utilisation de l'ensemble comprenant une électrode poreuse et un électrolyte solide pour réaliser des cellules élémentaires de batteries Comme indiqué précédemment, l'ensemble selon l'invention peut être imprégné
par une phase fondue comprenant un polymère conducteur ionique, et optionnellement des sels de lithium. Une fois refroidi, un ensemble comprenant une électrode poreuse pour électrode et un électrolyte solide est obtenu. Cet ensemble comprenant une électrode et un électrolyte solide peut être utilisé de plusieurs façons pour réaliser des cellules élémentaires de batteries, et, in fine, des batteries.
Cet ensemble comprenant une électrode et un électrolyte solide peut être adossé :
- à un autre ensemble comprenant une électrode et un électrolyte solide, ou - à une électrode dense, ou - à une électrode poreuse préalablement imprégnée par un polymère, ou - à une électrode dense préalablement recouverte d'une couche d'électrolyte, ou - à une électrode poreuse préalablement recouverte d'un électrolyte poreux dont l'ensemble est imprégné par un polymère.
Les empilements obtenus sont ensuite thermocomprimés à chaud de manière à
assembler les cellules élémentaires des batteries. Lors de la thermocompression, le polymère conducteur ionique imprégné va se ramollir et permettre de faire la soudure entre l'ensemble comprenant une électrode et un électrolyte solide et le sous-système auquel il est adossé.
Pour fiabiliser la réalisation de la soudure, pendant la thermocompression, entre l'ensemble comprenant une électrode et un électrolyte solide et le sous-système auquel il est adossé, il est également possible de déposer sur l'ensemble comprenant une électrode et un électrolyte solide, et/ou sur le sous-système auquel il sera adossé, une fine couche du même polymère conducteur ionique utilisé pour imprégner l'ensemble selon l'invention. Ceci permet d'accroître la plage de température de fonctionnement de la batterie finale.
Dans le même but, il est aussi possible de déposer sur l'ensemble comprenant une électrode et un électrolyte solide, et/ou sur le sous-système auquel il sera adossé, une fine couche de particules coeur-écorce dont le coeur est réalisé à partir du même matériau inorganique E que celui utilisé pour réaliser le séparateur de l'ensemble selon l'invention, et l'écorce est réalisée à partir du même polymère conducteur ionique employé
lors de l'imprégnation de l'ensemble selon l'invention. Ceci permet d'accroître les propriétés mécaniques du séparateur ainsi que son adhérence au sous-système auquel il est adossé.
L'ensemble constitué d'une électrode positive poreuse et d'un séparateur selon l'invention et imprégné par un polymère conducteur ionique, est particulièrement bien adapté à la réalisation de cellule batterie de très haute densité d'énergie utilisant des électrodes négatives en lithium métallique. En effet, pour utiliser des électrodes négatives en lithium métallique il est impératif que la cellule soit entièrement solide, dépourvue d'électrolyte liquide et/ou de poches d'électrolyte liquides piégées dans des polymères ou autres phases. Ces phases liquides sont des zones privilégiées de précipitation du lithium métallique.
Dans un autre mode de réalisation, il est également possible d'adosser puis d'assembler l'ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention et imprégné par un polymère conducteur ionique comprenant ou non des sels de lithium :
- avec une électrode poreuse de signe opposée, ou - avec une électrode poreuse de signe opposée recouverte d'un séparateur poreux, ou - avec un ensemble constitué d'une électrode poreuse et d'un séparateur selon l'invention.
L'assemblage de l'empilement obtenu doit être effectué par thermopressage à
chaud.
Dans le cas où il n'y aurait pas d'organiques pour faire la liaison entre les différents sous-ensembles, les températures de pressage devront être relativement élevées et préférentiellement supérieure à 400 C. Aussi, ces traitements devront être réalisés sous atmosphère inerte ou sous vide pour éviter d'altérer le revêtement de matériau conducteur électronique présent sur l'électrode poreuse de l'ensemble selon l'invention.
L'assemblage obtenu peut être imprégné ultérieurement avec un électrolyte, qu'il soit solide ou liquide. L'imprégnation par un électrolyte solide, tel qu'un polymère conducteur ionique comprenant des sels de lithium sans phase liquide permet de réaliser des batteries fonctionnant avec des électrodes négatives à bas potentiel d'insertion sans former de dendrites de lithium.
EXEMPLES
Exemple 1 : Réalisation d'une électrode positive poreuse à base de LiMn204 :
On a préparé une suspension de nanoparticules de LiMn204 par synthèse hydrothermale selon le procédé décrit dans l'article de Liddle et al. intitulée A new one pot hydrothermal synthesis and electrochemical charactérisation of Li1,Mn204 spinel structured compounds , Energy & Environmental Science (2010) vol.3, page 1339-1346:
14,85 g de Li0H,H20 ont été dissous dans 500 ml d'eau. On a ajouté à cette solution 43,1g de KMn04 et versé cette phase liquide dans un autoclave. Sous agitation on a ajouté 28 ml d'isobutyraldéhyde, 25g/I de polyvinylpyrrolidone (PVP) à 40 000 g/mol, et de l'eau jusqu'à atteindre un volume total de 3,54 I. L'autoclave a ensuite été
chauffé à
180 C et maintenu à cette température pendant 6 heures. Après un lent refroidissement, on a obtenu un précipité noir en suspension dans le solvant. Ce précipité a été soumis à
une succession d'étapes de centrifugation - redispersion dans l'eau, jusqu'à
obtenir une suspension agrégée. Les agrégats obtenus étaient constitués de particules primaires agrégées de taille de 10 à 20 nm. Les agrégats obtenus avaient une forme sphérique et un diamètre moyen d'environ 150 nm. La quantité de PVP ajoutée au milieu réactionnel a permis d'ajuster la taille et la forme des agglomérats obtenus.
On a ensuite ajouté à la suspension aqueuse d'agrégats environ 10 à 15 % en masse de 5 polyvinylpyrrolidone (PVP) à 360 000 g/mol. L'eau a ensuite été évaporée jusqu'à ce que la suspension aqueuse d'agrégats ait un extrait sec de 10%. L'encre ainsi obtenue a ensuite été appliquée sur un feuillard en acier inoxydable (316L) d'une épaisseur de 5 pm.
