CA2879781C - Floating treatment bed for plants - Google Patents

Floating treatment bed for plants Download PDF

Info

Publication number
CA2879781C
CA2879781C CA2879781A CA2879781A CA2879781C CA 2879781 C CA2879781 C CA 2879781C CA 2879781 A CA2879781 A CA 2879781A CA 2879781 A CA2879781 A CA 2879781A CA 2879781 C CA2879781 C CA 2879781C
Authority
CA
Canada
Prior art keywords
water
bed
floating bed
mass
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2879781A
Other languages
French (fr)
Other versions
CA2879781A1 (en
Inventor
Michael F. Curry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA2879781A priority Critical patent/CA2879781C/en
Publication of CA2879781A1 publication Critical patent/CA2879781A1/en
Application granted granted Critical
Publication of CA2879781C publication Critical patent/CA2879781C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D44/00Harvesting of underwater plants, e.g. harvesting of seaweed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

Contaminating material is extracted from a body of water by providing a floating bed on which plants such as Cat Tails can be grown with their roots hanging into the body of water over an area where extraction of contaminating material from the body of water is required, growing the plants to take up the contaminating material from the body of water and harvesting the upstanding plant mass by moving the bed to a harvesting machine which cuts away the plant mass leaving at least part of the root mass to continue growing into a new season. The bed can be returned to a location for the next season.

