CA2599091C - High alloy iron, use of the material for structural components that are subject to high thermal stress and corresponding structural component - Google Patents

High alloy iron, use of the material for structural components that are subject to high thermal stress and corresponding structural component Download PDF

Info

Publication number
CA2599091C
CA2599091C CA2599091A CA2599091A CA2599091C CA 2599091 C CA2599091 C CA 2599091C CA 2599091 A CA2599091 A CA 2599091A CA 2599091 A CA2599091 A CA 2599091A CA 2599091 C CA2599091 C CA 2599091C
Authority
CA
Canada
Prior art keywords
thermal stress
structural component
high thermal
cast iron
under high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2599091A
Other languages
French (fr)
Other versions
CA2599091A1 (en
Inventor
Horst Keil
Dietmar Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EISENWERK ERLA GmbH
Original Assignee
EISENWERK ERLA GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EISENWERK ERLA GmbH filed Critical EISENWERK ERLA GmbH
Publication of CA2599091A1 publication Critical patent/CA2599091A1/en
Application granted granted Critical
Publication of CA2599091C publication Critical patent/CA2599091C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Supercharger (AREA)
  • Exhaust Silencers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

The invention relates to a high alloy iron that has an austenitic structure and a spherical graphite configuration and comprises the following components in percent by weight: carbon < 2.0 %, silicon 2.0 - 6.0 %, nickel 29 - 36 %, chrome 1.0 - 2.5 %, niobium 0.1 - 1.0 % and molybdenum 0.1 - 2.5 %. The invention also relates to the use of the cast iron material for structural components that are subject to high thermal stress, especially for exhaust manifolds and turbocharger housings of internal combustion engines of the individual or integrated type of construction. The invention finally relates to a structural component that is subject to high thermal stress, especially the exhaust system of an engine consisting of the aforementioned cast iron material.

Description

HIGH ALLOY IRON, USE OF THE MATERIAL FOR STRUCTURAL
COMPONENTS THAT ARE SUBJECT TO HIGH THERMAL STRESS AND
CORRESPONDING STRUCTURAL COMPONENT
The present invention refers to a high-alloy cast iron material with an austenitic structure and a spherical graphite configuration. The structure according to the invention is especially suitable for use in those parts of an engine that are under great thermal stress, particularly the exhaust system of an engine, but is also suitable for other structural components under high thermal stress.
The thermal stresses of exhaust manifolds and turbocharger housings have increased a great deal due to the introduction of new burning processes. The exhaust temperatures of modern auto engines, in particular, currently reach well over 1000 C. Structural components subject to such thermal stresses must have, apart from high-temperature resistance, high scaling resistance, good temperature fluctuation resistance, and a low temperature expansion coefficient.
Therefore, it is known from the state of art that structural components under high thermal stress are made of cast steel. Although the latter satisfies the requirements listed above, it is very expensive and therefore not very suitable for producing such structural components in series.
Furthermore, austenitic cast iron alloys with spherical graphite are known from technical advances under the trade name Ni-Resist. These alloys, described in EN 13835 as EN-GJSA XNi 35 (or according to ASTM 439 as D5), have high thermal resistance, good scaling resistance and very high temperature fluctuation resistance in addition to their good mechanical properties. That is why in the state of art they are used for series production of engine parts under high thermal stress, particularly for exhaust manifolds and/or turbocharger housings of highly compressed or supercharged engines. These alloys are economical and can be easily cast. They already have very high thermal resistance of up to 1050 degrees centigrade, as indicated in EN 13835. However, in thin-walled structural components with wall thicknesses lower than 8 mm, thermal resistance falls to only about 950 C. In order to lower temperatures to this maximum permissible rate, injection and burning are carefully regulated by expensive engine control, which in turn uses up once again more fuel. Therefore, there is a need to develop materials that will have higher resistance under high temperature conditions even if their components have thin walls.
The task of the present invention is to suggest an austenitic cast iron material with very high thermal resistance in spite of having thin-walled structural components.
The task is solved with a cast iron material, an application thereof, and with structural components in accordance with the features of the independent claims.
According to the invention, a high-alloy cast iron material having an austenitic structure and a spherical configuration contains, among other things, the following elements (in % of weight): carbon < 2%, silicon 2.0 - 6.0%, nickel 36%, chromium 1.0 - 2.5%, niobium 0.1 - 1.0%, and molybdenum 0.1 - 2.5% with the balance of iron. Compared to known austenitic alloys containing spherical graphite based on nickel, molybdenum and niobium, in particular, have been added to the material in alloyed form in the concentrations given above. It has been shown that by adding molybdenum together with niobium, one can increase the temperature fluctuation resistance of such alloys, without causing the material to become brittle by the formation of carbide. In addition, the resistance of the material under higher temperatures and the scaling resistance can be improved with an alloy according to the invention. In this case, the alloy according to the invention has a relatively low thermal expansion coefficient, thus reducing the cracking risk that can occur under temperature fluctuation conditions.

