CA2625990A1 - Dispositif autonome d'atomisation a disque tournant - Google Patents
Dispositif autonome d'atomisation a disque tournant Download PDFInfo
- Publication number
- CA2625990A1 CA2625990A1 CA002625990A CA2625990A CA2625990A1 CA 2625990 A1 CA2625990 A1 CA 2625990A1 CA 002625990 A CA002625990 A CA 002625990A CA 2625990 A CA2625990 A CA 2625990A CA 2625990 A1 CA2625990 A1 CA 2625990A1
- Authority
- CA
- Canada
- Prior art keywords
- liquid
- axis
- disc
- tube
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005507 spraying Methods 0.000 title description 5
- 239000007788 liquid Substances 0.000 claims abstract description 67
- 239000000443 aerosol Substances 0.000 claims abstract description 23
- 230000000694 effects Effects 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 230000009189 diving Effects 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 abstract description 5
- 238000000889 atomisation Methods 0.000 abstract description 4
- 238000010612 desalination reaction Methods 0.000 abstract description 2
- 238000006213 oxygenation reaction Methods 0.000 abstract description 2
- 239000013535 sea water Substances 0.000 abstract 1
- 238000009423 ventilation Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000035939 shock Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- 238000011033 desalting Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 244000273618 Sphenoclea zeylanica Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/10—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
- B05B3/1035—Driving means; Parts thereof, e.g. turbine, shaft, bearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/08—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements in association with stationary outlet or deflecting elements
- B05B3/082—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements in association with stationary outlet or deflecting elements the spraying being effected by centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/10—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
- B05B3/105—Fan or ventilator arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B15/00—Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
- B05B15/14—Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
- B05B15/16—Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts for preventing non-intended contact between spray heads or nozzles and foreign bodies, e.g. nozzle guards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/10—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
- B05B3/1007—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
- B05B3/1014—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Nozzles (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
La présente invention concerne un atomiseur à disque tournant, miniaturisé et aisément portatif. De nombreux usages peuvent en être faits, selon la source d'énergie utilisée. Lorsque la source d'énergie est une pile ou batterie, ce système, autonome et portatif, est plus particulièrement destiné aux usages domestiques, lorsque la source d'énergie est le secteur ou la pneumatique, ce système, portatif, est plus particulièrement destiné aux usages industriels, enfin lorsque l'énergie utilisée est du type renouvelable, ce système, autonome, est plus spécialement destiné à des utilisations en milieu isolé, par exemple le dessalage de l'eau de mer ou l'oxygénation des lagunages.
L'atomiseur est principalement composé d'un disque en rotation rapide, d'un système d'alimentation en liquide du disque, d'un ventilateur permettant de diriger l'aérosol dans la direction souhaitée, d'un moteur, de sa source d'énergie et des dispositifs de commande et de contrôle. Il est caractérisé
par le fait que les fonctions d'atomisation, de pompage et de ventilation sont portées par le même rotor.
L'atomiseur est principalement composé d'un disque en rotation rapide, d'un système d'alimentation en liquide du disque, d'un ventilateur permettant de diriger l'aérosol dans la direction souhaitée, d'un moteur, de sa source d'énergie et des dispositifs de commande et de contrôle. Il est caractérisé
par le fait que les fonctions d'atomisation, de pompage et de ventilation sont portées par le même rotor.
Description
DISPOSITIF AUTONOME D'ATOMISATION A DISQUE TOURNANT
La présente invention concerne un système portatif destiné à atomiser de façon autonome ou non un liquide contenu dans un réservoir. Ce système est composé d'un disque, bol ou autre objet à symétrie de révolution axiale en rotation atomisant le liquide, d'un dispositif d'alimentation en liquide du disque à partir d'un réservoir fixe ou amovible et interchangeable et si nécessaire d'un ventilateur destiné à orienter dans la direction souhaitée les trajectoires des gouttes issues du disque en rotation. Selon les applications, ce système est mis en mouvement par un moteur électrique alimenté par le secteur, pile, batterie ou toute autre source d'énergie telle que l'énergie solaire, un moteur pneumatique ou par une éolienne entraînant le rotor ~ directement ou par l'intermédiaire d'un système multiplicateur ou démultiplicateur.
Lorsque le système est mis en mouvement par un moteur électrique alimenté par une pile ou batterie, la présente invention est plus particulièrement destinée à
générer de façon autonome des aérosols à usage domestique : cosmétiques, produits d'entretien, produits pharmaceutiques, produits alimentaires, peintures, vernis. Lorsque le système est mis en mouvement par un moteur électrique alimenté par le secteur ou un moteur pneunlatique permettant ainsi un moindre coût de fonctionnement, la présente invention est plus particulièrement destinée à
générer des aérosols techniques à usage plus intensif. Lorsque le système est directement mis en mouvement par une éolienne ou lorsque la source d'énergie provient d'une énergie renouvelable telle que l'énergie solaire, l'invention est plus spécialement destinée à une utilisation permanente ou semi->.o permanente en milieu isolé, par exemple l'oxygénation de l'eau dans les installations de lagunage ou la pulvérisation d'eau salée en vue de son dessalement. Les applications et les exemples donnés ici le sont uniquement à titre d'illustration et ne sônt pas limitatifs ni exclusifs.
Il est connu que lorsqu'on veut pulvériser des liquides sous forme de gouttes de petites tailles et avec un débit important, on peut le faire de deux façons différeiltes. La première 25 méthode, appelée atomisation par buse consiste à expulser un liquide contenu dans un réservoir sous pression au travers d'une buse. Au passage de cette buse il y a pulvérisation du liquide et formation de gouttelettes dont le débit et la taille dépendent de la pression amont, de la forme des buses et de la méthodologie de mise sous pression. La deuxième méthode, appelée atomisation par disque tournant, résulte de la fragmentation naturelle ou contrôlée en gouttes d'un liquide 30 issu d'un disque en rotation rapide. Le débit et la taille des gouttes dépendent principalement de la vitesse de rotation et des dimensions de l'objet en rotation. Dans les installations industrielles fixes de pulvérisation, les deux techniques sont utilisées concurremment, selon les produits à
pulvériser. Dans le cas où on utilise des disques tournants, les diamètres des disques ont couramment des diamètres supérieurs à 5 cm et sont entraînés par des moteurs dont la puissance FEUILLE DE REMPLACEMENT (REGLE 26) est principalement liée à la nature des produits à pulvériser. Dans le cas où
on utilise des buses, la mise sous pression du liquide est faite dans la majorité des, cas par un compresseur d'air dédié
à l'appareil ou par le réseau d'air comprimé de l'usine.