Description

FLOATING TREATMENT BED FOR PLANTS
This invention relates to a method for extraction of contaminating material from a body of water.
BACKGROUND OF THE INVENTION
It has been proposed to grow plants on floating areas where the plants are supported on a flotation pad with their roots hanging into the water.
However many difficulties and issues remain unsolved.
The following patents have been noted in this field:
Japanese patent 9-29283 is an early attempt to treat water using a floating biomass.
US Patent 5337516 Hondulas is a land based system of high complexity where the roots hang in the water.
US Patent 6322699 Fernandez provides an arrangement in which waste water is treated using the general idea of using large plants grown on a floating mass with their roots hanging to clear water. The patent is not however filed in Canada.
US Published application 2012/0228216 Gavrieli is a recent application for a structure which floats and carries sheets on which microplants are carried.
This uses agitation or aeration systems using power to drive them.
Published PCT application W096/36568 discloses a method of extracting metals from water using hanging plants.
2 Reference may be made to any of the above for further detail not described herein.
Plants suitable for the method herein can be of the type Typha, genus of about eleven species of monocotyledonous flowering plants in the family Typhaceae. The genus has a largely Northern Hemisphere distribution, but is essentially cosmopolitan, being found in a variety of wetland habitats. These plants are conspicuous and hence have many common names. They may be known as bulrush, or reedmace, and as cattail, catninetail, punks, or corn dog grass.
These plants grown in wetlands at the edges of lakes are known to carry out extraction of phosphates and other contaminants as these materials are taken up by the roots and thus absorbed into the plant. However this natural process has been lost due to the reduction in areas of wetland. Also the amount of phosphates and similar contaminants has much increased leading to a serious contamination of many lakes with the potential for environmental disasters.
In regard to one lake in Manitoba which is Lake Winnipeg, much of the emergent vegetation in the Netley-Libau Marsh has been lost over the past several decades. Consequently, any removal of the nutrients in the Red River that would formerly have been intercepted by those plants has also been lost. The water in much of the Netley-Libau Marsh is too deep (> 1 meters) for plants to re-establish naturally.
Attempts have been made for new areas of growth to be established on artificial islands.
However the construction of artificial islands for plant
3 colonization in Netley-Libau Marsh would be costly and the investment would be lost if these islands are later found not to provide suitable habitat. If they do work, the practical use of vegetation growing on these islands would require the invention of amphibious equipment to harvest and transport the plants to land for processing (for biofuel and nutrient extraction benefits).
SUMMARY OF THE INVENTION
It is one object of the invention to provide a method for extraction of contaminating material from a body of water.
According to one aspect of the invention there is provided method for extraction of contaminating material from a body of water comprising:
forming a floating bed on which plants can be grown with their roots =
hanging into the body of water;
locating the floating bed over an area where extraction of contaminating material from the body of water is required;
growing the plants so as to form a root mass in the water and an upstanding plant mass;
growing the plants to take up the contaminating material from the body of water;
and harvesting the upstanding plant mass leaving at least part of the root mass to continue growing into a new season.
Preferably the contaminating material is phosphate in lake water.
4 Preferably the lake bed in the area of the floating bed is agitated to lift the contaminating material to the roots.
Preferably the bed is agitated by aeration.
Preferably the bed is agitated by pumping water.
Preferably the bed is agitated by stirring the water by a propeller or the like.
Preferably the floating bed has a skirt arranged around the periphery hanging from the water to a position at or adjacent the lake bed.
Preferably the skirt is removable for moving the floating bed from the location to a new location.
Preferably the floating bed is moved from the location to a harvesting location and is returned to a location which may be the same or different location for further operation.
Preferably there is provided a support portion for a power source to operate the agitation.
Preferably the power source is solar panels.
Preferably the power source drives a pump for air or water.
Preferably a plurality of floating beds is connected together.
Preferably the floating beds are connected together and provide support between them for the power source.
Preferably each floating bed is towed to a harvesting location and passed through a harvesting machine for cutting the plant mass and transporting the plant mass from the bed to a processing location. However it is also possible that a floating harvesting machine is moved to the floating beds.
Preferably the harvesting machine includes a sickle knife and wherein the floating bed passes underneath the knife.
5 Preferably the harvesting machine includes a rotating reel for pulling the crop mass into the machine.
Preferably the harvesting machine includes a conveyor belt for carrying the plant mass along the machine to the processing location.
Preferably the harvesting machine is mounted on a fixed support in the lake for passing the floating bed past the machine.
Preferably the floating bed has a width in the range 10 feet to 30 feet so as to be maneuverable on the body of water.
Preferably the floating beds are connected together with a peripheral flotation element.