2a According to the invention, a cast iron alloy material having an austenitic structure and spherical graphite configuration with a resistance to temperature fluctuation and for engines characterized in that the material expressed in percent of weight contains the following ingredients: carbon < 2.0%, silicon 2.0 -6.0%, nickel 29 - 36%, chromium 1.0 - 2.5%, niobium 0.1 - 1.0% and molybdenum 0.1 - 2.5% with the balance iron.
The alloy's carbon concentration has been limited to a value of 2% to prevent carbide formation. Here, the carbon concentration is adjusted in such a way that in spite of this, the molten mass still has good flowing and pouring properties.
It is known that the alloy's silicon concentration has a deoxidizing effect and improves here the resistance against hot gas corrosion. Nevertheless, the material according to the invention has an advantageously low thermal expansion coefficient.
Chrome improves oxidation resistance under high temperatures. Here, the proportion of chrome has been limited to 2.5%.
A particularly advantageous configuration of the invention provides the cast iron material to have a manganese concentration of 0.5 - 1.5%. The manganese concentration in an alloy influences on the one hand the pouring properties, but on the other hand reduces graphite precipitation as well, so that the manganese concentration in this case has been preferably limited to 1.5%.
In accordance with another advantageous configuration of the invention, the material has a phosphorous concentration lower than 0.1%, since a higher proportion of phosphorous could also lead to the material's brittleness.
Furthermore, it is advantageous for the material to have a copper concentration of less than 0.5%.
An especially preferred configuration of the invention foresees the cast iron material to have a nickel concentration of 34 to 36%. This proportion of nickel has the function of creating an austenitic basic structure.
Another advantageous configuration of the invention provides the material to have preferably a chrome concentration of 1.5 - 2.5% in order to improve both high-temperature resistance and oxidation resistance.
It is particularly advantageous for the cast iron (in accordance with the present invention) to have a higher temperature resistance compared with the conventional, austenitic cast iron alloys that use spherical graphite and nickel as main carriers (D5). Therefore, the cast iron according to the invention is also highly suitable for use in extremely thin-walled materials having wall thicknesses of 3 - 6 mm under very high temperatures.
The material according to the invention is therefore extremely suitable for use in structural components under high thermal stress. The thin-walled structural components made from the cast iron material according to the invention are resistant to about 985 degrees centigrade according to current knowledge.
According to the invention, this high-alloyed cast iron material is therefore used for parts that make up the exhaust system of an engine. The material is especially suitable for exhaust manifolds and turbocharger housings. The material can be used with special advance in parts of the exhaust system of highly compressed and supercharged engines, in which exhaust temperatures of up to 11000c occur.
The material is particularly suitable for use in integral housings (in other words, housings that integrate exhaust manifolds and turbine housings of exhaust turbochargers).
According to the invention, structural components under high thermal stress (especially those of an engine's exhaust system) are composed of a cast iron material having the properties described above. Therefore, the cast iron used in the present invention can replace the materials that are conventionally used for exhausts systems. By and large, the cast iron can be manufactured and processed in accordance with the usual methods. The structural components can be subject to an annealing treatment for homogenizing the structure, which in turn achieves better carbide distribution.

