CA2768481C - Passive capillary and gravity drainage system and method - Google Patents

Passive capillary and gravity drainage system and method Download PDF

Info

Publication number
CA2768481C
CA2768481C CA2768481A CA2768481A CA2768481C CA 2768481 C CA2768481 C CA 2768481C CA 2768481 A CA2768481 A CA 2768481A CA 2768481 A CA2768481 A CA 2768481A CA 2768481 C CA2768481 C CA 2768481C
Authority
CA
Canada
Prior art keywords
tube element
drain
soil
curtain
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2768481A
Other languages
French (fr)
Other versions
CA2768481A1 (en
Inventor
Chris Des Garennes
Peter Van Drumpt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUBAIR SYSTEMS LLC
Original Assignee
SUBAIR SYSTEMS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUBAIR SYSTEMS LLC filed Critical SUBAIR SYSTEMS LLC
Publication of CA2768481A1 publication Critical patent/CA2768481A1/en
Application granted granted Critical
Publication of CA2768481C publication Critical patent/CA2768481C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B11/00Drainage of soil, e.g. for agricultural purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B11/00Drainage of soil, e.g. for agricultural purposes
    • E02B11/005Drainage conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cultivation Of Plants (AREA)

Abstract

A system for draining liquid from soil is disclosed. The system includes a passive capillary drain in combination with a core for gravity flow, including a sand top dressing laver, a native soil interface, and a rootzone, a curtain traversing from the sand top dressing layer through the native soil interface to at least one tube element, the at least one tube element pulling the water out of the soil with capillary suction, and a core central to the at least one tube element that moves excess water via gravity flow with capillary suction. The elements may be installed parallel at a 3 feet center and a depth of 10 inches, and/or may be installed vertically.

Description

PASSIVE CAPILLARY AND GRAVITY DRAINAGE SYSTEM AND
METHOD
[0001]
FIELD OF INVENTION
[0002] The instant disclosure relates to drainage systems and methods, and, more particularly, to a passive capillary and gravity drainage system and method.
BACKGROUND
[0003] Turf grass areas, such as those on golf courses, are typically subject to moderate to heavy foot traffic on a daily or weekly basis.
Excessive water retention in such areas is highly undesirable due to the damage that may occur as a result of foot traffic and other factors. Thus, turf grass areas are reconstructed to include some drainage capability. The soil profile of such areas is commonly constructed as an excavation into the soil native to the site. A
high sand content root zone and frequently coarse sand or fine gravel sub-layers are subsequently placed within this excavation. Subsurface drainage from this essentially closed basin is necessary and is typically provided by drainage pipe spaced from three (3) to six (6) meters apart and placed in shallow trenches in the sub-grade soil. One example of such a turf soil profile is that used in putting greens by the United States Golf Association ("USGA").
[0004] Depending on the availability of suitable root zone and gravel materials, a putting green soil profile typically consists of a 300 mm thick, high sand content root zone mix positioned above a minimally 100 mm thick, predominately fine gravel zone. The gravel rests on the sub-grade soil except when adjacent to drain line trenches, where the same gravel also fills the trench. The particle size distribution of the gravel typically conforms to engineering specifications for a drainage filter. Such conformity helps to ensure maintenance of layer integrity and suitable hydraulic performance of the gravel.
10005] During and shortly after rainfall, the gravel layer of, for example, a USGA putting green, promotes rapid drainage of the root zone. Excess water exiting the root zone follows a nearly vertical path, employing the maximum extent of the gravitational gradient. The maximal distance drainage water must travel to exit the root zone is virtually the root zone depth, or approximately 300 ram.

