CA3004389A1 - Procede sol-gel de synthese d'un materiau luminescent de formulation generale : axbyfz : mn - Google Patents
Procede sol-gel de synthese d'un materiau luminescent de formulation generale : axbyfz : mn Download PDFInfo
- Publication number
- CA3004389A1 CA3004389A1 CA3004389A CA3004389A CA3004389A1 CA 3004389 A1 CA3004389 A1 CA 3004389A1 CA 3004389 A CA3004389 A CA 3004389A CA 3004389 A CA3004389 A CA 3004389A CA 3004389 A1 CA3004389 A1 CA 3004389A1
- Authority
- CA
- Canada
- Prior art keywords
- acid
- precursor
- liquid precursor
- fluorinated
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 title claims abstract description 16
- 238000003980 solgel method Methods 0.000 title claims abstract description 9
- 238000009472 formulation Methods 0.000 title claims abstract description 7
- 239000002243 precursor Substances 0.000 claims abstract description 34
- 239000012705 liquid precursor Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 21
- 239000011572 manganese Substances 0.000 claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 14
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 13
- 150000004703 alkoxides Chemical class 0.000 claims abstract description 11
- -1 halogenides Chemical class 0.000 claims abstract description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 6
- 150000001242 acetic acid derivatives Chemical class 0.000 claims abstract description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims abstract description 4
- 150000004678 hydrides Chemical class 0.000 claims abstract description 4
- 150000002823 nitrates Chemical class 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 37
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 21
- 239000002253 acid Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 238000004020 luminiscence type Methods 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- KWVVTSALYXIJSS-UHFFFAOYSA-L silver(ii) fluoride Chemical compound [F-].[F-].[Ag+2] KWVVTSALYXIJSS-UHFFFAOYSA-L 0.000 claims description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 4
- 230000001476 alcoholic effect Effects 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 4
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 claims description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- 229910014263 BrF3 Inorganic materials 0.000 claims description 3
- 229910014271 BrF5 Inorganic materials 0.000 claims description 3
- 229910021583 Cobalt(III) fluoride Inorganic materials 0.000 claims description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 3
- 229910021571 Manganese(III) fluoride Inorganic materials 0.000 claims description 3
- 229910004057 NO2F Inorganic materials 0.000 claims description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 claims description 3
- GUNJVIDCYZYFGV-UHFFFAOYSA-K antimony trifluoride Chemical compound F[Sb](F)F GUNJVIDCYZYFGV-UHFFFAOYSA-K 0.000 claims description 3
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 claims description 3
- XHVUVQAANZKEKF-UHFFFAOYSA-N bromine pentafluoride Chemical compound FBr(F)(F)(F)F XHVUVQAANZKEKF-UHFFFAOYSA-N 0.000 claims description 3
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- 235000015165 citric acid Nutrition 0.000 claims description 3
- WZJQNLGQTOCWDS-UHFFFAOYSA-K cobalt(iii) fluoride Chemical compound F[Co](F)F WZJQNLGQTOCWDS-UHFFFAOYSA-K 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 3
- NIXONLGLPJQPCW-UHFFFAOYSA-K gold trifluoride Chemical compound F[Au](F)F NIXONLGLPJQPCW-UHFFFAOYSA-K 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 3
- SRVINXWCFNHIQZ-UHFFFAOYSA-K manganese(iii) fluoride Chemical compound [F-].[F-].[F-].[Mn+3] SRVINXWCFNHIQZ-UHFFFAOYSA-K 0.000 claims description 3
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 claims description 3
- JVJQPDTXIALXOG-UHFFFAOYSA-N nitryl fluoride Chemical compound [O-][N+](F)=O JVJQPDTXIALXOG-UHFFFAOYSA-N 0.000 claims description 3
- 235000019260 propionic acid Nutrition 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 150000003460 sulfonic acids Chemical class 0.000 claims description 3
- 239000011975 tartaric acid Substances 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 3
- FQFKTKUFHWNTBN-UHFFFAOYSA-N trifluoro-$l^{3}-bromane Chemical compound FBr(F)F FQFKTKUFHWNTBN-UHFFFAOYSA-N 0.000 claims description 3
- IGELFKKMDLGCJO-UHFFFAOYSA-N xenon difluoride Chemical compound F[Xe]F IGELFKKMDLGCJO-UHFFFAOYSA-N 0.000 claims description 3
- ARUUTJKURHLAMI-UHFFFAOYSA-N xenon hexafluoride Chemical compound F[Xe](F)(F)(F)(F)F ARUUTJKURHLAMI-UHFFFAOYSA-N 0.000 claims description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 2
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 claims description 2
- 229910017665 NH4HF2 Inorganic materials 0.000 claims description 2
- 235000011054 acetic acid Nutrition 0.000 claims description 2
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 claims description 2
- LVEULQCPJDDSLD-UHFFFAOYSA-L cadmium fluoride Chemical compound F[Cd]F LVEULQCPJDDSLD-UHFFFAOYSA-L 0.000 claims description 2
- FPHIOHCCQGUGKU-UHFFFAOYSA-L difluorolead Chemical compound F[Pb]F FPHIOHCCQGUGKU-UHFFFAOYSA-L 0.000 claims description 2
- 235000019253 formic acid Nutrition 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- ANOBYBYXJXCGBS-UHFFFAOYSA-L stannous fluoride Chemical compound F[Sn]F ANOBYBYXJXCGBS-UHFFFAOYSA-L 0.000 claims description 2
- RPSSQXXJRBEGEE-UHFFFAOYSA-N xenon tetrafluoride Chemical compound F[Xe](F)(F)F RPSSQXXJRBEGEE-UHFFFAOYSA-N 0.000 claims description 2
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- VPAYJEUHKVESSD-UHFFFAOYSA-N trifluoroiodomethane Chemical compound FC(F)(F)I VPAYJEUHKVESSD-UHFFFAOYSA-N 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 5
- 238000007669 thermal treatment Methods 0.000 abstract 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 9
- 239000011737 fluorine Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 229910052693 Europium Inorganic materials 0.000 description 3
- 229910020440 K2SiF6 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical group OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002468 ceramisation Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012025 fluorinating agent Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- OHULXNKDWPTSBI-UHFFFAOYSA-N strontium;propan-2-olate Chemical compound [Sr+2].CC(C)[O-].CC(C)[O-] OHULXNKDWPTSBI-UHFFFAOYSA-N 0.000 description 2
- 206010001488 Aggression Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101100396546 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) tif-6 gene Proteins 0.000 description 1
- ZMZINYUKVRMNTG-UHFFFAOYSA-N acetic acid;formic acid Chemical compound OC=O.CC(O)=O ZMZINYUKVRMNTG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/61—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
- C09K11/615—Halogenides
- C09K11/616—Halogenides with alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/61—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
- C09K11/617—Silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Le procédé sol-gel de synthèse d'un matériau luminescent de formulation générale : AxByFz :Mn, avec A étant un élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à ces groupes, avec R=H ou une chaîne alkyl ou une combinaison de chaînes, B étant un élément du groupe 5, 6, 13, 14 et 0<x=5, 0<y=2, 5=z=7, caractérisé en ce qu'il comprend au moins les étapes suivantes : - a) de production d'un précurseur liquide (2, 3), en solution alcoolique, par mélange de réactifs métalliques (1 ), choisis parmi des sels de métal comme des halogénures, des nitrates, des hydrures, des amidures, des acétates, des carbonates ou des alcoxydes, avec du Manganèse, le mélange étant effectué à pH< 8, - b) d'obtention d'un précurseur solide (5, 6) à partir du précurseur liquide (2, 3) obtenu à l'étape a), par élimination (4) du solvant, - c) de cristallisation (7, 70) du précurseur solide (5, 6) obtenu à l'étape b), par traitement thermique sous atmosphère fluorée, d) de récupération de la poudre cristalline fluorescente (8) obtenue à l'issue de l'étape c).
Description
PROCEDE SOL-GEL DE SYNTHESE D'UN MATERIAU LUMINESCENT DE
FORMULATION GENERALE : AxByFz : Mn La présente invention concerne un procédé sol-gel de synthèse d'un matériau luminescent de formulation générale : AxByFz : Mn.
Ici, A représente un élément appartenant à un des groupes suivants de la classification périodique des éléments également connue sous le nom de tableau de Mendeleïev : groupes 1, 2, 4, NR4 ou une combinaison d'éléments, étant entendu que R
est de l'hydrogène ou une chaine alkyl, seul ou en combinaison. B représente un élément appartenant à un des groupes 5, 6, 13, 14, x est une valeur supérieure à zéro et inférieure ou égale à cinq, y est une valeur supérieure à zéro et inférieure ou égale à
deux et z est supérieur ou égal à cinq et inférieur ou égal à sept.
