JP3821310B2 - Heat resistant spheroidal graphite cast iron - Google Patents

Heat resistant spheroidal graphite cast iron Download PDF

Info

Publication number
JP3821310B2
JP3821310B2 JP24648995A JP24648995A JP3821310B2 JP 3821310 B2 JP3821310 B2 JP 3821310B2 JP 24648995 A JP24648995 A JP 24648995A JP 24648995 A JP24648995 A JP 24648995A JP 3821310 B2 JP3821310 B2 JP 3821310B2
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
specimen
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24648995A
Other languages
Japanese (ja)
Other versions
JPH0987796A (en
Inventor
誠 今泉
耕一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24648995A priority Critical patent/JP3821310B2/en
Publication of JPH0987796A publication Critical patent/JPH0987796A/en
Application granted granted Critical
Publication of JP3821310B2 publication Critical patent/JP3821310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は繰り返し高温にさらされる使用条件で、耐酸化性、耐熱亀裂性に優れた耐熱球状黒鉛鋳鉄の改良に関するものである。本発明は例えば自動車用エンジンの排気系部品であるターボチャージャーハウジング、エキゾーストマニホルドなどに利用することができる。
【0002】
【従来の技術】
例えば、自動車用エンジンの排気系部品としてターボチャージャーハウジング、エキゾーストマニホルドがある。これらの部品は排気ガスにより繰り返し高温にさらされるため高い耐酸化性、耐熱亀裂性が要求されている。
そこで従来のターボチャージャーハウジングやエキゾーストマニホルドにはSiを4%前後に増量して耐酸化性を改善した高Si球状黒鉛鋳鉄(例えば特公昭60−53736号公報、特公昭60−17819号公報等)が主に使用されている。
【0003】
ところで近年のエンジンの高性能化および各国の環境規制に伴い、現状より更に排気ガス温度が上昇し、そのため排気系部品に一層の耐酸化性、耐熱亀裂性が要求され始めている。これらの要求に対応するためにNiを20〜35%添加したオーステナイト球状黒鉛鋳鉄、あるいはCrを18%以上添加したフェライト系またはCrを18%以上、Niを8%以上添加したオーステナイト系のステンレス鋳鋼やステンレス鋼管によって製作されたターボチャージャーハウジング、エキゾーストマニホルドが増加している。
【0004】
【発明が解決しようとする課題】
従来の高Si球状黒鉛鋳鉄は製造が容易で、安価に得ることが可能であるが、耐酸化性、耐熱亀裂性に限界があり、排気ガスの高温化に対応することが出来ない。また、より高温の条件に対応が可能なオーステナイト球状黒鉛鋳鉄、ステンレス鋳鋼あるいはステンレス鋼管等の材質はNi、Crなどの金属を大量に添加するため高価であり、鋳造や溶接に関して難易度の高い製造技術を必要とする。さらに材質は難削材となり加工に関しても高度の技術を要し、コストアップの要因となる。
本発明は上記した実情に鑑みなされたものであり、その目的は繰り返し高温にさらされる条件下で耐酸化性、耐熱亀裂性に優れたターボチャージャーハウジングやエキゾーストマニホルドを安価に得ることができる、耐熱球状黒鉛鋳鉄を提供することにある。
【0005】
【課題を解決するための手段】
本発明に係わる耐熱球状黒鉛鋳鉄は重量比で、C2.7〜3.2%、Si4.4〜5.0%、Mn0.6%以下、Cr0.5〜1.0%、Ni0.1〜1.0%、Mo1.0%以下、残部実質的にFeよりなり、Mg、Ca、Ce等の黒鉛球状化剤を、処理終了後に0.1%以下となるように計量添加して黒鉛球状化処理を行なったものである。
【0006】
また本発明においては、図1に示す熱処理の温度条件に基づいて熱処理を行うことにより、基地組織をフェライト相主体にしている。すなわち、図1において、製品を930℃に保持することにより、基地組織中のパーライト相を形成するセメンタイトを分解してオーステナイト化し、熱処理炉内で徐冷して720℃で保持することによりフェライト相の生成を促す。この熱処理により基地組織をフェライト相を主体とすることが可能となる。