Lateral flow to the spaced apart drainage elements occurs mostly within the very high permeability gravel layer. The gravel drainage blanket beneath the finer textured root zone also creates a large difference in the pore size distribution across this interface. This large separation of predominate pore sizes within these adjacent media yields a capillary break in the vertical direction.
Consequently, the lower portions of the root zone remain saturated (or nearly so) after drainage has virtually ceased. Depending on the particle sizes of the root zone and gravel materials used for a given installation, the thickness of this perched water zone may vary. For coarser root zone and. finer gravel textures, a thinner perched water zone will form and the upper surface of the capillary fringe will still reside at sufficient depth to ensure adequate air-filled porosity near the soil surface.
For finer root zone and coarser gravel textures, the perched water zone will be quite thick and may severely reduce the proportion of air-filled pores near the soil surface.
[0006] Surface slopes, such as those found on putting greens and athletic fields, also occur on or at the interfaces between soil layers within the profile. This is because profile layers are typically built to a uniform thickness across the green or field. When the interface between layers is well defined, and there is a wide disparity between soil textures of adjacent layers, the accumulation of water is subject to interflow. This down slope movement of subsurface water is particularly evident in profiles with high permeability root zone media and greater root zone depths_ Presumably, only a high permeability root zone would allow sufficient rates of interflow for the modest slopes of these systems. A deeper profile depth may provide a greater reservoir of soil water available for such flow.
Consequently, the excess and perched water of a USGA green would in time migrate down slope resulting in lower soil water contents at higher elevation locations and higher water contents at lower elevation locations across the field or green.
[0001 This phenomena results in the need for localized hand watering of high elevation locations within some putting greens, a costly and time consuming operation. Thus, it is evident that a high sand content root zone placed over a gravel layer provides rapid drainage during and shortly after a rainstorm.
However, after this rapid drainage phase has ended, excess and perched water that is retained in the root zone results in localized soil wetness and laterally non-uniform soil water content across naturally contoured putting greens and athletic fields.
NOM The prior art includes technologies designed to address the excess and perched water problem. Commercial applications typically consist of using air pumps or blowers to apply a sub-atmospheric pressure within the gravel layer.
The vacuum thus helps remove the excess and perched water. This, however, is an active process requiring motor driven blowers and functions only during such times that the vacuum is applied. Thus, there is a need for a system that effectively removes excess and perched water using existing drains, but that is passive, that is, requires no human or mechanical intervention, and that continues to function as long as excess water is present in the soil profile.
[00091 Therefore, there is a need for a passive capillary system in combination with a gravity system that effectively removes excess and perched water, in sufficient volumes, while using no energy, requires no human or mechanical intervention and that continues to function as long as excess water is present in the soil.
-3.