Dans le cas des applications domestiques ou des installations industrielles autonomes et portatives, les appareils les plus couramment utilisés sont les générateurs d'aérosols, souvent appelés bombes aérosols, constitués d'un réservoir contenant du liquide actif mis sous pression par un gaz et atomisé au travers d'une buse. Les gaz utilisés sont, soit des gaz comprimés sous des pressions de plusieurs bars (par exemple le C02), soit des gaz dissous, soit dans certains cas des gaz liquéfiés. Ces gaz appelés gaz propulseurs sont accusés de participer à l'effet de serre (C02) et/ou d'avoir une certaine dangerosité, ainsi le gaz dissous le plus souvent utilisé est le butane, hautement inflammable. Par ailleurs, les bombes aérosols sont soumises à la législation des appareils sous pression. Certains générateurs d'aérosols portables utilisent des disques ou des turbines pour atomiser les liquides. L'examen des brevets français 2 371 969, FR 49092, US
6138925, US 5727 541 rnoiltre que dans tous les cas le tube d'alimentation du liquide est terminé par un ou des orifices de petites sections destinés à mettre sous pression le liquide et que finalement le disque ou la turbine est alimentée par un ou plusieurs jets, ne permettant pas au liquide de s'étaler directement de façon homogène sur le disque ou la turbine.
L'invention a pour but de proposer un atomiseur portatif et/ou autonome à
usage domestique ou industriel, ne nécessitant aucun gaz propulseur, assurant toutes les fonctions pour 0 produire un aérosol à partir d'un réservoir placé à la pression atmosphérique ou à une pression voisine de la pression atmosphérique, suffisamment faible pour ne pas être placée dans le champ réglementaire des appareils sous pression. Ce système est compatible avec les têtes d'atomisation d'aérosols contrôlés décrites dans le brevet français 04 03679. Il ne nécessite pas la présence d'orifices à l'amont du disque. L'absence de gaz propulseur, la miniaturisation, la réunion dans >.5 un même ensemble de plusieurs fonctions habituellement séparéés, l'absence d'orifices ou de buses, toujours susceptibles de se boucher et sources de perturbation des écoulements ainsi que la possibilité de contrôler efficacement la granulométrie constituent des avantages certains par rapport aux techniques actuellement utilisées.
Pour la bonne compréhension de la description des différentes réalisations, il est 30 préalablement rappelé 1) que les fonctions à remplir pour atteindre un tel but sont de mettre en mouvement de rotation rapide un disque, bol ou toute autre objet à symétrie de révolution axiale, d'alimenter en liquide au moins une face de ce disque, bol ou objet à symétrie de révolution axiale avec un débit suffisant et, si nécessaire, de modifier la trajectoire des gouttes, naturellement dans le plan du disque, afin qu'elles atteignent aisément la cible recherchée ; 2)
La présente invention concerne un système portatif destiné à atomiser de façon autonome ou non un liquide contenu dans un réservoir. Ce système est composé d'un disque, bol ou autre objet à symétrie de révolution axiale en rotation atomisant le liquide, d'un dispositif d'alimentation en liquide du disque à partir d'un réservoir fixe ou amovible et interchangeable et si nécessaire d'un ventilateur destiné à orienter dans la direction souhaitée les trajectoires des gouttes issues du disque en rotation. Selon les applications, ce système est mis en mouvement par un moteur électrique alimenté par le secteur, pile, batterie ou toute autre source d'énergie telle que l'énergie solaire, un moteur pneumatique ou par une éolienne entraînant le rotor ~ directement ou par l'intermédiaire d'un système multiplicateur ou démultiplicateur.
Lorsque le système est mis en mouvement par un moteur électrique alimenté par une pile ou batterie, la présente invention est plus particulièrement destinée à
générer de façon autonome des aérosols à usage domestique : cosmétiques, produits d'entretien, produits pharmaceutiques, produits alimentaires, peintures, vernis. Lorsque le système est mis en mouvement par un moteur électrique alimenté par le secteur ou un moteur pneunlatique permettant ainsi un moindre coût de fonctionnement, la présente invention est plus particulièrement destinée à
générer des aérosols techniques à usage plus intensif. Lorsque le système est directement mis en mouvement par une éolienne ou lorsque la source d'énergie provient d'une énergie renouvelable telle que l'énergie solaire, l'invention est plus spécialement destinée à une utilisation permanente ou semi->.o permanente en milieu isolé, par exemple l'oxygénation de l'eau dans les installations de lagunage ou la pulvérisation d'eau salée en vue de son dessalement. Les applications et les exemples donnés ici le sont uniquement à titre d'illustration et ne sônt pas limitatifs ni exclusifs.
Il est connu que lorsqu'on veut pulvériser des liquides sous forme de gouttes de petites tailles et avec un débit important, on peut le faire de deux façons différeiltes. La première 25 méthode, appelée atomisation par buse consiste à expulser un liquide contenu dans un réservoir sous pression au travers d'une buse. Au passage de cette buse il y a pulvérisation du liquide et formation de gouttelettes dont le débit et la taille dépendent de la pression amont, de la forme des buses et de la méthodologie de mise sous pression. La deuxième méthode, appelée atomisation par disque tournant, résulte de la fragmentation naturelle ou contrôlée en gouttes d'un liquide 30 issu d'un disque en rotation rapide. Le débit et la taille des gouttes dépendent principalement de la vitesse de rotation et des dimensions de l'objet en rotation. Dans les installations industrielles fixes de pulvérisation, les deux techniques sont utilisées concurremment, selon les produits à
pulvériser. Dans le cas où on utilise des disques tournants, les diamètres des disques ont couramment des diamètres supérieurs à 5 cm et sont entraînés par des moteurs dont la puissance FEUILLE DE REMPLACEMENT (REGLE 26) est principalement liée à la nature des produits à pulvériser. Dans le cas où
on utilise des buses, la mise sous pression du liquide est faite dans la majorité des, cas par un compresseur d'air dédié
à l'appareil ou par le réseau d'air comprimé de l'usine.
Dans le cas des applications domestiques ou des installations industrielles autonomes et portatives, les appareils les plus couramment utilisés sont les générateurs d'aérosols, souvent appelés bombes aérosols, constitués d'un réservoir contenant du liquide actif mis sous pression par un gaz et atomisé au travers d'une buse. Les gaz utilisés sont, soit des gaz comprimés sous des pressions de plusieurs bars (par exemple le C02), soit des gaz dissous, soit dans certains cas des gaz liquéfiés. Ces gaz appelés gaz propulseurs sont accusés de participer à l'effet de serre (C02) et/ou d'avoir une certaine dangerosité, ainsi le gaz dissous le plus souvent utilisé est le butane, hautement inflammable. Par ailleurs, les bombes aérosols sont soumises à la législation des appareils sous pression. Certains générateurs d'aérosols portables utilisent des disques ou des turbines pour atomiser les liquides. L'examen des brevets français 2 371 969, FR 49092, US
6138925, US 5727 541 rnoiltre que dans tous les cas le tube d'alimentation du liquide est terminé par un ou des orifices de petites sections destinés à mettre sous pression le liquide et que finalement le disque ou la turbine est alimentée par un ou plusieurs jets, ne permettant pas au liquide de s'étaler directement de façon homogène sur le disque ou la turbine.