Le dépôt obtenu a ensuite été séché dans une étuve contrôlée en température et d'humidité afin d'éviter la formation de fissures au séchage. On a ainsi obtenu un dépôt 10 d'environ 10 pm d'épaisseur.
Le dépôt obtenu a ensuite été consolidé à 600 C pendant 1 h dans l'air afin de souder les nanoparticules entre elles, d'améliorer l'adhérence au substrat et de parfaire la recristallisation du LiMn204. Le film poreux obtenu présente une porosité
ouverte d'environ 45 % en volume avec des pores d'une taille comprise entre 10 nm et 20 nm.
15 Le film poreux a ensuite été imprégné par une solution aqueuse de saccharose à environ 20 g/I, puis a été recuit à 400 C sous N2 afin d'obtenir un nano-revêtement de carbone sur la totalité de la surface accessible du film poreux.
Exemple 2: Fabrication d'un ensemble électrode poreuse et séparateur électrolytique 20 intégré en utilisant l'électrode selon l'exemple 1 Une cathode a été réalisée selon l'exemple 1. Cette électrode a été recouverte d'une couche poreuse à partir d'une suspension de nanoparticules de Li3PO4 comme indiqué ci-dessous.
25 Réalisation d'une suspension de nanoparticules de Li3PO4 Deux solutions ont été préparées :
11,44 g de CH3COOLi, 2H20 ont été dissous dans 112 ml d'eau, puis 56 ml d'eau ont été
ajoutés sous vive agitation au milieu afin d'obtenir une solution A.
4,0584g de H3PO4 ont été dilués dans 105,6 ml d'eau, puis 45,6 ml d'éthanol ont été
30 ajoutés à cette solution afin d'obtenir une seconde solution appelée ci-après solution B.
La solution B a ensuite été ajoutée, sous vive agitation, à la solution A.
La solution obtenue, parfaitement limpide après disparition des bulles formées au cours du mélange, a été ajoutée à 1,2 litres d'acétone sous action d'un homogénéisateur de type UltraturraxTm afin d'homogénéiser le milieu. On a immédiatement observé
une 35 précipitation blanche en suspension dans la phase liquide.
Le milieu réactionnel a été homogénéisé pendant 5 minutes puis a été maintenu minutes sous agitation magnétique. On a laissé décanter pendant 1 à 2 heures.
Le surnageant a été écarté puis la suspension restante a été centrifugée 10 minutes à
6000 rpm. Ensuite on a ajouté 300 ml d'eau pour remettre le précipité en suspension (utilisation d'une sonotrode, agitation magnétique). Sous vive agitation, on a ajouté 125 ml d'une solution de tripolyphosphate de sodium à 100g/I à la suspension colloïdale ainsi obtenue. La suspension est ainsi devenue plus stable. La suspension a ensuite été
soniquée à l'aide d'une sonotrode. La suspension a ensuite été centrifugée 15 minutes à
8000 rpm. Le culot a ensuite été redispersé dans 150 ml d'eau. Puis la suspension obtenue a de nouveau été centrifugée 15 minutes à 8000 rpm et les culots obtenus redispersés dans 300 ml d'éthanol afin d'obtenir une suspension apte à la réalisation d'un dépôt électrophorétique.
Des agglomérats d'environ 100 nm constitués de particules primaires de Li3PO4 de 15 nm ont ainsi été obtenus en suspension dans l'éthanol, avec le Bis(Monoacylglycero)Phosphate (abrégé BMP) comme stabilisant.
Réalisation sur la cathode précédemment élaborée d'une couche poreuse à partir de la suspension de nanoparticules de Li3PO4 précédemment décrite Une couche mince poreuse de Li3PO4 a ensuite été déposée par enduction par trempage dans la suspension de nanoparticules de Li3PO4 précédemment obtenue, contenant g/L de nanoparticules agglomérées, avec une vitesse de dépôt d'environ 10 mm/s. On obtient ainsi une couche d'une épaisseur d'environ 3 pm à 4 pm sur l'électrode. La couche a ensuite été séchée à l'air à 120 C puis un traitement de calcination à environ 350 C à 400 C pendant 60 minutes a été effectué sur cette couche préalablement séchée afin d'éliminer toute trace de résidus organiques du séparateur tout en conservant le nano-revêtement de carbone de l'électrode poreuse.
Claims
REVENDICATIONS
1. Procédé de fabrication d'un dispositif électrochimique sélectionné dans le groupe formé par les batteries à ions de lithium, les batteries à ions de sodium, les batteries lithium ¨ air, les cellules photovoltaïques, les piles à
combustible, ledit procédé mettant en uvre un procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur poreux, ladite électrode comprenant une couche poreuse déposée sur un substrat, ladite couche étant exempte de liant, présentant une porosité comprise entre 20 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à
50 nm, ledit séparateur comprenant une couche inorganique poreuse déposée sur ladite électrode, ladite couche inorganique poreuse étant exempte de liant, présentant une porosité comprise entre 25 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication étant caractérisé en ce que :
(a) on approvisionne un substrat, une première suspension colloïdale ou une pâte comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d'au moins un matériau actif d'électrode P, de diamètre primaire moyen D50 compris entre 2 nm et 150 nm, de préférence entre 2 nm et 100 nm, et plus préférentiellement compris entre 2 nm et 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen Dsp compris entre 50 nm et 300 nm, de préférence entre 100 nm et 200 nm, et une seconde suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules d'au moins un matériau inorganique E, de diamètre primaire moyen D50 compris entre 2 nm et nm, de préférence compris entre 2 nm et 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre 50 nm et 300 nm, de préférence entre 100 nm et 200 nm, (b) on dépose sur au moins une face dudit substrat une couche à partir de ladite première suspension colloïdale ou pâte approvisionnée à l'étape (a), par une technique sélectionnée de préférence dans le groupe formé par :
l'électrophorèse, un procédé d'impression, choisi de préférence parmi l'impression par jet d'encre et l'impression flexographique, et un procédé d'enduction, choisi de préférence parmi l'enduction au rouleau, l'enduction au rideau, l'enduction par raclage, l'enduction par extrusion à travers une filière en forme de fente, l'enduction par trempage ;
(c) on sèche ladite couche obtenue à l'étape (b), le cas échéant avant ou après avoir séparée ladite couche de son substrat intermédiaire, puis, optionnellement on traite thermiquement, de préférence sous atmosphère oxydante, la dite couche séchée, et on la consolide, par pressage et/ou chauffage, pour obtenir une couche poreuse, de préférence mésoporeuse et inorganique, (d) on dépose, sur et à l'intérieur des pores de ladite couche poreuse, un revêtement d'un matériau conducteur électronique, de manière à former ladite électrode poreuse, (e) on dépose sur ladite électrode poreuse obtenue à l'étape (d), une couche inorganique poreuse à partir de la deuxième suspension colloïdale approvisionnée à
l'étape (a), par une technique sélectionnée dans le groupe formé par :
l'électrophorèse, un procédé d'impression, choisi de préférence parmi l'impression par jet d'encre et l'impression flexographique, et un procédé d'enduction, choisi de préférence parmi l'enduction au rouleau, l'enduction au rideau, l'enduction par raclage, l'enduction par extrusion à travers une filière en forme de fente, l'enduction par trempage, (f) on sèche ladite couche inorganique poreuse de la structure obtenue à
l'étape (e), de préférence sous flux d'air, et on réalise un traitement thermique à une température inférieure à 500 C, de préférence à environ 400 C afin d'obtenir ledit ensemble constitué d'une électrode poreuse et d'un séparateur poreux, sachant que ledit substrat peut être un substrat capable d'agir comme collecteur de courant électrique, ou un substrat intermédiaire.