Preferably the floating bed comprises a plurality of growth trays connected together.
Preferably each growth tray comprises a layer of foam with cup shaped openings for receiving individual plants.
Preferably each growth tray includes a mesh above and/or below the foam layer.
Preferably each growth tray comprises a plurality of flotation members such as tubes below the foam layer.
6 Preferably each growth tray comprises a peripheral containing member of for example a mesh material.
Preferably each growth tray comprises a plurality of plant carrying trays shaped to fit into the openings in the foam with each plant carrying tray being pre-germinated and applied onto the foam at installation on the body of water.
Preferably each plant carrying tray is formed of a bio-degradable material such as peat moss.
Preferably the growth trays are connected together to form the floating bed by ties.
Preferably a part of the root mass also is harvested at the harvesting machine and transported from the bed to a processing location. In this situation a part of the harvested root mass is used for cuttings in a new bed. The part of the harvested root mass is preferably harvested by a cutting blade underneath the bed.
Preferably each plant carrying tray has the cups thereof covered by a layer of a transparent film.
A new method has therefore been presented to create a bio-platform to streamline the process of growing the cattails for subsequent harvesting.
The concept is to plant cattail plugs into floating trays to be positioned in a larger floatation frame. The bio-platform is then deployed in the marsh and when fully grown towed back to the shoreline for harvesting. The frames are guided under stationary harvesting equipment and a conveyor belt moves cattail cuttings to storage bins on land. Once the harvest is complete the frames are returned to the
7 marsh for continued plant growth. The system can be in place year-round except during brief periods of harvesting.
The bio-platform comprise a floating structure containing sufficient bed material to foster the initial growth of hybrid cattails (TyphaXglauca) until the plants become well-established and self-supporting.
The bio-platforms are sufficiently rugged that they survive ice movement during the spring thaw; wave action; damage from exposure to ultraviolet light, animals, and vandalism; and accumulation of increasing plant mass over time.
Individual bio-platforms can be linked together in various configurations at the deployment site, relative to prevailing water currents and winds, to provide maximum stability and longevity.
The bio-platforms can provide additional benefits: 1) they may help to dissipate waves and promote long-term sediment accretion that enables natural re-vegetation to occur, 2) they may provide habitat for wildlife and fish in the areas of deployment, and 3) they may provide a vehicle for public education and engagement about wetland restoration, especially during harvesting periods.
Bioplatforms can be deployed in a wide variety of places where plant growth is presently infeasible due to excess water depth, such as along rivers and lake inshore areas.
In one arrangement the harvesting machine defines a channel through which each floating bed is passed with the sickle knife disposed across the channel for cutting the upstanding plant mass as the bed is passed through the channel.
8 Preferably the transparent film is slit at a location of the respective cup to form an opening to allow plant growth through the transparent film while the transparent film remains arranged to encourage germination of the respective plant by greenhouse effect within the respective cup.
According to another aspect of the invention there is provided a method for extraction of contaminating material from a body of water comprising:
forming a floating bed on which terrestrial plants can be grown with their roots hanging into the body of water;
locating the floating bed over an area where extraction of contaminating material from the body of water is required;
growing the terrestrial plants so as to form a root mass in the water and an upstanding plant mass;
growing the terrestrial plants to take up the contaminating material from the body of water;
and harvesting the upstanding plant mass leaving at least part of the root mass to continue growing into a new season;
wherein, in the step of harvesting, each floating bed with the terrestrial plants thereon is passed through a harvesting machine at a harvesting location for cutting the plant mass and transporting the plant mass from the bed to a processing location;
wherein the harvesting machine includes a first sickle knife spaced above a surface of the water so as to cut the upstanding plant mass as the floating
9 bed is passed underneath the first sickle knife.
Typically the floating bed is not submerged when it passes underneath the first sickle knife.
Preferably a part of the harvested root mass is harvested by a second sickle knife spaced below the first sickle knife so as to cut underneath the bed.
Preferably the second sickle knife is spaced below the surface of the water.
In one arrangement the harvesting machine defines a channel through which each floating bed is passed with the first sickle knife disposed across the channel for cutting the upstanding plant mass as the bed is passed through the channel.
According to a further aspect of the invention there is provided a method for extraction of contaminating material from a body of water comprising:
forming a floating bed on which terrestrial plants can be grown with their roots hanging into the body of water;
locating the floating bed over an area where extraction of contaminating material from the body of water is required;
growing the terrestrial plants so as to form a root mass in the water and an upstanding plant mass;
growing the terrestrial plants to take up the contaminating material from the body of water;