L'invention a pour but de proposer un atomiseur portatif et/ou autonome à
usage domestique ou industriel, ne nécessitant aucun gaz propulseur, assurant toutes les fonctions pour 0 produire un aérosol à partir d'un réservoir placé à la pression atmosphérique ou à une pression voisine de la pression atmosphérique, suffisamment faible pour ne pas être placée dans le champ réglementaire des appareils sous pression. Ce système est compatible avec les têtes d'atomisation d'aérosols contrôlés décrites dans le brevet français 04 03679. Il ne nécessite pas la présence d'orifices à l'amont du disque. L'absence de gaz propulseur, la miniaturisation, la réunion dans >.5 un même ensemble de plusieurs fonctions habituellement séparéés, l'absence d'orifices ou de buses, toujours susceptibles de se boucher et sources de perturbation des écoulements ainsi que la possibilité de contrôler efficacement la granulométrie constituent des avantages certains par rapport aux techniques actuellement utilisées.
Pour la bonne compréhension de la description des différentes réalisations, il est 30 préalablement rappelé 1) que les fonctions à remplir pour atteindre un tel but sont de mettre en mouvement de rotation rapide un disque, bol ou toute autre objet à symétrie de révolution axiale, d'alimenter en liquide au moins une face de ce disque, bol ou objet à symétrie de révolution axiale avec un débit suffisant et, si nécessaire, de modifier la trajectoire des gouttes, naturellement dans le plan du disque, afin qu'elles atteignent aisément la cible recherchée ; 2)
2 FEUILLE DE REMPLACEMENT (REGLE 26) que l'énergie à fournir pour disperser du liquide en gouttes au bord d'un disque en rotation est en régime permanent de l'ordre de quelques watts pour des débits de quelques cm3/s, débits usuellement utilisés dans ces applications ; 3) que l'énergie à fournir pour alimenter le disque en ~
liquide dépend de la différence de charge entre le réservoir et le disque, du débit et des pertes au niveau des écoulements et que typiquement la puissance à fournir pour élever de l'eau de quelques cm avec un débit de l'ordre de quelques cm3/s est de quelques milliwatts ; 4) que le vortex créé lors de la mise en rotation d'un volume liquide dans un récipient à surface libre modifie la surface libre, lui donnant la forme d'un paraboloïde de révolution dont la hauteur près des parois est supérieure à la hauteur au repos, 5) que la pression statique et la pression 0 dynamique qui existent de part et d'autre du plan de l'hélice du ventilateur sont différentes de la pression atmosphérique et ont une valeur qui peut être approchée par la loi de Bernoulli.
L'invention atteint son but grâce à des perfectionnements apportés aux dispositifs du type pulvérisateur à disque, comportant un disque plan, coupelle ou objet à
symétrie de révolution axiale entraîné par un moteur. Ces perfectionnements sont caractérisés par l'utilisation de i5 disques de petits diamètres, de l'ordre du centimètre, par l'intégràtion sur l'axe moteur-disque, du dispositif d'alimentation en liquide et du ventilateur servant à orienter les aérosols produits, par le raccordement de cet ensemble au réservoir, par l'absence de buses ou orifices à l'amont du disque plan, coupelle ou objet à symétrie de révolution, par l'utilisation de la surpression créée près du ventilateur et par la possibilité de contrôler la taille des aérosols produits.
20 Les divers modes de réalisation décrits ci-après à titre d'illustration pour atteindre le but recherché ont en commun le fait qu'ils comportent d'une part un rotor mettant en rotation le disque, participant à son alimentation en liquide et portant l'hélice du ventilateur si il est nécessaire, et d'autre part un bâti, comportant les parties fixes du ventilateur, du dispositif d'alimentation en liquide, le réservoir ou le dispositif de fixation du réservoir, diverses conduites 25 ainsi que les organes de commande et de contrôle. Ils différent principalement par la nature du dispositif d'alimentation en liquide du disque, par la position relative des divers éléments, par le mode d'entraînement et par la source d'énergie.
Selon un mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 1, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, supportant un 30 joint tournant (2) et éventuellement le rotor (4) du ventilateur. Cette tige (1) est à axe creux et comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Son autre extrémité (6) plonge dans le réservoir (7) contenant le liquide à pulvériser (8). Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), par exemple par vissage, l'emplacement de la source d'énergie (11), les connecteurs électriques et
liquide dépend de la différence de charge entre le réservoir et le disque, du débit et des pertes au niveau des écoulements et que typiquement la puissance à fournir pour élever de l'eau de quelques cm avec un débit de l'ordre de quelques cm3/s est de quelques milliwatts ; 4) que le vortex créé lors de la mise en rotation d'un volume liquide dans un récipient à surface libre modifie la surface libre, lui donnant la forme d'un paraboloïde de révolution dont la hauteur près des parois est supérieure à la hauteur au repos, 5) que la pression statique et la pression 0 dynamique qui existent de part et d'autre du plan de l'hélice du ventilateur sont différentes de la pression atmosphérique et ont une valeur qui peut être approchée par la loi de Bernoulli.
L'invention atteint son but grâce à des perfectionnements apportés aux dispositifs du type pulvérisateur à disque, comportant un disque plan, coupelle ou objet à
symétrie de révolution axiale entraîné par un moteur. Ces perfectionnements sont caractérisés par l'utilisation de i5 disques de petits diamètres, de l'ordre du centimètre, par l'intégràtion sur l'axe moteur-disque, du dispositif d'alimentation en liquide et du ventilateur servant à orienter les aérosols produits, par le raccordement de cet ensemble au réservoir, par l'absence de buses ou orifices à l'amont du disque plan, coupelle ou objet à symétrie de révolution, par l'utilisation de la surpression créée près du ventilateur et par la possibilité de contrôler la taille des aérosols produits.
20 Les divers modes de réalisation décrits ci-après à titre d'illustration pour atteindre le but recherché ont en commun le fait qu'ils comportent d'une part un rotor mettant en rotation le disque, participant à son alimentation en liquide et portant l'hélice du ventilateur si il est nécessaire, et d'autre part un bâti, comportant les parties fixes du ventilateur, du dispositif d'alimentation en liquide, le réservoir ou le dispositif de fixation du réservoir, diverses conduites 25 ainsi que les organes de commande et de contrôle. Ils différent principalement par la nature du dispositif d'alimentation en liquide du disque, par la position relative des divers éléments, par le mode d'entraînement et par la source d'énergie.
Selon un mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 1, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, supportant un 30 joint tournant (2) et éventuellement le rotor (4) du ventilateur. Cette tige (1) est à axe creux et comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Son autre extrémité (6) plonge dans le réservoir (7) contenant le liquide à pulvériser (8). Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), par exemple par vissage, l'emplacement de la source d'énergie (11), les connecteurs électriques et
3 FEUILLE DE REMPLACEMENT (REGLE 26) l'interrupteur (12). Ce bâti est traversé d'une part par le circuit d'alimentation (13) en air de l'hélice (4) du ventilateur et d'autre part, lorsque le système est muni d'un ventilateur, par une conduite dont l'extrémité proche du plan de l'hélice du ventilateur (14) constitue une prise de pression statique ou dynamique et dont l'autre extrémité débouche dans le réservoir (7) au dessus ou en dessous de la surface libre du liquide. Lorsque l'extrémité est au dessus de la surface libre du liquide, le réservoir est à pression constante, lorsque l'extrémité est en dessous de la surface libre, le réservoir fonctionne à la manière d'un vase de Mariotte. Cette conduite peut être munie à l'extrémité (7) d'un clapet anti-retour (15). Le bâti est placé dans uné
enveloppe (16) percée de prises d'air (17) et assurant le design du système. Le bâti peut être muni d'un capuchon (18) 0 protégeant le disque contre les chocs et la saleté et assurant l'étanchéité
du système. Lors de la mise en rotation du disque par fermeture de l'interrupteur, un vortex forcé se crée à l'intérieur de l'axe. La surface libre monte le long des parois jusqu'à atteindre la surface du disque (selon la vitesse de rotation) et permettre ainsi l'écoulement sur le disque .
