CA3120540A1 - Electrode for electrolytic evolution of gas - Google Patents
Electrode for electrolytic evolution of gas Download PDFInfo
- Publication number
- CA3120540A1 CA3120540A1 CA3120540A CA3120540A CA3120540A1 CA 3120540 A1 CA3120540 A1 CA 3120540A1 CA 3120540 A CA3120540 A CA 3120540A CA 3120540 A CA3120540 A CA 3120540A CA 3120540 A1 CA3120540 A1 CA 3120540A1
- Authority
- CA
- Canada
- Prior art keywords
- tin
- catalytic layer
- platinum
- layer
- catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 112
- 230000003197 catalytic effect Effects 0.000 claims abstract description 110
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 72
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 43
- 150000002739 metals Chemical class 0.000 claims abstract description 37
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 28
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims abstract description 24
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims description 115
- 239000000243 solution Substances 0.000 claims description 77
- 229910052718 tin Inorganic materials 0.000 claims description 67
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 55
- 229910052697 platinum Inorganic materials 0.000 claims description 53
- 238000007669 thermal treatment Methods 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 38
- 239000010936 titanium Substances 0.000 claims description 36
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 31
- 229910000510 noble metal Inorganic materials 0.000 claims description 23
- 239000000460 chlorine Substances 0.000 claims description 22
- 238000001035 drying Methods 0.000 claims description 21
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 19
- 229910052801 chlorine Inorganic materials 0.000 claims description 19
- 125000002524 organometallic group Chemical group 0.000 claims description 17
- 238000005868 electrolysis reaction Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000002243 precursor Substances 0.000 claims description 8
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- 150000001805 chlorine compounds Chemical class 0.000 claims description 2
- 239000003014 ion exchange membrane Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 claims 1
- 239000011229 interlayer Substances 0.000 claims 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 claims 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 239000010937 tungsten Substances 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 27
- 238000010422 painting Methods 0.000 description 16
- 229910052763 palladium Inorganic materials 0.000 description 16
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 11
- 238000009835 boiling Methods 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 239000012267 brine Substances 0.000 description 8
- 229910052703 rhodium Inorganic materials 0.000 description 8
- 239000010948 rhodium Substances 0.000 description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 8
- 239000012327 Ruthenium complex Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 5
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 229910021120 PdC12 Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YJZATOSJMRIRIW-UHFFFAOYSA-N [Ir]=O Chemical class [Ir]=O YJZATOSJMRIRIW-UHFFFAOYSA-N 0.000 description 1
- CLHMLJLPKQQWHI-UHFFFAOYSA-N [N+](=O)(ON)[O-].[N+](=O)(ON)[O-] Chemical compound [N+](=O)(ON)[O-].[N+](=O)(ON)[O-] CLHMLJLPKQQWHI-UHFFFAOYSA-N 0.000 description 1
- KTUQUZJOVNIKNZ-UHFFFAOYSA-N butan-1-ol;hydrate Chemical compound O.CCCCO KTUQUZJOVNIKNZ-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
- C25B1/46—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
- C25B11/063—Valve metal, e.g. titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/081—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/097—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Catalysts (AREA)
- Vending Machines For Individual Products (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
The invention relates to an electrode for evolution of gas in electrolytic processes comprising a substrate of valve metal and a catalytic coating comprising two layers. A first layer comprising oxides of valve metal, ruthenium and iridium and a second layer comprising one or more metals chosen from amongst elements of the platinum group.
Description
ELECTRODE FOR ELECTROLYTIC EVOLUTION OF GAS
FIELD OF THE INVENTION
The invention relates to an electrode for evolution of gas in electrolytic processes comprising a valve metal substrate and a catalytic coating comprising two layers. A first layer comprising valve metal, ruthenium and iridium oxides and a second layer comprising one or more metals chosen from amongst the elements of the platinum group.
BACKGROUND OF THE INVENTION
The field of the invention relates to the preparation of a catalytic coating for electrodes used in brine electrolysis processes. This coating is applied to a metal substrate, typically titanium or other valve metal.
Over the years, the technology of brine electrolysis has undergone innovations towards an efficient implementation from the energy point of view and from the cost/benefit of the use of resources. In this ever more challenging context, the optimization of the anode plays a key role. In particular, numerous efforts have been made in order to reduce the over-voltage of the anode in the generation of chlorine and in order to reduce the concentration of oxygen in the gaseous chlorine generated and thus to produce gaseous chlorine with a high purity.
A further difficulty resides in the obtaining of an electrode capable of maintaining higher performance for a long period of time.
Generally speaking, the processes for electrolysis of brines, for example alkaline chloride brines such as sodium chloride, for the production of chlorine and caustic soda, are carried out with anodes made of titanium or another valve metal, activated with a superficial layer of ruthenium dioxide (RuO2) optionally mixed with tin dioxide (Sn02) and another noble metal, such as for example described in EP0153586. Accordingly, it is possible to obtain a decrease in the over-voltage of the chlorine evolution anodic reaction and thus in the overall energy consumption.
The formulation just described, together with the other formulations containing tin, has however the problem of also reducing the over-voltage of the concurrent oxygen development reaction, leading to the production of chlorine gas contaminated with an excessive quantity of oxygen.
Another partial improvement in the performance is obtained by applying to a metal substrate a formulation based on RuO2 and SnO2 combined with a reduced quantity of Ir02 such as for example described in W02016083319. A similar formulation allows optimum values of cell potential and moderate quantities of oxygen to be obtained.
Other coatings of the prior art, such as for example the formulation described in W02012081635 comprising two catalytic coatings, the first containing titanium and noble metal oxides and the second containing a platinum and palladium alloy, also allow optimum values of cell potential and reduced quantities of oxygen in chlorine gas to be obtained; however, they do not endow the electrode with an optimum resistance capable of maintaining higher levels of performance, with regard to catalytic activity and selectivity, for an adequate period of time.
US 2013/0186750 Al describes an electrode suitable for chlorine evolution which has alternate layers of two distinct compositions, namely one type of layers comprising iridium, ruthenium and valve metals and another type of layer comprising oxides of iridium, ruthenium and tin.
US 2013/0334037 Al describes an electrode for electrolysis including a conductive substrate, a first layer formed on the conductive substrate containing at least one oxide
FIELD OF THE INVENTION
The invention relates to an electrode for evolution of gas in electrolytic processes comprising a valve metal substrate and a catalytic coating comprising two layers. A first layer comprising valve metal, ruthenium and iridium oxides and a second layer comprising one or more metals chosen from amongst the elements of the platinum group.
BACKGROUND OF THE INVENTION
The field of the invention relates to the preparation of a catalytic coating for electrodes used in brine electrolysis processes. This coating is applied to a metal substrate, typically titanium or other valve metal.
Over the years, the technology of brine electrolysis has undergone innovations towards an efficient implementation from the energy point of view and from the cost/benefit of the use of resources. In this ever more challenging context, the optimization of the anode plays a key role. In particular, numerous efforts have been made in order to reduce the over-voltage of the anode in the generation of chlorine and in order to reduce the concentration of oxygen in the gaseous chlorine generated and thus to produce gaseous chlorine with a high purity.
A further difficulty resides in the obtaining of an electrode capable of maintaining higher performance for a long period of time.
Generally speaking, the processes for electrolysis of brines, for example alkaline chloride brines such as sodium chloride, for the production of chlorine and caustic soda, are carried out with anodes made of titanium or another valve metal, activated with a superficial layer of ruthenium dioxide (RuO2) optionally mixed with tin dioxide (Sn02) and another noble metal, such as for example described in EP0153586. Accordingly, it is possible to obtain a decrease in the over-voltage of the chlorine evolution anodic reaction and thus in the overall energy consumption.
The formulation just described, together with the other formulations containing tin, has however the problem of also reducing the over-voltage of the concurrent oxygen development reaction, leading to the production of chlorine gas contaminated with an excessive quantity of oxygen.
Another partial improvement in the performance is obtained by applying to a metal substrate a formulation based on RuO2 and SnO2 combined with a reduced quantity of Ir02 such as for example described in W02016083319. A similar formulation allows optimum values of cell potential and moderate quantities of oxygen to be obtained.
Other coatings of the prior art, such as for example the formulation described in W02012081635 comprising two catalytic coatings, the first containing titanium and noble metal oxides and the second containing a platinum and palladium alloy, also allow optimum values of cell potential and reduced quantities of oxygen in chlorine gas to be obtained; however, they do not endow the electrode with an optimum resistance capable of maintaining higher levels of performance, with regard to catalytic activity and selectivity, for an adequate period of time.
US 2013/0186750 Al describes an electrode suitable for chlorine evolution which has alternate layers of two distinct compositions, namely one type of layers comprising iridium, ruthenium and valve metals and another type of layer comprising oxides of iridium, ruthenium and tin.