SUMMARY
[0010] A system for draining liquid from a layered soil profile is disclosed.
The system includes a passive capillary and gravity drain including a sand top dressing layer, a native soil interface, and a rootzone, a curtain traversing from the sand. topdressing layer through the native soil interface to the at least one tube element that passively collects the fluid proximate to the at least one tube element, the at least one tube element draining the fluid from the layered, soil profile, and a core central to the at least one tube element that collects and moves the excess water with gravity flow.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Understanding of the present invention will be facilitated by consideration of the following detailed description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings, in which like numerals refer to like parts:
[0012] Figure 1 illustrates the passive capillary and gravity drainage system of the present invention;
[0013] Figure 2 illustrates the core and the at least one tube element of the present invention;
[0014] Figure 3, illustrates a layout of the present system according to an aspect of the present invention;
[0015] Figure 4 illustrates a comparison of the present system to a conventional drainage system; and [0016] Figure 5 illustrates a method of drainage according to an aspect of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0017] It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for the purpose of clarity, many other elements found_ in soil and drainage systems. Those of ordinary skill in the art may recognize that other elements and/or steps are desirable and/or required in implementing the present invention. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements and steps is not provided herein. The disclosure herein is directed to all such variations and modifications to such elements and methods known to those skilled in the art_ [0018] The present system and method enables the drainage of surface water faster by placing the elements closer than conventional sand channel systems, such as at half the distance, for example. The elements of the present system provide fast free-gravity flow through a core, plus capillary suction through the surrounding parts of the element_ For example, the elements of the present system may be placed 3 feet apart and 8 to 7.6 inches below the surface, and used a sand curtain to draw trapped surface water to the elements for fast, effective drainage.
[00191 Layering is common in putting green soils, and occurs when a sandy root zone overlays a finer textured native soil, which is typical after years of top dressing_ In these push-up greens the interface is often too close to the surface, resulting in wet soil problems for the turf For example in USGA greens, excess water tends to perch where the sandy root zone interfaces with the gravel layer.
This perched water is held at a slight suction, so it is unable to enter conventional draining systems. The present solution is a drainage system that works two ways.
The first way is that the elements are placed at the bottom of the narrow sand curtain, which gives water trapped at the soil interface an exit. The unique element has an open stainless steel mesh core to remove large amounts of water quickly through gravitational flow. The second way is the element is made of highly conductive fiber glass, in which the spaces between the fibers match the pore sizes of the sandy root zone. The result of the present invention utilizing these
-5-aspects is a system that drains fast with passive capillary and gravity drainage and wicks away excess soil moisture with capillary suction 24 hours a day without the use of active means such as motors, pumps or other energy input. A hanging water column may be created at the outlet by incorporating a gravity drop.
This hanging water column may provide for further capillary suction. Any size drop may provide a hanging water column, but a drop in the range of 1 inch to 10 inches may provide the appropriate capillary 'suction. More specifically, a drop of approximately 4-8 inches, or even more specifically approximately 6 inch drop may provide the appropriate hanging water column. The present system creates an effective suction effect that follows the natural contours of the surface, is installed only where drainage problems exist, and helps improve turf health by providing better drainage to chronically wet soils.
[00201 Referring now to Figure 1, there is shown a depiction of the passive capillary and gravity drainage system 100 of the present invention. The passive capillary and gravity drainage system 100 may include a sand topdressing layer 110, a native soil interface 120, a drain 130, at least one tube element 140, and a core 150.
[0021] Sand topdressing layer 110 may be located adjacent to, and usually above, native soil interface 120. This boundary with native soil interface 120 may cause water to be captured and prevented from draining. Rootzone may be included within the native soil interface 120. Drain 130 may include a curtain that traverses from sand topdressing layer 110 through the native soil interface 120 to at least one tube element 140 and core 150. At least one tube element 140 may utilize capillary suction to collect fluid proximate to at least one tube element 140 and thereby drain this fluid from the layered soil profile. Core 150 moves collected fluid, such as by using gravity, from at least one tube element 140 and drains to remove fluid from the layered soil profile.
[0022] Sand topdressing layer 110 may arise from practice of topdressing soil, including golf greens, as described herein. This practice has also been
-6-extended to fairways, sports fields and other prepared soil landscaping areas.

