JPH0548290B2 - - Google Patents

Info

Publication number
JPH0548290B2
JPH0548290B2 JP17039385A JP17039385A JPH0548290B2 JP H0548290 B2 JPH0548290 B2 JP H0548290B2 JP 17039385 A JP17039385 A JP 17039385A JP 17039385 A JP17039385 A JP 17039385A JP H0548290 B2 JPH0548290 B2 JP H0548290B2
Authority
JP
Japan
Prior art keywords
heat
resistant cast
cast steel
resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17039385A
Other languages
Japanese (ja)
Other versions
JPS6230857A (en
Inventor
Juji Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17039385A priority Critical patent/JPS6230857A/en
Publication of JPS6230857A publication Critical patent/JPS6230857A/en
Publication of JPH0548290B2 publication Critical patent/JPH0548290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐熱鋳鋼に関し、詳しくは、優れた耐
熱性(高温強度)、耐熱亀裂性、耐酸化性等とい
つた性能・耐久性特性を有するとともに、優れた
鋳造性と機械加工性を有しているため生産性が良
好であり、しかも、安価に製造することができる
ことから、車両用エンジンの排気系部品等に好適
に適用することのできる耐熱鋳鋼にかかる。 〔従来の技術〕 近年、ガソリンエンジンもしくはデイーゼルエ
ンジン等の車両用エンジン、特に自動車用エンジ
ンにおいては、高出力化、低燃費化に対する改善
要求の高まりに伴い、燃焼効率の改善のための研
究開発が積極的に実施されている。 その結果、このような要求に応える自動車用エ
ンジンにおいては、従来の自動車用エンジンに比
較して、排気ガス温度が著しく高温となる傾向に
ある。 とりわけ、自動車用エンジンのエキゾーストマ
ニホルド、ターボチヤージヤ用タービンハウジン
グ、デイーゼルエンジン用予燃焼室等の排気系部
品においては、使用条件が特に高温苛酷となるこ
とから、従来においては高Si鋳鉄、ニレジスト鋳
鉄、Al鋳鉄等の耐熱鋳鉄や、特例的にはフエラ
イト系もしくはオーステナイト系ステンレス鋳鋼
等の高価な高合金耐熱(ステンレス)鋳鋼が採用
されていた。 〔発明が解決しようとする問題点〕 上述のような従来の技術の現状に鑑み、本発明
が解決しようとする問題点は、従来の自動車用エ
ンジンの排気系部品用材料として使用されてい
る、高Si鋳鉄、ニレジスト鋳鉄、Al鋳鉄等の耐
熱鋳鉄においては、その優れた鋳造性と機械加工
性等といつた生産性特性は良好であるものの、耐
熱性(高温強度)、耐熱亀裂性、耐酸化性等とい
つた性能・耐久性特性が劣ることから、800℃以
上の高温における耐熱性に対する要求の厳しい部
材には適用することができず、また、ステンレス
鋳鋼等の高合金耐熱鋳鋼においては、800℃以上
における耐熱性(高温強度)、耐熱亀裂性、耐酸
化性等といつた性能・耐久性特性には優れている
ものの、鋳造性が悪いため鋳造成形時に“ひけ
巣”、“油廻り不良”等の鋳造不良を発生し易いこ
と、機械加工性が悪いこと等からその生産性が劣
り、耐熱部材としての優れた鋳造性、機械加工
性、低価格性等といつた生産性特性、及び、優れ
た耐熱性(高温強度)、耐熱亀裂性、耐酸化性等
といつた性能・耐久性特性とを、バランス良く兼
ね備えた耐熱鋳造材料の開発が強く望まれていた
ということである。 従つて、本発明の技術的課題とするところは、
耐熱鋳鋼における組成的な調整と鋳造後の焼なま
し処理の実施によつて、従来の耐熱鋳鉄に匹敵す
る鋳造性、機械加工性、低価格性等といつた生産
性特性と、従来の高合金耐熱鋳鋼に匹敵する耐熱
性(高温強度)、耐熱亀裂性、耐酸化性等といつ
た性能・耐久性特性とを、バランス良く兼ね備え
た耐熱鋳鋼とすることにある。 〔問題点を解決するための手段〕 このような従来の技術における問題点に鑑み、
本発明における従来の技術の問題点を解決するた
めの手段は、重量比率で、C;0.5〜2.5%、Si;
1.5%〜4.5%、Mn;0.7%以下、P;0.05%以下、
S;0.1%以下、Cr;5.0〜14.0%、Ti;0.15〜4.6
%、残部実質的にFeからなる組成を有し、鋳造
後に焼なまし処理を施したことを特徴とする耐熱
鋳鋼としたことにある。 なお、本発明の耐熱鋳鋼において鋳造後の熱処
理は、900〜950℃×0.5時間以上のオーステナイ
ト化処理後、680〜750℃まで炉冷し、680〜750℃
×0.5時間以上保持して冷却するという通常の焼
なまし処理で充分である。 〔作用〕 以下、本発明の作用について説明する。 本発明において、従来の技術の問題点を解決す
るための手段を上述のような構成とすることによ
つて、本発明の耐熱鋳鋼を組成的には、特にTi
添加と他合金元素とのバランスにより耐熱特性を
改善して、従来の耐熱鋳鉄に匹敵する鋳造性、機
械加工性、低価格性等といつた生産性特性を保有
させた上で、従来のステンレス鋳鋼等の高合金耐
熱鋳鋼に近い耐熱性(高温強度)、耐熱亀裂性、
耐酸化性等といつた性能・耐久性特性を付与し得
る範囲とし、鋳造後の焼なまし処理により基地組
織をフエライト組織化していることから、従来の
耐熱鋳鉄に匹敵する鋳造性、機械加工性、低価格
性等といつた生産性特性と、従来の高合金耐熱鋳
鋼に匹敵する耐熱性(高温強度)、耐熱亀裂性、
耐酸化性等といつた性能・耐久性特性とを、バラ
ンス良く兼ね備えた耐熱鋳鋼とすることができる
のである。 以下、本発明の耐熱鋳鋼に添加する各合金元素
の添加量の範囲限定理由について説明する。 なお、以下の説明において各合金元素の添加量
は全て重量%にて表示している。 まず、Cは本発明の耐熱鋳鋼において強度特性
及び鋳造性を向上させることから有効であるが、
0.5%未満ではそれらの特性の改善効果が充分で
なく、一方、2.5%を越えて添加すると炭素の黒
鉛化を促進して耐熱鋳鋼の強度特性を低下させる
ことから0.5〜2.5%とした。 また、Siは本発明の耐熱鋳鋼において脱酸剤と
して有効であるばかりでなく、鋳造性及び耐酸化
性を改善させることから有効であるが、1.5%未
満ではそれらの特性の改善効果が充分でなく、