Les matériaux luminescents, c'est-à-dire des matériaux qui sous l'action d'une excitation émettent de la lumière, sont utilisés dans le domaine de l'éclairage, des lasers, de l'imagerie médicale entre autres. En particulier les matériaux luminescents sont utilisés dans la production de Diodes Electro-Luminescentes ou LED selon l'acronyme anglais généralement employé. Pour des raisons environnementales, de coût, de durée de vie, de consommation et de facilité d'utilisation, les LED sont de plus en plus présentes pour l'éclairage dit traditionnel, en remplaçant, par exemple, les lampes halogènes ou à incandescence. En particulier, les LEDs blanches permettent d'obtenir un éclairage similaire à la lumière naturelle.
La plupart des LEDs blanches sont fabriquées par association d'un semi-conducteur émettant entre 400 nm et 500 nm avec un luminophore jaune/vert émettant entre 480 nm et 650 nm. La fabrication de LEDs blanches à haut indice de rendu de couleur, ou IRC, nécessite l'ajout d'une composante rouge renforçant l'émission entre 600 nm et 700 nm. Actuellement, pour cette composante rouge les composés de la famille des nitrures dopés à l'europium sont une solution de choix. Ils se caractérisent par une émission rouge intense et une stabilité thermique.
Cependant ces composés restent chers et difficiles à produire. Aussi une solution émergeante consiste en l'utilisation de composés fluorés complexes de formule générale AxByFz :
Mn4 . Ces matériaux ont une plage d'émission étroite favorable à l'obtention d'un haut IRC et sont moins onéreux du fait de l'absence de terres rares dans leur composition.
Il est connu d'US-A-2015 0166 887 un procédé de préparation d'un matériau luminescent par des réactions de co-précipitation faisant intervenir des précurseurs fluorés en solution dans l'acide fluorhydrique. Cet acide est considéré comme extrêmement corrosif et toxique, ce qui implique des contraintes importantes en matière de sécurité lors de son stockage et de sa mise en oeuvre.
De ce fait, d'autres modes de production ont été explorés. Parmi ceux-ci, les procédés de type sol-gel permettent la production de matériaux luminescents à
basse température, à savoir une température inférieure à celle des voies de céramisation classique. Par exemple, dans le cas de la silice, la céramisation peut être obtenue à des températures inférieures à 100 C. Ce type de procédé est basé sur une polymérisation inorganique, à partir de précurseurs en solution, qui donne naissance à un réseau organométallique précurseur du solide final. Lors du procédé, des colloïdes sont formés ainsi que des gels polymériques. Après séchage et frittage, il est possible d'obtenir des fibres, des monolithes ou des poudres.
Dans le cas de la fabrication de matériaux luminescents non fluorés, on connait par la thèse d'Audrey Caumond-Potdevin ( synthèse par voie sol-gel et caractérisation de matériaux luminescents nanostructurés applicables dans une nouvelle génération de lampes propres de juin 2007) un procédé dans lequel on utilise des alcoxydes métalliques en solution dans un solvant organique comme précurseur. De manière générale, le procédé comprend des réactions de type hydrolyse puis de type condensation. Ces réactions combinées aboutissent à l'élaboration de molécules ayant une structure tridimensionnelle.
La thèse de Jessica Labeguerie-Egea, ( synthèses par chimie douce de fluorures dopés terres rares pour applications optiques de 2007) décrit également un
FORMULATION GENERALE : AxByFz : Mn La présente invention concerne un procédé sol-gel de synthèse d'un matériau luminescent de formulation générale : AxByFz : Mn.
Ici, A représente un élément appartenant à un des groupes suivants de la classification périodique des éléments également connue sous le nom de tableau de Mendeleïev : groupes 1, 2, 4, NR4 ou une combinaison d'éléments, étant entendu que R
est de l'hydrogène ou une chaine alkyl, seul ou en combinaison. B représente un élément appartenant à un des groupes 5, 6, 13, 14, x est une valeur supérieure à zéro et inférieure ou égale à cinq, y est une valeur supérieure à zéro et inférieure ou égale à
deux et z est supérieur ou égal à cinq et inférieur ou égal à sept.
Les matériaux luminescents, c'est-à-dire des matériaux qui sous l'action d'une excitation émettent de la lumière, sont utilisés dans le domaine de l'éclairage, des lasers, de l'imagerie médicale entre autres. En particulier les matériaux luminescents sont utilisés dans la production de Diodes Electro-Luminescentes ou LED selon l'acronyme anglais généralement employé. Pour des raisons environnementales, de coût, de durée de vie, de consommation et de facilité d'utilisation, les LED sont de plus en plus présentes pour l'éclairage dit traditionnel, en remplaçant, par exemple, les lampes halogènes ou à incandescence. En particulier, les LEDs blanches permettent d'obtenir un éclairage similaire à la lumière naturelle.
La plupart des LEDs blanches sont fabriquées par association d'un semi-conducteur émettant entre 400 nm et 500 nm avec un luminophore jaune/vert émettant entre 480 nm et 650 nm. La fabrication de LEDs blanches à haut indice de rendu de couleur, ou IRC, nécessite l'ajout d'une composante rouge renforçant l'émission entre 600 nm et 700 nm. Actuellement, pour cette composante rouge les composés de la famille des nitrures dopés à l'europium sont une solution de choix. Ils se caractérisent par une émission rouge intense et une stabilité thermique.
Cependant ces composés restent chers et difficiles à produire. Aussi une solution émergeante consiste en l'utilisation de composés fluorés complexes de formule générale AxByFz :
Mn4 . Ces matériaux ont une plage d'émission étroite favorable à l'obtention d'un haut IRC et sont moins onéreux du fait de l'absence de terres rares dans leur composition.
Il est connu d'US-A-2015 0166 887 un procédé de préparation d'un matériau luminescent par des réactions de co-précipitation faisant intervenir des précurseurs fluorés en solution dans l'acide fluorhydrique. Cet acide est considéré comme extrêmement corrosif et toxique, ce qui implique des contraintes importantes en matière de sécurité lors de son stockage et de sa mise en oeuvre.
De ce fait, d'autres modes de production ont été explorés. Parmi ceux-ci, les procédés de type sol-gel permettent la production de matériaux luminescents à
basse température, à savoir une température inférieure à celle des voies de céramisation classique. Par exemple, dans le cas de la silice, la céramisation peut être obtenue à des températures inférieures à 100 C. Ce type de procédé est basé sur une polymérisation inorganique, à partir de précurseurs en solution, qui donne naissance à un réseau organométallique précurseur du solide final. Lors du procédé, des colloïdes sont formés ainsi que des gels polymériques. Après séchage et frittage, il est possible d'obtenir des fibres, des monolithes ou des poudres.
Dans le cas de la fabrication de matériaux luminescents non fluorés, on connait par la thèse d'Audrey Caumond-Potdevin ( synthèse par voie sol-gel et caractérisation de matériaux luminescents nanostructurés applicables dans une nouvelle génération de lampes propres de juin 2007) un procédé dans lequel on utilise des alcoxydes métalliques en solution dans un solvant organique comme précurseur. De manière générale, le procédé comprend des réactions de type hydrolyse puis de type condensation. Ces réactions combinées aboutissent à l'élaboration de molécules ayant une structure tridimensionnelle.
La thèse de Jessica Labeguerie-Egea, ( synthèses par chimie douce de fluorures dopés terres rares pour applications optiques de 2007) décrit également un
2 procédé sol-gel utilisant l'isopropanol comme solvant et l'acide trifluoroacétique comme agent fluorant pour l'obtention de dérivés fluorés simples, de type CaF2, dopés à
l'europium. Il est également connu par Damien Boyer et Al, optical materials 28, 2006, 53-57, de produire une poudre fluorescente, en l'espèce un fluorure de lithium et d'yttrium dopé à l'europium, à partir d'une solution d'alcoxyde hétérométallique. Ici, la source de fluor est de l'acide trifluoroacétique introduit au début du procédé, celui-ci se déroulant en milieu basique. Cette poudre trouve son application dans, entres autres, le domaine des lasers.
La structure des matrices de ces divers procédés est caractérisée par des sites cristallographiques incorporant aisément des terres rares. Ces sites sont inadaptés pour l'accueil d'ions de transition de configuration électronique d3, comme Cr3+ ou Mn4 . Afin d'obtenir des niveaux de performance nécessaires à une application sur des LED, il convient d'obtenir des structures plus fluorées, à savoir contenant plus de quatre atomes de fluor, dont le champ cristallin permet d'obtenir une luminescence du manganèse optimisée. De plus, l'utilisation des terres rares est désavantageuse en termes de coûts.
En d'autres termes, il est intéressant de produire un fluorure sans terres rares, ayant au moins cinq atomes de fluor dans la structure de la matrice, facile à
produire et à
stocker.
L'invention vise plus particulièrement à proposer un procédé sol-gel de synthèse, aisé à mettre en oeuvre, sans source organique de fluor, sans acide fluorhydrique et sans terres rares.