L'efficacité du pompage peut être améliorée en vrillant la surface intérieure de l'axe à la manière d'une vis d'Archimède, ainsi que par la mise sous pression du réservoir dans le cas de la présence du ventilateur grâce à la conduite (14) reliant le plan proche du ventilateur au réservoir. Le clapet anti-retour empêche dans ce cas le remplissage de ce conduit par le liquide (8) de pulvérisation en cas de fausse manceuvre ou d'utilisation réservoir en haut.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 2, mode de réalisation plus particulièrement destiné aux applications de lagunage, de traitement de l'eau et /ou de dessalage, dans lesquelles le réservoir (8) est une grande étendue d'eau à surface libre, comparée aux dimensions du système : le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur. Cette tige est à axe creux et comporte à
une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Son autre extrémité (6) plonge dans le réservoir (7) contenant le liquide à pulvériser (8). Le bâti est un flotteur (19) percé d'un orifice (20) laissant passer la tige (1) et sur lequel est fixé le moteur (9) ainsi que sa source d'énergie (21), par exemple des cellules photovoltaïques.
Le moteur (3, 9) est placé dans une enveloppe (22) le protégeant. Le bâti peut être fixé par exemple par une ancre au fond du réservoir ou dériver librement. Lors de la mise en rotation du disque, un vortex forcé
se crée à l'intérieur de l'axe. La surface libre monte le long des parois jusqu'à atteindre la surface du disque (selon la vitesse de rotation) et permettre ainsi l'écoulement sur le disque.
L'efficacité du pompage peut être améliorée en vrillant la surface intérieure de l'axe à la manière d'une vis d'Archimède. Cette précaution s'avère en particulier nécessaire lorsqu'on veut pomper de l'eau à une certaine profondeur.
enveloppe (16) percée de prises d'air (17) et assurant le design du système. Le bâti peut être muni d'un capuchon (18) 0 protégeant le disque contre les chocs et la saleté et assurant l'étanchéité
du système. Lors de la mise en rotation du disque par fermeture de l'interrupteur, un vortex forcé se crée à l'intérieur de l'axe. La surface libre monte le long des parois jusqu'à atteindre la surface du disque (selon la vitesse de rotation) et permettre ainsi l'écoulement sur le disque .
L'efficacité du pompage peut être améliorée en vrillant la surface intérieure de l'axe à la manière d'une vis d'Archimède, ainsi que par la mise sous pression du réservoir dans le cas de la présence du ventilateur grâce à la conduite (14) reliant le plan proche du ventilateur au réservoir. Le clapet anti-retour empêche dans ce cas le remplissage de ce conduit par le liquide (8) de pulvérisation en cas de fausse manceuvre ou d'utilisation réservoir en haut.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 2, mode de réalisation plus particulièrement destiné aux applications de lagunage, de traitement de l'eau et /ou de dessalage, dans lesquelles le réservoir (8) est une grande étendue d'eau à surface libre, comparée aux dimensions du système : le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur. Cette tige est à axe creux et comporte à
une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Son autre extrémité (6) plonge dans le réservoir (7) contenant le liquide à pulvériser (8). Le bâti est un flotteur (19) percé d'un orifice (20) laissant passer la tige (1) et sur lequel est fixé le moteur (9) ainsi que sa source d'énergie (21), par exemple des cellules photovoltaïques.
Le moteur (3, 9) est placé dans une enveloppe (22) le protégeant. Le bâti peut être fixé par exemple par une ancre au fond du réservoir ou dériver librement. Lors de la mise en rotation du disque, un vortex forcé
se crée à l'intérieur de l'axe. La surface libre monte le long des parois jusqu'à atteindre la surface du disque (selon la vitesse de rotation) et permettre ainsi l'écoulement sur le disque.
L'efficacité du pompage peut être améliorée en vrillant la surface intérieure de l'axe à la manière d'une vis d'Archimède. Cette précaution s'avère en particulier nécessaire lorsqu'on veut pomper de l'eau à une certaine profondeur.
4 FEUILLE DE REMPLACEMENT (REGLE 26) Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 3, mode de réalisation plus particulièrement destiné aux applications de lagunage, de traitement de l'eau et /ou de dessalage, dans lesquelles le réservoir (8) est une grande étendue d'eau à surface libre, comparée aux dimensions du système : le rotor est constitué d'une tige (1) supportant un joint tournant (2), entraînée par le rotor d'une éolienne (23) à
axe vertical, directement ou par l'intermédiaire d'un système multiplicateur-démultiplicateur tel un système d'engrenages. Cette tige (1) est à axe creux et comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Son autre * extrémité
(6) plonge dans le réservoir (7) contenant le liquide à pulvériser (8). Le bâti est un flotteur (19) percé d'un orifice ~ (20) recevant le joint tournant et supportant éventuellement le bâti de l'éolienne (23). Le bâti peut être fixé par exemple par une ancre au fond du réservoir ou dériver librement. Lors de la mise en rotation du disque, un vortex forcé se crée à l'intérieur de l'axe. La surface libre monte le long des parois jusqu'à atteindre la surface du disque (selon la vitesse de rotation) et permettre ainsi l'écoulement sur le disque. L'efficacité du pompage peut être améliorée en vrillant la surface intérieure de l'axe à la manière d'u.ne vis d'Archimède.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 4, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, supportant deux joints tournants (2) et (24) et éventuellement le rotor (4) du ventilateur. Cette tige (1) comporte à une de ses extrémités (5) un disque plan, coupelle ou objet à
symétrie de révolution 20 axiale et est à axe creux dans la partie comprise entre le joint tournant (24) le plus proche du moteur et l'extrémité supportant le disque plan, coupelle ou objet à symétrie de révolution axiale
axe vertical, directement ou par l'intermédiaire d'un système multiplicateur-démultiplicateur tel un système d'engrenages. Cette tige (1) est à axe creux et comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Son autre * extrémité
(6) plonge dans le réservoir (7) contenant le liquide à pulvériser (8). Le bâti est un flotteur (19) percé d'un orifice ~ (20) recevant le joint tournant et supportant éventuellement le bâti de l'éolienne (23). Le bâti peut être fixé par exemple par une ancre au fond du réservoir ou dériver librement. Lors de la mise en rotation du disque, un vortex forcé se crée à l'intérieur de l'axe. La surface libre monte le long des parois jusqu'à atteindre la surface du disque (selon la vitesse de rotation) et permettre ainsi l'écoulement sur le disque. L'efficacité du pompage peut être améliorée en vrillant la surface intérieure de l'axe à la manière d'u.ne vis d'Archimède.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 4, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, supportant deux joints tournants (2) et (24) et éventuellement le rotor (4) du ventilateur. Cette tige (1) comporte à une de ses extrémités (5) un disque plan, coupelle ou objet à
symétrie de révolution 20 axiale et est à axe creux dans la partie comprise entre le joint tournant (24) le plus proche du moteur et l'extrémité supportant le disque plan, coupelle ou objet à symétrie de révolution axiale
(5). La tige est pleine dans la partie traversant le moteur. Elle est percée d'un certain nombre d'orifices (25) dans une ou plusieurs sections situées entre les deux joints tournants (2) et (24).