and harvesting the upstanding plant mass leaving at least part of the root mass to continue growing into a new season;
wherein there is provided a step of agitating a bed of the body of water in the area of the floating bed to lift the contaminating material to the roots;
5 wherein equipment used for agitation is positioned into the water from the floating bed which is arranged at a water surface such that the floating bed where the terrestrial plants are grown thereon is in spaced relation above the bed of the body of water which includes sediment containing contaminating material.
Preferably there is provided a power source carried on a support
10 portion of the floating bed that powers the equipment for agitation locally at the location of the floating bed.
In one arrangement the equipment used for agitation is depending from locations along a periphery of the floating bed.
BRIEF DESCRIPTION OF THE DRAWINGS
One embodiment of the invention will now be described in conjunction with the accompanying drawings in which:
Figure 1A is a plan view of a floatation tray for a floating bed for using the present invention.
Figure 1B is an isometric view of the floatation tray of Figure 1A.
Figure 10 is an isometric view of the floatation tray of Figure 1A.
Figure 2 is a top plan view of four floatation beds connected together
11 for common operation on a body of water.
Figure 3 is a front elevational view of the floatation beds of Figure 2 Figure 4 is a side elevational view of a harvesting machine for collecting the plant mass from a floatation bed.
Figure 5 is a top plan view of the harvesting system of Figure 4.
In the drawings like characters of reference indicate corresponding parts in the different figures.
DETAILED DESCRIPTION
The flotation bed of Figures 1A, 1B, 1C, 2 and 3 includes the following components:
A heavy plastic square grid or mesh 1 for stabilizing peat tray 2 for cat-tail plugs grown in a greenhouse.
Polyethylene foam pad 3 with an array of cup-shaped pockets to contain peat plug tray.
Side frame 4 of preformed rigid inwardly facing C-channel.
Polyethylene pipe 5 with end capped for buoyancy.
Compressed air line 8.
Polyethylene pipe seal air tight for floatation frame 9.
Skirt 10 attached to contain aerated sediment and water.
Anchoring pocket 11 for weight chain to hold skirt down.
Solar panel 12 for power source for air pump.
12 Air compressor pump 13.
Floating dock or support 14 to hold solar panel and air pump.
Pipes 5 act as a float grid system to stabilize the bottom of foam containing the peat trays 2 holding the germinated plug. The stabilizer frame 4 is for tray support from heavy wave action and moderate movement with clustered trays within the floating perimeter frame 5.
The mesh 1 is the plastic grid for additional support of the foam pad for holding the peat trays 2 level. More importantly the grid is where the roots of cattail will grow through and anchor to the float tray naturally.
Foam pad 3 is the foam tray floatation made from polyethylene foam with cavities r cups 3A the shape of the peat trays 2 to accept the germinated cattail plugs in each cavity. This prevents the peat tray from sinking into the water.
The cattail seedlings are initially grown in the peat tray 2 in a greenhouse. Once matured the plugs in the peat trays are introduced to the floating tray for growing outdoors.
However as an alternative the tray containing the seeds and some soil can be stored remotely and then supplied to the platform for assembly on site whereupon the seeds germinate when they come into contact with the water.
An additional plastic grid (not shown) can be is positioned on top of the peat trays 2 to prevent the trays from moving off the polyethylene foam support from wave action, wind and other movement actions from the floatation frame.
The preformed heavy plastic grid channel 1 is designed to encapsulate the multi-layer substrates edges from parting during movement. Once the cattail
13 roots grow and cluster the bio-platform will float naturally.
The trays are assembled in the polyethylene pipe area 5 to contain multi planted grow trays. This poly pipe also acts as a compressed air storage tank fed by the air compressor pump13. Around the perimeter of the polyethylene pipe 8, compressed air line is positioned into the water to activate the sediment bed to move phosphorus into the direction of the cattail root above. The skirt 10 is for the containment of the agitated sediment for vigorous root absorption. Anchoring chain ills used to keep the 10 skirt firm and taut during movement of bio platform and wave action. The whole floating dock is anchored in the body of water and holds the Bio Platforms in position during grow season which are then detached for harvesting. It also acts as a platform for support equipment including solar panels 12 and compressed air pump 13.
The apparatus shown is thus used in a method for extraction of contaminating material from a body of water. The apparatus provides the floating bed on which plants are grown with their roots hanging into the lake water.
The floating bed is located over an area A of the lake bottom where extraction of contaminating material from the lake bottom is required. The plants are grown on the floating bed so as to form a root mass in the water and an upstanding plant mass. The plants are grown so that the plants take up the contaminating material from the lake bottom. The upstanding plant mass is harvested in the machine of Figure 4 and 5 leaving the root mass to continue growing onto a new season.
14 In order to increase the amount of contaminants extracted from the bottom, the lake bottom and water in the area of the floating bed is agitated to lift the contaminating material to the roots. The bottom and the water at the bottom can be agitated by aeration, by pumping water or by stirring the water by a propeller or the like. The elements necessary to effect this agitation are driven by power from the solar cells. As the growing season is long, the agitation does not need to be continuous so that if can occur only when sufficient power is available.
In order to contain the agitation action and to contain the agitated water, the floating bed has the skirt 10 arranged around the periphery hanging from the water to a position at or adjacent the lake bed and held down by the weight chain 11.
As shown in Figure 4, the skirt 10 is removed for moving the floating bed from the location to a new location including the harvesting machine 20.
After harvesting, the floating bed is moved from the harvesting location and is returned to an operating location which may be the same or different location for further operation.
The individual floating beds are connected together simply by plastic ties to form an island defined by a plurality of floating beds connected together. The connection includes panels 14 between the beds which act as support between them for the power source, pump etc. The flotation tube 5 extends around the full periphery of the connected beds.