2. Procédé selon la revendication 1, caractérisé en ce que ladite couche poreuse obtenue à l'issue de l'étape (c) présente une surface spécifique comprise entre 10 m2/g et 500 m2/g.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que ladite couche poreuse obtenue à l'issue de l'étape (c) présente une épaisseur comprise entre 4 pm et 400 pm.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lorsque ledit substrat est un substrat intermédiaire, ladite couche est séparée à
l'étape (c) avant ou après son séchage dudit substrat intermédiaire, pour former une plaque poreuse.
5. Procédé, caractérisé en ce que lorsque ladite suspension colloïdale ou pâte approvisionnée à l'étape (a) comprend des additifs organiques, tels que des ligands, stabilisants, liants ou solvants organiques résiduels, on traite thermiquement, de préférence sous atmosphère oxydante, ladite couche séchée à l'étape c) selon l'une quelconque des revendications 1 à 3, ou ladite plaque poreuse selon la revendication 4.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite couche inorganique poreuse obtenue à l'issue de l'étape (f) présente une épaisseur comprise entre 3 pm et 20 pm, et de préférence entre 5 pm et 10 pm.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit matériau conducteur électronique est le carbone.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le dépôt dudit revêtement de matériau conducteur électronique est effectué
par la technique de dépôt de couches atomiques, ou par immersion dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
9. Procédé selon la revendication 8, caractérisé en ce que ledit précurseur est un composé riche en carbone, tel qu'un glucide, de préférence un polysaccharide, et en ce que ladite transformation en matériau conducteur électronique est une pyrolyse, de préférence sous atmosphère inerte.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel ledit matériau P est sélectionné dans le groupe formé par :
o les oxydes LiMn204, Li1Mn2.x04 avec 0 < x < 0,15, LiCo02, LiNi02, LiMn1,5Nio,504, LiMni,5Nio,5.xXx04 où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où 0 < x < 0,1, LiMn2.xMx04 avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces éléments et où 0 < x < 0,4, LiFe02, LiMn113Ni1i3C011302, ,LiNi0.8Coo15Al0.0502, LiAlxMn2,04 avec 0 É x < 0,15, LiNi1heo1iyMn1izO2 avec x+y+z =10 ;
O LIMA où 0.6sys0.85; 0sx+y52; et M est choisi parmi AI, TI, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Sn, and Sb ou un mélange de ces éléments ;
Lii.2oNbo.2oMno.6002 ;
o Li1+xNbyMezApO2 où Me est au moins un métal de transition choisi parmi :
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs et Mt, et où 0.6<x<1; 0<y<0.5;
0.255z<1; avec A # Me et A # Nb, et 05p50.2 ;
O LixNby-aNaMz-bPb02-cFc OU 1.2<x~1.75; 0~y<0.55; 0.1<z<1; OÉa<0.5; 0513<1;
0Éc<0.8; et où M, N, et P sont chacun au moins un des éléments choisi dans le groupe constitué par Ti, Ta, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Zr, Y, Mo, Ru, Rh, et Sb ;
O Lit25Nbo.25Mn8.5002 ; Lit3Nbo.3Mno.4.002 ; Lit3N1a8.3FeOE4002 ;
Lit3NboA3Nio.2702 ;
Li1 .3Nbo.4.3Coo.2702 ; Li1 .4Nb0.2Mno.5302 O LixNio.2Mno.80y où 0.005)(51.52; 1.075y<2.4 ; 1...11.2Ni8.2Mno.602 ;
O LiNixCoyMn1-x-y02 où 0 x et y 5 0.5 ; LiNixCezCoyMni-x-y02 où 0 x et y 5 0.5 et 0 z ;
O les phosphates LiFePO4, LiMnPO4, LiCoPO4, LiN1PO4, LI3V2(PO4)3 ; Li2MPO4F
avec M = Fe, Co, Ni ou un mélange de ces différents éléments, LiMPO4F avec M = V, Fe, T ou un mélange de ces différents éléments ; les phosphates de formule LiMM'PO4, avec M et M' (M M') sélectionnés pamii Fe, Mn, Ni, Co, V tels que le LiFexCoi_xPO4 et où 0 < x < 1;
O les oxyfluorures de type FeoeomOF ; LiMS0.4F avec M = Fe, Co, Ni, Mn, Zn, Mg (D toutes les formes lithiées des chalcogénides suivants : V205, V308, TiS2, les oxysulfures de titane (TiOySz avec z=2-y et 0,35y51), les oxysulfures de tungstène (WOYSZ avec 0.6<y<3 et 0.1<z<2), CuS, CuS2, de préférence LIS205 avec 0 <x52, LixV308 avec 0 < x 1,7, LixTiS2 avec 0 < x 1, les oxysulfures de titane et de lithium LixTiOySz avec z=2-y, 0,3~y~1 et 0 < x 1, LixWOySz avec z=2-y, 0,35y51 et 0 < x 1, LixCuS avec 0 < x 5 1, LixCuS2 avec 0 < x 5 1.