Ces orifices sont uniquement destinés à permettre au liquide de passer de la chambre (26) au 25 tube (1). La surface interne de la tige creuse et/ou la surface interne du disque plan, coupelle ou ôbjet à symétrie de révolution axiale peuvent être munies de strïes facilitant l'écoulement vers l'extrémité du disque ou objet à symétrie de révolution. Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), l'emplacement de la source d'énergie (11), les connecteurs électriques et l'interrupteur (12). Ce bâti supporte également le stator du dispositif 30 d'alimentation en liquide qui est une chambre (26) concentrique au rotor (1) et reliée à celui-ci par les joints tournants (2) et (24). Cette chambre est ouverte sur la surface en regard avec la tige et munie d'un ou plusieurs orifices sur sa face opposée permettanï une liaison au réservoir par un ou plusieurs tubes (28). Une vanne (29) permet l'ouverture et la fermeture du circuit d'alimentation en liquide. Le bâti est traversé d'une part par le circuit d'alimentation en air (13) FEUILLE DE REMPLACEMENT (REGLE 26) de l'hélice (4) du ventilateur et d'autre part, lorsque le système est muni d'un ventilateur, par une conduite (14) dont l'extrémité proche du plan de l'hélice du ventilateur constitue une prise de pression statique ou dynamique et dont l'autre extrémité débouche dans le réservoir, au dessus ou en dessous de la surface libre du liquide. Lorsque l'extrémité est au dessus de la surface libre du liquide, le réservoir est à pression constante, lorsque l'extrémité est en dessous de la surface libre, le réservoir fonctionne à la manière d'un vase de Mariotte. Cette conduite (14) peut être munie à une extrémité d'un clapet anti-retour (15). Le bâti est placé dans une enveloppe (16) percée de prises d'air (17), assurant le design et la protection du système.
Le bâti peut être muni d'un capuchon (18) protégeant le disque contre les chocs et la saleté. Le système fonctionne 0 comme suit : à la fermeture de l'interrupteur (12) mettant en marche le rotor, la vanne (29) de communication entre le réservoir et la chambre d'alimentation s'ôuvre et le liquide initialement dans le réservoir remplit la chambre (26), soit sous l'effet de la pesanteur, si le réservoir est placé
au dessus de la chambre, soit sous l'effet de la mise sous pression du réservoir par le fonctionnement du ventilateur si le réseivoir est placé dans une autre position. Le liquide de la 5 chambre passe par les orifices (25) à l'intérieur du tube creux et atteint le disque sous l'effet conjugué du vortex et de la pression générée. Il s'étale alors sur le disque et se fragmente en gouttelettes à sa périphérie ou près de sa périphérie. Comme on peut le comprendre aisément, ce système fonctionne quelle que soit la position relative du réservoir par rapport au disque.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur z0 la figure 5, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, supportant un joint tournant (24), et éventuellement le rotor (4) du ventilateur. Cette tige (1), à axe plein, comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). La surface externe de la tige et/ou la surface du disque plan, coupelle ou objet à
symétrie de révolution axiale peuvent être munies de stries facilitant l'écoulement du disque vers 25 l'extrémité du disque plan, coupelle ou objet à symétrie de révolution axiale. Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), par exemple par vissage, l'emplacement de la source d'énergie (11), les connecteurs électriques et l'interrupteur (12). Ce bâti supporte également le stator du dispositif d'alimentation en liquide (26) qui est une chambre concentrique au rotor et reliée à celui-ci par le joint tournant (24) situé
entre la chambre et le 30 moteur. Dans la partie située entre le disque et le joint tournant, la chambre se prolonge par un tube concentrique (30) à la tige et de diamètre intérieur légèrement supérieur au diamètre de la tige, laissant ainsi le liquide s'écouler hors de la chambre le long de l'axe tournant. La chambre est munie d'un ou plusieurs orifices sur sa surface extérieure permettant une liaison par un ou plusieurs tubes (28) au réservoir. Le bâti est traversé d'une part par le circuit d'alimentation en
Ces orifices sont uniquement destinés à permettre au liquide de passer de la chambre (26) au 25 tube (1). La surface interne de la tige creuse et/ou la surface interne du disque plan, coupelle ou ôbjet à symétrie de révolution axiale peuvent être munies de strïes facilitant l'écoulement vers l'extrémité du disque ou objet à symétrie de révolution. Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), l'emplacement de la source d'énergie (11), les connecteurs électriques et l'interrupteur (12). Ce bâti supporte également le stator du dispositif 30 d'alimentation en liquide qui est une chambre (26) concentrique au rotor (1) et reliée à celui-ci par les joints tournants (2) et (24). Cette chambre est ouverte sur la surface en regard avec la tige et munie d'un ou plusieurs orifices sur sa face opposée permettanï une liaison au réservoir par un ou plusieurs tubes (28). Une vanne (29) permet l'ouverture et la fermeture du circuit d'alimentation en liquide. Le bâti est traversé d'une part par le circuit d'alimentation en air (13) FEUILLE DE REMPLACEMENT (REGLE 26) de l'hélice (4) du ventilateur et d'autre part, lorsque le système est muni d'un ventilateur, par une conduite (14) dont l'extrémité proche du plan de l'hélice du ventilateur constitue une prise de pression statique ou dynamique et dont l'autre extrémité débouche dans le réservoir, au dessus ou en dessous de la surface libre du liquide. Lorsque l'extrémité est au dessus de la surface libre du liquide, le réservoir est à pression constante, lorsque l'extrémité est en dessous de la surface libre, le réservoir fonctionne à la manière d'un vase de Mariotte. Cette conduite (14) peut être munie à une extrémité d'un clapet anti-retour (15). Le bâti est placé dans une enveloppe (16) percée de prises d'air (17), assurant le design et la protection du système.