During harvesting as shown in Figures 4 and 5, each floating bed is separated from its island and towed to the harvesting location and passed through a harvesting machine 21 for cutting the plant mass and transporting the plant mass from the bed to a processing location 22. The processing location is typically at a 5 remote central location so that the crop is loaded onto trucks at a center 23 for shipping to the location 22. Suitable loading systems are provided for stacking the crop using conventional agricultural equipment.
The harvesting machine 21 includes a sickle knife 24 arranged on fixed platforms 25, 26 so that the floating bed passes underneath the knife between the platforms. The harvesting machine also includes a rotating reel 19 for pulling the crop mass into the machine and controlling its passage so that the bed is not broken up as the sickle knife cuts the material above the knife. The cut crop falls onto a conveyor 27 behind the knife 24 and from that conveyor is carried by an extended conveyor system 27A to the center 23.
15 As shown in Figure 4 a part of the root mass is harvested by a knife 24A at the harvesting underneath the bed and is transported from the bed to the processing location 22 where a part of the harvested root mass is used for cuttings in a new bed as shown at 30 and a part can be used in the processing.
The harvesting machine is mounted on a fixed support defined by platforms 25, 26 anchored to the lake bottom in the lake for passing the floating bed past the machine. Alternatively the machine can float on a floatation system defining a channel for the beds to pass through. In this case the machine can be moved
16 from place to place to harvest beds at their location with the beds being moved only a short distance to the harvesting machine. Yet further the beds may remain fixed and the machine moved to them.
The floating bed has a width in the range 10 feet to 30 feet and preferably 16 feet and a length of the order of 20 to 100 feet and preferably 48 feet so as to be maneuverable on the body of water. Thus for example the bed may be formed of separate sections which are 4 feet by 8 feet so that the sections can be easily managed and transported to the lake and the structure assembled at the lake to form the whole bed. As shown the 4X8 sections are connected into a bed of four sections wide and six sections long The individual sections are connected together and the peripheral float tube 5 added with the skirt 10.
As described above, each growth tray comprises a layer of foam 3 with cup shaped openings 3A for receiving individual plants with layers of reinforcing mesh above the foam layer.
Each growth tray comprises a plurality of plant carrying trays 2 shaped to fit into the openings 3A in the foam with each peat moss carrying tray being pre-germinated and applied onto the foam at installation on the body of water.
Each plant carrying tray has the cups 2 thereof covered by a layer of a transparent film 2A
which is slit after installation to allow plant growth. The transparent material acts as a greenhouse covering to encourage germination.