US 2013/0334037 Al describes an electrode for electrolysis including a conductive substrate, a first layer formed on the conductive substrate containing at least one oxide
2 selected from ruthenium oxide, iridium oxide and titanium oxide and a second layer formed on the first layer containing an alloy of platinum and palladium.
US 4,626,334 describes an anode comprising an electroconductive substrate provided with a (Ru-Sn)02 solid solution coating for brine electrolysis.
JP S62243790 describes an electrode having a first coating layer comprising a mixture of platinum and iridium oxide and a second coating layer comprising a mixture of ruthenium oxide and tin oxide.
The need is thus apparent to identify a new catalytic coating for electrodes for evolution of gaseous products in electrolytic cells in brine electrolysis processes, characterized by a higher level of catalytic activity and by a high resistance capable of sustaining higher levels of performance for a long period of time under the usual operating conditions with respect to the formulations of the prior art.
SUMMARY OF THE INVENTION
Various aspects of the present invention are described in the appended claims.
The present invention relates to an electrode for evolution of gaseous products in electrolytic cells, for example for evolution of chlorine in alkaline brine electrolysis cells, comprising a catalytic coating applied on a metal substrate. In the present context, the term catalytic coating indicates two different catalytic layers with different catalytic compositions in which the first catalytic layer formed on the substrate comprises at least a mixture of iridium, of ruthenium, of tin and of platinum or their oxides or respective combinations and a second catalytic layer formed on the first catalytic layer comprises platinum and tin or their oxides or respective combinations thereof. The tin of the second catalytic layer is present in a concentration decreasing from the interface with said first catalytic layer towards the upper surface of the second catalytic layer, i.e.
surface
US 4,626,334 describes an anode comprising an electroconductive substrate provided with a (Ru-Sn)02 solid solution coating for brine electrolysis.
JP S62243790 describes an electrode having a first coating layer comprising a mixture of platinum and iridium oxide and a second coating layer comprising a mixture of ruthenium oxide and tin oxide.
The need is thus apparent to identify a new catalytic coating for electrodes for evolution of gaseous products in electrolytic cells in brine electrolysis processes, characterized by a higher level of catalytic activity and by a high resistance capable of sustaining higher levels of performance for a long period of time under the usual operating conditions with respect to the formulations of the prior art.
SUMMARY OF THE INVENTION
Various aspects of the present invention are described in the appended claims.
The present invention relates to an electrode for evolution of gaseous products in electrolytic cells, for example for evolution of chlorine in alkaline brine electrolysis cells, comprising a catalytic coating applied on a metal substrate. In the present context, the term catalytic coating indicates two different catalytic layers with different catalytic compositions in which the first catalytic layer formed on the substrate comprises at least a mixture of iridium, of ruthenium, of tin and of platinum or their oxides or respective combinations and a second catalytic layer formed on the first catalytic layer comprises platinum and tin or their oxides or respective combinations thereof. The tin of the second catalytic layer is present in a concentration decreasing from the interface with said first catalytic layer towards the upper surface of the second catalytic layer, i.e.
surface
3 opposite the interface with the first catalytic layer, and the platinum of the said first catalytic layer is present in a concentration decreasing from the interface with said second catalytic layer towards the substrate.
The present invention also relates to an electrode for evolution of gaseous products in electrolytic cells, for example for evolution of chlorine in alkaline brine electrolysis cells, comprising a valve metal substrate and a coating comprising a first catalytic layer formed on said substrate containing a mixture of iridium, ruthenium, tin and platinum or their oxides or combinations thereof and a second catalytic layer formed on said first catalytic layer containing platinum and tin or their oxides or combinations thereof, wherein said first layer is obtained from a platinum-free first precursor solution comprising a mixture of iridium, ruthenium and tin, applied said substrate and subjected to a heat treatment, and wherein said second catalytic layer is obtained from a tin-free second catalytic solution containing platinum, applied to said first catalytic layer and subjected to a heat treatment.
The terms "platinum-free" and "tin-free" in the sense of the present invention mean that the platinum concentration in the first solution is at least an order of magnitude lower that the average platinum concentration in the first layer obtained from said first solution and that the tin concentration in the second solution is at least an order of magnitude lower that the average tin concentration in second layer obtained from the second solution.
Preferably, a platinum-free solution contains platinum at most as an impurity and a tin-free solution contains tin at most as an impurity.
This double-layer structure, applied to a metal substrate, typically titanium, titanium alloy or another valve metal, allows a saving in the energy consumption to be combined with an excellent purity of chlorine gas produced while maintaining optimal performance characteristics in terms of catalytic activity and of selectivity for a long period of time.
The first catalytic layer, formed on the substrate, preferably comprises ruthenium oxide, iridium oxide, tin oxide and metallic platinum or its oxides. RuO2 is widely known for its
The present invention also relates to an electrode for evolution of gaseous products in electrolytic cells, for example for evolution of chlorine in alkaline brine electrolysis cells, comprising a valve metal substrate and a coating comprising a first catalytic layer formed on said substrate containing a mixture of iridium, ruthenium, tin and platinum or their oxides or combinations thereof and a second catalytic layer formed on said first catalytic layer containing platinum and tin or their oxides or combinations thereof, wherein said first layer is obtained from a platinum-free first precursor solution comprising a mixture of iridium, ruthenium and tin, applied said substrate and subjected to a heat treatment, and wherein said second catalytic layer is obtained from a tin-free second catalytic solution containing platinum, applied to said first catalytic layer and subjected to a heat treatment.
The terms "platinum-free" and "tin-free" in the sense of the present invention mean that the platinum concentration in the first solution is at least an order of magnitude lower that the average platinum concentration in the first layer obtained from said first solution and that the tin concentration in the second solution is at least an order of magnitude lower that the average tin concentration in second layer obtained from the second solution.
Preferably, a platinum-free solution contains platinum at most as an impurity and a tin-free solution contains tin at most as an impurity.
This double-layer structure, applied to a metal substrate, typically titanium, titanium alloy or another valve metal, allows a saving in the energy consumption to be combined with an excellent purity of chlorine gas produced while maintaining optimal performance characteristics in terms of catalytic activity and of selectivity for a long period of time.
The first catalytic layer, formed on the substrate, preferably comprises ruthenium oxide, iridium oxide, tin oxide and metallic platinum or its oxides. RuO2 is widely known for its
4 excellent catalytic activity and its stability in an alkaline medium which is improved by the presence of Ir02; the presence of SnO2 guarantees a slower consumption of the noble metals present.
The second catalytic layer, formed on the first layer, comprises tin or its oxides and one or more metals chosen from amongst the elements of the platinum group, especially platinum itself, which are known for increasing the selectivity and for reducing the energy consumption.
The inventors have observed that an electrode with a similar catalytic coating, where said second catalytic layer comprises platinum in a molar percentage referred to the metal element in the range between 48 and 96% (or, when taking the tin component not into account, from 50 and 99.999%) in the form of the metal or its oxide, can offer the advantage of subsequently reducing the over-voltage of the reaction for evolution of chlorine.
In the context of the present invention, ranges denoted by either "from" or "between"
include the specified upper and lower limits, respectively.
In another embodiment, aside from platinum and tin, said second catalytic layer comprises palladium or rhodium in the form of metals or their oxides, or combinations thereof, in molar percentage referred to the metal elements in the range between 0 and 24% (or, when taking the tin component not into account, between 0 and 25%), where the elements are in the form of metals or oxides thereof. This can guarantee a high catalytic activity by virtue of the combined presence of two or more noble metals.
The second catalytic layer preferably comprises tin or its oxide in an average molar percentage referred to the metal element in a range from 4 to 12%. As the concentration of the tin component varies in a direction perpendicular to the interface between the first and second layers, the tin concentration is an average of the concentration profile through the second catalytic layer.
Therefore, in a preferred embodiment, besides unavoidable impurities, the second catalytic layer consists of platinum and tin, and optionally palladium and/or rhodium, in molar percentage referred to the metal elements in the ranges from 48 to 96%
platinum, from 4 to 12% tin, from 0 to 24% palladium and from 0 to 24% rhodium.
According to a preferred embodiment of the aforementioned electrode, the first catalytic layer comprises metals or metal oxides of iridium, ruthenium, tin in molar percentages Ru = 24-34%, Ir = 3-13%, Sn = 30-70% referred to the metal elements.
The first catalytic layer preferably comprises platinum or its oxide in an average molar percentage referred to the metal element in a range from 3 to 10%. As the concentration of the platinum component varies in a direction perpendicular to the interface between the first and second layers, the platinum concentration is an average of the concentration profile through the first catalytic layer.