Compared to conventional austenitic cast iron alloys for use in vehicle exhaust systems it was possible to achieve an increase of thermal resistance by about degrees centigrade. The increase in the exhaust or burning temperature achieved as a result of this also allows one to increase displacement-related power and reduce contaminant emissions, thus conserving fuel.
In addition, the cast iron material according to the invention had an 8%
higher temperature fluctuation resistance in the shear-crack test compared to conventional alloys belonging to the D5 class (ASTM 439). In the autobahn permanence test, improvements of up to 30% could be seen with the material according to the invention.
The invention is especially suitable for structural components of a vehicular exhaust system, but not limited to them. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.

Claims (15)

1. A cast iron alloy material having an austenitic structure and spherical graphite configuration with a resistance to temperature fluctuation and for engines characterized in that the material expressed in percent of weight contains the following ingredients:
Carbon < 2.0%
Silicon 2.0 - 6.0%
Nickel 29 - 36%
Chromium 1.0 - 2.5%
Niobium 0.1 - 1.0%
Molybdenum 0.1 - 2.5%
with the balance iron.
2. Cast iron alloy material according to claim 1, characterized in that the material contains 0.5 - 1.5% manganese.
3. Cast iron alloy material according to claim 1 or 2, characterized in that the material contains less than 0.1% phosphorous.
4. Cast iron alloy material according to any one of claims 1 to 3, characterized in that the material contains less than 0.5% copper.
5. Cast iron alloy material according to any one of claims 1 to 4, characterized in that the material contains 34 - 36% nickel.
6. Cast iron alloy material according to any one of claims 1 to 5, characterized in that the material contains 1.5 - 2.5% chromium.
7 7. Use of a cast iron alloy material according to any one of claims 1 to 6 for structural components of engines under high thermal stress.
8. Use according to claim 7, characterized in that the structural component under high thermal stress is part of the exhaust system of an engine.
9. Use according to claim 8, characterized in that the structural component under high thermal stress is at least one of an exhaust manifold and a turbocharger housing.
10. Use according to any one of claims 1 to 9, characterized in that the structural component under high thermal stress is an integral housing.
11. Structural component under high thermal stress, characterized in that the structural component is made of a cast iron alloy material in accordance with any one of claims 1 to 7.
12. Structural component under high thermal stress according to claim 11, wherein the structural component is an exhaust system of an engine.
13. Structural component under high thermal stress according to claim 12, characterized in that the exhaust system is an exhaust manifold.
14. Structural component under high thermal stress according to claim 11 or 12, characterized in that the structural component is a turbine housing of an exhaust turbocharger.
15. Structural component under high thermal stress according to any one of claims 11 to 15, characterized in that the structural component is an integral housing.
CA2599091A 2005-02-12 2006-02-07 High alloy iron, use of the material for structural components that are subject to high thermal stress and corresponding structural component Expired - Fee Related CA2599091C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005006778.6 2005-02-12
DE102005006778A DE102005006778B4 (en) 2005-02-12 2005-02-12 High-alloyed cast iron material and use of the material for thermally highly stressed components
PCT/EP2006/050714 WO2006084838A1 (en) 2005-02-12 2006-02-07 High alloy iron, use of the material for structural components that are subject to high thermal stress and corresponding structural component

Publications (2)

Publication Number Publication Date
CA2599091A1 CA2599091A1 (en) 2006-08-17
CA2599091C true CA2599091C (en) 2014-05-06

Family

ID=36283724

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2599091A Expired - Fee Related CA2599091C (en) 2005-02-12 2006-02-07 High alloy iron, use of the material for structural components that are subject to high thermal stress and corresponding structural component

Country Status (7)