A cet effet, l'invention a pour objet un procédé sol-gel de synthèse d'un matériau luminescent de formulation générale : AxByFz :Mn, avec A étant un élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à ces groupes, avec R=H
ou une chaine alkyl ou une combinaison de chaines, B étant un élément du groupe 5, 6, 13, 14, et 0<x55, 0<y52, 55z57, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- a) de production d'un précurseur liquide, en solution alcoolique, par mélange de réactifs métalliques, choisis parmi des sels de métal comme des halogénures, des
l'europium. Il est également connu par Damien Boyer et Al, optical materials 28, 2006, 53-57, de produire une poudre fluorescente, en l'espèce un fluorure de lithium et d'yttrium dopé à l'europium, à partir d'une solution d'alcoxyde hétérométallique. Ici, la source de fluor est de l'acide trifluoroacétique introduit au début du procédé, celui-ci se déroulant en milieu basique. Cette poudre trouve son application dans, entres autres, le domaine des lasers.
La structure des matrices de ces divers procédés est caractérisée par des sites cristallographiques incorporant aisément des terres rares. Ces sites sont inadaptés pour l'accueil d'ions de transition de configuration électronique d3, comme Cr3+ ou Mn4 . Afin d'obtenir des niveaux de performance nécessaires à une application sur des LED, il convient d'obtenir des structures plus fluorées, à savoir contenant plus de quatre atomes de fluor, dont le champ cristallin permet d'obtenir une luminescence du manganèse optimisée. De plus, l'utilisation des terres rares est désavantageuse en termes de coûts.
En d'autres termes, il est intéressant de produire un fluorure sans terres rares, ayant au moins cinq atomes de fluor dans la structure de la matrice, facile à
produire et à
stocker.
L'invention vise plus particulièrement à proposer un procédé sol-gel de synthèse, aisé à mettre en oeuvre, sans source organique de fluor, sans acide fluorhydrique et sans terres rares.
A cet effet, l'invention a pour objet un procédé sol-gel de synthèse d'un matériau luminescent de formulation générale : AxByFz :Mn, avec A étant un élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à ces groupes, avec R=H
ou une chaine alkyl ou une combinaison de chaines, B étant un élément du groupe 5, 6, 13, 14, et 0<x55, 0<y52, 55z57, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- a) de production d'un précurseur liquide, en solution alcoolique, par mélange de réactifs métalliques, choisis parmi des sels de métal comme des halogénures, des
3 nitrates, des hydrures, des amidures, des acétates, des carbonates ou des alcoxydes, avec du Manganèse, le mélange étant effectué à pH< 8, - b) d'obtention d'un précurseur solide à partir du précurseur liquide obtenu à
l'étape a), par élimination du solvant, ¨ c) de cristallisation du précurseur solide obtenu à l'étape b), par traitement thermique sous atmosphère fluorée, - d) de récupération de la poudre cristalline fluorescente obtenue à l'issue de l'étape c).
Avec un tel procédé, on n'utilise pas de source de fluor en solution, ni de terre rare. Ici, la source de fluor est apportée seulement à l'avant-dernière étape, donc juste avant la récupération du produit final, lors du traitement thermique. En d'autres termes, le procédé se déroule en absence de fluor en solution. La sécurité en est améliorée et le stockage et la manipulation sont également facilités.
Selon des aspects avantageux mais non obligatoires de l'invention, un tel procédé peut comprendre une ou plusieurs des caractéristiques suivantes:
- Lors de l'étape a), le pH est maintenu inférieur à 8 par l'ajout d'un acide, choisi, de manière non limitative, parmi des acides carboxyliques tels que l'acide formique, l'acide acétique, l'acide propanoïque, l'acide citrique, l'acide tartrique, l'acide oxalique, parmi des acides sulfoniques tels que l'acide benzène sulfonique, l'acide paratoluène sulfonique, parmi des anhydres d'acides, de l'acide chlorhydrique en solution dans de l'éther éthylique, dans du dioxane ou sous forme gazeuse.
- Lors de l'étape a), le pH est maintenu inférieur à 8 par l'ajout d'un acide carboxylique :
l'acide acétique.
- l'étape a) est effectuée à une température comprise entre 15 C et la température d'ébullition du solvant utilisé.
- Le précurseur liquide, obtenu à l'étape a), est, si besoin, stocké pour une mise en oeuvre ultérieure de l'étape b).
- Le précurseur solide, obtenu à l'étape b), est, si besoin, stocké pour une mise en oeuvre ultérieure de l'étape c).
l'étape a), par élimination du solvant, ¨ c) de cristallisation du précurseur solide obtenu à l'étape b), par traitement thermique sous atmosphère fluorée, - d) de récupération de la poudre cristalline fluorescente obtenue à l'issue de l'étape c).
Avec un tel procédé, on n'utilise pas de source de fluor en solution, ni de terre rare. Ici, la source de fluor est apportée seulement à l'avant-dernière étape, donc juste avant la récupération du produit final, lors du traitement thermique. En d'autres termes, le procédé se déroule en absence de fluor en solution. La sécurité en est améliorée et le stockage et la manipulation sont également facilités.
Selon des aspects avantageux mais non obligatoires de l'invention, un tel procédé peut comprendre une ou plusieurs des caractéristiques suivantes:
- Lors de l'étape a), le pH est maintenu inférieur à 8 par l'ajout d'un acide, choisi, de manière non limitative, parmi des acides carboxyliques tels que l'acide formique, l'acide acétique, l'acide propanoïque, l'acide citrique, l'acide tartrique, l'acide oxalique, parmi des acides sulfoniques tels que l'acide benzène sulfonique, l'acide paratoluène sulfonique, parmi des anhydres d'acides, de l'acide chlorhydrique en solution dans de l'éther éthylique, dans du dioxane ou sous forme gazeuse.
- Lors de l'étape a), le pH est maintenu inférieur à 8 par l'ajout d'un acide carboxylique :
l'acide acétique.
- l'étape a) est effectuée à une température comprise entre 15 C et la température d'ébullition du solvant utilisé.
- Le précurseur liquide, obtenu à l'étape a), est, si besoin, stocké pour une mise en oeuvre ultérieure de l'étape b).
- Le précurseur solide, obtenu à l'étape b), est, si besoin, stocké pour une mise en oeuvre ultérieure de l'étape c).
4 - Les réactifs métalliques mis en oeuvre à l'étape a) sont tous choisis parmi des alcoxydes.
- Les réactifs métalliques mis en oeuvre à l'étape a) sont des mélanges de sels de métal.
- L'étape c) est réalisée à une température comprise entre 100 C et 1000 C
pour au moins 30 minutes.
- L'agent fluoré utilisé à l'étape c) pour générer une atmosphère fluorée est choisi parmi :
F2, HF, BrF3, TbFa, XeF2, XeF4 et XeF6, NH4F, NH4HF2, CoF3, SbF3, SbF5, ArF3, KrF, BrF5, CIF, 01F3 et 01F5, HFO3S, AuF3, IF5, MnF3 et MnFa, NOF et NO2F NF3, C103F, PtF6, SeFa, SiFa, AgF2, SF4, SF6, KF, PbF2, ZnF2, SnF2, CdF2seuls ou en combinaison.
- Lors de l'étape c), l'atmosphère contient au moins 1% d'agent fluoré.
- Lors de l'étape c), l'atmosphère fluorée est statique ou dynamique.
- A l'issue de l'étape d), les particules obtenues sont réintroduites dans un précurseur liquide, au niveau de l'étape a).
- Lors de cette nouvelle étape a), le précurseur liquide est choisi pour assurer une double luminescence, pour des propriétés magnétiques ou pour d'autres caractéristiques.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaitront plus clairement à la lecture de la description de plusieurs modes de réalisation de l'invention, donnée à titre d'exemple non limitatif et faite en référence au dessin suivant dans lequel:
- La figure 1 est un schéma simplifié illustrant les différentes étapes du procédé
conforme à un mode de réalisation de l'invention.
En référence à la figure 1, on décrira la production d'un composé à partir de métaux de transition d'une manière générale et, plus particulièrement, selon un mode réalisation avantageux de l'invention, avec entre autres du manganèse, étant entendu que l'invention trouve également son application avec, par exemple, du Chrome, du Fer ou tout autre élément de transition des groupes 3 à 12 de la classification périodique des éléments. On conçoit que l'usage de tel ou tel métal de transition permet d'obtenir une luminescence dans différents domaines spectraux, donc dans différentes couleurs. Dans
- Les réactifs métalliques mis en oeuvre à l'étape a) sont des mélanges de sels de métal.
- L'étape c) est réalisée à une température comprise entre 100 C et 1000 C
pour au moins 30 minutes.