4.5%を越えて添加すると、 Cとのバランス(炭素当量)により、1次炭
化物を粗大化させて耐熱鋳鋼の機械加工性を悪
化させる。 フエライト基地組織中のSi含有量が過多とな
つて、耐熱鋳鋼の靱性を低下させて生産性を悪
化させる。 等の理由から1.5〜4.5%とした。 また、Mnはパーライト組織の形成元素である
ことから、本発明材のように基地組織をフエライ
ト組織とした耐熱鋳鋼にはあまり好ましない合金
元素であるが、Siと同様に脱酸剤として有効であ
り、また、鋳造時の“湯流れ性”を向上させて生
産性を改善させる合金元素として有効であること
から0.7%以下の範囲で含有させるのが良い。 また、Pは0.05%を越えて添加すると基地組織
のパーライト組織化を促進させたり、ステダイト
の晶出を促進させることから0.05%以下とした。 また、Sは通常においては特に必須の合金元素
ではないが、機械加工性の要求が厳しい部品を製
造する場合においては、S量とMn量の添加量を
多くしてMnSを晶出させ、機械加工性を改善さ
せることができることから0.1%以下とした。 また、CrはSiと同様に耐酸化性を改善させる
ことから有効であるが、5.0%未満ではその耐酸
化性の改善効果が充分でなく、14.0%を越えて添
加すると高硬度のCr炭化物の析出量が多くなつ
て、機械加工性を著しく悪化させることから5.0
〜14.0%とした。 また、Tiは本発明材において特に重要な合金
元素であり、耐酸化性及び耐熱性(高温強度)を
改善させるために有効であるが、0.15%未満では
その耐熱性(高温強度)の改善効果が充分でな
く、4.6%を越えて添加するとTiCの晶出により
耐熱鋳鋼の機械加工性を著しく悪化させることか
ら0.15〜4.6%とした。 〔実施例〕 以下、添付図面に基づいて、本発明の1実施例
を説明する。 本発明材の耐酸化性と耐熱亀裂性を評価するた
めに、第1表に示すような3種類の本発明材〜
及び4種類の比較材〜を鋳造成形により製
造した。 なお、鋳造に当たつては20Kg用高周波溶解炉を
用いて大気溶解し、Fe−Si(75重量%)を0.3%添
加することにより脱酸処理した後、1650℃以上で
出湯して1550℃以上にて注湯した。 なお、鋳造成形のための鋳型としてはJIS規格
A号のYブロツク鋳造用の鋳型を使用した。 そして、上述により鋳造成形された鋳造粗形材
状態の各供試材に対して、通常の焼なまし処理を
実施した。 このようにして製造された本発明にかかる耐熱
鋳鋼の金属組織の顕微鏡写真を第3図に示す。 なお、第3図aは本発明材の金属組織を倍率
100倍の低倍率にて観察したものであり、第3図
bは同一金属組織を400倍の高倍率にて観察した
ものである。 第3図aから明らかなように、本発明材におい
ては白色の基地フエライト組織中に1次炭化物が
デンドライト状(樹枝状)に晶出していることが
観察され、また、第3図bから明らかなように、
白色の基地フエライト組織中に粒状の2次炭化物
が微細に分散して析出していることが観察され
る。ここで、デンドライト状の1次炭化物の生成
は高温強度の確保が推察され、また、耐酸化性を
改善するCr炭化物やTi炭化物等の2次炭化物の
微細な粒状での分散は、均一な耐酸化性が確保さ
れていることが推察される。
[Industrial Application Field] The present invention relates to heat-resistant cast steel, and more specifically, it has performance and durability characteristics such as excellent heat resistance (high temperature strength), heat cracking resistance, and oxidation resistance, as well as excellent castability. This heat-resistant cast steel has good machinability, has good productivity, and can be manufactured at low cost, so it can be suitably applied to exhaust system parts of vehicle engines. [Prior Art] In recent years, research and development efforts have been made to improve combustion efficiency in vehicle engines such as gasoline engines and diesel engines, especially in automobile engines, as demands for higher output and lower fuel consumption have increased. It is being actively implemented. As a result, in automobile engines that meet such demands, the exhaust gas temperature tends to be significantly higher than that of conventional automobile engines. In particular, exhaust system parts such as exhaust manifolds for automobile engines, turbine housings for turbochargers, and pre-combustion chambers for diesel engines are used under particularly high temperature and harsh conditions. Heat-resistant cast iron such as cast iron, and in special cases, expensive high-alloy heat-resistant (stainless) cast steel such as ferritic or austenitic stainless cast steel were used. [Problems to be Solved by the Invention] In view of the current state of the conventional technology as described above, the problems to be solved by the present invention are as follows: Heat-resistant cast irons such as high-Si cast iron, Ni-resist cast iron, and Al cast iron have good productivity characteristics such as excellent castability and machinability, but they also have good productivity characteristics such as high-temperature strength, heat cracking resistance, and acid resistance. Due to its inferior performance and durability characteristics such as oxidation resistance, it cannot be applied to parts with strict requirements for heat resistance at high temperatures of 800℃ or higher, and it cannot be used in high-alloy heat-resistant cast steels such as stainless steel cast steel. Although it has excellent performance and durability characteristics such as heat resistance (high-temperature strength), heat cracking resistance, and oxidation resistance at temperatures above 800℃, it has poor castability and may cause "shrinkage cavities" and "oil" during casting. Productivity is poor due to easy occurrence of casting defects such as "defects in rotation" and poor machinability, but productivity characteristics such as excellent castability, machinability, and low cost as a heat-resistant component There was a strong desire to develop a heat-resistant casting material that has a well-balanced combination of performance and durability characteristics such as excellent heat resistance (high-temperature strength), heat cracking resistance, and oxidation resistance. . Therefore, the technical problem of the present invention is to
By adjusting the composition of heat-resistant cast steel and performing an annealing treatment after casting, it has achieved productivity characteristics such as castability, machinability, and low cost comparable to conventional heat-resistant cast iron, as well as productivity characteristics comparable to conventional heat-resistant cast iron. The objective is to create a heat-resistant cast steel that has a good balance of performance and durability characteristics such as heat resistance (high-temperature strength), heat cracking resistance, and oxidation resistance comparable to alloy heat-resistant cast steel. [Means for solving the problems] In view of the problems in the conventional technology,
The means for solving the problems of the conventional technology in the present invention is as follows: C; 0.5 to 2.5%; Si;
1.5% to 4.5%, Mn; 0.7% or less, P; 0.05% or less,
S: 0.1% or less, Cr: 5.0-14.0%, Ti: 0.15-4.6
%, the balance essentially consisting of Fe, and is characterized by being annealed after casting. In addition, the heat treatment after casting of the heat-resistant cast steel of the present invention includes austenitizing treatment at 900 to 950°C for 0.5 hours or more, followed by furnace cooling to 680 to 750°C, and then heating to 680 to 750°C.
A normal annealing treatment of holding for 0.5 hours or more and cooling is sufficient. [Operation] The operation of the present invention will be explained below. In the present invention, the composition of the heat-resistant cast steel of the present invention, especially Ti