Sand topdressing layer 110 may cause layering which occurs when a discrete layer of sand or thatch is formed over the rootzone, as discussed. This discrete layer may act as an impediment to the movement of water and oxygen. Sand topdressing layer 110 may include sand that is compatible with the existing rootzone material.
Topdress/rootzone compatibility may be determined by performing a particle size analysis on the existing rootzone material and the proposed topdress.
[0023] Topdressing is the process of adding a fine layer of quality soil to the surface. Topdressing benefits the lawn as it builds up the quality of the soil over a period of time. By adding topdressing, sandy soils may be able to retain moisture to allow the lawn to be more resistant to drought, and clay soils may drain better to thereby improve root development. Another benefit of top dressing may be to help even out any lumps and bumps that are present on an uneven lawn, green, or field by filling in any small hollows that may have developed. Top dressing may also stimulate the grass to produce new shoots and thereby may result in denser grass cover which helps combat the onset of weed and moss infestation.
100241 Native soil interface 120 may include the interface that has been dressed with the topdressing. Native soil interface 120 may be created without the presence of a sand topdressing layer 110. Native soil interface 120 may occur at any barrier to the transfer of materials including water, for example. Native soil interface 120 may create a barrier for the transfer of materials, such as nutrients and water, between layers. Water, nutrients and. roots have distaste for passing between dissimilar levels. The present invention provides a system that penetrates, or pierces, this native soil interface 120 in order to allow moisture and water to drain therefrom.
(00251 Drain 130 may be formed using a narrow sand curtain, for example.
Drain 130 may be a portion of a drainage system 100 that includes a multitude of drains separated apart by 3 feet. Such a drain 130 may include a 3/8 inch sand curtain spaced apart at 3 feet spacing, for example. Drain 130 may be installed
-7-within a layered, turf soil profile. Drain 130 may be oriented vertically and span from the sub-grade soil surface to about 100 mm into the lower portions of the root zone exiting into existing gravel or parallel passive capillary lines. That is, drain 130 may provide a path from the perched fluid to at least one tube element 140 and core 150. Drain 180 may take the form of a sand curtain with a dimension of approximately 8/8 inches. Drain 130 may provide a continuous pathway of capillary pores from the lower reaches of the root zone and through the gravel layer, thus eliminating the capillary break present in layered. soils created by the topdress/native soil interface 120_ Drain 130 may have a small diameter (c.a.
<1 inch) so that installation will minimally disrupt the existing root and environment.
In an exemplary embodiment, chains 130 are spaced apart (c.a. 3 feet) as to not inhibit the lateral flow characteristics of the gravel layer. Furthermore, drain 130 may maintain physical integrity within the gravel layer when lateral flow conditions exist. Finally, drain 130 may have a sufficient flow capacity to allow timely removal of the excess and perched water. This flow capacity may be based on particle size and a comparison of the particle size to the surrounding sections, such as the top dress and rootzone, for example.
[00281 To effectively and efficiently remove perched water in a layered profile, a passive capillary drain of the present invention typically includes a distribution of pore sizes and compatibility with the root zone to provide a continuous pore pathway spanning the gravel layer. If the majority of pores in capillary drain 180 are substantially larger than the rootzon.e, a capillary break may occur at the interface between the capillary drain 130 and roots, thereby disrupting the pathway. However, if the pores of drain 130 are substantially smaller than the root zone, drain 180 would have insufficient hydraulic conductivity to convey flow in a predictable and efficient fashion.
10027] At least one tube element 140 may be designed to draw and capture water through capillary or other physical actions when excess water is present and/or water is perched adjacent to, above, or below element 140. Another aspect
-8-of at least one tube element 140 is that fines do not clog the pores due to the relatively slow water velocity under the surface.
[0028] In an exemplary embodiment, fiberglass rope may be utilized for constructing at least one tube element 140 of the present invention. The water retention and hydraulic conductivity properties of some commercially available fiberglass ropes, as well as the use of fiberglass as a passive capillary sampler of soil, is known in the art. Ropes ranging in diameter from about 0.25 to 1 inch (0.64 to 2.54 cm) have been shown in the scientific literature to have water retention and conductance characteristics compatible with the method of the present invention.
According to an aspect of the present invention, at least one tube element 140 may take the form of a fiberglass weave of elements, such as a 1 inch diameter fiberglass weave, that draws water through a capillary action when water is perched around, near, below, or above at least one tube element 140.
[0029] Flow capacity values are the product of the hydraulic conductivity and cross-sectional area of passive capillary drains. These values give the volume of water per unit time that is conducted through a capillary drain under a unit hydraulic gradient as would occur in a vertically oriented installation. Flow capacity for single strands range from 162 nearly 2000 cm3/hour, and doubling the number of strands may increase the flow capacity two-fold. Thus, a wide range of flow capacity values exist resulting from the diversity of materials that may be used, including a large array of fiberglass rope materials that are commercially available.
[0030] As Previously described, the exemplary embodiment of the present invention utilizes fiberglass rope for accomplishing capillary drainage. There are, however, a variety of materials that may serve as tube element 140 including fiberglass tape, a weaving or webbing of fiberglass or metallic strands baying a rectangular cross-section and contained column of sand or other mineral particles does contain, which may consist of a tubular knitted mesh filled with appropriately sized sand particles. These alternative materials are wettable, contain a
-9.