- L'agent fluoré utilisé à l'étape c) pour générer une atmosphère fluorée est choisi parmi :
F2, HF, BrF3, TbFa, XeF2, XeF4 et XeF6, NH4F, NH4HF2, CoF3, SbF3, SbF5, ArF3, KrF, BrF5, CIF, 01F3 et 01F5, HFO3S, AuF3, IF5, MnF3 et MnFa, NOF et NO2F NF3, C103F, PtF6, SeFa, SiFa, AgF2, SF4, SF6, KF, PbF2, ZnF2, SnF2, CdF2seuls ou en combinaison.
- Lors de l'étape c), l'atmosphère contient au moins 1% d'agent fluoré.
- Lors de l'étape c), l'atmosphère fluorée est statique ou dynamique.
- A l'issue de l'étape d), les particules obtenues sont réintroduites dans un précurseur liquide, au niveau de l'étape a).
- Lors de cette nouvelle étape a), le précurseur liquide est choisi pour assurer une double luminescence, pour des propriétés magnétiques ou pour d'autres caractéristiques.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaitront plus clairement à la lecture de la description de plusieurs modes de réalisation de l'invention, donnée à titre d'exemple non limitatif et faite en référence au dessin suivant dans lequel:
- La figure 1 est un schéma simplifié illustrant les différentes étapes du procédé
conforme à un mode de réalisation de l'invention.
En référence à la figure 1, on décrira la production d'un composé à partir de métaux de transition d'une manière générale et, plus particulièrement, selon un mode réalisation avantageux de l'invention, avec entre autres du manganèse, étant entendu que l'invention trouve également son application avec, par exemple, du Chrome, du Fer ou tout autre élément de transition des groupes 3 à 12 de la classification périodique des éléments. On conçoit que l'usage de tel ou tel métal de transition permet d'obtenir une luminescence dans différents domaines spectraux, donc dans différentes couleurs. Dans
5 tous les cas, la luminescence est obtenue par excitation de l'élément de transition dans un domaine allant de l'ultraviolet à l'infrarouge, suivie d'une désexcitation radiative.
A titre d'exemple préféré, l'emploi de Manganèse comme un des réactifs métalliques permet d'obtenir une luminescence dans le rouge, soit entre 600 nm et 700 nm.
Il convient de garder à l'esprit que le matériau fluoré final, donc la poudre cristalline luminescente obtenue, est un composé de formulation : AxByFz : Cm+
D'une manière générale, les familles de matrices permettant d'obtenir un matériau luminescent sont celles avec :
A = élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à
ces groupes étant entendu que R=H ou une chaine alkyl de petite taille ou une combinaison de chaines. Ici, l'expression petite taille désigne une chaine alkyl ayant de 1 à 4 atomes de carbones.
B = élément du groupe 5, 6, 13, 14.
Cm+ = Métal de transition 3dn (avec n = [1 ; 10]) à un degré d'oxydation m, par métaux de transition, on désigne des éléments de numéro atomique compris entre 21 et 30.
0<x55, 0<y52 55z57.
Dans l'invention, A, B, C sont également des réactifs métalliques simples ou complexes.
Par cette expression, on désigne autant des métaux comme par exemple du Manganèse, du Chrome, du Fer ou tout autre élément de transition que des sels de ces métaux ou d'un mélange de ces métaux. A titre d'exemples non limitatifs, on peut citer les halogénures, les nitrates, hydrures, amidures, acétates, carbonates ou, de manière préférée dans un mode de réalisation de l'invention, des alcoxydes.
Ces réactifs métalliques sont connus en soi et sont soit produits in situ préalablement à la mise en oeuvre du procédé, soit d'origine commerciale. En d'autres termes, l'utilisateur se les procure en amont, auprès d'un fournisseur.
L'emploi, préférentiellement, d'alcoxydes métalliques comme réactifs métalliques permet de réaliser un réseau polymérique hétéroatomique en solution, lors
A titre d'exemple préféré, l'emploi de Manganèse comme un des réactifs métalliques permet d'obtenir une luminescence dans le rouge, soit entre 600 nm et 700 nm.
Il convient de garder à l'esprit que le matériau fluoré final, donc la poudre cristalline luminescente obtenue, est un composé de formulation : AxByFz : Cm+
D'une manière générale, les familles de matrices permettant d'obtenir un matériau luminescent sont celles avec :
A = élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à
ces groupes étant entendu que R=H ou une chaine alkyl de petite taille ou une combinaison de chaines. Ici, l'expression petite taille désigne une chaine alkyl ayant de 1 à 4 atomes de carbones.
B = élément du groupe 5, 6, 13, 14.
Cm+ = Métal de transition 3dn (avec n = [1 ; 10]) à un degré d'oxydation m, par métaux de transition, on désigne des éléments de numéro atomique compris entre 21 et 30.
0<x55, 0<y52 55z57.
Dans l'invention, A, B, C sont également des réactifs métalliques simples ou complexes.
Par cette expression, on désigne autant des métaux comme par exemple du Manganèse, du Chrome, du Fer ou tout autre élément de transition que des sels de ces métaux ou d'un mélange de ces métaux. A titre d'exemples non limitatifs, on peut citer les halogénures, les nitrates, hydrures, amidures, acétates, carbonates ou, de manière préférée dans un mode de réalisation de l'invention, des alcoxydes.
Ces réactifs métalliques sont connus en soi et sont soit produits in situ préalablement à la mise en oeuvre du procédé, soit d'origine commerciale. En d'autres termes, l'utilisateur se les procure en amont, auprès d'un fournisseur.
L'emploi, préférentiellement, d'alcoxydes métalliques comme réactifs métalliques permet de réaliser un réseau polymérique hétéroatomique en solution, lors
6 de l'étape a), ce qui par la suite favorise la formation de la matrice finale souhaitée. Ceci étant, il est possible d'utiliser d'autres réactifs métalliques que des alcoxydes métalliques, comme mentionné précédemment.
Ici, il sera décrit le procédé objet de l'invention par la mise en oeuvre d'alcoxydes métalliques.
Lors d'une première étape, représentée sous la référence 1, on met à réagir ensemble les sources métalliques A, B et de manganèse avec de l'alcool.
L'alcool ou le mélange d'alcools est choisi en fonction des réactifs métalliques, afin d'assurer une solubilisation optimale.
La réaction est réalisée, sous atmosphère neutre, dans un réacteur sous agitation et à une température comprise entre 15 C et la température d'ébullition du solvant et pour un temps de réaction compris entre quelques minutes et plusieurs heures.
Préférentiellement le temps optimal de réaction est voisin de 4h. Le Manganèse, à la différence des Terres Rares, est sensible au pH. En milieu basique, le Manganèse peut être oxydé par l'oxygène dissous et former du Mn02. Une telle propriété est connue, elle est d'ailleurs utilisée dans une méthode, dite de Winckler, de dosage de l'oxygène dissous. En d'autres termes, la réaction, lors de l'étape a), doit être effectuée en milieu non basique, à savoir en l'espèce à un pH inférieur à 8. Avantageusement, le pH est compris entre 1 et 7, préférentiellement voisin de 5. De plus, la réaction doit se dérouler en milieu anhydre. De ce fait, le pH est régulé par l'apport d'un acide anhydre, avantageusement choisi, de manière non limitative, parmi des acides carboxyliques tels que l'acide formique, l'acide acétique, l'acide propanoïque, l'acide citrique, l'acide tartrique, l'acide oxalique, parmi des acides sulfoniques tels que l'acide benzène sulfonique, l'acide paratoluène sulfonique, parmi des anhydres d'acides, de l'acide chlorhydrique en solution dans de l'éther éthylique, dans du dioxane ou sous forme gazeuse.
De manière préférée, l'acide acétique est utilisé.
Lorsque la réaction est complète, on obtient un précurseur liquide 2 aux conditions de température et de pression normales. On conçoit que l'étape 1 peut être
Ici, il sera décrit le procédé objet de l'invention par la mise en oeuvre d'alcoxydes métalliques.
Lors d'une première étape, représentée sous la référence 1, on met à réagir ensemble les sources métalliques A, B et de manganèse avec de l'alcool.
L'alcool ou le mélange d'alcools est choisi en fonction des réactifs métalliques, afin d'assurer une solubilisation optimale.
La réaction est réalisée, sous atmosphère neutre, dans un réacteur sous agitation et à une température comprise entre 15 C et la température d'ébullition du solvant et pour un temps de réaction compris entre quelques minutes et plusieurs heures.
Préférentiellement le temps optimal de réaction est voisin de 4h. Le Manganèse, à la différence des Terres Rares, est sensible au pH. En milieu basique, le Manganèse peut être oxydé par l'oxygène dissous et former du Mn02. Une telle propriété est connue, elle est d'ailleurs utilisée dans une méthode, dite de Winckler, de dosage de l'oxygène dissous. En d'autres termes, la réaction, lors de l'étape a), doit être effectuée en milieu non basique, à savoir en l'espèce à un pH inférieur à 8. Avantageusement, le pH est compris entre 1 et 7, préférentiellement voisin de 5. De plus, la réaction doit se dérouler en milieu anhydre. De ce fait, le pH est régulé par l'apport d'un acide anhydre, avantageusement choisi, de manière non limitative, parmi des acides carboxyliques tels que l'acide formique, l'acide acétique, l'acide propanoïque, l'acide citrique, l'acide tartrique, l'acide oxalique, parmi des acides sulfoniques tels que l'acide benzène sulfonique, l'acide paratoluène sulfonique, parmi des anhydres d'acides, de l'acide chlorhydrique en solution dans de l'éther éthylique, dans du dioxane ou sous forme gazeuse.