It goes without saying that those skilled in the art will select the molar percentages of the individual elements in such a manner that the total sum of the molar percentages of the components is 100. Especially, if no other metals are present in the first catalytic layer, Sn or Sn oxides are preferably present in concentration of 55-70% referred to the metal element.
In another embodiment, said first catalytic layer comprises another valve metal chosen from amongst titanium, tantalum and niobium, in a quantity, expressed in molar percentage, in the range between 30 and 40% referred to the metal element; it has in fact been observed how the presence of another valve metal such as titanium allows a good catalytic activity to be combined with a substantial increase in the resistance of the electrode in processes that require current inversion.
In a preferred embodiment, besides unavoidable impurities, the first catalytic layer consists of iridium, ruthenium, tin and platinum and optionally titanium, in molar percentage referred to the metal elements in the ranges from 3 to 13% iridium, from 24 to 34% ruthenium, from 30 to 70% tin, from 3 to10`)/0 platinum and from 30 to 40% titanium.
The inventors have observed that, surprisingly, in the catalytic coating described above, a phenomenon of diffusion between layers takes place: the tin of the first catalytic layer diffuses into the second layer, while the platinum of the second catalytic layer diffuses into the first layer. The diffusion of tin into the second catalytic layer takes place across a gradient of concentration such that the quantity of tin in the second catalytic layer is maximum at the interface between the two catalytic layers and decreases towards the external surface of the second catalytic layer.
The presence of tin diffused into the second catalytic layer can advantageously slow the consumption of the noble metals present in the second catalytic layer, enabling optimum performance characteristics in terms of catalytic activity and of selectivity to be maintained for a longer period of time, without compromising the catalytic performance.
Likewise, the diffusion of platinum from the second catalytic layer into the first catalytic layer is such that the quantity of platinum in the first catalytic layer is maximum at the interface between the two catalytic layers and decreases gradually toward the internal surface of the first catalytic layer.
The diffusion of the platinum into the first catalytic layer allows the catalytic activity to be enhanced. This furthermore allows better catalytic performance characteristics to be maintained throughout the lifetime of the electrode, also where the prolonged use of the same causes wear of the second layer over time. The elements present and the particular structure of the catalytic coating allow better performance characteristics with respect to the prior art to be guaranteed with the further advantage of increasing the operating lifetime of the electrode.
The electrode according to the invention furthermore surprisingly allows the better performance characteristics in terms of activity and of selectivity to be maintained over time.
The presence of tin has a high impact on the selectivity; however, if the tin is present in high quantities on the external surface of the catalytic coating, in combination with the platinum, it attenuates the increase in catalytic activity of the platinum itself.
The diffusion of tin from the first catalytic layer to the second produces a profile of concentration of the element between the layers which enables a high catalytic activity together with an optimum selectivity to be maintained, furthermore allowing the consumption of the noble metals present in the second catalytic layer to be slowed. The profile of concentration of tin between the two catalytic layers is characterized by a monotonic decrease in concentration of the element within the second layer in the opposite direction to the first layer.
In another embodiment, the first catalytic layer has a specific load of noble metal in the range between 3 and 8 g/m2 and the second catalytic layer has a specific load of noble metal in the range between 0.8 and 4 g/m2. The inventors have found that loads thus reduced of noble metal are more than sufficient to impart an optimum catalytic activity.
According to another aspect, the present invention relates to a method for obtaining an electrode for evolution of gaseous products in electrolytic cells, for example for evolution of chlorine in alkaline brine electrolysis cells, comprising the following stages:
application to a valve metal substrate of a platinum-free first solution comprising a mixture of iridium, ruthenium and tin, subsequent drying at 50-60 C and decomposition of said first solution by heat treatment at 400-650 C for a period of 5 to 30 minutes;
repetition of the stage a) until said first catalytic composition is obtained with a desired specific load of noble metal;
application of a tin-free second catalytic solution containing platinum being subsequently dried at 50-60 C and decomposition of said first solution by heat treatment at C for a period of 5 to 30 minutes;
repetition of the stage c) until said first catalytic composition is obtained with a desired specific load of noble metal.
In one embodiment, the temperature of said thermal decomposition in steps a) and c) is between 480 and 550 C.
In one embodiment, said first solution furthermore comprises titanium.
In another embodiment, said second solution comprises palladium and rhodium on their own or in combination with each other.
In a preferred embodiment of the present invention, the two-layers electrode is subjected to a final thermal treatment. In one embodiment, the final thermal treatment is effected at a temperature between 400 and 650 C, preferably at a temperature of around 500 C, for at least 60 minutes, preferably between 60 and 180 minutes, more preferably between 80 and 120 minutes.
Preferably, the first solution comprises the iridium, ruthenium and tin compounds and optionally the titanium compounds in the form of organometallic complexes. In one embodiment, the organometallic complexes are aceto-hydroxychloride complexes of tin, ruthenium, iridium and optionally titanium, respectively.
Without wishing to be limited to a particular scientific theory, it is possible for the stages a and c for thermal treatment or decomposition of the method described above, together with the elements present and with the concentrations thereof within said first and said second solution, because their coefficient of diffusion is also dependent on the temperature, to contribute to the inter-diffusion of the tin and of the platinum present respectively from the first catalytic layer to the second catalytic layer and vice versa.
According to another aspect, the invention relates to a cell for the electrolysis of solutions of alkaline chlorides comprising an anode compartment and a cathode compartment in which the anode compartment is equipped with the electrode in one of the forms such as described above, used as an anode for evolution of chlorine.
According to another aspect, the invention relates to an industrial electrolyser for the production of chlorine and alkali from alkali chloride solutions, when also lacking biasing protection devices and comprising a modular arrangement of electrolytic cells with the anode and cathode compartments separated by ion-exchange membranes or by diaphragms, where the anode compartment comprises an electrode in one of the forms such as described above used as an anode.
The following examples are included in order to demonstrate particular embodiments of the invention, whose practicability has been amply verified within the range of values claimed. It will be evident to those skilled in the art that the compositions and the techniques described in the examples that follow represent compositions and techniques for which the inventors have encountered a good operation of the invention in practice;
however, those skilled in the art will furthermore appreciate in the light of the present description, various modifications could be made to the various embodiments described still giving rise to identical or similar results without straying from the scope of the invention.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 25% Ru, 11`)/0 Ir and 64% Sn referred to the metals.
A second solution was also prepared containing a quantity of Pt diamino dinitrate, Pt(NH3)2(NO3)2 corresponding to 40 g of Pt dissolved in 160 ml of glacial acetic acid and then made up to a volume of one litre with acetic acid at 10% by weight.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C was carried out for around 10 minutes, then a thermal treatment for 10 minutes at 500 C, the mesh being each time cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 7 g/m2 was reached.
Subsequently, the second solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air before the application of the next coat.
The procedure was repeated until a total load of Pt equal to 2.5 g/m2 was reached.
A final thermal treatment at 500 C for 100 minutes was lastly carried out.
The electrode thus obtained was identified as specimen #1.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 26% Ru, 10% Ir and 64%
Sn referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum and an organo-metallic complex of palladium and having a molar composition equal to 87% Pt and 13% Pd referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt and Pd referred to the metals equal to 2.7 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #2.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 26% Ru, 10% Ir and 64%
Sn referred to the metals.
100 ml of a second acetic solution were then prepared containing an organo-metallic complex of platinum, an organo-metallic complex of palladium and RhCI3 and having a molar composition equal to 86% Pt, 10% Pd and 4% Rh referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt, Pd and Rh referred to the metals equal to 2.8 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #3.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride, iridium complex acetato-hydroxichloride and titanium complex acetato-hydroxichloride and having a molar composition equal to 25% Ru, 10% Ir, 35% Sn and 30% Ti referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum and an organo-metallic complex of palladium and having a molar composition equal to 87% Pt and 13% Pd referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load was reached expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt and Pd referred to the metals equal to 2.7 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #4.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride, iridium complex acetato-hydroxichloride and titanium complex acetato-hydroxichloride and having a molar composition equal to 25% Ru, 10% Ir, 35% Sn and 30% Ti referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum, an organo-metallic complex of palladium and RhCI3 and having a molar composition equal to 86% Pt, 10% Pd and 4% Rh referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2 was reached.
Subsequently, the second solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt, Pd and Rh referred to the metals equal to 2.7 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #5.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a hydro-alcoholic solution were then prepared containing RuCI3*3H20, H2IrCI6*6H20, TiCI3 in a solution of isopropanol, having a molar composition equal to 23% Ru, 22% Ir, 55% Ti.