By improving the heat resistance properties through the balance of additives and other alloying elements, it has productivity characteristics such as castability, machinability, and low cost that are comparable to conventional heat-resistant cast iron. Heat resistance (high temperature strength) similar to high alloy heat resistant cast steel such as cast steel, heat crack resistance,
This range provides performance and durability characteristics such as oxidation resistance, and because the base structure is made into a ferrite structure through annealing treatment after casting, it has castability and machinability comparable to conventional heat-resistant cast iron. It has productivity characteristics such as flexibility and low cost, as well as heat resistance (high temperature strength), heat cracking resistance, and heat resistance comparable to conventional high-alloy heat-resistant cast steel.
This makes it possible to create heat-resistant cast steel that has a well-balanced combination of performance and durability characteristics such as oxidation resistance. The reason for limiting the range of the amount of each alloying element added to the heat-resistant cast steel of the present invention will be explained below. In the following description, the amount of each alloying element added is expressed in percent by weight. First, C is effective in improving the strength characteristics and castability of the heat-resistant cast steel of the present invention, but
If it is less than 0.5%, the effect of improving these properties will not be sufficient, while if it is added in excess of 2.5%, it will promote graphitization of carbon and reduce the strength properties of heat-resistant cast steel, so it was set at 0.5 to 2.5%. In addition, Si is effective not only as a deoxidizing agent in the heat-resistant cast steel of the present invention, but also because it improves castability and oxidation resistance, but if it is less than 1.5%, the effect of improving these properties is insufficient. Without,
If it is added in excess of 4.5%, the balance with C (carbon equivalent) causes primary carbides to become coarser and deteriorates the machinability of heat-resistant cast steel. Excessive Si content in the ferrite base structure lowers the toughness of heat-resistant cast steel and deteriorates productivity. For these reasons, it was set at 1.5% to 4.5%. In addition, since Mn is a forming element of pearlite structure, it is an alloying element that is not preferred for heat-resistant cast steels with ferrite matrix structure as in the present invention, but it is effective as a deoxidizing agent like Si. In addition, since it is effective as an alloying element that improves "flowability" during casting and improves productivity, it is preferable to contain it in a range of 0.7% or less. Further, P was set at 0.05% or less since adding more than 0.05% would promote pearlite organization of the base structure and promote crystallization of