De manière préférée, l'acide acétique est utilisé.
Lorsque la réaction est complète, on obtient un précurseur liquide 2 aux conditions de température et de pression normales. On conçoit que l'étape 1 peut être
7
8 effectuée à tout moment et/ou lieu par rapport à la suite du procédé. Ainsi, le précurseur liquide 2 peut aisément être stocké, comme illustré par la référence 3. Il est ainsi possible de délocaliser la production du précurseur liquide 2. Dans ce cas, il convient que les conditions de stockage et/ou de transport n'altèrent pas le précurseur liquide et la suite du procédé. En particulier, il convient de garder à l'esprit que le précurseur liquide est un produit inflammable qui doit être stocké à l'abri de la lumière.
En variante, le précurseur liquide 2 est utilisé dès sa production, soit de manière continue soit de manière discontinue.
La seconde étape du procédé, illustrée par les flèches 4, est alors mise en oeuvre, soit à partir du précurseur liquide 2 produit soit à partir du précurseur liquide stocké 3.
Par la suite, le précurseur liquide sera référencé 2 s'il est utilisé
directement et référencé 3 s'il s'agit d'un précurseur liquide préalablement stocké.
Cette étape 4 permet d'obtenir un précurseur solide 5. Pour cela, le solvant alcoolique est éliminé. Avantageusement mais non exclusivement, l'alcool est évaporé par chauffage à une température correspondant à la température d'ébullition du solvant alcoolique, cette température étant sans effet sur les autres constituants du précurseur liquide. En variante, le solvant est éliminé par évaporation sous pression réduite, par spray dring, par lyophilisation ou toute autre technique connue en soi.
L'objet de cette étape 4 est d'initier et de solidifier un intermédiaire réactionnel contenant les éléments A, B et C. Pour cela les paramètres de l'étape 4 sont variables et fonction du solvant employé et de la méthode d'élimination retenue.
Une fois le précurseur solide 5 obtenu, et de façon similaire au précurseur liquide 2, il est possible de stocker 6 le précurseur solide pour un emploi ultérieur et/ou en un autre lieu, comme cela ressort de la figure 1.
Il est à noter que, jusqu'à maintenant, le procédé n'a pas utilisé d'agent fluoré
en solution. En d'autres termes, la source de fluor n'est pas encore présente dans le procédé, ce qui permet de manipuler, transporter et stocker en sécurité les divers précurseurs, tout en gérant le moment de l'incorporation de la source de fluor.
L'étape suivante, illustrée par les flèches 7 ou 70 selon que le précurseur solide 5 est utilisé immédiatement ou qu'il s'agit d'un précurseur solide stocké 6, consiste en un traitement thermique permettant d'apporter le fluor, sous forme atomique et/ou moléculaire, au précurseur solide dès sa production, selon la référence 5, ou au précurseur solide stocké, selon la référence 6. Il est à noter que l'apport de fluor est réalisé uniquement à l'étape 7, 70 et pas avant.
En d'autres termes, l'étape 7, 70 est effectuée sous atmosphère fluorée. A
titre d'exemples non limitatifs, on peut citer comme agent de fluoration : F2, HF, BrF3, TbFa, XeF2, XeF6, NH4F, CoF3, SbF3, ArF3, BrF5, CIF, 01F3, 01F5, HFO3S, AuF3, IF5, MnF3, MnFa, NOF, NO2F, C103F, PtF6, SeFa, AgF2, SF4.
Le traitement thermique effectué lors de cette étape 7, 70 est réalisé entre 100 C et 1000 C pour une durée d'au moins 30 minutes sous une atmosphère fluorée contenant au moins 1% de fluor. En effet, il n'est pas nécessaire que l'atmosphère soit saturée en fluor, le reste de l'atmosphère peut être un gaz neutre comme l'azote.
Les exemples de synthèse suivants illustrent la mise en oeuvre du procédé
objet de l'invention.
Exemple 1 :
K2SiF6 :Mn(IV) est synthétisé à partir de Mn0I2, K métallique et de Tétraéthyl orthosilicate (TEOS). Le solvant utilisé est de l'éthanol anhydre. A une solution de Mn0I2 (0,1713 g) est ajoutée une solution de K (3,6432g). Après 1 heure d'agitation à reflux, le TEOS (9,3272g) est ajouté à la précédente solution. Après 30 minutes d'agitation à
reflux, de l'acide acétique (11,18 ml) est ajouté afin d'ajuster le pH à 5.
Après 4 heures de reflux, les sels sont éliminés de la solution et cette dernière est évaporée à sec. Le précurseur ainsi obtenu est traité thermiquement à 500 C sous flux de F2 pendant 15 heures.
Exemple 2:
Na2TiF6 :Mn(IV) est synthétisé à partir de Mn0I2, Na métallique et de Tétraéthyl orthotitanate (TEOT). Le solvant utilisé est de l'isopropanol anhydre. A une solution de Mn0I2 (0,1817 g) est ajoutée une solution de Na (0.7268g). Après 1 heure d'agitation à
En variante, le précurseur liquide 2 est utilisé dès sa production, soit de manière continue soit de manière discontinue.
La seconde étape du procédé, illustrée par les flèches 4, est alors mise en oeuvre, soit à partir du précurseur liquide 2 produit soit à partir du précurseur liquide stocké 3.
Par la suite, le précurseur liquide sera référencé 2 s'il est utilisé
directement et référencé 3 s'il s'agit d'un précurseur liquide préalablement stocké.
Cette étape 4 permet d'obtenir un précurseur solide 5. Pour cela, le solvant alcoolique est éliminé. Avantageusement mais non exclusivement, l'alcool est évaporé par chauffage à une température correspondant à la température d'ébullition du solvant alcoolique, cette température étant sans effet sur les autres constituants du précurseur liquide. En variante, le solvant est éliminé par évaporation sous pression réduite, par spray dring, par lyophilisation ou toute autre technique connue en soi.
L'objet de cette étape 4 est d'initier et de solidifier un intermédiaire réactionnel contenant les éléments A, B et C. Pour cela les paramètres de l'étape 4 sont variables et fonction du solvant employé et de la méthode d'élimination retenue.
Une fois le précurseur solide 5 obtenu, et de façon similaire au précurseur liquide 2, il est possible de stocker 6 le précurseur solide pour un emploi ultérieur et/ou en un autre lieu, comme cela ressort de la figure 1.
Il est à noter que, jusqu'à maintenant, le procédé n'a pas utilisé d'agent fluoré
en solution. En d'autres termes, la source de fluor n'est pas encore présente dans le procédé, ce qui permet de manipuler, transporter et stocker en sécurité les divers précurseurs, tout en gérant le moment de l'incorporation de la source de fluor.
L'étape suivante, illustrée par les flèches 7 ou 70 selon que le précurseur solide 5 est utilisé immédiatement ou qu'il s'agit d'un précurseur solide stocké 6, consiste en un traitement thermique permettant d'apporter le fluor, sous forme atomique et/ou moléculaire, au précurseur solide dès sa production, selon la référence 5, ou au précurseur solide stocké, selon la référence 6. Il est à noter que l'apport de fluor est réalisé uniquement à l'étape 7, 70 et pas avant.
En d'autres termes, l'étape 7, 70 est effectuée sous atmosphère fluorée. A
titre d'exemples non limitatifs, on peut citer comme agent de fluoration : F2, HF, BrF3, TbFa, XeF2, XeF6, NH4F, CoF3, SbF3, ArF3, BrF5, CIF, 01F3, 01F5, HFO3S, AuF3, IF5, MnF3, MnFa, NOF, NO2F, C103F, PtF6, SeFa, AgF2, SF4.
Le traitement thermique effectué lors de cette étape 7, 70 est réalisé entre 100 C et 1000 C pour une durée d'au moins 30 minutes sous une atmosphère fluorée contenant au moins 1% de fluor. En effet, il n'est pas nécessaire que l'atmosphère soit saturée en fluor, le reste de l'atmosphère peut être un gaz neutre comme l'azote.
Les exemples de synthèse suivants illustrent la mise en oeuvre du procédé
objet de l'invention.
Exemple 1 :
K2SiF6 :Mn(IV) est synthétisé à partir de Mn0I2, K métallique et de Tétraéthyl orthosilicate (TEOS). Le solvant utilisé est de l'éthanol anhydre. A une solution de Mn0I2 (0,1713 g) est ajoutée une solution de K (3,6432g). Après 1 heure d'agitation à reflux, le TEOS (9,3272g) est ajouté à la précédente solution. Après 30 minutes d'agitation à
reflux, de l'acide acétique (11,18 ml) est ajouté afin d'ajuster le pH à 5.