The solution was applied to the mesh of titanium by painting on in 14 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the work piece was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Ir and Ru referred to the metals equal to 11 g/m2 was reached. Then, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #1C.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution at 20% of HCI, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 26% Ru, 10% Ir and 64%
Sn referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum and a tin complex acetato-hydroxichloride and having a molar composition equal to 87% Pt and 13% Sn referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 6 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Ir and Ru referred to the metals equal to 6 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as Pt referred to the metal equal to 2.5 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #20.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride, iridium complex acetato-hydroxichloride and organo-metallic complex of platinum and having a molar composition equal to 25% Ru, 10% Ir, 35% Sn and 30% Pt referred to the metals.
The acetic solution was applied to the mesh of titanium by painting on in 10 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Ir, Ru and Pt referred to the metals equal to 8 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #3C.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first hydro-alcoholic solution were then prepared containing RuC13*3H20, H2IrC16*6H20, TiOC12 in a mixture of water and 1-butanol acidified with HC1, having a molar composition equal to 26% Ru, 23% 1r, 51`)/0 Ti referred to the metals.
100 ml of a second hydro-alcoholic solution were also prepared containing H2PtC16 and PdC12.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of 1r and Ru referred to the metals equal to 6 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum Pt +
Pd referred to the metals equal to 3 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #4C.
The specimens of the examples and of the counter-examples were characterized as anodes for evolution of chlorine in a laboratory cell filled with a brine solution of sodium chloride at a concentration of 200 g/1.
Table 1 reports the over-voltage of chlorine measured at a current density of 4 kA/m2 and the percentage by volume of oxygen in the chlorine produced.
Table 1 Specimens Cell potential (V) 02 /Cl2 (Vol%) 1 2.76 0.9 2 2.76 0.7 3 2.76 0.7 4 2.77 0.8 2.77 0.7 1C 2.78 1.2 2C 2.76 1.0 3C 2.77 1.5 4C 2.76 0.8 The specimens of the preceding examples also underwent a test for operation in beaker.
In Table 2, the anode potentials (CISEP) are reported, measured in a sodium chloride solution at a concentration of 200 g/I at a temperature of 80 C, corrected for the ohmic drop at a current density of 3 kA/m2. Furthermore, in order to evaluate the selectivity for the chlorine reaction, tests were conducted in sulphuric acid at a current density of 3 kA/m2; the anode potentials reported (CISEP) have been corrected for the ohmic drop.
The higher the value of the anode potentials measured in sulphuric acid, the greater the selectivity for the chlorine reaction.
Table 2 Specimens CISEP in NaCI CISEP in H2504 vs vs NHE NHE
1 1.336 1.820 2 1.336 1.872 3 1.336 1.890 4 1.338 1.872 1.338 1.890 1.347 1.693 1.336 1.740 1.336 1.647 1.336 1.872 Some specimens were, in the end, subjected to a longevity test. The longevity test in question is the simulation, in a cell divided by the conditions of industrial electrolysis.
Table 3 reports the cell voltage for the specimens at the start of the test and after a simulated period of a year, as an indicator of their catalytic activity for the evolution of chlorine (Cl 0.V.) measured at a current density of 8 kA/m2 and the percentage of residual load of the second catalytic layer after a simulated period of a year.
Table 3 Specimens Cl 0.V Cl O.V. after 1 % residual load Start of test year 2 0.035 0.035 80%
10 0.050 0.050 -40 0.037 0.060 50%
The preceding description is not intended to limit the invention, which may be used according to various embodiments without however deviating from the objectives and whose scope is uniquely defined by the appended claims.
In the description and in the claims of the present application, the terms "comprising", "including" and "containing" are not intended to exclude the presence of other additional elements, components or process steps.
The discussion of documents, items, materials, devices, articles and the like is included in this description solely with the aim of providing a context for the present invention. It is not suggested or represented that any or all of these topics formed part of the prior art or formed a common general knowledge in the field relevant to the present invention before the priority date for each claim of this application.
The second catalytic layer, formed on the first layer, comprises tin or its oxides and one or more metals chosen from amongst the elements of the platinum group, especially platinum itself, which are known for increasing the selectivity and for reducing the energy consumption.
The inventors have observed that an electrode with a similar catalytic coating, where said second catalytic layer comprises platinum in a molar percentage referred to the metal element in the range between 48 and 96% (or, when taking the tin component not into account, from 50 and 99.999%) in the form of the metal or its oxide, can offer the advantage of subsequently reducing the over-voltage of the reaction for evolution of chlorine.
In the context of the present invention, ranges denoted by either "from" or "between"
include the specified upper and lower limits, respectively.
In another embodiment, aside from platinum and tin, said second catalytic layer comprises palladium or rhodium in the form of metals or their oxides, or combinations thereof, in molar percentage referred to the metal elements in the range between 0 and 24% (or, when taking the tin component not into account, between 0 and 25%), where the elements are in the form of metals or oxides thereof. This can guarantee a high catalytic activity by virtue of the combined presence of two or more noble metals.
The second catalytic layer preferably comprises tin or its oxide in an average molar percentage referred to the metal element in a range from 4 to 12%. As the concentration of the tin component varies in a direction perpendicular to the interface between the first and second layers, the tin concentration is an average of the concentration profile through the second catalytic layer.
Therefore, in a preferred embodiment, besides unavoidable impurities, the second catalytic layer consists of platinum and tin, and optionally palladium and/or rhodium, in molar percentage referred to the metal elements in the ranges from 48 to 96%
platinum, from 4 to 12% tin, from 0 to 24% palladium and from 0 to 24% rhodium.
According to a preferred embodiment of the aforementioned electrode, the first catalytic layer comprises metals or metal oxides of iridium, ruthenium, tin in molar percentages Ru = 24-34%, Ir = 3-13%, Sn = 30-70% referred to the metal elements.
The first catalytic layer preferably comprises platinum or its oxide in an average molar percentage referred to the metal element in a range from 3 to 10%. As the concentration of the platinum component varies in a direction perpendicular to the interface between the first and second layers, the platinum concentration is an average of the concentration profile through the first catalytic layer.
It goes without saying that those skilled in the art will select the molar percentages of the individual elements in such a manner that the total sum of the molar percentages of the components is 100. Especially, if no other metals are present in the first catalytic layer, Sn or Sn oxides are preferably present in concentration of 55-70% referred to the metal element.
In another embodiment, said first catalytic layer comprises another valve metal chosen from amongst titanium, tantalum and niobium, in a quantity, expressed in molar percentage, in the range between 30 and 40% referred to the metal element; it has in fact been observed how the presence of another valve metal such as titanium allows a good catalytic activity to be combined with a substantial increase in the resistance of the electrode in processes that require current inversion.
In a preferred embodiment, besides unavoidable impurities, the first catalytic layer consists of iridium, ruthenium, tin and platinum and optionally titanium, in molar percentage referred to the metal elements in the ranges from 3 to 13% iridium, from 24 to 34% ruthenium, from 30 to 70% tin, from 3 to10`)/0 platinum and from 30 to 40% titanium.
The inventors have observed that, surprisingly, in the catalytic coating described above, a phenomenon of diffusion between layers takes place: the tin of the first catalytic layer diffuses into the second layer, while the platinum of the second catalytic layer diffuses into the first layer. The diffusion of tin into the second catalytic layer takes place across a gradient of concentration such that the quantity of tin in the second catalytic layer is maximum at the interface between the two catalytic layers and decreases towards the external surface of the second catalytic layer.
The presence of tin diffused into the second catalytic layer can advantageously slow the consumption of the noble metals present in the second catalytic layer, enabling optimum performance characteristics in terms of catalytic activity and of selectivity to be maintained for a longer period of time, without compromising the catalytic performance.
Likewise, the diffusion of platinum from the second catalytic layer into the first catalytic layer is such that the quantity of platinum in the first catalytic layer is maximum at the interface between the two catalytic layers and decreases gradually toward the internal surface of the first catalytic layer.
The diffusion of the platinum into the first catalytic layer allows the catalytic activity to be enhanced. This furthermore allows better catalytic performance characteristics to be maintained throughout the lifetime of the electrode, also where the prolonged use of the same causes wear of the second layer over time. The elements present and the particular structure of the catalytic coating allow better performance characteristics with respect to the prior art to be guaranteed with the further advantage of increasing the operating lifetime of the electrode.
The electrode according to the invention furthermore surprisingly allows the better performance characteristics in terms of activity and of selectivity to be maintained over time.
The presence of tin has a high impact on the selectivity; however, if the tin is present in high quantities on the external surface of the catalytic coating, in combination with the platinum, it attenuates the increase in catalytic activity of the platinum itself.
The diffusion of tin from the first catalytic layer to the second produces a profile of concentration of the element between the layers which enables a high catalytic activity together with an optimum selectivity to be maintained, furthermore allowing the consumption of the noble metals present in the second catalytic layer to be slowed. The profile of concentration of tin between the two catalytic layers is characterized by a monotonic decrease in concentration of the element within the second layer in the opposite direction to the first layer.