基地組織をフェライト相主体とする効果として、耐熱亀裂性、高温での寸法安定性、被削性に有利となる点が挙げられる。
【0007】
この構成とすることにより、本発明の耐熱球状黒鉛鋳鉄は、従来の高Si球状黒鉛鋳鉄よりも優れた耐酸化性、耐熱亀裂性を示し、従来の高Si球状黒鉛鋳鉄熱と同等の鋳造性、被削性を確保できるため、極めて実用的価値大である。
以下、本発明による耐熱球状黒鉛鋳鉄の成分範囲(重量%)の限定理由について説明する。
【0008】
C(炭素):2.7〜3.2%
CはSiと共に鋳鉄において重要な成分であり、一般的な球状黒鉛鋳鉄ではC3.5%、Si2.5%が標準的な組成である。
本発明では後述するようにSi含有量を高く設定するため、以下に従ってC含有量を決定した。即ち、C含有量は炭素当量CE=C%+0.31Si%=4.3〜4.5を満足するため、2.7〜3.2%を目標とする。その理由として、CE値が4.3未満では亜共晶組成となり、ピンホール欠陥が発生し易く、またCE値が4.5を越えると過共晶組成になり過ぎ、カーボンドロス(黒鉛の偏析)が発生し易くなる。そのため、2.7〜3.2%にC含有量の範囲を設定する。
【0009】
Si(けい素):4.4〜5.0%
SiはCと共に鋳鉄において重要な成分であり、Cの黒鉛化、基地のフェライト化に効果がある。一般的な球状黒鉛鋳鉄ではC3.5%、Si2.5%が標準的な組成である。また高いSi球状黒鉛鋳鉄では耐酸化性を向上する目的で4.0%前後添加される。
本発明では従来の高Si球状黒鉛鋳鉄より、更に耐酸化性を向上させる目的でSi含有量の下限を4.4%とする。また、Si含有量が過多であると材質が脆くなる弊害が発生するため上限を5.0%とする。
【0010】
Mn(マンガン):0.6%以下
Mnは材料に不可避的に含まれるSをMnSの形で固定化して影響を除外するため、球状黒鉛鋳鉄の製造に必要不可欠な元素であるが、同時に基地のパーライト化を促進して耐熱亀裂性を低下させるため、その上限を0.6%とする。さらに好ましくは0.4%以下の成分範囲とする。
【0011】
Cr(クロム):0.5〜1.0%
Crは一般的な球状黒鉛鋳鉄では添加を行なわないが、例えば高温使用を目的として耐酸化性および高温強度向上のため使用される場合がある。またステンレス鋳鋼、ステンレス鋼管にはフェライト系、オーステナイト系共に18%以上添加されるが、炭化物の発生で鋳造性や被削性を低下させる要因となる。
本発明では耐酸化性の向上およびフェライト基地の強化による耐熱亀裂性向上を目的とし、0.5%以上添加する。但しその添加量が多くなり過ぎると、炭化物の増加などにより硬度が高くなって被削性を損なう弊害が発生するため上限を1.0%とする。
【0012】
Ni(ニッケル):0.1〜1.0%
Niの効果としては基地のオーステナイト化、高温における引張強さ、耐力の強化が挙げられ、例えばニレジスト鋳鉄の製造に20〜35%、オーステナイト系ステンレス鋳鋼に10〜20%程度の割合で添加されるが、高価な金属であるため、これらの材料のコストアップの要因となっている。
本発明では高温における引張強さ、耐力の強化により耐熱亀裂性を向上する目的で0.1%以上添加する。但しその添加量が多くなり過ぎると、基地のパーライト化傾向が強くなるため上限を1.0%とする。また添加が少量であるため、コストアップ要因とはならない。
【0013】
Mo(モリブデン):1.0%以下
MoはNiと同様に高温における引張強さ、耐力を強化して耐熱亀裂性を向上する目的で添加することができる。但しその添加量が多くなり過ぎると、炭化物の増加などにより、硬度が高くなって被削性を損なう弊害が発生するため上限を1.0%とする。
【0014】
球状化処理剤:0.1%以下
球状化処理剤としては、Mg(マグネシウム)、Ca(カルシウム)、Ce(セリウム)等を用いることができるが、例えばMgの場合、含有量が多すぎると炭化物の発生やドロス(酸化物の巻き込み)欠陥の発生が見られるため、黒鉛球状化処理後の含有量が0.1%以下となるように、歩留まりを計算して用いることが望ましい。
【0015】
P(リン):0.1%以下
Pが多いとFeとPの化合物が析出して機械的性質を低下させるため、0.1%以下とするのが望ましい。
【0016】
S(イオウ):0.04%以下
球状黒鉛鋳鉄においてSが多いと黒鉛の球状化を著しく阻害するため、0.04%以下とするのが望ましい。
【0017】
【発明の実施の形態】
以下、本発明の耐熱球状黒鉛鋳鉄の実施の形態について、実施例に基づき比較材と共に説明する。
【0018】
【実施例】