Après 4 heures de reflux, les sels sont éliminés de la solution et cette dernière est évaporée à sec. Le précurseur ainsi obtenu est traité thermiquement à 500 C sous flux de F2 pendant 15 heures.
Exemple 2:
Na2TiF6 :Mn(IV) est synthétisé à partir de Mn0I2, Na métallique et de Tétraéthyl orthotitanate (TEOT). Le solvant utilisé est de l'isopropanol anhydre. A une solution de Mn0I2 (0,1817 g) est ajoutée une solution de Na (0.7268g). Après 1 heure d'agitation à
9 reflux, le TEOT (3.6801 g) est ajouté à la précédente solution. Après 30 minutes d'agitation à reflux, de l'acide acétique (3,79 ml) est ajouté afin d'ajuster le pH à 5. Après 3 heures de reflux, les sels sont éliminés de la solution et cette dernière est évaporée à
sec. Le précurseur ainsi obtenu est traité thermiquement à 500 C sous flux de pendant 15 heures.
Exemple 3:
Na3AIF6 est synthétisé à partir de Na métallique et d'isopropoxyde d'aluminium. Le solvant utilisé est du méthanol anhydre. A une solution de Na (1.6675 g) est ajoutée l'isopropoxyde d'aluminium (4.9135 g). Après 30 minutes d'agitation à reflux, de l'acide acétique (8,71 ml) est ajouté afin d'ajuster le pH à 5. Après 2 heures de reflux, la solution est refroidie à 25 C. Dans cette dernière, on disperse la poudre de Na2TiF6 :Mn(IV) obtenue dans l'exemple 2, dans un ratio molaire de 3 pour 1 en Na2TiF6 :Mn(IV). La dispersion ainsi obtenue est évaporée puis traitée thermiquement à 650 C sous flux de F2 pendant 3 heures.
Exemple 4:
LiSrAlF6 :Cr(III) est synthétisé à partir de l'éthoxyde de lithium, de l'isopropoxyde de strontium, de l'acétylacétonate de chrome et d'isopropoxyde d'aluminium. Le solvant utilisé est de l'isopropanol anhydre. A une solution d'éthoxyde de lithium (0.7171 g), d'isopropoxyde de strontium (2.6132 g) et d'acétylacétonate de chrome (0.1336 g) est ajouté l'isopropoxyde d'aluminium (2.5408 g). Après 30 minutes d'agitation à
reflux, de l'acide acétique (3,18 ml) est ajouté afin d'ajuster le pH à 5. Après 6 heures de reflux, la solution est refroidie à 25 C. Dans cette dernière, est dispersée la poudre de K2SiF6 :Mn(IV) obtenue dans l'exemple 1, dans un ratio molaire de 9 pour 1 en K2SiF6 :Mn(IV). La dispersion ainsi obtenue est évaporée puis traitée thermiquement à
600 C sous flux de F2 pendant 10 heures.
Le fait que le pourcentage de fluor gazeux reste faible participe à
l'amélioration de la sécurité. Par ailleurs, le traitement thermique est, de préférence, réalisé de façon dynamique, c'est-à-dire sous un flux de gaz fluoré. En variante, il est réalisé de manière statique : l'étape 7, 70 ayant alors lieu dans un volume clos, sous atmosphère fluorée.
A l'issue de l'étape 7 ou 70, selon l'origine du précurseur solide, 5 ou 6, on obtient une poudre cristalline 8. La taille des particules obtenues est fonction de la nature du précurseur solide 5 et des conditions du traitement thermique 7.
Généralement, la taille des particules est voisine de 200 nm. Les particules peuvent se présenter sous la forme d'agrégats dont la taille est de l'ordre du micron. Une telle granulométrie est particulièrement adaptée pour permettre la mise en forme et le dépôt du luminophore, par exemple sur une LED 9.
Si besoin, il est possible d'augmenter la taille des particules en déposant une ou plusieurs couches supplémentaires. Pour cela, il suffit de mettre en contact les particules solides 8 avec le précurseur liquide 2 ou 3, en les dispersant dans ce dernier, et de réaliser au moins une autre étape 4 d'élimination du solvant suivie d'une étape 7, 70 de traitement thermique. En l'espèce, ce cycle supplémentaire est effectué sur un mélange de précurseur liquide 2 ou 3 et de particules 8, donc dans des conditions qui ne sont pas forcément les mêmes que celles de l'étape 7, 70 initiale. On conçoit que la répétition du cycle est effectuée plusieurs fois, autant que de besoin.
L'ajout d'au moins un cycle supplémentaire, voire de plusieurs, permet, en modifiant la nature du précurseur liquide 2 ou 3, d'introduire d'autres caractéristiques à la poudre 8. Ainsi, il est possible d'introduire d'autres propriétés fonctionnelles à la poudre 8, par exemple une seconde luminescence dans un domaine spectral différent de celui, initial, de la poudre 8. Ainsi, on peut réaliser une double luminescence, c'est-à-dire dans une autre gamme de couleur que le rouge, par exemple le jaune, en introduisant un précurseur liquide qui ne contient pas de manganèse. A titre d'exemple, on peut citer un mélange de Chrome fluoré et de manganèse fluoré.
Le procédé permet également de protéger la poudre des agressions de son environnement immédiat en déposant une couche de passivation lors de ce ou ces cycle(s) supplémentaire(s). A titre d'exemple, en réintroduisant la poudre 8 dans un précurseur liquide 2 ou 3 de Na3AIF6, également connu sous le terme de cryolite synthétique, on enrobe les particules avec une couche protectrice.
Il est également possible de déposer une ou plusieurs couches sur les particules conférant à ces dernières d'autres caractéristiques, telles que, de manière non limitative, des propriétés magnétiques ou une caractéristique assurant l'identification et la traçabilité du produit final.
Il est également possible d'enrober d'autres particules, luminescentes ou non, et d'imprégner des objets de type préformes céramiques en les dispersant dans le précurseur liquide 2 ou 3 et en réalisant au moins un cycle d'évaporation 4 et de traitement thermique 7. A titre d'exemple non limitatif on peut citer des particules d'alumine A1203 enrobées par K2SiF6 :Mn. En d'autres termes, on confère des caractéristiques de fluorescence à des particules d'alumine.
Un tel procédé est donc d'un usage souple et aisé, ce qui permet, en toute sécurité, de réaliser différents produits luminescents.
Un tel procédé permet, pour les différentes étapes de production d'un précurseur solide (étape b) et de cristallisation (étape c) d'utiliser, respectivement, des précurseurs liquide et solide provenant soit directement de l'étape précédente soit d'un stockage, 3 ou 6, soit un mélange, en proportion variable, de précurseurs provenant en partie d'un stockage et en partie de l'étape précédente. Il est ainsi possible de réguler la production, à chacune des étapes b) et c), en ajustant si besoin la quantité
de précurseurs utilisés à partir des précurseurs 3 ou 6 stockés.
sec. Le précurseur ainsi obtenu est traité thermiquement à 500 C sous flux de pendant 15 heures.
Exemple 3:
Na3AIF6 est synthétisé à partir de Na métallique et d'isopropoxyde d'aluminium. Le solvant utilisé est du méthanol anhydre. A une solution de Na (1.6675 g) est ajoutée l'isopropoxyde d'aluminium (4.9135 g). Après 30 minutes d'agitation à reflux, de l'acide acétique (8,71 ml) est ajouté afin d'ajuster le pH à 5. Après 2 heures de reflux, la solution est refroidie à 25 C. Dans cette dernière, on disperse la poudre de Na2TiF6 :Mn(IV) obtenue dans l'exemple 2, dans un ratio molaire de 3 pour 1 en Na2TiF6 :Mn(IV). La dispersion ainsi obtenue est évaporée puis traitée thermiquement à 650 C sous flux de F2 pendant 3 heures.
Exemple 4:
LiSrAlF6 :Cr(III) est synthétisé à partir de l'éthoxyde de lithium, de l'isopropoxyde de strontium, de l'acétylacétonate de chrome et d'isopropoxyde d'aluminium. Le solvant utilisé est de l'isopropanol anhydre. A une solution d'éthoxyde de lithium (0.7171 g), d'isopropoxyde de strontium (2.6132 g) et d'acétylacétonate de chrome (0.1336 g) est ajouté l'isopropoxyde d'aluminium (2.5408 g). Après 30 minutes d'agitation à
reflux, de l'acide acétique (3,18 ml) est ajouté afin d'ajuster le pH à 5. Après 6 heures de reflux, la solution est refroidie à 25 C. Dans cette dernière, est dispersée la poudre de K2SiF6 :Mn(IV) obtenue dans l'exemple 1, dans un ratio molaire de 9 pour 1 en K2SiF6 :Mn(IV). La dispersion ainsi obtenue est évaporée puis traitée thermiquement à
600 C sous flux de F2 pendant 10 heures.
Le fait que le pourcentage de fluor gazeux reste faible participe à
l'amélioration de la sécurité. Par ailleurs, le traitement thermique est, de préférence, réalisé de façon dynamique, c'est-à-dire sous un flux de gaz fluoré. En variante, il est réalisé de manière statique : l'étape 7, 70 ayant alors lieu dans un volume clos, sous atmosphère fluorée.
