CA2775325A1 - Modular exponentiation method and device resistant against side-channel attacks - Google Patents

Modular exponentiation method and device resistant against side-channel attacks Download PDF

Info

Publication number
CA2775325A1
CA2775325A1 CA2775325A CA2775325A CA2775325A1 CA 2775325 A1 CA2775325 A1 CA 2775325A1 CA 2775325 A CA2775325 A CA 2775325A CA 2775325 A CA2775325 A CA 2775325A CA 2775325 A1 CA2775325 A1 CA 2775325A1
Authority
CA
Canada
Prior art keywords
modulus
modular
mod
values
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2775325A
Other languages
English (en)
French (fr)
Inventor
Marc Joye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of CA2775325A1 publication Critical patent/CA2775325A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/722Modular multiplication
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/723Modular exponentiation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/72Indexing scheme relating to groups G06F7/72 - G06F7/729
    • G06F2207/7219Countermeasures against side channel or fault attacks
    • G06F2207/7261Uniform execution, e.g. avoiding jumps, or using formulae with the same power profile

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)
  • Storage Device Security (AREA)
  • Error Detection And Correction (AREA)
CA2775325A 2011-05-11 2012-04-24 Modular exponentiation method and device resistant against side-channel attacks Abandoned CA2775325A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP11305568.5 2011-05-11
EP11305568 2011-05-11
EP11176404A EP2523096A1 (en) 2011-05-11 2011-08-03 Modular exponentiation and device resistant against side-channel attacks
EP11176404.9 2011-08-03

Publications (1)

Publication Number Publication Date
CA2775325A1 true CA2775325A1 (en) 2012-11-11

Family

ID=44546155

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2775325A Abandoned CA2775325A1 (en) 2011-05-11 2012-04-24 Modular exponentiation method and device resistant against side-channel attacks

Country Status (7)

Country Link
US (1) US8984040B2 (enExample)
EP (2) EP2523096A1 (enExample)
JP (1) JP5977996B2 (enExample)
CN (1) CN102779022B (enExample)
BR (1) BR102012010971A2 (enExample)
CA (1) CA2775325A1 (enExample)
MX (1) MX2012005408A (enExample)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645794B2 (en) * 2014-09-23 2017-05-09 Texas Instruments Incorporated Homogeneous atomic pattern for double, add, and subtract operations for digital authentication using elliptic curve cryptography
CN104811297B (zh) * 2015-04-23 2018-06-12 成都信息工程学院 针对RSA之M-ary实现模乘余数输入侧信道攻击
CN106571916B (zh) * 2015-10-12 2020-06-30 瑞昱半导体股份有限公司 解密装置、方法及电路
CN109791517B (zh) 2016-12-21 2023-09-08 密码研究公司 保护并行乘法运算免受外部监测攻击
EP3447509B1 (en) * 2017-08-21 2021-05-26 Eshard Method of testing the resistance of a circuit to a side channel analysis
US11895230B2 (en) * 2019-01-24 2024-02-06 Nec Corporation Information processing apparatus, secure computation method, and program
CN112260818B (zh) * 2020-10-19 2022-09-20 中国人民解放军战略支援部队信息工程大学 侧信道曲线的增强方法、侧信道攻击方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2228493C (en) * 1997-02-03 2005-05-03 Nippon Telegraph And Telephone Corporation Scheme for carrying out modular calculations based on redundant binary calculation
WO2007104706A1 (fr) * 2006-03-16 2007-09-20 Gemplus Procede de securisation d'un calcul d'une exponentiation ou d'une multiplication par un scalaire dans un dispositif electronique
EP1840732A1 (en) * 2006-03-31 2007-10-03 Axalto SA Protection against side channel attacks
FR2949925A1 (fr) * 2009-09-09 2011-03-11 Proton World Int Nv Protection d'une generation de nombres premiers contre des attaques par canaux caches

Also Published As

Publication number Publication date
EP2523097B1 (en) 2016-01-20
JP5977996B2 (ja) 2016-08-24
US20120290634A1 (en) 2012-11-15
EP2523097A1 (en) 2012-11-14
EP2523096A1 (en) 2012-11-14
CN102779022A (zh) 2012-11-14
BR102012010971A2 (pt) 2013-11-12
CN102779022B (zh) 2017-03-01
JP2012239171A (ja) 2012-12-06
MX2012005408A (es) 2012-11-21
US8984040B2 (en) 2015-03-17
HK1176423A1 (en) 2013-07-26

Similar Documents

Publication Publication Date Title
Blömer et al. Sign change fault attacks on elliptic curve cryptosystems
Yen et al. Power analysis by exploiting chosen message and internal collisions–vulnerability of checking mechanism for RSA-decryption
CN107040362B (zh) 模乘设备和方法
US20090214025A1 (en) Method for Scalar Multiplication in Elliptic Curve Groups Over Prime Fields for Side-Channel Attack Resistant Cryptosystems
EP1946204B1 (en) A method for scalar multiplication in elliptic curve groups over binary polynomial fields for side-channel attack-resistant cryptosystems
CA2775325A1 (en) Modular exponentiation method and device resistant against side-channel attacks
US8738927B2 (en) Arrangement for and method of protecting a data processing device against an attack or analysis
Fumaroli et al. Blinded fault resistant exponentiation
EP3503459A1 (en) Device and method for protecting execution of a cryptographic operation
US20040125950A1 (en) Method for protecting public key schemes from timing, power and fault attacks
US20100287384A1 (en) Arrangement for and method of protecting a data processing device against an attack or analysis
Kim et al. An improved and efficient countermeasure against power analysis attacks
Yin et al. A randomized binary modular exponentiation based RSA algorithm against the comparative power analysis
Abarzúa et al. Complete atomic blocks for elliptic curves in jacobian coordinates over prime fields
Zhang et al. Efficient elliptic curve scalar multiplication algorithms resistant to power analysis
Miyaji et al. How to enhance the security on the least significant bit
Lim A new method for securing elliptic scalar multiplication against side-channel attacks
Hedabou et al. Some ways to secure elliptic curve cryptosystems
Takemura et al. ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves
HK1176423B (en) Modular exponentiation method and device resistant against side-channel attacks
Wang et al. A new SPA attack on ECC with regular point multiplication
Baek Regular 2 w-ary right-to-left exponentiation algorithm with very efficient DPA and FA countermeasures
TWI529615B (zh) 進行模組式取冪之方法及其處理器和電腦程式產品
Amin et al. Elliptic curve cryptoprocessor with hierarchical security
Wang et al. A Novel SPA Attack on ECC Using MMM's Conditional Subtraction

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20180424