1 1.
Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit matériau P est sélectionné dans le groupe formé par :
O Li4T15012, Li4Ti5-xMx012 avec M = V, Zr, Hf, Nb, Ta et 0 x 0,25 ;
O les oxydes de niobium et les oxydes mixtes de niobium avec le titane, le germanium, le cérium ou le tungstène, et de préférence dans le groupe formé
par :
O Nb205 5, Nb18W16033 8 , Nbi6W5055 5 avec 0 x < 1 et 0 5 ö ~ 2, LiNb03, O TiNb207 5, LiTiNb207 avec wK), T11_,(M1,Nb2.yM2y07 8 ou LiõvTi1M1xNb2-yM2y07 5 dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1 et M2 pouvant être identiques ou différents l'un de l'autre, et dans lesquels 0 w 5 et 0 x 1 eto5y52et0 54550,3;
O La xTi1Nb24x07 où 0<x<0.5 ;
O MxT11-2xNb2-,x07 5 = dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où
0<x50.20 et -0.35 O 50.3 ;
Gao:, oTio.8oN b2.1007 ;
Feo.1oTio.soNb2.1007 ;
0 MxT12-2xNbi0+x029 #3 O dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué
de Fe, Ga, Mo, Al, B, et où 0<x50.40 et -0.35 O 50.3 ;Tii.xMlxNb2.yM2y0TeM3z ou Li,,,Tii_xMlxNb2-yM2y07.zM3z dans lesquels O M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué
de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, O M1 et M2 pouvant être identiques ou différents l'un de l'autre, O M3 est au moins un halogène, O et dans lequel 0 5 w 5 5 et 0 5 x 5 1 et 0 5 y 5 2 et z 5 0,3 ;
O TiNb207.2M3z OU MiNb207.2M32 dans lesquels M3 est au moins un halogène, de préférence choisi parmi F, Cl, Br, l ou un mélange de ceux-ci, et 0 < z 5 0,3 ;
O Tii.xGexNb2-yMly0712 , LiwTil.xGexNb2.1,M1y0712 , Ti1.xCexNb2-yMly07 z , LiwTh-xCexNb2.
ylV11yO7 z dans lesquels = M1 et M2 sont au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn ;
= 05w 55 et 05 x 51 et 05 y 52 etz 50,3 ;
O Tii-xGexNb2-yM1y07-zM2z , Liw-xGexNb2-ykilly07-zrez, Til-xCexN
b2-yM1y07-z M2z, LOI -xCexNb2-yM1y07-zM2z , dans lesquels = M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, SI, Sr, K, Cs, Ce et Sn, = M1 et M2 pouvant être identiques ou différents l'un de l'autre, = et dans lesquels 0 5 w 5 5 et 0 5 x 5 1 et 0 5 y 5 2 et z 5 0,3 ;
O TiO2 ;
o LiSiTON.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel ledit matériau inorganique E comprend un matériau isolant électroniquement, de préférence choisi parmi :
O l'A1203, SiO2, Zr02, etku O un matériau sélectionné dans le groupe formé par les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3P0.4 ;
le LiPO3 ; le Li3Alo,4Sct5(PO4)3 appelés LASP ; le Lil+xZr2_xCax(PO4)3 avec 0 X 5 0,25 ; le Li1+22r2.xCax(PO4)3 avec 0 5 x 5 0,25 tel que le Li1,2Zri,3Ca0,1(PO4)3 ou le Lii,41r1,8Cao,2(PO4)3 ; le LiZr2(PO4)3 ; le Lii.32r2(Pl-xSi.04)3 avec 1,8 < x < 2,3 ; le Liii-82r2(Pl-xBx04)3 avec 0 5 x 5 0,25 ; le Li3(Sc2-xMx)(P0.4)3 avec M=Al ou Y et 0 5 x 5 1 ; le Li1+xMx(Sc)2.x(PO4)3 avec M = Al, Y, Ga ou un mélange de ces trois éléments et 0 5 x 5 0,8 ; le Lii+xMx(GallScy)2_ x(PO4)3 avec 0 5 x 5 0,8 ; 0 5 y 5 1 et M= Al et/ou Y ; le Lii+xMx(Ga)2-x(PO4)3 avec M = Al et/ou Y et 0 5 x 5 0,8 ; le Li1+xAlx-112-x(PO4)3 avec 0 5 x 5 1 appelés LATP ; ou le Li14-xALGe2_x(PO4)3 avec 0 5 x 5 1 appelés LAGP ; ou le Liii-xi-zMx(Gei_yTiy)2_,,Si,P3.z012 avec 05)(50,8 et 05y51,0 et 05z50,6 et M=
Al, Ga ou Y ou un mélange de deux ou trois de ces éléments ; le Li34.y(Sc2.xMx)QyP3.
y012 avec M = Al et/ou Y et Q = Si et/ou Se, 0 5 x 5 0,8 et 0 5 y 5 1 ; ou le Lii","MxSc2_,,QyPa_y012 avec M = AI, Y, Ga ou un mélange de ces trois éléments et Q = Si et/ou Se, 0 5 x 5 0,8 et 0 5 y 5 1 ; ou le 1-11+x+y+zhAx(Gal-ySCO2-xQzP3-z012 avec 0 5 x 5 0,8 , 0 5 y 5 1 , 0 5 z 5 0,6 avec M = Al etku Y et Q= Si et/ou Se ; ou le Liii-,Zr2.x113.(PO4)3 avec 0 5 x 5 0,25 ; ou Li14-xM3xM2-xP3012 avec 0 5 x 1 et M3= Cr, V, Ca, B, Mg, BI etiou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces éléments.
13.
Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'on imprègne ledit ensemble constitué d'une électrode poreuse et d'un séparateur poreux par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné dans le groupe formé par :
O un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
O un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
O un mélange d'au moins un solvant aprotique et d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ;
et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse, ledit polymère étant de préférence sélectionné dans le groupe formé par le poly(éthylène oxyde), le poly(propylène oxyde), le polydiméthylsiloxane, le polyacrylonitrile, le poly(méthyl méthacrylate), le poly(vinyl chloride), le poly(vinylidène fluoride), le PVDF-hexafluoropropylène.
14. Procédé selon l'une quelconque des revendications 1 à 13 dans lequel on met en uvre le procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon la revendication 8 pour fabriquer un ensemble dont ladite électrode est une électrode positive.
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel on met en oeuvre le procédé selon la revendication 9 pour fabriquer un ensemble dont ladite électrode est une électrode négative.
16. Procédé selon l'une quelconque des revendications 14 à 15, dans lequel ledit ensemble constitué d'une électrode poreuse et d'un séparateur est imprégné par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné
dans le groupe formé par :
O un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
O un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un mélange de solvants aprotiques et de liquides ioniques ou polyliquide ionique et de sels de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ;
et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide ou polyliquide ionique, soit dans la phase polymère, soit dans la structure mésoporeuse, ledit polymère étant de préférence sélectionné dans le groupe formé par le poly(éthylène oxyde), le poly(propylène oxyde), le polydiméthylsiloxane, le polyacrylonitrile, le poly(méthyl méthacrylate), le poly(vinyl chloride), le poly(vinylidène fluoride), le PVDF-hexafluoropropylène.
17. Batterie à ions de lithium, susceptible d'être obtenue par le procédé
selon l'une quelconque des revendications 1 à 16.
18. Dispositif électrochimique, sélectionné dans le groupe formé par les batteries à
ions de sodium, les batteries lithium ¨ air, les piles à combustible et les cellules photovoltaïques, susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 16.
1. Procédé de fabrication d'un dispositif électrochimique sélectionné dans le groupe formé par les batteries à ions de lithium, les batteries à ions de sodium, les batteries lithium ¨ air, les cellules photovoltaïques, les piles à
combustible, ledit procédé mettant en uvre un procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur poreux, ladite électrode comprenant une couche poreuse déposée sur un substrat, ladite couche étant exempte de liant, présentant une porosité comprise entre 20 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à
50 nm, ledit séparateur comprenant une couche inorganique poreuse déposée sur ladite électrode, ladite couche inorganique poreuse étant exempte de liant, présentant une porosité comprise entre 25 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication étant caractérisé en ce que :
(a) on approvisionne un substrat, une première suspension colloïdale ou une pâte comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d'au moins un matériau actif d'électrode P, de diamètre primaire moyen D50 compris entre 2 nm et 150 nm, de préférence entre 2 nm et 100 nm, et plus préférentiellement compris entre 2 nm et 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen Dsp compris entre 50 nm et 300 nm, de préférence entre 100 nm et 200 nm, et une seconde suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules d'au moins un matériau inorganique E, de diamètre primaire moyen D50 compris entre 2 nm et nm, de préférence compris entre 2 nm et 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre 50 nm et 300 nm, de préférence entre 100 nm et 200 nm, (b) on dépose sur au moins une face dudit substrat une couche à partir de ladite première suspension colloïdale ou pâte approvisionnée à l'étape (a), par une technique sélectionnée de préférence dans le groupe formé par :
l'électrophorèse, un procédé d'impression, choisi de préférence parmi l'impression par jet d'encre et l'impression flexographique, et un procédé d'enduction, choisi de préférence parmi l'enduction au rouleau, l'enduction au rideau, l'enduction par raclage, l'enduction par extrusion à travers une filière en forme de fente, l'enduction par trempage ;
(c) on sèche ladite couche obtenue à l'étape (b), le cas échéant avant ou après avoir séparée ladite couche de son substrat intermédiaire, puis, optionnellement on traite thermiquement, de préférence sous atmosphère oxydante, la dite couche séchée, et on la consolide, par pressage et/ou chauffage, pour obtenir une couche poreuse, de préférence mésoporeuse et inorganique, (d) on dépose, sur et à l'intérieur des pores de ladite couche poreuse, un revêtement d'un matériau conducteur électronique, de manière à former ladite électrode poreuse, (e) on dépose sur ladite électrode poreuse obtenue à l'étape (d), une couche inorganique poreuse à partir de la deuxième suspension colloïdale approvisionnée à
l'étape (a), par une technique sélectionnée dans le groupe formé par :
l'électrophorèse, un procédé d'impression, choisi de préférence parmi l'impression par jet d'encre et l'impression flexographique, et un procédé d'enduction, choisi de préférence parmi l'enduction au rouleau, l'enduction au rideau, l'enduction par raclage, l'enduction par extrusion à travers une filière en forme de fente, l'enduction par trempage, (f) on sèche ladite couche inorganique poreuse de la structure obtenue à
l'étape (e), de préférence sous flux d'air, et on réalise un traitement thermique à une température inférieure à 500 C, de préférence à environ 400 C afin d'obtenir ledit ensemble constitué d'une électrode poreuse et d'un séparateur poreux, sachant que ledit substrat peut être un substrat capable d'agir comme collecteur de courant électrique, ou un substrat intermédiaire.
2. Procédé selon la revendication 1, caractérisé en ce que ladite couche poreuse obtenue à l'issue de l'étape (c) présente une surface spécifique comprise entre 10 m2/g et 500 m2/g.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que ladite couche poreuse obtenue à l'issue de l'étape (c) présente une épaisseur comprise entre 4 pm et 400 pm.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lorsque ledit substrat est un substrat intermédiaire, ladite couche est séparée à
l'étape (c) avant ou après son séchage dudit substrat intermédiaire, pour former une plaque poreuse.