A l'issue de l'étape 7 ou 70, selon l'origine du précurseur solide, 5 ou 6, on obtient une poudre cristalline 8. La taille des particules obtenues est fonction de la nature du précurseur solide 5 et des conditions du traitement thermique 7.
Généralement, la taille des particules est voisine de 200 nm. Les particules peuvent se présenter sous la forme d'agrégats dont la taille est de l'ordre du micron. Une telle granulométrie est particulièrement adaptée pour permettre la mise en forme et le dépôt du luminophore, par exemple sur une LED 9.
Si besoin, il est possible d'augmenter la taille des particules en déposant une ou plusieurs couches supplémentaires. Pour cela, il suffit de mettre en contact les particules solides 8 avec le précurseur liquide 2 ou 3, en les dispersant dans ce dernier, et de réaliser au moins une autre étape 4 d'élimination du solvant suivie d'une étape 7, 70 de traitement thermique. En l'espèce, ce cycle supplémentaire est effectué sur un mélange de précurseur liquide 2 ou 3 et de particules 8, donc dans des conditions qui ne sont pas forcément les mêmes que celles de l'étape 7, 70 initiale. On conçoit que la répétition du cycle est effectuée plusieurs fois, autant que de besoin.
L'ajout d'au moins un cycle supplémentaire, voire de plusieurs, permet, en modifiant la nature du précurseur liquide 2 ou 3, d'introduire d'autres caractéristiques à la poudre 8. Ainsi, il est possible d'introduire d'autres propriétés fonctionnelles à la poudre 8, par exemple une seconde luminescence dans un domaine spectral différent de celui, initial, de la poudre 8. Ainsi, on peut réaliser une double luminescence, c'est-à-dire dans une autre gamme de couleur que le rouge, par exemple le jaune, en introduisant un précurseur liquide qui ne contient pas de manganèse. A titre d'exemple, on peut citer un mélange de Chrome fluoré et de manganèse fluoré.
Le procédé permet également de protéger la poudre des agressions de son environnement immédiat en déposant une couche de passivation lors de ce ou ces cycle(s) supplémentaire(s). A titre d'exemple, en réintroduisant la poudre 8 dans un précurseur liquide 2 ou 3 de Na3AIF6, également connu sous le terme de cryolite synthétique, on enrobe les particules avec une couche protectrice.
Il est également possible de déposer une ou plusieurs couches sur les particules conférant à ces dernières d'autres caractéristiques, telles que, de manière non limitative, des propriétés magnétiques ou une caractéristique assurant l'identification et la traçabilité du produit final.
Il est également possible d'enrober d'autres particules, luminescentes ou non, et d'imprégner des objets de type préformes céramiques en les dispersant dans le précurseur liquide 2 ou 3 et en réalisant au moins un cycle d'évaporation 4 et de traitement thermique 7. A titre d'exemple non limitatif on peut citer des particules d'alumine A1203 enrobées par K2SiF6 :Mn. En d'autres termes, on confère des caractéristiques de fluorescence à des particules d'alumine.
Un tel procédé est donc d'un usage souple et aisé, ce qui permet, en toute sécurité, de réaliser différents produits luminescents.
Un tel procédé permet, pour les différentes étapes de production d'un précurseur solide (étape b) et de cristallisation (étape c) d'utiliser, respectivement, des précurseurs liquide et solide provenant soit directement de l'étape précédente soit d'un stockage, 3 ou 6, soit un mélange, en proportion variable, de précurseurs provenant en partie d'un stockage et en partie de l'étape précédente. Il est ainsi possible de réguler la production, à chacune des étapes b) et c), en ajustant si besoin la quantité
de précurseurs utilisés à partir des précurseurs 3 ou 6 stockés.
Claims (14)
1.- Procédé sol-gel de synthèse d'un matériau luminescent de formulation générale :
AxByFz :Mn, avec A étant un élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à ces groupes, avec R=H ou une chaine alkyl ou une combinaison de chaines, B étant un élément du groupe 5, 6, 13, 14 et 0<×<=5, 0<y<=2, 5<=z<=7, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- a) de production d'un précurseur liquide (2, 3), en solution alcoolique, par mélange de réactifs métalliques (1), choisis parmi des sels de métal comme des halogénures, des nitrates, des hydrures, des amidures, des acétates, des carbonates ou des alcoxydes, avec du Manganèse, le mélange étant effectué à pH< 8, - b) d'obtention d'un précurseur solide (5, 6) à partir du précurseur liquide (2, 3) obtenu à l'étape a), par élimination (4) du solvant, ¨ c) de cristallisation (7, 70) du précurseur solide (5, 6) obtenu à l'étape b), par traitement thermique sous atmosphère fluorée, - d) de récupération de la poudre cristalline fluorescente (8) obtenue à
l'issue de l'étape c).
AxByFz :Mn, avec A étant un élément du groupe 1, 2, 4, NR4 ou une combinaison d'éléments appartenant à ces groupes, avec R=H ou une chaine alkyl ou une combinaison de chaines, B étant un élément du groupe 5, 6, 13, 14 et 0<×<=5, 0<y<=2, 5<=z<=7, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- a) de production d'un précurseur liquide (2, 3), en solution alcoolique, par mélange de réactifs métalliques (1), choisis parmi des sels de métal comme des halogénures, des nitrates, des hydrures, des amidures, des acétates, des carbonates ou des alcoxydes, avec du Manganèse, le mélange étant effectué à pH< 8, - b) d'obtention d'un précurseur solide (5, 6) à partir du précurseur liquide (2, 3) obtenu à l'étape a), par élimination (4) du solvant, ¨ c) de cristallisation (7, 70) du précurseur solide (5, 6) obtenu à l'étape b), par traitement thermique sous atmosphère fluorée, - d) de récupération de la poudre cristalline fluorescente (8) obtenue à
l'issue de l'étape c).
2.- Procédé selon la revendication 1, caractérisé en ce que lors de l'étape a), le pH est maintenu inférieur à 8 par l'ajout d'un acide, choisi parmi des acides carboxyliques tels que l'acide formique, l'acide acétique, l'acide propanoïque, l'acide citrique, l'acide tartrique, l'acide oxalique, parmi des acides sulfoniques tels que l'acide benzène sulfonique, l'acide paratoluène sulfonique, parmi des anhydres d'acides, de l'acide chlorhydrique en solution dans de l'éther éthylique, dans du dioxane ou sous forme gazeuse.
3.- Procédé selon la revendication 2, caractérisé en ce que lors de l'étape a), le pH est maintenu inférieur à 8 par l'ajout d'un acide carboxylique : l'acide acétique.
4.- Procédé selon la revendication 1, caractérisé en ce que l'étape a) est effectuée à une température comprise entre 15°C et la température d'ébullition du solvant utilisé.
5.- Procédé selon l'une des revendications précédentes, caractérisé en ce que le précurseur liquide, obtenu à l'étape a), est, si besoin, stocké (3) pour une mise en oeuvre ultérieure de l'étape b).
6.- Procédé selon l'une des revendications précédentes, caractérisé en ce que le précurseur solide, obtenu à l'étape b), est, si besoin, stocké (6) pour une mise en oeuvre ultérieure de l'étape c).
7.- Procédé selon la revendication 1, caractérisé en ce que les réactifs métalliques mis en oeuvre à l'étape a) sont tous choisis parmi des alcoxydes.
8.- Procédé selon la revendication 1, caractérisé en ce que les réactifs métalliques mis en oeuvre à l'étape a) sont des mélanges de sels de métal.
9.- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape c) est réalisée à une température comprise entre 100°C et 1000°C
pour au moins 30 minutes.
pour au moins 30 minutes.
10.- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'agent fluoré utilisé à l'étape c) pour générer une atmosphère fluorée est choisi parmi : F2, HF, BrF3, TbF4, XeF2, XeF4 et XeF6, NH4F, NH4HF2, CoF3, SbF3, SbF5, ArF3, KrF, BrF5, CIF, CIF3 et CIF5, HFO3S, AuF3,IF5, MnF3 et MnFa, NOF et NO2F NF3, CI03F, PtF6, SeFa, SiFa, AgF2, SF4, SF6, KF, PbF2, ZnF2, SnF2, CdF2seuls ou en combinaison.
11.- Procédé selon la revendication 8, caractérisé en ce que lors de l'étape c), l'atmosphère contient au moins 1% d'agent fluoré.