In another embodiment, the first catalytic layer has a specific load of noble metal in the range between 3 and 8 g/m2 and the second catalytic layer has a specific load of noble metal in the range between 0.8 and 4 g/m2. The inventors have found that loads thus reduced of noble metal are more than sufficient to impart an optimum catalytic activity.
According to another aspect, the present invention relates to a method for obtaining an electrode for evolution of gaseous products in electrolytic cells, for example for evolution of chlorine in alkaline brine electrolysis cells, comprising the following stages:
application to a valve metal substrate of a platinum-free first solution comprising a mixture of iridium, ruthenium and tin, subsequent drying at 50-60 C and decomposition of said first solution by heat treatment at 400-650 C for a period of 5 to 30 minutes;
repetition of the stage a) until said first catalytic composition is obtained with a desired specific load of noble metal;
application of a tin-free second catalytic solution containing platinum being subsequently dried at 50-60 C and decomposition of said first solution by heat treatment at C for a period of 5 to 30 minutes;
repetition of the stage c) until said first catalytic composition is obtained with a desired specific load of noble metal.
In one embodiment, the temperature of said thermal decomposition in steps a) and c) is between 480 and 550 C.
In one embodiment, said first solution furthermore comprises titanium.
In another embodiment, said second solution comprises palladium and rhodium on their own or in combination with each other.
In a preferred embodiment of the present invention, the two-layers electrode is subjected to a final thermal treatment. In one embodiment, the final thermal treatment is effected at a temperature between 400 and 650 C, preferably at a temperature of around 500 C, for at least 60 minutes, preferably between 60 and 180 minutes, more preferably between 80 and 120 minutes.
Preferably, the first solution comprises the iridium, ruthenium and tin compounds and optionally the titanium compounds in the form of organometallic complexes. In one embodiment, the organometallic complexes are aceto-hydroxychloride complexes of tin, ruthenium, iridium and optionally titanium, respectively.
Without wishing to be limited to a particular scientific theory, it is possible for the stages a and c for thermal treatment or decomposition of the method described above, together with the elements present and with the concentrations thereof within said first and said second solution, because their coefficient of diffusion is also dependent on the temperature, to contribute to the inter-diffusion of the tin and of the platinum present respectively from the first catalytic layer to the second catalytic layer and vice versa.
According to another aspect, the invention relates to a cell for the electrolysis of solutions of alkaline chlorides comprising an anode compartment and a cathode compartment in which the anode compartment is equipped with the electrode in one of the forms such as described above, used as an anode for evolution of chlorine.
According to another aspect, the invention relates to an industrial electrolyser for the production of chlorine and alkali from alkali chloride solutions, when also lacking biasing protection devices and comprising a modular arrangement of electrolytic cells with the anode and cathode compartments separated by ion-exchange membranes or by diaphragms, where the anode compartment comprises an electrode in one of the forms such as described above used as an anode.
The following examples are included in order to demonstrate particular embodiments of the invention, whose practicability has been amply verified within the range of values claimed. It will be evident to those skilled in the art that the compositions and the techniques described in the examples that follow represent compositions and techniques for which the inventors have encountered a good operation of the invention in practice;
however, those skilled in the art will furthermore appreciate in the light of the present description, various modifications could be made to the various embodiments described still giving rise to identical or similar results without straying from the scope of the invention.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 25% Ru, 11`)/0 Ir and 64% Sn referred to the metals.
A second solution was also prepared containing a quantity of Pt diamino dinitrate, Pt(NH3)2(NO3)2 corresponding to 40 g of Pt dissolved in 160 ml of glacial acetic acid and then made up to a volume of one litre with acetic acid at 10% by weight.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C was carried out for around 10 minutes, then a thermal treatment for 10 minutes at 500 C, the mesh being each time cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 7 g/m2 was reached.
Subsequently, the second solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air before the application of the next coat.
The procedure was repeated until a total load of Pt equal to 2.5 g/m2 was reached.
A final thermal treatment at 500 C for 100 minutes was lastly carried out.
The electrode thus obtained was identified as specimen #1.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 26% Ru, 10% Ir and 64%
Sn referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum and an organo-metallic complex of palladium and having a molar composition equal to 87% Pt and 13% Pd referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt and Pd referred to the metals equal to 2.7 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #2.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 26% Ru, 10% Ir and 64%
Sn referred to the metals.
100 ml of a second acetic solution were then prepared containing an organo-metallic complex of platinum, an organo-metallic complex of palladium and RhCI3 and having a molar composition equal to 86% Pt, 10% Pd and 4% Rh referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt, Pd and Rh referred to the metals equal to 2.8 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #3.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride, iridium complex acetato-hydroxichloride and titanium complex acetato-hydroxichloride and having a molar composition equal to 25% Ru, 10% Ir, 35% Sn and 30% Ti referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum and an organo-metallic complex of palladium and having a molar composition equal to 87% Pt and 13% Pd referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load was reached expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt and Pd referred to the metals equal to 2.7 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #4.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride, iridium complex acetato-hydroxichloride and titanium complex acetato-hydroxichloride and having a molar composition equal to 25% Ru, 10% Ir, 35% Sn and 30% Ti referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum, an organo-metallic complex of palladium and RhCI3 and having a molar composition equal to 86% Pt, 10% Pd and 4% Rh referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a load expressed as the sum of Ir and Ru referred to the metals equal to 6.7 g/m2 was reached.
Subsequently, the second solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Pt, Pd and Rh referred to the metals equal to 2.7 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #5.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a hydro-alcoholic solution were then prepared containing RuCI3*3H20, H2IrCI6*6H20, TiCI3 in a solution of isopropanol, having a molar composition equal to 23% Ru, 22% Ir, 55% Ti.
The solution was applied to the mesh of titanium by painting on in 14 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the work piece was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Ir and Ru referred to the metals equal to 11 g/m2 was reached. Then, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #1C.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution at 20% of HCI, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride and iridium complex acetato-hydroxichloride and having a molar composition equal to 26% Ru, 10% Ir and 64%
Sn referred to the metals.
100 ml of a second acetic solution were also prepared containing an organo-metallic complex of platinum and a tin complex acetato-hydroxichloride and having a molar composition equal to 87% Pt and 13% Sn referred to the metals.
The first acetic solution was applied to the mesh of titanium by painting on in 6 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Ir and Ru referred to the metals equal to 6 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as Pt referred to the metal equal to 2.5 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #20.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first acetic solution were then prepared containing tin complex acetato-hydroxichloride, ruthenium complex acetato-hydroxichloride, iridium complex acetato-hydroxichloride and organo-metallic complex of platinum and having a molar composition equal to 25% Ru, 10% Ir, 35% Sn and 30% Pt referred to the metals.
The acetic solution was applied to the mesh of titanium by painting on in 10 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of Ir, Ru and Pt referred to the metals equal to 8 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #3C.
A mesh of titanium of dimensions 10 cm x 10 cm was washed three times in de-ionized water at 60 C, changing the liquid each time. The washing was followed by a thermal treatment for 2 hours at 350 C. The mesh was then subjected to a treatment in a solution of HCI at 20%, boiling for 30 minutes.
100 ml of a first hydro-alcoholic solution were then prepared containing RuC13*3H20, H2IrC16*6H20, TiOC12 in a mixture of water and 1-butanol acidified with HC1, having a molar composition equal to 26% Ru, 23% 1r, 51`)/0 Ti referred to the metals.
100 ml of a second hydro-alcoholic solution were also prepared containing H2PtC16 and PdC12.
The first acetic solution was applied to the mesh of titanium by painting on in 8 coats.
After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum of 1r and Ru referred to the metals equal to 6 g/m2 was reached.
Subsequently, the second acetic solution was applied by painting on in 4 coats. After each coat, a drying step at 50-60 C for around 10 minutes was carried out, then a thermal treatment for 10 minutes at 500 C. Each time, the mesh was cooled in air prior to the application of the next coat.
The procedure was repeated until a total load of noble metal expressed as the sum Pt +
Pd referred to the metals equal to 3 g/m2 was reached.
Lastly, a final thermal treatment at 500 C for 100 minutes was carried out.
The electrode thus obtained was identified as specimen #4C.
The specimens of the examples and of the counter-examples were characterized as anodes for evolution of chlorine in a laboratory cell filled with a brine solution of sodium chloride at a concentration of 200 g/1.
Table 1 reports the over-voltage of chlorine measured at a current density of 4 kA/m2 and the percentage by volume of oxygen in the chlorine produced.
Table 1 Specimens Cell potential (V) 02 /Cl2 (Vol%) 1 2.76 0.9 2 2.76 0.7 3 2.76 0.7 4 2.77 0.8 2.77 0.7 1C 2.78 1.2 2C 2.76 1.0 3C 2.77 1.5 4C 2.76 0.8 The specimens of the preceding examples also underwent a test for operation in beaker.