5. Procédé, caractérisé en ce que lorsque ladite suspension colloïdale ou pâte approvisionnée à l'étape (a) comprend des additifs organiques, tels que des ligands, stabilisants, liants ou solvants organiques résiduels, on traite thermiquement, de préférence sous atmosphère oxydante, ladite couche séchée à l'étape c) selon l'une quelconque des revendications 1 à 3, ou ladite plaque poreuse selon la revendication 4.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite couche inorganique poreuse obtenue à l'issue de l'étape (f) présente une épaisseur comprise entre 3 pm et 20 pm, et de préférence entre 5 pm et 10 pm.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit matériau conducteur électronique est le carbone.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le dépôt dudit revêtement de matériau conducteur électronique est effectué
par la technique de dépôt de couches atomiques, ou par immersion dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
9. Procédé selon la revendication 8, caractérisé en ce que ledit précurseur est un composé riche en carbone, tel qu'un glucide, de préférence un polysaccharide, et en ce que ladite transformation en matériau conducteur électronique est une pyrolyse, de préférence sous atmosphère inerte.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel ledit matériau P est sélectionné dans le groupe formé par :
o les oxydes LiMn204, Li1Mn2.x04 avec 0 < x < 0,15, LiCo02, LiNi02, LiMn1,5Nio,504, LiMni,5Nio,5.xXx04 où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où 0 < x < 0,1, LiMn2.xMx04 avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces éléments et où 0 < x < 0,4, LiFe02, LiMn113Ni1i3C011302, ,LiNi0.8Coo15Al0.0502, LiAlxMn2,04 avec 0 É x < 0,15, LiNi1heo1iyMn1izO2 avec x+y+z =10 ;
O LIMA où 0.6sys0.85; 0sx+y52; et M est choisi parmi AI, TI, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Sn, and Sb ou un mélange de ces éléments ;
Lii.2oNbo.2oMno.6002 ;
o Li1+xNbyMezApO2 où Me est au moins un métal de transition choisi parmi :
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs et Mt, et où 0.6<x<1; 0<y<0.5;
0.255z<1; avec A # Me et A # Nb, et 05p50.2 ;
O LixNby-aNaMz-bPb02-cFc OU 1.2<x~1.75; 0~y<0.55; 0.1<z<1; OÉa<0.5; 0513<1;
0Éc<0.8; et où M, N, et P sont chacun au moins un des éléments choisi dans le groupe constitué par Ti, Ta, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Zr, Y, Mo, Ru, Rh, et Sb ;
O Lit25Nbo.25Mn8.5002 ; Lit3Nbo.3Mno.4.002 ; Lit3N1a8.3FeOE4002 ;
Lit3NboA3Nio.2702 ;
Li1 .3Nbo.4.3Coo.2702 ; Li1 .4Nb0.2Mno.5302 O LixNio.2Mno.80y où 0.005)(51.52; 1.075y<2.4 ; 1...11.2Ni8.2Mno.602 ;
O LiNixCoyMn1-x-y02 où 0 x et y 5 0.5 ; LiNixCezCoyMni-x-y02 où 0 x et y 5 0.5 et 0 z ;
O les phosphates LiFePO4, LiMnPO4, LiCoPO4, LiN1PO4, LI3V2(PO4)3 ; Li2MPO4F
avec M = Fe, Co, Ni ou un mélange de ces différents éléments, LiMPO4F avec M = V, Fe, T ou un mélange de ces différents éléments ; les phosphates de formule LiMM'PO4, avec M et M' (M M') sélectionnés pamii Fe, Mn, Ni, Co, V tels que le LiFexCoi_xPO4 et où 0 < x < 1;
O les oxyfluorures de type FeoeomOF ; LiMS0.4F avec M = Fe, Co, Ni, Mn, Zn, Mg (D toutes les formes lithiées des chalcogénides suivants : V205, V308, TiS2, les oxysulfures de titane (TiOySz avec z=2-y et 0,35y51), les oxysulfures de tungstène (WOYSZ avec 0.6<y<3 et 0.1<z<2), CuS, CuS2, de préférence LIS205 avec 0 <x52, LixV308 avec 0 < x 1,7, LixTiS2 avec 0 < x 1, les oxysulfures de titane et de lithium LixTiOySz avec z=2-y, 0,3~y~1 et 0 < x 1, LixWOySz avec z=2-y, 0,35y51 et 0 < x 1, LixCuS avec 0 < x 5 1, LixCuS2 avec 0 < x 5 1.
1 1.
Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit matériau P est sélectionné dans le groupe formé par :
O Li4T15012, Li4Ti5-xMx012 avec M = V, Zr, Hf, Nb, Ta et 0 x 0,25 ;
O les oxydes de niobium et les oxydes mixtes de niobium avec le titane, le germanium, le cérium ou le tungstène, et de préférence dans le groupe formé
par :
O Nb205 5, Nb18W16033 8 , Nbi6W5055 5 avec 0 x < 1 et 0 5 ö ~ 2, LiNb03, O TiNb207 5, LiTiNb207 avec wK), T11_,(M1,Nb2.yM2y07 8 ou LiõvTi1M1xNb2-yM2y07 5 dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1 et M2 pouvant être identiques ou différents l'un de l'autre, et dans lesquels 0 w 5 et 0 x 1 eto5y52et0 54550,3;
O La xTi1Nb24x07 où 0<x<0.5 ;
O MxT11-2xNb2-,x07 5 = dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où
0<x50.20 et -0.35 O 50.3 ;
Gao:, oTio.8oN b2.1007 ;
Feo.1oTio.soNb2.1007 ;
0 MxT12-2xNbi0+x029 #3 O dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué
de Fe, Ga, Mo, Al, B, et où 0<x50.40 et -0.35 O 50.3 ;Tii.xMlxNb2.yM2y0TeM3z ou Li,,,Tii_xMlxNb2-yM2y07.zM3z dans lesquels O M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué
de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, O M1 et M2 pouvant être identiques ou différents l'un de l'autre, O M3 est au moins un halogène, O et dans lequel 0 5 w 5 5 et 0 5 x 5 1 et 0 5 y 5 2 et z 5 0,3 ;
O TiNb207.2M3z OU MiNb207.2M32 dans lesquels M3 est au moins un halogène, de préférence choisi parmi F, Cl, Br, l ou un mélange de ceux-ci, et 0 < z 5 0,3 ;
O Tii.xGexNb2-yMly0712 , LiwTil.xGexNb2.1,M1y0712 , Ti1.xCexNb2-yMly07 z , LiwTh-xCexNb2.