Claims (35)

CLAIMS:
1. A method for extraction of contaminating material from a body of water comprising:
forming a floating bed on which plants can be grown with their roots hanging into the body of water;
locating the floating bed over an area where extraction of contaminating material from the body of water is required;
growing the plants so as to form a root mass in the water and an upstanding plant mass;
growing the plants to take up the contaminating material from the body of water;
and harvesting the upstanding plant mass leaving at least part of the root mass to continue growing into a new season.
2. The method of claim 1 wherein the contaminating material is phosphate in lake water.
3. The method of claim 1 or 2 wherein a bed of the body of water in the area of the floating bed is agitated to lift the contaminating material to the roots.
4. The method of claim 3 wherein the bed is agitated by aeration.
5. The method of claim 3 wherein the bed is agitated by pumping water.
6. The method of claim 3 wherein the bed is agitated by stirring the water.
7. The method of any one of claims 1 to 6 wherein the floating bed has a skirt arranged around the periphery hanging from the water surface to a position at or adjacent the bed of the body of water.
8. The method of any one of claims 1 to 7 wherein the floating bed is moved from the location to a harvesting location and may be returned to a location which may be.the same or different location for further operation.
9. The method of claim 8 wherein each floating bed is passed through a harvesting machine at the harvesting location for cutting the plant mass and transporting the plant mass from the bed to a processing location.
10. The method of claim 9 wherein the harvesting machine includes a sickle knife and wherein the floating bed passes underneath the knife.
11. The method of claim 10 wherein the harvesting machine defines a channel through which each floating bed is passed with the sickle knife disposed across the channel for cutting the upstanding plant mass as the bed is passed through the channel.
12. The method of any one of claim 9 to 11 wherein the harvesting machine includes a rotating reel for pulling the crop mass into the machine.
13. The method of any one of claims 9 to 12 wherein the harvesting machine includes a conveyor belt for carrying the plant mass along the machine to the processing location.
14. The method of any one of claims 9 to 13 wherein the harvesting machine is mounted on a fixed support in the body of water for passing the floating bed past the machine.
15. The method of any one of claims 9 to 14 wherein a part of the root mass is harvested at the harvesting machine and transported from the bed to a processing location.
16. The method of claim 15 wherein a part of the harvested root mass is used for cuttings in a new bed.
17. The method of claim 15 wherein the part of the harvested root mass is harvested by a cutting blade underneath the bed.
18. The method of any one of claims 1 to 17 wherein the floating bed has a width in the range 10 feet to 30 feet so as to be maneuverable on the body of water.
19. The method of any one of claims 1 to 18 wherein there is provided a power source carried on a support portion of the floating bed.
20. The method of any one of claims 1 to 19 wherein a plurality of the floating beds are connected together.
21. The method of claim 20 wherein the floating beds are connected together with a peripheral flotation element.
22. The method of any one of claims 1 to 21 wherein the floating bed comprises a plurality of growth trays connected together.
23. The method of claim 22 wherein each growth tray comprises a layer of foam with cup shaped openings for receiving individual plants.
24. The method of claim 23 wherein each growth tray includes a mesh above and/or below the foam layer received within a peripheral containing member.
25. The method of any one of claims 22 to 24 wherein each growth tray comprises a plurality of plant carrying cups connected together into a tray with each cup shaped to fit into the openings in the foam.
26. The method of claim 25 wherein each plant carrying tray has the plants therein pre-germinated at a remote location with the tray being applied onto the foam layer during installation on the body of water.
27. The method of claim 25 wherein each plant carrying tray has the cups thereof covered by a layer of a transparent film.
28. The method of claim 27 wherein the transparent film is slit at a location of the respective cup to form an opening to allow plant growth through the transparent film while the transparent film remains arranged to encourage germination of the respective plant by greenhouse effect within the respective cup.
29. A method for extraction of contaminating material from a body of water comprising:
forming a floating bed on which terrestrial plants can be grown with their roots hanging into the body of water;

locating the floating bed over an area where extraction of contaminating material from the body of water is required;
growing the terrestrial plants so as to form a root mass in the water and an upstanding plant mass;
growing the terrestrial plants to take up the contaminating material from the body of water;
and harvesting the upstanding plant mass leaving at least part of the root mass to continue growing into a new season;
wherein, in the step of harvesting, each floating bed with the terrestrial plants thereon is passed through a harvesting machine at a harvesting location for cutting the plant mass and transporting the plant mass from the bed to a processing location;
wherein the harvesting machine includes a first sickle knife spaced above a surface of the water so as to cut the upstanding plant mass as the floating bed is passed underneath the first sickle knife without the floating bed being submerged.
30. The method of claim 29 wherein a part of the harvested root mass is harvested by a second sickle knife spaced below the first sickle knife so as to cut underneath the bed.
31. The method of claim 30 wherein the second sickle knife is spaced below the surface of the water.
32. The method of any one of claims 29 to 31 wherein the harvesting machine defines a channel through which each floating bed is passed with the first sickle knife disposed across the channel for cutting the upstanding plant mass as the bed is passed through the channel.
33. A method for extraction of contaminating material from a body of water comprising:
forming a floating bed on which terrestrial plants can be grown with their roots hanging into the body of water;
locating the floating bed over an area where extraction of contaminating material from the body of water is required;
growing the terrestrial plants so as to form a root mass in the water and an upstanding plant mass;
growing the terrestrial plants to take up the contaminating material from the body of water;
and harvesting the upstanding plant mass leaving at least part of the root mass to continue growing into a new season;
wherein there is provided a step of agitating a bed of the body of water in the area of the floating bed to lift the contaminating material to the roots;
wherein equipment used for agitation is positioned into the water from the floating bed which is arranged at a water surface such that the floating bed where the terrestrial plants are grown thereon is in spaced relation above the bed of the body of water which includes sediment containing contaminating material.
34. The method of claim 33 wherein there is provided a power source carried on a support portion of the floating bed that powers the equipment for agitation locally at the location of the floating bed.
35. The method of claim 33 or 34 wherein the equipment used for agitation is depending from locations along a periphery of the floating bed.
CA2879781A 2015-01-26 2015-01-26 Floating treatment bed for plants Active CA2879781C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2879781A CA2879781C (en) 2015-01-26 2015-01-26 Floating treatment bed for plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2879781A CA2879781C (en) 2015-01-26 2015-01-26 Floating treatment bed for plants