Le bâti peut être muni d'un capuchon (18) protégeant le disque contre les chocs et la saleté. Le système fonctionne 0 comme suit : à la fermeture de l'interrupteur (12) mettant en marche le rotor, la vanne (29) de communication entre le réservoir et la chambre d'alimentation s'ôuvre et le liquide initialement dans le réservoir remplit la chambre (26), soit sous l'effet de la pesanteur, si le réservoir est placé
au dessus de la chambre, soit sous l'effet de la mise sous pression du réservoir par le fonctionnement du ventilateur si le réseivoir est placé dans une autre position. Le liquide de la 5 chambre passe par les orifices (25) à l'intérieur du tube creux et atteint le disque sous l'effet conjugué du vortex et de la pression générée. Il s'étale alors sur le disque et se fragmente en gouttelettes à sa périphérie ou près de sa périphérie. Comme on peut le comprendre aisément, ce système fonctionne quelle que soit la position relative du réservoir par rapport au disque.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur z0 la figure 5, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, supportant un joint tournant (24), et éventuellement le rotor (4) du ventilateur. Cette tige (1), à axe plein, comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). La surface externe de la tige et/ou la surface du disque plan, coupelle ou objet à
symétrie de révolution axiale peuvent être munies de stries facilitant l'écoulement du disque vers 25 l'extrémité du disque plan, coupelle ou objet à symétrie de révolution axiale. Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), par exemple par vissage, l'emplacement de la source d'énergie (11), les connecteurs électriques et l'interrupteur (12). Ce bâti supporte également le stator du dispositif d'alimentation en liquide (26) qui est une chambre concentrique au rotor et reliée à celui-ci par le joint tournant (24) situé
entre la chambre et le 30 moteur. Dans la partie située entre le disque et le joint tournant, la chambre se prolonge par un tube concentrique (30) à la tige et de diamètre intérieur légèrement supérieur au diamètre de la tige, laissant ainsi le liquide s'écouler hors de la chambre le long de l'axe tournant. La chambre est munie d'un ou plusieurs orifices sur sa surface extérieure permettant une liaison par un ou plusieurs tubes (28) au réservoir. Le bâti est traversé d'une part par le circuit d'alimentation en
6 FEUILLE DE REMPLACEMENT (REGLE 26)
7 air (13) de l'hélice (4) du ventilateur et d'autre part, lorsque le système est muni d'un ventilateur, par une conduite (14) dont l'extrémité proche du plan de l'hélice du ventilateur constitue une prise de pression statique ou dynamique et dont l'autre extrémité débouche dans le réservoir, au dessus ou en dessous de la surface libre du liquide. Lorsque l'extrémité est au dessus de la surface libre du liquide, le réservoir est à pression constante, lorsque l'extrémité est en dessous de la surface libre, le réservoir fonctionne à la manière d'un vase de Mariotte. Cette conduite (14) peut être munie à une extrémité d'un clapet anti-retour (15). Le bâti est placé dans une enveloppe (16) percée de prises d'air (17), assurant le design et la protection du système. Le bâti peut être muni d'uii capuchon (18) protégeant le disque contre les chocs et la saleté. Le systéme fonctionne comme suit : à la fermeture de l'interrupteur (12) mettant en marche le rotor, la vanne de communication (29) entre le réservoir et la chainbre d'alimentation s'ouvre et le liquide initialement dans le réservoir remplit la chambre, sous l'effet de la pesanteur, si le réservoir est placé au dessus de la chambre, sous l'effet de la mise sous pression du réservoir par le fonctionnement du ventilateur si le réservoir est placé dans une aûtre position et/ou sous l'effet de pompage créé par la rotation du liquide entre le stator et le rotor. Le liquide de la chambre s'écoule à travers l'orifice annulaire constitué entre la tige (1) et le tube (30) et s'étale sur la face arrière du disque par effet centrifuge. Il se fragmente en gouttelettes à sa périphérie ou près de sa périphérie.
Selon une variante à ce mode de réalisation montrée figure 6, le tube (30) peut être o utilement prolongé le long de la partie divergente reliant le disque et le tube et être muni de stries (33). L'écoulement dans cette zone est alors comparable à celui existant dans une pompe hélico centrifuge.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 7, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, et :5 éventuellement du rotor (4) du ventilateur. Cette tige (1), à axe plein, comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), par exemple par vissage, l'emplacement de la source d'énergie (11), les connecteurs électriques et l'interrupteur (12). Ce bâti supporte également le dispositif d'alimentation en liquide (31) qui est un tube annulaire 30 coaxial et concentrique au rotor, de diamètre intérieur légèrement supérieur au rotor et relié au réseivoir par un coude suivi d'un tube. Le bâti est traversé d'une part par le circuit d'alimentation en air (13) de l'hélice (4) du ventilateur et d'autre part, lorsque le système est muni d'un ventilateur, par une conduite (14) reliant une prise d'air pratiquée dans le plan proche de l'hélice et le réservoir (7). Cette conduite (14) peut être munie à une extrémité d'un clapet FEUILLE DE REMPLACEMENT (REGLE 26)
Selon une variante à ce mode de réalisation montrée figure 6, le tube (30) peut être o utilement prolongé le long de la partie divergente reliant le disque et le tube et être muni de stries (33). L'écoulement dans cette zone est alors comparable à celui existant dans une pompe hélico centrifuge.
Selon un autre mode de réalisation du système selon l'invention tel qu'on peut le voir sur la figure 7, le rotor est constitué d'une tige (1) entraînée par le rotor (3) du moteur, et :5 éventuellement du rotor (4) du ventilateur. Cette tige (1), à axe plein, comporte à une de ses extrémités un disque plan, coupelle ou objet à symétrie de révolution axiale (5). Le bâti supporte le stator du moteur (9), le système de fixation du réservoir (10), par exemple par vissage, l'emplacement de la source d'énergie (11), les connecteurs électriques et l'interrupteur (12). Ce bâti supporte également le dispositif d'alimentation en liquide (31) qui est un tube annulaire 30 coaxial et concentrique au rotor, de diamètre intérieur légèrement supérieur au rotor et relié au réseivoir par un coude suivi d'un tube. Le bâti est traversé d'une part par le circuit d'alimentation en air (13) de l'hélice (4) du ventilateur et d'autre part, lorsque le système est muni d'un ventilateur, par une conduite (14) reliant une prise d'air pratiquée dans le plan proche de l'hélice et le réservoir (7). Cette conduite (14) peut être munie à une extrémité d'un clapet FEUILLE DE REMPLACEMENT (REGLE 26)
8 anti-retour (15). Le bâti est placé dans une enveloppe (16) percée de prises d'air (17), assurant le design et la protection du système. Le bâti peut être muni d'un capuchon (18) protégeant le disque contre les chocs et la saleté. Le système fonctionne comme suit : à la fermeture de l'interrupteur (12) mettant en marche le rotor, la vanne de communication (29) entre le réservoir et la chambre d'alimentation s'ouvre et le liquide initialement dans le réservoir remplit le tube 31, sous l'effet de la pesanteur, si le réservoir est placé au dessus de la chambre, sous l'effet de la mise sous pression du réservoir par le fonctionnement du ventilateur si le réservoir est placé dans une autre position. A la sortie du tube 31, le liquide s'écoule le long du disque et s'étale sur sa face arrière par effet centrifuge. Il se fragmente en gouttelettes à sa périphérie ou près de sa o périphérie.