まず、原材料となる鋼板屑または球状黒鉛鋳鉄の戻り屑を、300kg高周波誘導炉を用いて溶解温度1500℃で溶解し、更にFe−Si、Fe−Cr、Fe−Moの各合金とNi地金を用いて成分調整を行なった。次に鋼板屑によるカバー材と共にFe−Si−Mg合金を設置した取鍋内に溶湯を注入してサンドイッチ法による球状化処理を行なった。そして球状化処理の反応が停止後、直ちにYブロック鋳型に注湯を行なった。この際、取鍋内あるいは注湯の流れ中にFe−Si合金粉末を添加して接種を行なった。
以上の鋳造作業により、表1に示す組成を有する本発明に係わる試片No.1〜6並びに比較材としての試片7(従来の高Si球状黒鉛鋳鉄)を得た。
以上の試片1〜7は、図1に示す温度パターンによって熱処理され、フェライト相化された基地組織を得た後に、所定の形状に加工され試験に供された。
【0019】
表1においてパーライト率は、黒鉛を除くマトリックス組織全体を100%としたときパーライト相が組織に占める面積比を示し、組織の残部はフェライト相となる。
表1の結果から見ると、本発明材である試片No.1〜6のパーライト率は従来の高Si球状黒鉛鋳鉄(試片No.7)と同等かやや高い程度であり、基地組織のフェライト相化に問題はない。また、本発明材である試片No.1〜6のブリネル硬度は、従来の高Si球状黒鉛鋳鉄と同等かやや高い程度であり被削性は同等である。
【0020】
また図2の(A)〜(F)に本発明材である試片No.1〜6の断面組織写真(倍率:400倍)を示す。図3の(G)に表1に示す比較材としての試片No.7(公知の高Si球状黒鉛鋳鉄相当材)の断面組織写真(倍率:400倍)を示す。図2と図3に示す断面組織写真において、黒色球状のものは黒鉛、白色部分はフェライト相、縞状部分はパーライト層である。本発明材である試片No.1〜6の基地組織は、比較材である試片No.7と同様にフェライト相を主体とすることは図の写真から明らかである。
表1に示す本発明材としての試片No.1〜3は比較材としての試片No.7(公知の高Si球状黒鉛鋳鉄相当材)に、Cの減量とSiの増量およびCr、Niの添加、Moの減量を行なったものであり、試片No.4は比較材としての試片No.7にCの減量とSiの増量およびCr、Niの添加を行なったものである。さらに、試片No.5、6は比較材としての試片No.7にCの減量とSiの増量およびCr、Niの添加、Moの増量を行なったものである。
【0021】
【表1】

Figure 0003821310
【0022】
上記で得た試片No.1〜7について高温における耐酸化性を評価するために、酸化試験を行なった。酸化試験は保持温度を800℃、850℃の2水準とし、昇温12分〜保持6分〜降温20分を1サイクルとして断続加熱を250サイクル繰り返し、酸化減量の測定を行なった。その結果を図4に示す。図4の棒グラフにおいて白地にハッチングは800℃、黒地にハッチングは850℃における結果を表す。
【0023】
本発明材としての試片No.1〜6は酸化減量の改善が見られ、従来材である試片No.7の酸化減量は800℃において約45(mg/cm2 )であるのに対し、特に試片No.1、2の酸化減量は10〜15(mg/cm2 )となり改善が顕著であった。この結果は850℃においても同様で、従来材である試片No.7の酸化減量約60(mg/cm2 )に対し、本発明材の試片No.1、2では酸化減量6〜16(mg/cm2 )と改善され、従来材と比較してより高温に対応できることは明らかである。
以上の結果は従来材である試片No.7(公知の高Si球状黒鉛鋳鉄)に対し、Siの増量およびCrの限定した添加を行なって耐酸化性を改善した効果であり、本発明の優位性を示すものである。
【0024】
次に試片No.1〜7について高温における耐熱亀裂性を評価するために、熱疲労試験を行なった。熱疲労試験は電気−油圧サーボ式熱疲労試験機を用い、図5に示す丸棒試験片(以下TPという。)の平行部を繰り返し加熱冷却し、試験片の伸び縮みを機械的に拘束して生ずる歪みにより試験片を破断させることにより行なった。評価は試験片が破断するまでの加熱冷却の繰り返し回数で行なった。図5中に記載の各数値はこのTPの寸法(mm)を示す。
【0025】
実施例の場合、下限温度を150℃、上限温度を800℃とし、昇温2分〜保持1分〜降温4分を1サイクルとした温度サイクルで加熱冷却を行ない、各試験片の拘束率は0.25とした。ここで拘束率は以下の式によって求められる値である。
拘束率=(自由伸び−拘束伸び)/自由伸び
実際の自動車エンジンの排気系部品の拘束率は0.1〜0.4程度になると推定されるため、本実施例の熱疲労試験では拘束率を0.25と設定した。試験の結果を図6の棒グラフに示す。従来材である試片No.7は熱疲労寿命が約440回であるのに対し、特に発明材である試片No.2の熱疲労寿命は1250回と3倍近くに寿命が伸びており耐熱亀裂性が向上していることは明らかである。その他の発明材においても、従来材の約2倍以上の熱疲労寿命を有しており耐熱亀裂性は改善されている。
【0026】