Publications (2)

Publication Number Publication Date
CA2879781A1 CA2879781A1 (en) 2016-07-26
CA2879781C true CA2879781C (en) 2017-10-17

Family

ID=56511980

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2879781A Active CA2879781C (en) 2015-01-26 2015-01-26 Floating treatment bed for plants

Country Status (1)

Country Link
CA (1) CA2879781C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110731259A (en) * 2019-11-25 2020-01-31 衡阳香樟苑生态农业发展科技有限公司 forage grass hydroponic device for ecological cycle cultivation of goldfish and forage grass
NL2031694B1 (en) * 2022-04-25 2023-11-07 Belua Beheer B V Floating growing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745789A (en) * 2017-02-23 2017-05-31 广西壮族自治区中国科学院广西植物研究所 A kind of method that utilization napier grass purifies water and make in this way it is biological floating bed
CN110839580B (en) * 2019-11-20 2023-10-27 中国水产科学研究院淡水渔业研究中心 Pond planting and breeding system and method for rice, fish and frog co-cropping
CN113415888A (en) * 2021-05-22 2021-09-21 北京工业大学 Solar aeration dual-treatment mode ecological floating bed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110731259A (en) * 2019-11-25 2020-01-31 衡阳香樟苑生态农业发展科技有限公司 forage grass hydroponic device for ecological cycle cultivation of goldfish and forage grass
NL2031694B1 (en) * 2022-04-25 2023-11-07 Belua Beheer B V Floating growing system

Also Published As

Publication number Publication date
CA2879781A1 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
US9988291B2 (en) Floating treatment bed for plants
CA2879781C (en) Floating treatment bed for plants
US4137868A (en) Method and apparatus for growing seafood in commercially significant quantities on land
US5715774A (en) Animal feedstocks comprising harvested algal turf and a method of preparing and using the same
KR101549217B1 (en) Multi-changeable Biofloc Aquaponic Plant Cultivating System
EP2468088A1 (en) Super-enhanced, adjustably buoyant floating island
JP5345375B2 (en) How to regenerate a submerged plant, how to cultivate a submerged plant used for it, plant regeneration base, floating island
Rakocy et al. A commercial-scale aquaponic system developed at the University of the Virgin Islands.
CN104787891A (en) Algal blooming ecological control system based on micro-terrain reconstruction, ecological method for controlling algal blooming and application
KR20050005219A (en) Method of circulating water in fishing farm breeding horseshoe crab
Neushul et al. Studies of biomass yield from a near-shore macroalgal test farm
KR20150048372A (en) Afforestation methods and devices that expand vegetation to lake surfaces to prevent algal blooms
CN215122490U (en) Plant blanket with biological floating material arranged in root layer
CN113287486B (en) Self-floating crop blanket and preparation method thereof
KR20150127326A (en) Water culture and fish farming water tank of horizontal structure using fertilizer derived from fish excretion
KR200406763Y1 (en) Crab farm
RU2516362C2 (en) Method of hydroponic cultivation of plants
JP2955219B2 (en) Plant cultivation method and cultivation apparatus used therefor
CN204897533U (en) Bed is floated to box solid
CN103288218B (en) Integrated technical method for ecologically restoring and co-producing vegetables and flowers by ground surface eutrophic water system
CN104982313B (en) Moderate eutrophy lake surface water spinach wind and wave resistance implantation methods
JP2004173603A (en) Raft for culturing plant on water
KR102566544B1 (en) Land aquaculture system for laver
US20230073198A1 (en) System and Method for Farming and Harvesting Floating Seaweed and Floating Aquatic Plants
CN207135797U (en) Disk barrow is floated in nursery