ylV11yO7 z dans lesquels = M1 et M2 sont au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn ;
= 05w 55 et 05 x 51 et 05 y 52 etz 50,3 ;
O Tii-xGexNb2-yM1y07-zM2z , Liw-xGexNb2-ykilly07-zrez, Til-xCexN
b2-yM1y07-z M2z, LOI -xCexNb2-yM1y07-zM2z , dans lesquels = M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, SI, Sr, K, Cs, Ce et Sn, = M1 et M2 pouvant être identiques ou différents l'un de l'autre, = et dans lesquels 0 5 w 5 5 et 0 5 x 5 1 et 0 5 y 5 2 et z 5 0,3 ;
O TiO2 ;
o LiSiTON.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel ledit matériau inorganique E comprend un matériau isolant électroniquement, de préférence choisi parmi :
O l'A1203, SiO2, Zr02, etku O un matériau sélectionné dans le groupe formé par les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3P0.4 ;
le LiPO3 ; le Li3Alo,4Sct5(PO4)3 appelés LASP ; le Lil+xZr2_xCax(PO4)3 avec 0 X 5 0,25 ; le Li1+22r2.xCax(PO4)3 avec 0 5 x 5 0,25 tel que le Li1,2Zri,3Ca0,1(PO4)3 ou le Lii,41r1,8Cao,2(PO4)3 ; le LiZr2(PO4)3 ; le Lii.32r2(Pl-xSi.04)3 avec 1,8 < x < 2,3 ; le Liii-82r2(Pl-xBx04)3 avec 0 5 x 5 0,25 ; le Li3(Sc2-xMx)(P0.4)3 avec M=Al ou Y et 0 5 x 5 1 ; le Li1+xMx(Sc)2.x(PO4)3 avec M = Al, Y, Ga ou un mélange de ces trois éléments et 0 5 x 5 0,8 ; le Lii+xMx(GallScy)2_ x(PO4)3 avec 0 5 x 5 0,8 ; 0 5 y 5 1 et M= Al et/ou Y ; le Lii+xMx(Ga)2-x(PO4)3 avec M = Al et/ou Y et 0 5 x 5 0,8 ; le Li1+xAlx-112-x(PO4)3 avec 0 5 x 5 1 appelés LATP ; ou le Li14-xALGe2_x(PO4)3 avec 0 5 x 5 1 appelés LAGP ; ou le Liii-xi-zMx(Gei_yTiy)2_,,Si,P3.z012 avec 05)(50,8 et 05y51,0 et 05z50,6 et M=
Al, Ga ou Y ou un mélange de deux ou trois de ces éléments ; le Li34.y(Sc2.xMx)QyP3.
y012 avec M = Al et/ou Y et Q = Si et/ou Se, 0 5 x 5 0,8 et 0 5 y 5 1 ; ou le Lii","MxSc2_,,QyPa_y012 avec M = AI, Y, Ga ou un mélange de ces trois éléments et Q = Si et/ou Se, 0 5 x 5 0,8 et 0 5 y 5 1 ; ou le 1-11+x+y+zhAx(Gal-ySCO2-xQzP3-z012 avec 0 5 x 5 0,8 , 0 5 y 5 1 , 0 5 z 5 0,6 avec M = Al etku Y et Q= Si et/ou Se ; ou le Liii-,Zr2.x113.(PO4)3 avec 0 5 x 5 0,25 ; ou Li14-xM3xM2-xP3012 avec 0 5 x 1 et M3= Cr, V, Ca, B, Mg, BI etiou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces éléments.
13.
Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'on imprègne ledit ensemble constitué d'une électrode poreuse et d'un séparateur poreux par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné dans le groupe formé par :
O un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
O un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
O un mélange d'au moins un solvant aprotique et d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ;
et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse, ledit polymère étant de préférence sélectionné dans le groupe formé par le poly(éthylène oxyde), le poly(propylène oxyde), le polydiméthylsiloxane, le polyacrylonitrile, le poly(méthyl méthacrylate), le poly(vinyl chloride), le poly(vinylidène fluoride), le PVDF-hexafluoropropylène.
14. Procédé selon l'une quelconque des revendications 1 à 13 dans lequel on met en uvre le procédé de fabrication d'un ensemble constitué d'une électrode poreuse et d'un séparateur selon la revendication 8 pour fabriquer un ensemble dont ladite électrode est une électrode positive.
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel on met en oeuvre le procédé selon la revendication 9 pour fabriquer un ensemble dont ladite électrode est une électrode négative.
16. Procédé selon l'une quelconque des revendications 14 à 15, dans lequel ledit ensemble constitué d'une électrode poreuse et d'un séparateur est imprégné par un électrolyte, de préférence une phase porteuse d'ions de lithium, sélectionné
dans le groupe formé par :
O un électrolyte composé d'au moins un solvant aprotique et d'au moins un sel de lithium ;
O un électrolyte composé d'au moins un liquide ionique ou polyliquide ionique et d'au moins un sel de lithium ;
o un mélange de solvants aprotiques et de liquides ioniques ou polyliquide ionique et de sels de lithium ;
o un polymère rendu conducteur ionique par l'ajout d'au moins un sel de lithium ;
et o un polymère rendu conducteur ionique par l'ajout d'un électrolyte liquide ou polyliquide ionique, soit dans la phase polymère, soit dans la structure mésoporeuse, ledit polymère étant de préférence sélectionné dans le groupe formé par le poly(éthylène oxyde), le poly(propylène oxyde), le polydiméthylsiloxane, le polyacrylonitrile, le poly(méthyl méthacrylate), le poly(vinyl chloride), le poly(vinylidène fluoride), le PVDF-hexafluoropropylène.
17. Batterie à ions de lithium, susceptible d'être obtenue par le procédé
selon l'une quelconque des revendications 1 à 16.