次に実際にエキゾーストマニホルドに使用した場合の耐熱亀裂性を確認するために、図7に示す120°ベンド管を、発明材で試片No.1〜6および従来材である試片No.7で製作した。この120°ベンド管の両端フランジを固定し、管内部に燃焼ガスを流して実際のエキゾーストマニホルドと同様のサイクル加熱で耐久試験を行ない、耐熱亀裂性の評価を試みた。試験の温度サイクルは下限温度を150℃、上限温度を800℃とし、加熱5分〜冷却4分を1サイクルとして耐久試験を行なった。この場合、拘束率は0.35に相当した。試験の結果を図8に示す。
従来材である試片No.7による120°ベンド管の熱疲労寿命は約150回で、これに対し発明材である試片No.1〜6による120°ベンド管の熱疲労寿命は図8に示す通り、従来材と同等以上の耐熱亀裂性を示した。特に本発明材のうち、試片No.4からなる120°ベンド管の熱疲労寿命は520回と、熱疲労寿命の伸びが顕著である。
以上の効果は従来材である試片No.7に対してCrおよびNiを限定して添加を行ない、高温の引張強さ、耐力を改善した効果であり、本発明の優位性を示すものである。
【0027】
【発明の効果】
以上説明したように、本発明の耐熱球状黒鉛鋳鉄は、Siの増量およびCr、Niの限定添加の効果により、800℃〜150℃といった繰り返し熱負荷を受ける環境下で、従来の高Si球状黒鉛鋳鉄より優れた耐酸化性、耐熱亀裂性を持つことは明らかである。また従来の高Si球状黒鉛鋳鉄と鋳造性、被削性が同等で容易に製造が可能であり、極めて実用的価値が大きい。
本発明材を自動車用エンジンの排気系部品であるターボチャージャーハウジング、エキゾーストマニホルド等に利用した場合、従来の高Si球状黒鉛鋳鉄では対応が出来なかった排気ガスの高温化に対応することが可能となり、従来排気ガスの高温化に対処するため使用されてきたオーステナイト球状黒鉛鋳鉄やステンレス鋳鋼のような高級材料に比べ、安価にターボチャージャーハウジングやエキゾーストマニホルドを提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の耐熱球状黒鉛鋳鉄の製造に関する熱処理サイクルを示す図である。
【図2】(A)〜(F)は本発明材の断面の組織写真(倍率:400倍)を示す図である。
【図3】(G)は比較材の断面の組織写真(倍率:400倍)を示す図である。
【図4】本発明材と従来材の酸化試験の結果を示すグラフである。
【図5】本発明材と従来材の熱疲労試験に用いた丸棒試験片の形状を示す図である。
【図6】本発明材と従来材の丸棒試験片による熱疲労試験の結果を示すグラフである。
【図7】本発明材と従来材の耐熱亀裂性の評価に用いた120°ベンド管の形状を示す図である。
【図8】本発明材と従来材の120°ベンド管の耐久試験結果を示すグラフである。
【符号の説明】
1 ベンド管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in heat-resistant spheroidal graphite cast iron having excellent oxidation resistance and heat cracking resistance under use conditions that are repeatedly exposed to high temperatures. The present invention can be used for, for example, a turbocharger housing and an exhaust manifold which are exhaust parts of an automobile engine.
[0002]
[Prior art]
For example, there are a turbocharger housing and an exhaust manifold as exhaust system parts of an automobile engine. Since these parts are repeatedly exposed to high temperatures by exhaust gas, high oxidation resistance and heat crack resistance are required.
For this reason, conventional turbocharger housings and exhaust manifolds have high Si spheroidal graphite cast iron in which Si is increased to about 4% to improve oxidation resistance (eg, Japanese Patent Publication Nos. 60-53736 and 60-17819). Is mainly used.
