BR102012010971A2 - Método e dispositivo de exponenciação modular resistente aos ataques de canal-lateral - Google Patents

Método e dispositivo de exponenciação modular resistente aos ataques de canal-lateral Download PDF

Info

Publication number
BR102012010971A2
BR102012010971A2 BRBR102012010971-9A BR102012010971A BR102012010971A2 BR 102012010971 A2 BR102012010971 A2 BR 102012010971A2 BR 102012010971 A BR102012010971 A BR 102012010971A BR 102012010971 A2 BR102012010971 A2 BR 102012010971A2
Authority
BR
Brazil
Prior art keywords
module
modular
mod
result
operands
Prior art date
Application number
BRBR102012010971-9A
Other languages
English (en)
Portuguese (pt)
Inventor
Marc Joye
Original Assignee
Thomson Licensing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing filed Critical Thomson Licensing
Publication of BR102012010971A2 publication Critical patent/BR102012010971A2/pt

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/722Modular multiplication
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/723Modular exponentiation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/72Indexing scheme relating to groups G06F7/72 - G06F7/729
    • G06F2207/7219Countermeasures against side channel or fault attacks
    • G06F2207/7261Uniform execution, e.g. avoiding jumps, or using formulae with the same power profile

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)
  • Storage Device Security (AREA)
  • Error Detection And Correction (AREA)
BRBR102012010971-9A 2011-05-11 2012-05-09 Método e dispositivo de exponenciação modular resistente aos ataques de canal-lateral BR102012010971A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11305568 2011-05-11
EP11176404A EP2523096A1 (en) 2011-05-11 2011-08-03 Modular exponentiation and device resistant against side-channel attacks

Publications (1)

Publication Number Publication Date
BR102012010971A2 true BR102012010971A2 (pt) 2013-11-12

Family

ID=44546155

Family Applications (1)

Application Number Title Priority Date Filing Date
BRBR102012010971-9A BR102012010971A2 (pt) 2011-05-11 2012-05-09 Método e dispositivo de exponenciação modular resistente aos ataques de canal-lateral

Country Status (7)

Country Link
US (1) US8984040B2 (enExample)
EP (2) EP2523096A1 (enExample)
JP (1) JP5977996B2 (enExample)
CN (1) CN102779022B (enExample)
BR (1) BR102012010971A2 (enExample)
CA (1) CA2775325A1 (enExample)
MX (1) MX2012005408A (enExample)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645794B2 (en) * 2014-09-23 2017-05-09 Texas Instruments Incorporated Homogeneous atomic pattern for double, add, and subtract operations for digital authentication using elliptic curve cryptography
CN104811297B (zh) * 2015-04-23 2018-06-12 成都信息工程学院 针对RSA之M-ary实现模乘余数输入侧信道攻击
CN106571916B (zh) * 2015-10-12 2020-06-30 瑞昱半导体股份有限公司 解密装置、方法及电路
WO2018118569A1 (en) * 2016-12-21 2018-06-28 Cryptography Research, Inc. Protecting parallel multiplication operations from external monitoring attacks
EP3447509B1 (en) * 2017-08-21 2021-05-26 Eshard Method of testing the resistance of a circuit to a side channel analysis
WO2020152831A1 (ja) * 2019-01-24 2020-07-30 日本電気株式会社 情報処理装置、秘密計算方法及びプログラム
CN112260818B (zh) * 2020-10-19 2022-09-20 中国人民解放军战略支援部队信息工程大学 侧信道曲线的增强方法、侧信道攻击方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175850B1 (en) * 1997-02-03 2001-01-16 Nippon Telegraph And Telephone Corporation Scheme for carrying out modular calculations based on redundant binary calculation
WO2007104706A1 (fr) * 2006-03-16 2007-09-20 Gemplus Procede de securisation d'un calcul d'une exponentiation ou d'une multiplication par un scalaire dans un dispositif electronique
EP1840732A1 (en) * 2006-03-31 2007-10-03 Axalto SA Protection against side channel attacks
FR2949925A1 (fr) * 2009-09-09 2011-03-11 Proton World Int Nv Protection d'une generation de nombres premiers contre des attaques par canaux caches

Also Published As

Publication number Publication date
CN102779022A (zh) 2012-11-14
EP2523097A1 (en) 2012-11-14
JP5977996B2 (ja) 2016-08-24
US8984040B2 (en) 2015-03-17
EP2523097B1 (en) 2016-01-20
CN102779022B (zh) 2017-03-01
US20120290634A1 (en) 2012-11-15
HK1176423A1 (en) 2013-07-26
EP2523096A1 (en) 2012-11-14
MX2012005408A (es) 2012-11-21
CA2775325A1 (en) 2012-11-11
JP2012239171A (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
BR102012010971A2 (pt) Método e dispositivo de exponenciação modular resistente aos ataques de canal-lateral
US8913739B2 (en) Method for scalar multiplication in elliptic curve groups over prime fields for side-channel attack resistant cryptosystems
US8402287B2 (en) Protection against side channel attacks
Danger et al. A synthesis of side-channel attacks on elliptic curve cryptography in smart-cards
US8243920B2 (en) Method for scalar multiplication in elliptic curve groups over binary polynomial fields for side-channel attack-resistant cryptosystems
US20040125950A1 (en) Method for protecting public key schemes from timing, power and fault attacks
Abarzúa et al. Survey on performance and security problems of countermeasures for passive side-channel attacks on ECC
Gulen et al. Side-channel resistant 2048-bit RSA implementation for wireless sensor networks and internet of things
Zhang et al. Efficient elliptic curve scalar multiplication algorithms resistant to power analysis
Feix et al. Defeating with fault injection a combined attack resistant exponentiation
Fournaris Fault and power analysis attack protection techniques for standardized public key cryptosystems
EP2504757A1 (en) Exponentiation system
Abarzúa et al. Complete atomic blocks for elliptic curves in jacobian coordinates over prime fields
Liang et al. A new FA and SPA resistant implementation of RSA
Takemura et al. ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves
Miyaji et al. How to enhance the security on the least significant bit
Wang et al. A new SPA attack on ECC with regular point multiplication
Liu et al. New elliptic curve multi-scalar multiplication algorithm for a pair of integers to resist SPA
Vuillaume et al. Defeating simple power analysis on Koblitz curves
Varela How to avoid the N-1 attack without costly implementations
Wang et al. A Novel SPA Attack on ECC Using MMM's Conditional Subtraction
Okeya et al. Security analysis of the SPA-resistant fractional width method
Kim New fault attacks using Jacobi symbol and application to regular right-to-left algorithms
Wang et al. A Refined Simple Power Analysis Attack on ECC with Countermeasures
HK1176423B (en) Modular exponentiation method and device resistant against side-channel attacks

Legal Events

Date Code Title Description
B03A Publication of an application: publication of a patent application or of a certificate of addition of invention
B08F Application fees: dismissal - article 86 of industrial property law
B08K Lapse as no evidence of payment of the annual fee has been furnished to inpi (acc. art. 87)