In Table 2, the anode potentials (CISEP) are reported, measured in a sodium chloride solution at a concentration of 200 g/I at a temperature of 80 C, corrected for the ohmic drop at a current density of 3 kA/m2. Furthermore, in order to evaluate the selectivity for the chlorine reaction, tests were conducted in sulphuric acid at a current density of 3 kA/m2; the anode potentials reported (CISEP) have been corrected for the ohmic drop.
The higher the value of the anode potentials measured in sulphuric acid, the greater the selectivity for the chlorine reaction.
Table 2 Specimens CISEP in NaCI CISEP in H2504 vs vs NHE NHE
1 1.336 1.820 2 1.336 1.872 3 1.336 1.890 4 1.338 1.872 1.338 1.890 1.347 1.693 1.336 1.740 1.336 1.647 1.336 1.872 Some specimens were, in the end, subjected to a longevity test. The longevity test in question is the simulation, in a cell divided by the conditions of industrial electrolysis.
Table 3 reports the cell voltage for the specimens at the start of the test and after a simulated period of a year, as an indicator of their catalytic activity for the evolution of chlorine (Cl 0.V.) measured at a current density of 8 kA/m2 and the percentage of residual load of the second catalytic layer after a simulated period of a year.
Table 3 Specimens Cl 0.V Cl O.V. after 1 % residual load Start of test year 2 0.035 0.035 80%
10 0.050 0.050 -40 0.037 0.060 50%
The preceding description is not intended to limit the invention, which may be used according to various embodiments without however deviating from the objectives and whose scope is uniquely defined by the appended claims.
In the description and in the claims of the present application, the terms "comprising", "including" and "containing" are not intended to exclude the presence of other additional elements, components or process steps.
The discussion of documents, items, materials, devices, articles and the like is included in this description solely with the aim of providing a context for the present invention. It is not suggested or represented that any or all of these topics formed part of the prior art or formed a common general knowledge in the field relevant to the present invention before the priority date for each claim of this application.
Claims (4)
2. An electrode for gas evolution in electrolytic processes comprising a valve metal substrate and a coating comprising a first catalytic layer formed on said substrate containing a mixture of iridium, ruthenium, tin and platinum or their oxides or combinations thereof and a second catalytic layer formed on said first catalytic layer containing platinum and tin or their oxides or combinations thereof, wherein said first layer is obtained from a platinum-free first precursor solution comprising a mixture of iridium, ruthenium and tin, applied said substrate and subjected to a heat treatment wherein said platinum-free first precursor solution contains said iridium, ruthenium and tin in the form of organometallic complexes, and wherein said second catalytic layer is obtained from a tin-free second catalytic composition containing platinum, applied said substrate and subjected to a heat treatment.
3. The electrode according to one of claims 1 or 2, wherein said second catalytic layer contains Pt = 48-96% in the form of metal, or its oxides, in molar percentage referred to the metal element.
4. The electrode according to one of claims 1 to 3, wherein said second catalytic layer M18019g-PCT (370PCT) AMENDED SHEET
PCT/EP 2019/083 448 - 03.11.2020 INDUSTRIE DE NORA S.p.A.
contains Pd = 0-24% or Rh = 0-24%, in the form of metal, or their oxides, or combinations thereof, in the form of metals or their oxides in molar percentage referred to the metal elements.
5. The electrode according to one of claims 1 to 4, wherein said second catalytic layer contains Sn = 4-12% in the form of metal or its oxides, in average molar percentage referred to the metal element.
6. The electrode according to any one of the preceding claims, wherein said iridium, ruthenium and tin oxides of said first catalytic layer are present in molar percentages Ru = 24-34%, Ir = 3-13%, Sn = 30-70% referring to the metal elements.
7. The electrode according to any one of the preceding claims, wherein said first catalytic layer also contains titanium oxides in molar percentage Ti = 30-40% referred to the metal element.
8. The electrode according to any one of the preceding claims, wherein said first catalytic layer contains Pt = 3-10% in the form of metal or its oxides, in average molar percentage referred to the metal element.
9. The electrode according to any one of the preceding claims, wherein the valve metal substrate is selected from the group consisting of titanium, tantalum, zirconium, niobium, tungsten, aluminium, silicon, or their alloys.
10. A method for the production of an electrode as defined in one of the previous claims, comprising the following steps:
- application to a valve metal substrate of a platinum-free first solution comprising a mixture of iridium, ruthenium and tin, subsequent drying at 50-60 C and decomposition of said first solution by heat treatment at 400-650 C
for a time of 5 to 30 minutes; wherein said first solution contains said iridium, ruthenium and tin in the form of organometallic complexes;
- repetition of stage a) until a desired specific load of noble metal is reached;
M/60199-PCT (370PCT) AMENDED SHEET
PCT/EP 2019/083 448 - 03.11.2020 INDUSTRIE DE NORA S.p.A.
- application of a tin-free second catalytic solution containing platinum and subsequent drying at 50-60 6C and decomposition of said second solution by heat treatment at 400-650 C for a time of 5 to 30 minutes;
- repetition of stage c) until a desired specific load of noble metal is reached.
11. The method according to claim 10, wherein the temperature of said thermal decomposition in steps a) and c) is between 480 and 550 C.
12.A cell for the electrolysis of solutions of alkaline chlorides comprising an anodic compartment and a cathodic compartment wherein the anodic compartment is equipped with the electrode according to any one of claims 1 to 8.
13. A cell for electrolysis according to claim 12 wherein said anodic compartment and said cathodic compartment are separated by a diaphragm or an ion-exchange membrane.
14. An electrolyzer for the production of chlorine and alkali from alkali chloride solutions comprising a modular arrangement of cells, wherein each cell is the cell according to claim 12.
M/80199-PCT (370PCT) AMENDED SHEET
= CA 03120540 2021-05-19 Reitstotter ____________________________ Kinzebach PATENTS = TRADEMARKS = DESIGNS
ReilsOtter Kinzebach = Postfach 66 06 49 0-131633 München Patentanwälte European Patent and European Patent Office Trademark Attorneys Dr. Georg Schweiger Dr. J. Uwe Mii[ler 80298 München Dr. Wolfgang Thalhammer Dr. Michael Pohl ' Andreas Rabe Dr. Andreea Schuster-Haberhauer ' Dr. Werner Kinzehach (-2010) Rechtsanwältin Munich, 03 November 2020 Katja Kinzebach Of Counsel International Patent Application PCT/EP2019/083448 Dr. Peter Riedl Industrie De Nora S.p.A.
Our Reference: M/60199-PCT
In response to the Written Opinion of the International Searching Authori-ty dated 7 February 2020
1. Amended Documents Enclosed, a complete set of amended claims 1 to 14 is herewith submit-ted to replace claims 1 to 15 as originally filed.
Amended independent claims 1, 2 and 10 are based on the originally filed claims 1, 2 and 10, respectively and further include the subject-matter of original claim 12 which consequently has been deleted.
Miinchen Sternwartstra e 4 Except for adapting claim numbering and claim references, amended D-81679 Manchen claims 12 to 14 correspondõ to original claim 13 to 15, respectively.
Telefon: +49 89/99 t33 97- 0 Telefax: +49 89/98 73 04 For Examiner's convenience, a marked-up copy of the original set of Ludwigshafen claims indicating the effected amendments is also enclosed. lrn Tollhof 1D-67061 Ludwigshafen Telefon: +49 621/591 39-0 It is requested that further examination be based on the amended set of "felefax: 4-49 621/62 84 41 claims.
off iceak inzebach.de www.kinzebach.de Reitstätter 4,- Kinzebach PATENTS = TRADEMARKS DESIGNS
Amended independent claims 1, 2 and 10 are based on the originally filed claims 1, 2 and 10, respectively and further include the subject-matter of original claim 12 which consequently has been deleted.
Miinchen Sternwartstra e 4 Except for adapting claim numbering and claim references, amended D-81679 Manchen claims 12 to 14 correspondõ to original claim 13 to 15, respectively.
Telefon: +49 89/99 t33 97- 0 Telefax: +49 89/98 73 04 For Examiner's convenience, a marked-up copy of the original set of Ludwigshafen claims indicating the effected amendments is also enclosed. lrn Tollhof 1D-67061 Ludwigshafen Telefon: +49 621/591 39-0 It is requested that further examination be based on the amended set of "felefax: 4-49 621/62 84 41 claims.
off iceak inzebach.de www.kinzebach.de Reitstätter 4,- Kinzebach PATENTS = TRADEMARKS DESIGNS
2. Unity of the Invention As the subject matter of original claim 12 has been introduced in amended claims 1 and 2 and as this feature is not known from prior art, unity of the invention is preserved.