distribution of pore sizes that are compatible with the root zone, have an adequate flow capacity to allow timely removal of excess and perched water, and have a structural integrity that would resist free water flow.
[00311 Referring now also to Figure 2, there is shown a blowup of core 150 and at least one tube element 140 of the present invention. Core 150 of the present invention is designed to increase the flow rate of water once contained in the passive capillary and gravity drain. Core 150 may be made from a number of materials or combinations thereof, such as stainless steel tubing, flexible plastic tubing, ceramics, or other material capable of moving water and allowing water to enter a drain. Core 150 may also take the form of a plastic, or other suitable material that provides drainage, tube with slits positioned to allow captured fluids to enter the tub and be drained according to the present invention. Several common materials may be found in the landscaping industry, for example.
According to aspect of the present invention, core 150 may take the form of a inch stainless steel stint or tube, for example. According to another aspect of the 'present invention, core 150 may take the form of a stainless steel mesh core that carries drainage water away with high efficiency, for example, during the first several hours following a heavy rain.
[0032] Referring now to Figure 3, there is shown a layout of the present system 300 according to an aspect of the present invention_ As may be seen in Figure 3, there are a multitude of capillary drains 810 forming a system according to an aspect of the present invention. System 300 may include drains 310 formed on 3 feet spacings and attached to a larger drain 320, or collection system that is in turn connected to an outlet 330 for the drain water.
[00331 Referring now to Figure 4, there is shown a comparison of the present system to a conventional drainage system. A conventional drainage system refers to a 2-inch perforated polymer pipe configured with a 6 foot spacing. The present system, as compared to ditch excavating with additional 2 inch plastic pipe systems, allows for faster installation, is extremely cost effective, and may provide
-10-a site-specific solution to treat only the low areas. Further, the present invention may be installed at 3 feet spacing for more consistent draining, dual acting gravity and capillary action, to enhance existing drainage systems.
[0034] As may be seen in Figure 4, the present capillary drainage system may handle more than 2X the amount of drainage water in the initial four hours of drainage. Further, the capillary drainage system 100 of the present invention may continue to work as well as a conventional drainage system for the time 8 ¨ 24 hours after the drainage begins. The present invention provides superior drainage during the first four hours and through the first eight hours while maintaining equal or better drainage for the remainder of the initial 24 hour drainage period.
[0035] Figure 5 depicts the steps in a method 500 of moving water. Method 500 includes capturing 510 a first plurality of the water in a core and drawing 520 a second plurality of water into a tube element. Method 500 may include removing 530 fluid that is perched at the native soil interface using a sand curtain.
Method 500 may also include providing 540 a hanging water column to increase the capillary forces used in fluid removal. Further, method 500 may include draining 550 the captured fluid into an existing drain or collection line.
[0036] The system and method of the present invention may be used anywhere it becomes necessary to move water. For example, sports fields, golf courses, foundations, bridges, construction areas, rooftop gardens, planters, and other drainage areas may benefit from the present invention. In the case of golf courses, the highly effective drainage on chronically wet soils provides a benefit, in addition to the benefit of the low cost and lack of use disruption. The present system is extremely cost effective and may pay dividends for schools, universities, and. municipalities to improve drainage and natural grass playing fields making maintenance easier and less expensive.
[0037] The present system may be installed with a minimally disruptive vibratory plow, allowing the elements of the present system to be surgically placed at 3 feet intervals, leading to better drainage.
-11-[0038] In the case of horizontal installation, installation may begin with a layout and cutting of an entry hole using a cup cutter or similar tool. Using a vibratory plow with a special blade and sand chute, a% inch sand curtain from inches below the surface to the top of the elements is installed. The elements of the present invention may be installed 8 to 16 inches below the surface. These lines run parallel at 8 foot spacing and move water using capillary and gravity flow to a collection line or existing drain. Once collected at a collection line or existing drain, a drop may be incorporated to provide a hanging water column. This hanging water column may provide for increased capillary suction. Any size drop may provide the hanging water column, but a drop in the range of 1 inch to 10 inches may provide the appropriate capillary suction. More specifically, a chop of approximately 4-8 inches, or even more specifically approximately 6 inch drop may provide the appropriate hanging water column.
[0039] In the case of a vertical installation, the capillary and gravity drain installation may include a two-step procedure. First, a pilot hole is created in the soil extending from the surface to the maximum depth of drain insertion.
Subsequently, the capillary drain material is inserted into the pilot hole. As the pilot hole needs to extend through both the sandy root zone and a layer of fine gravel, it is desirable to employ a solid, pointed tip, circular diameter tine to create the pilot hole of a diameter slightly larger than the capillary drain. A
mechanical actuator, such as a hydraulic ram, for example, may be used to drive the tine vertically into the soil and remove it leaving a pilot hole. To facilitate insertion of a flexible capillary drain (such as a fiberglass rope) to the desired depth, some added stiffening support may be required. Enough stiffness may be obtained by choosing the right material for the core 150. Inserting and affixing a small diameter wire, plastic or wooden dowel into the center and along the long axis of the rope may provide additional stiffening support. The modified section of fiberglass rope may then be inserted to the desired depth. The resultant cavity extending from the soil surface to upper surface of the capillary and gravity drain is then closed with tape, = 12-foam or other suitable material. The still open space is backElled with appropriate root zone material.
[0040] The installation methods described above may also include mechanization of the insertion process so that a single operator of a small, motorized unit could, in a timely fashion, install an array of drains within a green.
[0041] Additionally, the present invention may provide for the ability to back pressure the drains using a pump thereby enabling aeration of a soil or rootzone.
Such aeration may be accomplished by connecting a pump to the output, somewhere in the system accessible while minimizing green/rootzone disruption, and pressurizing the system to add and/or stimulate aeration of the rootzone.
[0042] Although the invention has been described and. pictured in an exemplary form with a certain degree of Particularity, it is understood that the present disclosure of the exemplary form has been made by way of example, and that numerous changes in the details of construction and combination and arrangement of parts and steps may be made without departing from the spirit and scope of the invention as set forth in the claims hereinafter.