Selon une variante à ce mode de réalisation montrée figure 8, ce tube coaxial rectiligne (31) peut se prolonger par une surface conique de révolution (32) située dans le prolongement de la paroi externe du tube. Cette surface conique enveloppe la zone de raccordement entre l'axe de rotation et le disque et peut être munie de stries (33). L'écoulement dans cette zone est alors [5 comparable à celui existant dans une pompe helico-centrifuge.
FEUILLE DE REMPLACEMENT (REGLE 26)
Selon une variante à ce mode de réalisation montrée figure 8, ce tube coaxial rectiligne (31) peut se prolonger par une surface conique de révolution (32) située dans le prolongement de la paroi externe du tube. Cette surface conique enveloppe la zone de raccordement entre l'axe de rotation et le disque et peut être munie de stries (33). L'écoulement dans cette zone est alors [5 comparable à celui existant dans une pompe helico-centrifuge.
FEUILLE DE REMPLACEMENT (REGLE 26)
Claims (20)
1. Système aérosol du type atomiseur à disque tournant comportant un objet à
symétrie de révolution axiale tel qu'un disque plan, entraîné en rotation à grande vitesse par un moteur, un réservoir fixe ou amovible et un dispositif d'alimentation en liquide, caractérisé en ce que l'axe (1) du rotor du dispositif d'alimentation en liquide de l'objet à
symétrie de révolution axiale, est confondu avec l'axe de rotation dudit objet et agencé pour générer, lors de l'entraînement en rotation dudit objet à symétrie de révolution axiale, la montée du liquide le long de ses parois jusqu'à l'objet à symétrie de révolution axiale sous forme de surface libre et l'écoulement dudit liquide sur au moins une face dudit objet jusqu'à la périphérie de celui-ci.
symétrie de révolution axiale tel qu'un disque plan, entraîné en rotation à grande vitesse par un moteur, un réservoir fixe ou amovible et un dispositif d'alimentation en liquide, caractérisé en ce que l'axe (1) du rotor du dispositif d'alimentation en liquide de l'objet à
symétrie de révolution axiale, est confondu avec l'axe de rotation dudit objet et agencé pour générer, lors de l'entraînement en rotation dudit objet à symétrie de révolution axiale, la montée du liquide le long de ses parois jusqu'à l'objet à symétrie de révolution axiale sous forme de surface libre et l'écoulement dudit liquide sur au moins une face dudit objet jusqu'à la périphérie de celui-ci.
2. Système aérosol selon la revendication 1, caractérisé en ce que l'axe (1) du rotor du dispositif d'alimentation en liquide est creux et débouche sur le disque, la surface libre du liquide montant à l'intérieur de l'axe creux le long de ses parois et s'écoulant sur le disque.
3. Système selon l'une des revendications 1 et 2, caractérisé en ce que la tige d'alimentation (1) comporte, à l'intérieur de sa partie creuse, des stries hélicoïdales.
4. Système aérosol selon la revendication 1, caractérisé en ce que l'axe (1) du rotor du dispositif d'alimentation en liquide est plein et s'étend au travers d'un tube concentrique (30) depuis une chambre (26) concentrique à
l'axe (1) en liaison avec le réservoir de liquide, la surface libre du liquide s'écoulant à
travers l'orifice annulaire constitué par l'axe plein et le tube et s'étalant sur la face arrière du disque par effet centrifuge.
l'axe (1) en liaison avec le réservoir de liquide, la surface libre du liquide s'écoulant à
travers l'orifice annulaire constitué par l'axe plein et le tube et s'étalant sur la face arrière du disque par effet centrifuge.
5. Système aérosol selon l'une des revendications 1 et 4, caractérisé en ce que la tige d'alimentation (1) comporte, à l'extérieur, des stries hélicoïdales.
6. Système aérosol selon l'une des revendications 1, 4 et 5, caractérisé en ce que l'objet à symétrie de révolution axiale (5) comporte des stries hélicoïdales sur la face recevant le liquide.
7. Système aérosol selon l'une des revendications 1, 4 et 5, caractérisé en ce que le tube concentrique (30) comporte, à l'intérieur, des stries hélicoïdales.
8. Système aérosol selon l'une des revendications 1, 4, 5, 6 et 7, caractérisé en ce que le tube concentrique (30) est prolongé par un tube divergent (32) guidant le liquide le long de la face arrière de l'objet à symétrie de révolution axiale, la surface libre du liquide s'étalant sur la face arrière du disque par effet centrifuge.
9. Système aérosol selon la revendication 1, caractérisé en ce que l'axe (1) du rotor du dispositif d'alimentation en liquide est plein et s'étend au travers d'un tube coaxial concentrique (31) en liaison avec le réservoir de liquide, la surface libre du liquide s'étalant sur la face arrière du disque par effet centrifuge.
10. Système aérosol selon l'une des revendications 1 et 9, caractérisé en ce que le tube coaxial concentrique (31) est prolongé par un tube divergent (32) guidant le liquide le long de la face arrière de l'objet à symétrie de révolution axiale, la surface libre du liquide s'étalant sur la face arrière du disque par effet centrifuge.
11. Système aérosol selon l'une des revendications 1, 8 et 10, caractérisé en ce que le tube divergent (32) comporte, à l'intérieur, des stries hélicoïdales.
12. Système aérosol selon l'une des revendications 1 à 11, caractérisé en ce qu'il comporte un ventilateur permettant d'orienter les aérosols à la sortie du disque, l'axe du rotor (4) du ventilateur étant confondu avec l'axe du disque et du dispositif d'alimentation en liquide.
13. Système selon l'une des revendications 1 à 12, caractérisé en ce que le moteur permettant la mise en rotation du disque plan ou objet à symétrie de révolution axiale (5) est une éolienne à axe vertical (23) en prise directe sur l'axe du disque et du dispositif d'alimentation ou couplée à cet axe par un dispositif multiplicateur ou démultiplicateur de vitesse.
14. Système selon la revendication 13, caractérisé en ce que le dispositif multiplicateur ou démultiplicateur est composé d'engrenages.
15. Système selon la revendication 13, caractérisé en ce que le dispositif multiplicateur ou démultiplicateur est un dispositif à courroie.
16. Système selon l'une des revendications 1, 2, 3 et 12 à 15, caractérisé en ce que le rotor (1) du dispositif d'alimentation en liquide est l'axe creux du disque, entraîné par un moteur à axe creux (3) et plongeant dans le réservoir de liquide (7).
17. Système selon l'une des revendications 1, 2, 3 et 12 à 15, caractérisé en ce que le dispositif d'alimentation est constitué par une chambre (26) concentrique à l'axe de rotation, alimentée sous une légère pression par le réservoir (7) et alimentant en liquide par des orifices (25) la tige (1) creuse entre cette chambre et le disque (5).
18. Système selon la revendication 12, caractérisé en ce que le réservoir de liquide (7) est mis sous une légère pression grâce à un tube (14) le reliant à la surface amont du ventilateur.
19. Système selon l'une des revendications 1 et 4, caractérisé en ce que le stator du dispositif d'alimentation est constitué par une chambre (26) concentrique à l'axe de rotation, alimentée sous une légère pression par le réservoir (7) et comportant à son extrémité un conduit (30) concentrique à la tige (1), et de diamètre légèrement supérieur à la tige pleine (1), permettant au liquide d'atteindre le disque par l'orifice annulaire.