3. Clarity The Exarniner alleged in the Written Opinion that an essential feature of the invention (fnal thermal treatment step) is missing from claim 1.
The Examiner is correct in that all examples of the present application comprise a final thermal treatment step which is not indicated in method claim 10.
However, the gist of the present invention resides in establishing a catalytic coating have a two-layer structure with platinum in the first layer having a decreasing concen-tration from the interface between first and second layer and tin in the second layer having a decreasing concentration from the interface between first and second layer.
This feature is accomplished by applying a platinum-free first precursor solution with drying and subsequent thermal decomposition and a tin-free second precursor solution again followed by drying and thermal decomposition. During this process, the desired concentration profiles are established due to the mobility of tin and platinum atoms, re-spectively, which are still possible within the dried but, due to the short thermal decom-position times, not yet fully cured layered structure of the coating. The final heat treat-ment step is essentially a curing step intended to improve structural stability of the coating by releasing any stress within the coating induced for instance by the numer-ous shorter heat treatment steps effected when thermally decomposing the applied so-lutions.
Therefore, while for all practical purposes it is preferred to have a final heat treatment.
this step is not an essential feature in the sense of the present invention.
Rather, it is believed that establishing the desired concentration profiles essentially takes place during application and thermal decomposition of the coating solutions and that interlayer diffusing of platinum and tin is linked to using particular precursor solu-tions (organometallic complexes of the metals) as stipulated in amended claims 1, 2 and 10.
Therefore, the amended independent claims are clear.
. CA 03120540 2021-05-19 Reitstötter Kinzebach PATENTS = TRADEMARKS = DESIGNS
The Examiner is correct in that all examples of the present application comprise a final thermal treatment step which is not indicated in method claim 10.
However, the gist of the present invention resides in establishing a catalytic coating have a two-layer structure with platinum in the first layer having a decreasing concen-tration from the interface between first and second layer and tin in the second layer having a decreasing concentration from the interface between first and second layer.
This feature is accomplished by applying a platinum-free first precursor solution with drying and subsequent thermal decomposition and a tin-free second precursor solution again followed by drying and thermal decomposition. During this process, the desired concentration profiles are established due to the mobility of tin and platinum atoms, re-spectively, which are still possible within the dried but, due to the short thermal decom-position times, not yet fully cured layered structure of the coating. The final heat treat-ment step is essentially a curing step intended to improve structural stability of the coating by releasing any stress within the coating induced for instance by the numer-ous shorter heat treatment steps effected when thermally decomposing the applied so-lutions.
Therefore, while for all practical purposes it is preferred to have a final heat treatment.
this step is not an essential feature in the sense of the present invention.
Rather, it is believed that establishing the desired concentration profiles essentially takes place during application and thermal decomposition of the coating solutions and that interlayer diffusing of platinum and tin is linked to using particular precursor solu-tions (organometallic complexes of the metals) as stipulated in amended claims 1, 2 and 10.
Therefore, the amended independent claims are clear.
. CA 03120540 2021-05-19 Reitstötter Kinzebach PATENTS = TRADEMARKS = DESIGNS
4. Novelty and Inventive Step 4.1 The subject-matter of amended independent claims 1, 2 and 10 is new and based on an inventive step.
In the Written Opinion, the Examiner has already acknowledged novelty and inventive step of the subject-matter of claim 12 which now has been included into the amended independent claims so that the independent claims are new and based on an inventive step as well.
Nonetheless, some additional comments on the Written Opinion are warranted:
4.2 Altemative Solution Regarding Examiner's observations under item 4.2 of the Written Opinion, it is submit-ted that the subject matter of original claim 12 not only provides an altemative solution over prior art but, as outlined above, the layer morphology obtained by using organo-metallic complexes as precursors help to establish the desired concentration profiles.
4.3 Claim construction The present invention as defined in claim 1 is directed to an electrode for gas evolution "comprising a valve metal substrate and a coating". The coating is defined as "compris-ing a first catalytic layer... and a second catalytic layer". The Examiner is correct in that this claim language does not exclude additional catalytic layers. However, according to claim 1, the first catalytic layer is "fonned on said substrate" and the second catalytic layer is "formed on said first catalytic layer. This claim language does define a clear structural relationship defining a sequence (from bottom to top) of substrate, first cata-lytic layer and second catalytic layer. Any additional catalytic layer can only be a layer formed on the second catalytic layer. Contrary to Examiner's allegation, the skilled per-son would not understand "formed on" as allowing, e.g., additional layers between sub-strate and first layer or between first layer and second layer.
Consequently, contrary to Examiner's allegation under item 3 of the Written Opinion, the order of the layers is also clearly specified by the language used in present claim 1.
In summary, it is submitted that the claims as amended meet the requirements of the PCT
and a favourable International Preliminary Report on Patentability is herewith solicited.
Reitstötter s Kinzebach PATENTS = TRADEMARKS = DESIGNS
Should any objections remain outstanding, it is requested that a further Written Opinion be issued. In any case, before a negative IPRP issues, the Examiner is invited to contact the Undersigned for an informal telephone interview.
at AL
(J. Uwe MCIHer) dw/td Enclosures:
Complete set of amended claims 1 ¨ 14 (clean and marked-up copies) s s Bitte beachten Sie, dass angeführte Nichtpatentliteratur (wie z. B.
wissenschaftliche oder technische Dokumente) je nach geltendem Recht dem Urheberrechtsschutz und/oder anderen Schutzarten für schriftliche Werke unterliegen könnte. Die Vervielfältigung urheberrechtlich geschützter Texte, ihre Verwendung in anderen elektronischen oder gedruckten Publikationen und ihre Weitergabe an Dritte ist ohne ausdrückliche Zustimmung des Rechtsinhabers nicht gestattet.
Veuillez noter que les ouvrages de la littérature non-brevets qui sont cités, par exemple les documents scientifiques ou techniques, etc., peuvent être protégés par des droits d'auteur et/ou toute autre protection des écrits prévue par les législations applicables. Les textes ainsi protégés ne peuvent être reproduits ni utilisés dans d'autres publications électroniques ou imprimées, ni rediffusés sans l'autorisation expresse du titulaire du droit d'auteur.
Please be aware that cited works of non-patent literature such as scientific or technical documents or the like may be subject to copyright protection and/or any other protection of written works as appropriate based on applicable laws. Copyrighted texts may not be copied or used in other electronic or printed publications or re-distributed without the express permission of the copyright holder.
XS CPRTENFRDE
BUSDOCID= XS___2006100103CF_L>
In the Written Opinion, the Examiner has already acknowledged novelty and inventive step of the subject-matter of claim 12 which now has been included into the amended independent claims so that the independent claims are new and based on an inventive step as well.
Nonetheless, some additional comments on the Written Opinion are warranted:
4.2 Altemative Solution Regarding Examiner's observations under item 4.2 of the Written Opinion, it is submit-ted that the subject matter of original claim 12 not only provides an altemative solution over prior art but, as outlined above, the layer morphology obtained by using organo-metallic complexes as precursors help to establish the desired concentration profiles.
4.3 Claim construction The present invention as defined in claim 1 is directed to an electrode for gas evolution "comprising a valve metal substrate and a coating". The coating is defined as "compris-ing a first catalytic layer... and a second catalytic layer". The Examiner is correct in that this claim language does not exclude additional catalytic layers. However, according to claim 1, the first catalytic layer is "fonned on said substrate" and the second catalytic layer is "formed on said first catalytic layer. This claim language does define a clear structural relationship defining a sequence (from bottom to top) of substrate, first cata-lytic layer and second catalytic layer. Any additional catalytic layer can only be a layer formed on the second catalytic layer. Contrary to Examiner's allegation, the skilled per-son would not understand "formed on" as allowing, e.g., additional layers between sub-strate and first layer or between first layer and second layer.
Consequently, contrary to Examiner's allegation under item 3 of the Written Opinion, the order of the layers is also clearly specified by the language used in present claim 1.
In summary, it is submitted that the claims as amended meet the requirements of the PCT
and a favourable International Preliminary Report on Patentability is herewith solicited.
Reitstötter s Kinzebach PATENTS = TRADEMARKS = DESIGNS
Should any objections remain outstanding, it is requested that a further Written Opinion be issued. In any case, before a negative IPRP issues, the Examiner is invited to contact the Undersigned for an informal telephone interview.
at AL
(J. Uwe MCIHer) dw/td Enclosures:
Complete set of amended claims 1 ¨ 14 (clean and marked-up copies) s s Bitte beachten Sie, dass angeführte Nichtpatentliteratur (wie z. B.
wissenschaftliche oder technische Dokumente) je nach geltendem Recht dem Urheberrechtsschutz und/oder anderen Schutzarten für schriftliche Werke unterliegen könnte. Die Vervielfältigung urheberrechtlich geschützter Texte, ihre Verwendung in anderen elektronischen oder gedruckten Publikationen und ihre Weitergabe an Dritte ist ohne ausdrückliche Zustimmung des Rechtsinhabers nicht gestattet.