Country Link
US (1) US20080267808A1 (en)
EP (1) EP1846583B1 (en)
CN (1) CN100532610C (en)
AT (1) ATE419406T1 (en)
CA (1) CA2599091C (en)
DE (2) DE102005006778B4 (en)
WO (1) WO2006084838A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454764B2 (en) 2008-02-25 2013-06-04 Wescast Industries, Inc. Ni-25 heat-resistant nodular graphite cast iron for use in exhaust systems
US20110176914A1 (en) * 2008-09-25 2011-07-21 Borgwarner Inc. Turbocharger and blade bearing ring therefor
US8372335B2 (en) * 2010-01-14 2013-02-12 Honeywell International Inc. Austenitic ductile cast iron
CN102560269A (en) * 2010-12-09 2012-07-11 佳木斯畅通汽车零部件有限公司 Exhaust manifold of engine with cast heat-resistant steel
CN103827463B (en) * 2011-10-20 2018-05-11 博格华纳公司 Turbocharger and the component for the turbocharger
CN104846265B (en) * 2015-04-27 2017-10-17 沈阳铸锻工业有限公司 A kind of ultralow temperature austenite abrasion-proof magnesium iron material and preparation method thereof
CN105604616A (en) * 2015-12-24 2016-05-25 宁波天阁汽车零部件有限公司 High temperature resisting turbocharger shell
CN105537579A (en) * 2015-12-24 2016-05-04 宁波天阁汽车零部件有限公司 Turbocharger high-temperature-resistant turbine shell body and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1410732A (en) * 1973-05-04 1975-10-22 Int Nickel Ltd Low expansion alloys
JPS5985842A (en) * 1982-11-10 1984-05-17 Nissan Motor Co Ltd Heat-resistant spheroidal graphite cast iron
JP3654899B2 (en) * 1992-12-15 2005-06-02 株式会社東芝 Manufacturing method of high strength low expansion cast iron
DE10011154A1 (en) * 2000-03-07 2001-09-13 Mahle Gmbh Cylinder head has rotary valve made of austenitic cast iron, and bore housing rotary valve is at least partially coated in region of running surface for rotary valve
FR2836155B1 (en) * 2002-02-15 2005-01-07 Imphy Ugine Precision SOFT MAGNETIC ALLOY FOR WATCHMAKING

Also Published As

Publication number Publication date
CN101120112A (en) 2008-02-06
US20080267808A1 (en) 2008-10-30
CA2599091A1 (en) 2006-08-17
ATE419406T1 (en) 2009-01-15
EP1846583A1 (en) 2007-10-24
WO2006084838A1 (en) 2006-08-17
EP1846583B1 (en) 2008-12-31
CN100532610C (en) 2009-08-26
DE102005006778A1 (en) 2006-08-17
DE102005006778B4 (en) 2013-10-02
DE502006002489D1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
CA2599091C (en) High alloy iron, use of the material for structural components that are subject to high thermal stress and corresponding structural component
KR100856659B1 (en) Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
JP3936849B2 (en) Ferrite-based spheroidal graphite cast iron and exhaust system parts using the same
EP0668367A1 (en) Heat-resistant, austenitic cast steel and exhaust equipment member made thereof
JPH04218645A (en) Ferritic heat resistant cast steel and exhaust system parts formed therefrom
KR101745927B1 (en) Heat-resistant, ferritic cast steel having excellent room-temperature toughness, and exhaust member made thereof
KR101551961B1 (en) Ti-Al alloys with superior creep resistance
JPH06256908A (en) Heat resistant cast steel and exhaust system parts using the same
KR20190035746A (en) Ferritic steel for turbochargers
JPS60138050A (en) Corrosion and wear resistant cast iron
US11685972B2 (en) Ni-based alloy and valve
JPS6233744A (en) Heat-resistant cast steel
JP2542778B2 (en) Exhaust system parts
JPH04193932A (en) Heat resistant alloy for engine valve
JPH0524977B2 (en)
JP3778713B2 (en) Heat-resistant cast iron material and cylinder head using the cast iron material
JP3142224B2 (en) Ferritic heat-resistant cast steel and diesel engine pre-combustion chamber member using the same
JPH06322473A (en) Ferro alloy for casting and its manufacture
JPH0548290B2 (en)
KR20070028809A (en) Composition of ferritic ductile cast iron for engine&#39;s exhaust manifold
JPH06322474A (en) Ferro alloy for casting and its manufacture
JPH0524225B2 (en)
JPH0559978B2 (en)
JPH05287457A (en) Ferritic heat resisting cast steel excellent in ductility at room temperature and oxidation resistance and exhaust system parts made thereof
JPH0559980B2 (en)

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20190207