12.- Procédé selon l'une des revendications 8 à 10, caractérisé en ce que lors de l'étape c), l'atmosphère fluorée est statique ou dynamique.
13.- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'issue de l'étape d), les particules obtenues (8) sont réintroduites dans un précurseur liquide, au niveau de l'étape a).
14.- Procédé selon la revendication 13, caractérisé en ce que lors de cette nouvelle étape a), le précurseur liquide est choisi pour assurer une double luminescence, pour des propriétés magnétiques ou pour d'autres caractéristiques.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1560857 | 2015-11-13 | ||
FR1560857A FR3043687B1 (fr) | 2015-11-13 | 2015-11-13 | Procede sol-gel de synthese d'un materiau luminescent de formulation generale axbyfz:mn |
PCT/FR2016/052938 WO2017081428A1 (fr) | 2015-11-13 | 2016-11-10 | Procede sol-gel de synthese d'un materiau luminescent de formulation generale: axbyfz:mn |
Publications (2)
Publication Number | Publication Date |
---|---|
CA3004389A1 true CA3004389A1 (fr) | 2017-05-18 |
CA3004389C CA3004389C (fr) | 2020-11-03 |
Family
ID=55345984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3004389A Active CA3004389C (fr) | 2015-11-13 | 2016-11-10 | Procede sol-gel de synthese d'un materiau luminescent de formulation generale : axbyfz : mn |
Country Status (8)
Country | Link |
---|---|
US (1) | US11505741B2 (fr) |
EP (1) | EP3374466A1 (fr) |
JP (1) | JP2019500312A (fr) |
KR (1) | KR102132757B1 (fr) |
CN (1) | CN108699439B (fr) |
CA (1) | CA3004389C (fr) |
FR (1) | FR3043687B1 (fr) |
WO (1) | WO2017081428A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110240895B (zh) * | 2019-07-16 | 2022-08-19 | 江西理工大学 | Mn4+掺杂氟化物或氟氧化物荧光材料的性能修复方法 |
FR3106832B1 (fr) | 2020-02-03 | 2022-04-29 | Centre Nat Rech Scient | Procédé de synthèse en voie sèche d’un luminophore par traitement sous atmosphère de fluor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5891361A (en) * | 1997-05-02 | 1999-04-06 | Sarnoff Corporation | Method for preparing small particle size fluoride up-converting phosphors |
KR101559603B1 (ko) * | 2008-02-07 | 2015-10-12 | 미쓰비시 가가꾸 가부시키가이샤 | 반도체 발광 장치, 백라이트, 컬러 화상 표시 장치, 및 그들에 사용하는 형광체 |
JP5389277B2 (ja) * | 2010-12-21 | 2014-01-15 | 三菱電機株式会社 | モード制御導波路型レーザ装置 |
US8252613B1 (en) * | 2011-03-23 | 2012-08-28 | General Electric Company | Color stable manganese-doped phosphors |
JP6297505B2 (ja) * | 2012-02-16 | 2018-03-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 半導体led用のコーティングされた狭帯域赤色発光フルオロケイ酸塩 |
US9580648B2 (en) * | 2013-03-15 | 2017-02-28 | General Electric Company | Color stable red-emitting phosphors |
US9698314B2 (en) * | 2013-03-15 | 2017-07-04 | General Electric Company | Color stable red-emitting phosphors |
CN105793389B (zh) * | 2013-12-13 | 2018-12-04 | 通用电气公司 | 制备颜色稳定的锰掺杂的络合氟化物磷光体的方法 |
JP6094532B2 (ja) * | 2013-12-27 | 2017-03-15 | 日亜化学工業株式会社 | フッ化物蛍光体の製造方法 |
JP5804149B2 (ja) * | 2014-01-30 | 2015-11-04 | 信越化学工業株式会社 | 複フッ化物蛍光体の製造方法及び処理方法 |
MX2016010309A (es) * | 2014-02-11 | 2016-12-20 | Univation Tech Llc | Produccion de productos de poliolefina. |
US9512356B2 (en) * | 2014-05-01 | 2016-12-06 | General Electric Company | Process for preparing red-emitting phosphors |
KR101809793B1 (ko) * | 2014-09-30 | 2017-12-15 | 니치아 카가쿠 고교 가부시키가이샤 | 불화물 형광체 및 그 제조 방법 및 발광 장치 |
US10047286B2 (en) * | 2014-10-27 | 2018-08-14 | General Electric Company | Color stable red-emitting phosphors |
KR102355081B1 (ko) * | 2014-12-26 | 2022-01-26 | 삼성전자주식회사 | 불화물 형광체 제조방법, 백색 발광장치, 디스플레이 장치 및 조명장치 |
US9982190B2 (en) * | 2015-02-20 | 2018-05-29 | General Electric Company | Color stable red-emitting phosphors |
US11193059B2 (en) * | 2016-12-13 | 2021-12-07 | Current Lighting Solutions, Llc | Processes for preparing color stable red-emitting phosphor particles having small particle size |
-
2015
- 2015-11-13 FR FR1560857A patent/FR3043687B1/fr active Active
-
2016
- 2016-11-10 CN CN201680073844.6A patent/CN108699439B/zh active Active
- 2016-11-10 EP EP16809984.4A patent/EP3374466A1/fr not_active Ceased
- 2016-11-10 KR KR1020187016697A patent/KR102132757B1/ko active IP Right Grant
- 2016-11-10 CA CA3004389A patent/CA3004389C/fr active Active
- 2016-11-10 WO PCT/FR2016/052938 patent/WO2017081428A1/fr active Application Filing
- 2016-11-10 US US15/775,524 patent/US11505741B2/en active Active
- 2016-11-10 JP JP2018544432A patent/JP2019500312A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
US20190071601A1 (en) | 2019-03-07 |
WO2017081428A1 (fr) | 2017-05-18 |
US11505741B2 (en) | 2022-11-22 |
JP2019500312A (ja) | 2019-01-10 |
CA3004389C (fr) | 2020-11-03 |
EP3374466A1 (fr) | 2018-09-19 |
FR3043687A1 (fr) | 2017-05-19 |
KR102132757B1 (ko) | 2020-07-13 |
KR20180100112A (ko) | 2018-09-07 |
FR3043687B1 (fr) | 2020-07-03 |
CN108699439A (zh) | 2018-10-23 |
CN108699439B (zh) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2450286C (fr) | Compose a base d'un alcalino-terreux, de soufre et d'aluminium, de gallium ou d'indium, son procede de preparation et son utilisation comme luminophore | |
EP0581621B2 (fr) | Nouveaux luminophores verts à base de phosphate mixte de lanthane, cerium et terbium, précurseurs de ceux-ci et procédés de synthèse | |
CN1351641A (zh) | 掺杂稀土元素的基质材料 | |
FR2672281A1 (fr) | Phosphate mixte de lanthane, terbium et cerium, procede de fabrication de celui-ci. | |
EP2265690B1 (fr) | Aluminate de baryum et de magnesium submicronique, procede de preparation et utilisation comme luminophore | |
CA3004389C (fr) | Procede sol-gel de synthese d'un materiau luminescent de formulation generale : axbyfz : mn | |
FR2554122A1 (fr) | Nouvelle composition destinee au marquage de documents et procede de verification de l'authenticite de ces documents | |
CA2752196C (fr) | Composition comprenant un phosphate de cerium et/ou de terbium, de type coeur/coquille, luminophore issu de cette composition et leurs procedes de preparation | |
EP0143034B1 (fr) | Nouvelles substances luminescentes "anti-stokes", leur procédé de fabrication et leur application dans tout système exploitant la luminescence dans la région spectrale concernée | |
CA2816385A1 (fr) | Composition a base d'un aluminate, de type coeur/coquille, luminophore issu de cette composition et procedes de preparation | |
EP3183319B1 (fr) | Procede de fabrication d'un materiau photoluminescent | |
WO2011012508A1 (fr) | Composition comprenant un phosphate de cerium et/ou de terbium et du sodium, de type coeur/coquille, luminophore issu de cette composition et leurs procédés de préparation | |
CA2741977C (fr) | Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci | |
EP1807483A1 (fr) | Compose precurseur et compose cristallise du type aluminate d'alcalino-terreux, procedes de preparation et utilisation du compose cristallise comme luminophore | |
CA1103914A (fr) | Substances luminescentes pour ecrans ou tubes | |
FR2938525A1 (fr) | Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci | |
EP2384309A1 (fr) | Phosphate de cérium et/ou de terbium, éventuellement avec du lanthane, luminophore issu de ce phosphate et procédés de préparation de ceux-ci | |
WO2021156320A1 (fr) | Procédé de synthèse en voie sèche d'un luminophore par traitement sous atmosphère de fluor | |
WO2003025087A1 (fr) | Procede de fabrication de matieres precurseurs de poudre luminophore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20180522 |