Veuillez noter que les ouvrages de la littérature non-brevets qui sont cités, par exemple les documents scientifiques ou techniques, etc., peuvent être protégés par des droits d'auteur et/ou toute autre protection des écrits prévue par les législations applicables. Les textes ainsi protégés ne peuvent être reproduits ni utilisés dans d'autres publications électroniques ou imprimées, ni rediffusés sans l'autorisation expresse du titulaire du droit d'auteur.
Please be aware that cited works of non-patent literature such as scientific or technical documents or the like may be subject to copyright protection and/or any other protection of written works as appropriate based on applicable laws. Copyrighted texts may not be copied or used in other electronic or printed publications or re-distributed without the express permission of the copyright holder.
XS CPRTENFRDE
BUSDOCID= XS___2006100103CF_L>
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102018000010760 | 2018-12-03 | ||
IT102018000010760A IT201800010760A1 (en) | 2018-12-03 | 2018-12-03 | ELECTRODE FOR THE ELECTROLYTIC EVOLUTION OF GAS |
PCT/EP2019/083448 WO2020115028A1 (en) | 2018-12-03 | 2019-12-03 | Electrode for electrolytic evolution of gas |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3120540A1 true CA3120540A1 (en) | 2020-06-11 |
Family
ID=65685882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3120540A Pending CA3120540A1 (en) | 2018-12-03 | 2019-12-03 | Electrode for electrolytic evolution of gas |
Country Status (15)
Country | Link |
---|---|
US (1) | US20210404076A1 (en) |
EP (1) | EP3891322A1 (en) |
JP (1) | JP2022514211A (en) |
KR (1) | KR20210096661A (en) |
CN (1) | CN113166956A (en) |
AU (1) | AU2019391296A1 (en) |
BR (1) | BR112021010421A2 (en) |
CA (1) | CA3120540A1 (en) |
IL (1) | IL283404B2 (en) |
IT (1) | IT201800010760A1 (en) |
MX (1) | MX2021006438A (en) |
SA (1) | SA521422103B1 (en) |
TW (1) | TW202022166A (en) |
WO (1) | WO2020115028A1 (en) |
ZA (1) | ZA202103111B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022103102A1 (en) * | 2020-11-12 | 2022-05-19 | 주식회사 엘지화학 | Electrode for electrolysis |
CN113151885B (en) * | 2021-03-15 | 2023-03-21 | 广州鸿葳科技股份有限公司 | Titanium anode for electroplating and preparation method thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162787A (en) * | 1984-01-31 | 1985-08-24 | Tdk Corp | Electrode for electrolysis |
JPS62260088A (en) * | 1986-03-31 | 1987-11-12 | Permelec Electrode Ltd | Electrode for electrolysis and its production |
JPS62243790A (en) * | 1986-04-15 | 1987-10-24 | Osaka Soda Co Ltd | Anode for electrolysis |
ITMI20031543A1 (en) * | 2003-07-28 | 2005-01-29 | De Nora Elettrodi Spa | ELECTRODE FOR ELECTROCHEMICAL PROCESSES AND METHOD FOR ITS ACHIEVEMENT |
JP4476759B2 (en) * | 2004-09-17 | 2010-06-09 | 多摩化学工業株式会社 | Method for producing electrode for electrolysis, and method for producing aqueous quaternary ammonium hydroxide solution using this electrode for electrolysis |
JP2008050675A (en) * | 2006-08-28 | 2008-03-06 | Ishifuku Metal Ind Co Ltd | Electrode for electrolysis |
IT1391767B1 (en) * | 2008-11-12 | 2012-01-27 | Industrie De Nora Spa | ELECTRODE FOR ELECTROLYTIC CELL |
IT1403585B1 (en) * | 2010-11-26 | 2013-10-31 | Industrie De Nora Spa | ANODE FOR CHLORINE ELECTROLYTIC EVOLUTION |
CN103261485B (en) * | 2010-12-15 | 2016-07-06 | 旭化成株式会社 | The manufacture method of electrode for electrolysis, electrolysis bath and electrode for electrolysis |
PE20170888A1 (en) | 2014-11-24 | 2017-07-07 | Industrie De Nora Spa | ANODE FOR ELECTROLYTIC DETACHMENT OF CHLORINE |
EP3391434A4 (en) * | 2015-12-14 | 2019-08-21 | AquaHydrex Pty Ltd | Electrochemical cell and components thereof capable of operating at high voltage |
-
2018
- 2018-12-03 IT IT102018000010760A patent/IT201800010760A1/en unknown
-
2019
- 2019-12-02 TW TW108143844A patent/TW202022166A/en unknown
- 2019-12-03 WO PCT/EP2019/083448 patent/WO2020115028A1/en active Application Filing
- 2019-12-03 BR BR112021010421-6A patent/BR112021010421A2/en unknown
- 2019-12-03 CA CA3120540A patent/CA3120540A1/en active Pending
- 2019-12-03 CN CN201980079027.5A patent/CN113166956A/en active Pending
- 2019-12-03 JP JP2021531113A patent/JP2022514211A/en active Pending
- 2019-12-03 IL IL283404A patent/IL283404B2/en unknown
- 2019-12-03 AU AU2019391296A patent/AU2019391296A1/en active Pending
- 2019-12-03 KR KR1020217020705A patent/KR20210096661A/en unknown
- 2019-12-03 MX MX2021006438A patent/MX2021006438A/en unknown
- 2019-12-03 EP EP19812784.7A patent/EP3891322A1/en active Pending
- 2019-12-03 US US17/292,885 patent/US20210404076A1/en active Pending
-
2021
- 2021-05-07 ZA ZA2021/03111A patent/ZA202103111B/en unknown
- 2021-05-25 SA SA521422103A patent/SA521422103B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR112021010421A2 (en) | 2021-08-24 |
AU2019391296A1 (en) | 2021-06-03 |
EP3891322A1 (en) | 2021-10-13 |
IT201800010760A1 (en) | 2020-06-03 |
IL283404B2 (en) | 2024-10-01 |
JP2022514211A (en) | 2022-02-10 |
IL283404B1 (en) | 2024-06-01 |
CN113166956A (en) | 2021-07-23 |
TW202022166A (en) | 2020-06-16 |
IL283404A (en) | 2021-07-29 |
ZA202103111B (en) | 2022-10-26 |
US20210404076A1 (en) | 2021-12-30 |
SA521422103B1 (en) | 2024-03-24 |
MX2021006438A (en) | 2021-07-02 |
KR20210096661A (en) | 2021-08-05 |
WO2020115028A1 (en) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11634827B2 (en) | Anode for electrolytic evolution of chlorine | |
DE69602156T2 (en) | Electrodes and their manufacturing processes | |
CA3120540A1 (en) | Electrode for electrolytic evolution of gas | |
TWI730967B (en) | Electrode for electrolytic processes | |
RU2009118413A (en) | ANODE FOR ELECTROLYSIS | |
JP6920998B2 (en) | Anode for electrolysis generation of chlorine | |
EP3175019B1 (en) | Catalytic coating and method of manufacturing thereof | |
WO2019243163A1 (en) | Anode for electrolytic evolution of chlorine | |
RU2789597C2 (en) | Electrode for electrolytic gas extraction | |
CN108048869B (en) | A kind of Ni-based active electrode material and preparation method thereof being embedded in ruthenium hafnium composite oxides | |
EP4146844B1 (en) | Electrode for electrochemical evolution of hydrogen | |
DE1812522A1 (en) | Anode for alkali chloride electrolysis | |
JPH0238672B2 (en) | ||
WO2024223736A1 (en) | Electrode for gaseous evolution in electrolytic process | |
US20240360572A1 (en) | Electrode for the electrolytic evolution of hydrogen | |
KR20240033104A (en) | Electrodes for electrolysis of hydrogen | |
EP4273301A1 (en) | Hypochlorous acid generating electrode | |
WO2024044701A2 (en) | Extended life anode coatings | |
CN116479460A (en) | Ruthenium tin titanium ternary composite coating titanium electrode and preparation method and application thereof | |
CN115725997A (en) | High current density electrolytic active cathode and preparation method thereof | |
NO138664B (en) | ELECTRODE FOR USE IN ELECTROCHEMICAL PROCESSES, ESPECIALLY AS ANODE IN CHLORALKALYEL ELECTROLYSIS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20230801 |
|
EEER | Examination request |
Effective date: 20230801 |