steadite. In addition, S is usually not a particularly essential alloying element, but when manufacturing parts with strict requirements for machinability, increasing the amount of S and Mn added to crystallize MnS is necessary for machining. It was set at 0.1% or less because it can improve workability. In addition, like Si, Cr is effective because it improves oxidation resistance, but if it is less than 5.0%, the effect of improving oxidation resistance is not sufficient, and if it is added in excess of 14.0%, it will cause high hardness Cr carbide. 5.0 because the amount of precipitation increases and machinability deteriorates significantly.
~14.0%. Furthermore, Ti is a particularly important alloying element in the material of the present invention, and is effective for improving oxidation resistance and heat resistance (high temperature strength), but if it is less than 0.15%, it will not be effective in improving the heat resistance (high temperature strength). was not sufficient, and if added in excess of 4.6%, the machinability of heat-resistant cast steel would be significantly deteriorated due to crystallization of TiC, so it was set at 0.15 to 4.6%. [Embodiment] Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. In order to evaluate the oxidation resistance and heat cracking resistance of the present invention materials, three types of the present invention materials as shown in Table 1 ~
and four types of comparative materials were manufactured by casting. For casting, melting is performed in the atmosphere using a 20Kg high-frequency melting furnace, deoxidized by adding 0.3% Fe-Si (75% by weight), and then tapped at 1650℃ or higher and heated to 1550℃. The hot water was poured as described above. As the mold for casting, a JIS standard No. A Y block casting mold was used. Then, a normal annealing treatment was performed on each test material in the state of a cast rough shape that was cast as described above. FIG. 3 shows a micrograph of the metal structure of the heat-resistant cast steel according to the present invention manufactured in this manner. In addition, Fig. 3a shows the metal structure of the material of the present invention at a magnification.
This was observed at a low magnification of 100 times, and Fig. 3b shows the same metal structure observed at a high magnification of 400 times. As is clear from Figure 3a, primary carbides are observed to be crystallized in the white base ferrite structure in the form of dendrites in the material of the present invention, and it is also clear from Figure 3b. Like,
It is observed that granular secondary carbides are finely dispersed and precipitated in the white base ferrite structure. Here, the formation of dendrite-like primary carbides is presumed to ensure high-temperature strength, and the dispersion of secondary carbides such as Cr carbide and Ti carbide in fine particles, which improves oxidation resistance, provides uniform acid resistance. It is inferred that the chemical properties are ensured.