20. Système selon l'une des revendications 1 à 19, caractérisé en ce que le réservoir (7) et/ou le disque et son axe est amovible et interchangeable.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0505752A FR2886559B1 (fr) | 2005-06-06 | 2005-06-06 | Dispositif autonome d'atomisation par disque tournant |
FR05/05752 | 2005-06-06 | ||
PCT/FR2006/001263 WO2006131629A2 (fr) | 2005-06-06 | 2006-06-06 | Dispositif autonome d'atomisation a disque tournant |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2625990A1 true CA2625990A1 (fr) | 2006-12-14 |
Family
ID=35589499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002625990A Abandoned CA2625990A1 (fr) | 2005-06-06 | 2006-06-06 | Dispositif autonome d'atomisation a disque tournant |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110000978A1 (fr) |
EP (1) | EP1893340A2 (fr) |
CA (1) | CA2625990A1 (fr) |
FR (1) | FR2886559B1 (fr) |
WO (1) | WO2006131629A2 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2929136B1 (fr) | 2008-03-25 | 2011-11-11 | Sprainnov | Procede et tete de pulverisation, procede et tour associes pour fabriquer un produit pulverulent |
FR3006898B1 (fr) * | 2013-06-12 | 2016-01-01 | Sprai Services Pour La Production Et La Rech En Aerosols Ind | Diffuseur a disque rotatif orientable pour ensemencement volumique |
DE102018114179A1 (de) * | 2018-06-13 | 2019-12-19 | Dürr Systems Ag | Vorrichtung zum Desinfizieren zumindest eines Raums, insbesondere Personen-Aufenthaltsraums, mit einem Zerstäuber |
CN111760693A (zh) * | 2020-07-28 | 2020-10-13 | 士商(上海)机械有限公司 | 喷头及喷雾器 |
CN111760690A (zh) * | 2020-07-28 | 2020-10-13 | 士商(上海)机械有限公司 | 喷雾器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1859770A (en) * | 1928-02-08 | 1932-05-24 | Cooling & Air Conditioning Cor | Vaporizer |
FR49092E (fr) * | 1938-01-18 | 1938-11-07 | Pulvérisateurs pour liquides | |
FR2371969A1 (fr) * | 1976-11-25 | 1978-06-23 | Phagogene Labor | Perfectionnement aux generateurs d'aerosols et microbrouillards |
US4582241A (en) * | 1977-05-25 | 1986-04-15 | Johnson Wallace E | Force transmitting toggle assembly |
US4253599A (en) * | 1979-07-27 | 1981-03-03 | Midcon Pipeline Equipment Co. | Pipe welding clamp including pipe end spacing means |
FR2662374B1 (fr) * | 1990-05-25 | 1992-09-11 | Mat | Rotor de micro-pulverisation centrifuge. |
US5288005A (en) * | 1992-09-04 | 1994-02-22 | Beakley Lane D | Automatic internal pipe line-up clamp |
CN1118993A (zh) * | 1993-03-06 | 1996-03-20 | 斯蒂芬·詹姆斯·罗兰 | 液体雾化 |
US6138925A (en) * | 1998-11-16 | 2000-10-31 | Eugene O'neill | Texturizer dispensing apparatus |
DE10241439A1 (de) * | 2002-09-06 | 2004-03-18 | Pari GmbH Spezialisten für effektive Inhalation | Vorrichtung zum Erzeugen eines Aerosols |
FR2868707B1 (fr) | 2004-04-08 | 2008-02-01 | Jean Pierre Renaudeaux | Atomiseur a disque tournant d'aerosols controles |
-
2005
- 2005-06-06 FR FR0505752A patent/FR2886559B1/fr not_active Expired - Fee Related
-
2006
- 2006-06-06 EP EP06778579A patent/EP1893340A2/fr not_active Withdrawn
- 2006-06-06 WO PCT/FR2006/001263 patent/WO2006131629A2/fr active Application Filing
- 2006-06-06 CA CA002625990A patent/CA2625990A1/fr not_active Abandoned
- 2006-06-06 US US12/065,185 patent/US20110000978A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20110000978A1 (en) | 2011-01-06 |
EP1893340A2 (fr) | 2008-03-05 |
FR2886559A1 (fr) | 2006-12-08 |
FR2886559B1 (fr) | 2008-08-08 |
WO2006131629A2 (fr) | 2006-12-14 |
WO2006131629A3 (fr) | 2007-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2625990A1 (fr) | Dispositif autonome d'atomisation a disque tournant | |
WO2007116177B1 (fr) | Separateur liquide-gaz, notamment pour aspirateur | |
CA2757385C (fr) | Dispositif de nettoyage pour pistolet de pulverisation | |
EP1899021A1 (fr) | Extincteur a brouillard de liquide et son utilisation | |
WO1994016823A1 (fr) | Micro-diffuseur pour brouillard de particules liquides | |
FR2541138A1 (fr) | Systeme a circulation forcee de liquide comportant un appareil a vortex | |
WO2019048761A1 (fr) | Dispositif de generation de gouttelettes a partir d'un liquide comprenant des moyens ameliores de diffusion du brouillard, et son procede de mise en œuvre | |
WO2014020254A1 (fr) | Dispositif de nettoyage pour pistolet de pulverisation | |
CN102145215A (zh) | 一种抛射离心式自动旋转喷洒装置 | |
WO2022090662A1 (fr) | Dispositif de generation d'un jet de fluide diphasique | |
EP1750831A1 (fr) | Dispositif d'injection d'un gaz dans un liquide | |
FR2891474A1 (fr) | Dispositif de brumisation | |
EP3681645B1 (fr) | Dispositif de génération de gouttelettes à partir d'un liquide comprenant des moyens de ventilation améliorés, et son procédé de mise en oeuvre | |
EP2874870A1 (fr) | Procédé et installation de masquage ainsi que bâtiment naval équipé d'au moins une telle installation | |
EP1942241B1 (fr) | Installation pour supprimer les emissions de poussières lors des operations de démolition d'un bâtiment | |
WO2021078094A1 (fr) | Pulvérisateur | |
EP1147819B1 (fr) | Appareil pulvérisateur avec agitateur | |
FR3144127A3 (fr) | Mécanisme d’évacuation à entrée d’air à aiguille et mécanisme d’évacuation à soupape | |
CH522127A (fr) | Turbine à gaz et procédé de mise en action de cette turbine | |
RU87633U1 (ru) | Модуль порошкового пожаротушения | |
FR2694500A1 (fr) | Nébuliseur polyvalent pour le traitement des voies respiratoires. | |
FR3145296A1 (fr) | Tuyère diphasique à jet de brouillard | |
FR2705901A1 (fr) | Diffuseur mixte eau et mousse de protection contre les incendies. | |
FR2704750A1 (fr) | Cabine de sauna individuelle. | |
FR2731626A1 (fr) | Dispositif pour l'extinction d'un debut d'incendie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Dead |
Effective date: 20131015 |