18. Dispositif électrochimique, sélectionné dans le groupe formé par les batteries à
ions de sodium, les batteries lithium ¨ air, les piles à combustible et les cellules photovoltaïques, susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 16.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2004195 | 2020-04-28 | ||
FR2004195A FR3109671B1 (fr) | 2020-04-28 | 2020-04-28 | Procédé de fabrication d’un ensemble électrode poreuse et séparateur, un ensemble électrode poreuse et séparateur, et dispositif electrochimique contenant un tel ensemble |
PCT/IB2021/053500 WO2021220177A1 (fr) | 2020-04-28 | 2021-04-28 | Procédé de fabrication d'un ensemble électrode poreuse et séparateur, un ensemble électrode poreuse et séparateur, et dispositif électrochimique contenant un tel ensemble |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3176505A1 true CA3176505A1 (fr) | 2021-11-04 |
Family
ID=72266403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3176505A Pending CA3176505A1 (fr) | 2020-04-28 | 2021-04-28 | Procede de fabrication d'un ensemble electrode poreuse et separateur, un ensemble electrode poreuse et separateur, et dispositif electrochimique contenant un tel ensemble |
Country Status (9)
Country | Link |
---|---|
US (1) | US20230261167A1 (fr) |
EP (1) | EP4143902A1 (fr) |
JP (1) | JP2023524426A (fr) |
KR (1) | KR20230004825A (fr) |
CN (1) | CN115803903A (fr) |
CA (1) | CA3176505A1 (fr) |
FR (1) | FR3109671B1 (fr) |
IL (1) | IL297518A (fr) |
WO (1) | WO2021220177A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3124895A1 (fr) * | 2021-06-30 | 2023-01-06 | Hfg | Batterie a ions de lithium a forte densite de puissance et bas cout |
EP4364213A1 (fr) * | 2021-06-30 | 2024-05-08 | I-Ten | Batterie a ions de lithium a tres forte densite de puissance et bas cout |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2982084B1 (fr) * | 2011-11-02 | 2013-11-22 | Fabien Gaben | Procede de fabrication d'electrodes de batteries entierement solides |
FR3014425A1 (fr) * | 2013-12-05 | 2015-06-12 | Centre Nat Rech Scient | Materiau carbone composite comprenant des particules d'un compose susceptible de former un alliage avec le lithium, son utilisation et sa preparation |
FR3080952B1 (fr) | 2018-05-07 | 2020-07-17 | I-Ten | Electrolyte pour dispositifs electrochimiques en couches minces |
FR3080945A1 (fr) | 2018-05-07 | 2019-11-08 | I-Ten | Electrolytes mesoporeux pour dispositifs electrochimiques en couches minces |
FR3080957B1 (fr) | 2018-05-07 | 2020-07-10 | I-Ten | Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces |
FR3080862B1 (fr) * | 2018-05-07 | 2022-12-30 | I Ten | Procede de fabrication d'anodes pour batteries a ions de lithium |
-
2020
- 2020-04-28 FR FR2004195A patent/FR3109671B1/fr active Active
-
2021
- 2021-04-28 CA CA3176505A patent/CA3176505A1/fr active Pending
- 2021-04-28 CN CN202180045769.3A patent/CN115803903A/zh active Pending
- 2021-04-28 KR KR1020227041819A patent/KR20230004825A/ko active Search and Examination
- 2021-04-28 JP JP2022565754A patent/JP2023524426A/ja active Pending
- 2021-04-28 US US17/996,347 patent/US20230261167A1/en active Pending
- 2021-04-28 EP EP21722303.1A patent/EP4143902A1/fr active Pending
- 2021-04-28 IL IL297518A patent/IL297518A/en unknown
- 2021-04-28 WO PCT/IB2021/053500 patent/WO2021220177A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
JP2023524426A (ja) | 2023-06-12 |
KR20230004825A (ko) | 2023-01-06 |
FR3109671B1 (fr) | 2022-10-14 |
WO2021220177A1 (fr) | 2021-11-04 |
EP4143902A1 (fr) | 2023-03-08 |
FR3109671A1 (fr) | 2021-10-29 |
CN115803903A (zh) | 2023-03-14 |
IL297518A (en) | 2022-12-01 |
US20230261167A1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3766115B1 (fr) | Electrodes poreuses pour dispositifs electrochimiques | |
EP3766089A1 (fr) | Céramique poreuse pour electrolytes utilisée dans des dispositifs electro-chimiques en couches minces | |
CA3175516A1 (fr) | Procede de fabrication d'un ensemble electrode poreuse et separateur, un ensemble electrode poreuse et separateur, et microbatterie contenant un tel ensemble | |
CA3175605A1 (fr) | Procede de fabrication d'une electrode poreuse, et batterie contenant une telle electrode | |
CA3174836A1 (fr) | Procede de fabrication d'une electrode poreuse, et microbatterie contenant une telle electrode | |
CA3176505A1 (fr) | Procede de fabrication d'un ensemble electrode poreuse et separateur, un ensemble electrode poreuse et separateur, et dispositif electrochimique contenant un tel ensemble | |
CA3206652A1 (fr) | Procede de fabrication d'une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et batterie comprenant cette anode | |
CA3206650A1 (fr) | Procede de fabrication d'une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et microbatterie comprenant cette anode | |
CA3223351A1 (fr) | Batterie a ions de lithium a tres forte densite de puissance et bas cout | |
CA3173248A1 (fr) | Procede de fabrication de couches denses, utilisables comme electrodes et/ou electrolytes pour batteries a ions de lithium, et microbatteries a ions de lithium ainsi obtenues | |
EP4454030A1 (fr) | Procede de fabrication d'une electrode poreuse, et batterie contenant une telle electrode | |
FR3131450A1 (fr) | Procede de fabrication d’une electrode poreuse, et batterie contenant une telle electrode | |
FR3131449A1 (fr) | Procede de fabrication d’une electrode poreuse, et microbatterie contenant une telle electrode | |
CA3182818A1 (fr) | Anode de forte densite d'energie et de puissance pour batteries et methode de sa fabrication | |
CA3182743A1 (fr) | Anode de forte densite d'energie et de puissance pour batteries | |
CA3173400A1 (fr) | Procede de fabrication de batteries a ions de lithium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20221021 |
|
EEER | Examination request |
Effective date: 20221021 |
|
EEER | Examination request |
Effective date: 20221021 |
|
EEER | Examination request |
Effective date: 20221021 |
|
EEER | Examination request |
Effective date: 20221021 |
|
EEER | Examination request |
Effective date: 20221021 |
|
EEER | Examination request |
Effective date: 20221021 |