Claims (40)

What is claimed is:
1. A passive capillary and gravity system for draining liquid from soil, said system comprising:
a plurality of soil including a sand topdressing layer and a plurality of lower levels creating a soil interface;
a drain that traverses from the lower levels of the soil through the soil interface, the drain including a curtain which has a distribution of pore sizes to eliminate a capillary break of the soil caused by the soil interface by providing a continuous pathway of capillary pores;
at least one tube element that with passive capillary suction collects liquid proximate to said at least one tube element and provided by the drain, said at least one tube element draining the collected fluid with capillary suction;
and a core central to said at least one tube element that moves said collected liquid from said at least one tube element to drain said fluid from the soil, wherein a drop in said at least one tube element and said core creates a hanging water column to aid the capillary suction of said at least one tube element in pulling the liquid from the soil to enhance draining.
2. The system of claim 1, wherein said curtain comprises a narrow sand curtain.
3. The system of claim 1, wherein said curtain is less than approximately one inch in diameter.
4. The system of claim 1, wherein said curtain is approximately 3/8 inches in diameter.
5. The system of claim 1, wherein said curtain moves fluid proximate to the at least one tube element and the at least one core.
6. The system of claim 1, wherein said core comprises a stainless steel mesh.
7. The system of claim 1, wherein said at least one tube element comprises fiberglass elements.
8. The system of claim 1, wherein said at least one tube element is approximately one inch in diameter.
9. The system of claim 1, wherein said hanging water column provides a drop in the range of 1 to 10 inches.
10. The system of claim 1, wherein said hanging water column provides a drop in the range of 4 to 8 inches.
11. The system of claim 1, wherein said hanging water column provides a drop of approximately 6 inches.
12. A passive capillary and gravity drain including a layered soil profile with a native soil interface, said drain comprising:
a curtain;
at least one tube element that with passive capillary suction collects the fluid proximate to said at least one tube element, said at least one tube element draining the fluid from the layered soil profile; and a core central to said at least one tube element that moves at least a portion of said collected fluid from said at least one tube element with gravity and drains said portion from the layered soil profile, wherein said curtain traverses the layered soil profile through the native soil interface to said at least one tube element.
13. The drain of claim 12, wherein said curtain comprises a narrow sand curtain.
14. The drain of claim 12, wherein said curtain moves fluid proximate to the at least one tube element and the at least one core.
15. The drain of claim 12, wherein said core comprises a stainless steel mesh.
16. The drain of claim 12, wherein said at least one tube element comprises fiberglass elements.
17. The drain of claim 12, further comprising a drop in said at least one tube element and said core to create a hanging water column to aid the capillary suction of said at least one tube element pulling the liquid from the soil to enhance draining.
18. A system for draining fluid from a layered soil profile, said system comprising:
a drain that traverses the native soil interface, the drain including a curtain to eliminate the capillary break of the layered soil by providing a continuous pathway of capillary pores;
at least one tube element that collects the fluid proximate to said at least one tube element and provided by said drain, said at least one tube element draining the collected with passive capillary suction; and a core central to said at least one tube element moves excess fluid with gravity flow, said element and said core drop at an outlet creating a hanging water column to aid the capillary suction of said at least one tube element in pulling the fluid from the layered soil profile.