〔発明の効果〕〔Effect of the invention〕

以上により明らかなように、本発明にかかる耐
熱鋳鋼によれば、耐熱鋳鋼における組成的な調整
と鋳造後の焼なまし処理の実施によつて、従来の
耐熱鋳鉄に匹敵する鋳造性、機械加工性、低価格
性等といつた生産性特性と、従来の高合金耐熱鋳
鋼に匹敵する耐熱性(高温強度)、耐熱亀裂性、
耐酸化性等といつた性能・耐久性特性とを、バラ
ンス良く兼ね備えた耐熱鋳鋼とすることができる
利点がある。
As is clear from the above, according to the heat-resistant cast steel of the present invention, the compositional adjustment of the heat-resistant cast steel and the implementation of annealing treatment after casting provide castability and machinability comparable to that of conventional heat-resistant cast iron. It has productivity characteristics such as flexibility and low cost, as well as heat resistance (high temperature strength), heat cracking resistance, and heat resistance comparable to conventional high-alloy heat-resistant cast steel.
It has the advantage of being a heat-resistant cast steel that has a well-balanced combination of performance and durability characteristics such as oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明材と比較材の900℃における
耐酸化性を比較した結果を示す図、第2図は、本
発明材と比較材の耐熱亀裂性を比較した結果を示
す図、第3図は、本発明材の金属組織の顕微鏡写
真を示す図である。
Figure 1 shows the results of comparing the oxidation resistance at 900°C between the inventive material and the comparative material. Figure 2 shows the results of comparing the heat cracking resistance of the inventive material and the comparative material. FIG. 3 is a diagram showing a microscopic photograph of the metal structure of the material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比率で、C;0.5〜2.5%、Si;1.5%〜4.5
%、Mn;0.7%以下、P;0.05%以下、S;0.1%
以下、Cr;5.0〜14.0%、Ti;0.15〜4.6%、残部
実質的にFeからなる組成を有し、鋳造後に焼な
まし処理を施したことを特徴とする耐熱鋳鋼。
1 Weight ratio: C: 0.5-2.5%, Si: 1.5%-4.5
%, Mn; 0.7% or less, P; 0.05% or less, S; 0.1%
Hereinafter, a heat-resistant cast steel having a composition consisting of Cr: 5.0 to 14.0%, Ti: 0.15 to 4.6%, and the remainder substantially Fe, and characterized by being annealed after casting.
JP17039385A 1985-08-01 1985-08-01 Heat resistant cast steel Granted JPS6230857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17039385A JPS6230857A (en) 1985-08-01 1985-08-01 Heat resistant cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17039385A JPS6230857A (en) 1985-08-01 1985-08-01 Heat resistant cast steel

Publications (2)

Publication Number Publication Date
JPS6230857A JPS6230857A (en) 1987-02-09
JPH0548290B2 true JPH0548290B2 (en) 1993-07-21

Family

ID=15904094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17039385A Granted JPS6230857A (en) 1985-08-01 1985-08-01 Heat resistant cast steel

Country Status (1)

Country Link
JP (1) JPS6230857A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282783B (en) * 2016-10-18 2018-05-15 江苏上淮动力有限公司 Inlet and exhaust valve seat ring and the inlet and exhaust valve combination of engine

Also Published As

Publication number Publication date
JPS6230857A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
JPH0826438B2 (en) Ferritic heat-resistant cast steel with excellent thermal fatigue life
JP3821310B2 (en) Heat resistant spheroidal graphite cast iron
KR20030055751A (en) Cast iron with improved oxidation resistance at high temperature
JPH0548290B2 (en)
JPS6233744A (en) Heat-resistant cast steel
JP3700977B2 (en) Austenitic heat-resistant cast steel with low cost, good castability, high-temperature strength and oxidation resistance, and exhaust system parts made of it
JP3605874B2 (en) Heat-resistant cast steel
JPH0524977B2 (en)
JPH0359967B2 (en)
JPS6324041A (en) Heat resistant spheroidal graphite cast iron
JPH06256908A (en) Heat resistant cast steel and exhaust system parts using the same
JPS6217154A (en) Heat resisting cast steel
JPH0559980B2 (en)
JPS6210242A (en) Heat-resistant cast steel
JP2542778B2 (en) Exhaust system parts
JPH0533105A (en) Cast ferritic heat resisting steel
JPH01159355A (en) Heat resistant cast steel
JPH0559978B2 (en)
JPH0524225B2 (en)
JPH04325658A (en) Heat resistant cast steel
JPS6263652A (en) Heat resistant cast steel
JPH07278761A (en) Heat resistant cast steel
JPS6233745A (en) Heat-resistant cast steel
JPH0559979B2 (en)
JPS62177153A (en) Heat resistant cast steel