19. The system of claim 18, wherein said curtain comprises a narrow sand curtain.
20. The system of claim 18, wherein said curtain moves fluid proximate to the at least one tube element and the at least one core.
21. The system of claim 18, wherein said core comprises a stainless steel mesh.
22. The system of claim 18, wherein said at least one tube element comprises fiberglass elements.
23. The system of claim 18, wherein said hanging water column provides a drop in the range of 1 to 10 inches.
24. The system of claim 18, wherein said hanging water column provides a drop in the range of 4 to 8 inches.
25. The system of claim 18, wherein said hanging water column provides a drop of approximately 6 inches.
26. A passive capillary and gravity drain including a layered soil profile with a native soil interface, said drain comprising:
a drain that traverses the native soil interface to collect liquid at the soil interface, the drain including a curtain which has a distribution of pore sizes to eliminate a capillary break of the layered soil by providing a continuous pathway of capillary pores;
at least one tube element that collects liquid proximate to said at least one tube element and provided by said drain, said at least one tube element draining the collected liquid with passive capillary suction; and a core central to said at least one tube element, that moves excess water with gravity flow, said element and said core drop to create a hanging water column to aid the capillary suction of the at least one tube element in pulling the liquid from the layered soil profile.
27. The drain of claim 26, wherein said curtain comprises a narrow sand curtain.
28. The drain of claim 26, wherein said curtain moves fluid proximate to the at least one tube element and the at least one core.
29. The drain of claim 26, wherein said core comprises a stainless steel mesh.
30. The drain of claim 26, wherein said at least one tube element comprises fiberglass elements.
31. The system of claim 26, wherein said hanging water column provides a drop in the range of 1 to 10 inches.
32. The system of claim 26, wherein said hanging water column provides a drop in the range of 4 to 8 inches.
33. The system of claim 26, wherein said hanging water column provides a drop of approximately 6 inches.
34. A method of moving perched fluid in a layered soil, said method comprising:
capturing a first plurality of the fluid in a curtain, wherein the curtain includes a distribution of pore sizes to prevent a capillary break of the layered soil while maintaining the hydraulic connectivity of continuous pathway of capillary pores;
drawing a second plurality of the fluid into at least one tube element that collects the fluid proximate to said at least one tube element, said at least one tube element draining the fluid from the soil using capillary suction;

collecting the fluid in at least one core, wherein the core is central to said at least one tube element; and moving said collected fluid drawn from the at least one tube element and said captured fluid from said curtain with gravity to drain said fluid from the soil.
35. The method of claim 34, further comprising removing the perched fluid using the curtain.
36. The method of claim 34, further comprising providing a hanging water column to increase the capillary forces used in removing the perched fluid.
37. The method of claim 34, further comprising draining the captured fluid.
38. The method of claim 37, wherein the draining is into an existing drain.
39. The method of claim 37, wherein the draining is into a collection line.
40. The method of claim 34, wherein said drawing is by capillary forces.
CA2768481A 2011-02-18 2012-02-17 Passive capillary and gravity drainage system and method Active CA2768481C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161444310P 2011-02-18 2011-02-18
US61/444,310 2011-02-18

Publications (2)

Publication Number Publication Date
CA2768481A1 CA2768481A1 (en) 2012-08-18
CA2768481C true CA2768481C (en) 2020-05-19

Family

ID=46671150

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2768481A Active CA2768481C (en) 2011-02-18 2012-02-17 Passive capillary and gravity drainage system and method

Country Status (2)

Country Link
US (2) US20120230767A1 (en)
CA (1) CA2768481C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309653B2 (en) * 2013-12-17 2016-04-12 Elwha Llc Systems and methods for gathering water
US10182535B2 (en) 2016-01-05 2019-01-22 Amir Cohen Mesh based irrigation system
CN106245658B (en) * 2016-08-30 2018-08-07 山东胜伟盐碱地科技有限公司 A kind of groove drawing underground moisture
CN109137940B (en) * 2018-09-07 2019-10-29 中国地质大学(武汉) A kind of three-dimensional drainage system suitable for loose landfill side slope
US10785927B1 (en) * 2019-09-05 2020-09-29 Amir Cohen Irrigation system
CN111206550B (en) * 2020-03-10 2020-11-17 日照新东港农业开发有限公司 Drainage device for farmland ecosystem
CN112962393B (en) * 2021-02-07 2022-09-27 中建一局集团建设发展有限公司 Convertible ice rink process layer structure and construction method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218979A1 (en) * 2003-02-10 2004-11-04 Ohio State University System and method for draining soil profiles
US8100604B1 (en) * 2008-08-12 2012-01-24 Davlyn Manufacturing Company, Inc. Passive capillary wicking device

Also Published As

Publication number Publication date
US20120230767A1 (en) 2012-09-13
US20170167098A1 (en) 2017-06-15
CA2768481A1 (en) 2012-08-18

Similar Documents

Publication Publication Date Title
US20170167098A1 (en) Passive capillary and gravity drainage system and method
CN106869237B (en) A kind of gardens rainwater-collecting water storage system and its construction method
US5219243A (en) Method and apparatus for the hydrologic regulation of turf soil profiles
CN106906809A (en) Closed drainage device and laying method under the conditions of the unsaturation of farmland
JP6041190B2 (en) Underground irrigation system
AT507306B1 (en) BUILDING MATERIALS (EARTH COVERS) AND THEIR MIXTURE WITH GROUND MATERIALS
CN205124576U (en) Side slope is from irrigating pattern of farming
CN212589128U (en) Ecological compound green structure in abandonment quarry
CN103669473A (en) Urban rainwater collection and irrigation system
CN107347481A (en) Casing charge for remittance earthing implant system and the method reclaimed using its outdoor pit body of progress
CN103718686A (en) Partial flow collecting, permeation enhancing and evaporation restraining saline land improvement system and method
CN102172198A (en) Water-saving irrigation device for road greenbelt and forming method thereof
CN106134556A (en) Control row in runoff nitrogen phosphorus lattice field, rice field intercepts removal system and application process thereof with farmland diafiltration combination
CN112575877A (en) Landscaping engineering and construction method
US20060051161A1 (en) Methods and apparatus for reducing sand erosion in golf course bunkers
CN103385096B (en) Improved saline-alkali soil plant cropping system
CN207905070U (en) A kind of tree pond based on sponge the idea of the city
CN209941826U (en) Green land rainwater collecting and recycling pipe network based on undulating terrain condition
CN109618884A (en) A kind of phreatic water seepage flow catchments hidden pipe structure
CN108915063A (en) There is section plant of dirty purification function shallowly careless ditch for sponge city
CN206680970U (en) Closed drainage device under the conditions of the unsaturation of farmland
CN209732191U (en) Grass planting and water replenishing system for side slope of large dike of yellow river
US20040218979A1 (en) System and method for draining soil profiles
CN221203211U (en) Salt discharging structure is prevented to cultivation soil
CN219088025U (en) Irrigation equipment is collected to gardens rainwater

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20170216