[0003]
By the way, with the recent high performance of engines and environmental regulations in each country, the exhaust gas temperature further rises from the present level, and therefore, more oxidation resistance and heat cracking resistance have begun to be required for exhaust system parts. In order to meet these requirements, austenitic spheroidal graphite cast iron to which Ni is added in an amount of 20 to 35%, or a ferritic alloy in which 18% or more of Cr is added, or an austenitic stainless cast steel in which Cr is added to 18% or more and Ni is added to 8% or more. And turbocharger housings and exhaust manifolds made of stainless steel pipes are increasing.
[0004]
[Problems to be solved by the invention]
Conventional high-Si spheroidal graphite cast iron is easy to manufacture and can be obtained at low cost, but has limited oxidation resistance and heat cracking resistance, and cannot cope with high exhaust gas temperatures. In addition, materials such as austenitic spheroidal graphite cast iron, stainless cast steel or stainless steel pipe that can cope with higher temperature conditions are expensive due to the addition of a large amount of metal such as Ni, Cr, etc., and manufacturing with high difficulty in casting and welding Requires technology. In addition, the material is difficult to cut and requires advanced technology for machining, which increases costs.
The present invention has been made in view of the above-described circumstances, and its purpose is to provide a turbocharger housing and an exhaust manifold that are excellent in oxidation resistance and heat crack resistance under conditions of repeated exposure to high temperatures. It is to provide a spheroidal graphite cast iron.
[0005]
[Means for Solving the Problems]
The heat-resistant spheroidal graphite cast iron according to the present invention is C2.7 to 3.2%, Si 4.4 to 5.0%, Mn 0.6% or less, Cr 0.5 to 1.0%, Ni 0.1 to 0.1% by weight. 1.0%, Mo 1.0% or less, the balance consisting essentially of Fe, graphite spheroidizing agent such as Mg, Ca, Ce, etc. is added by metering so that it becomes 0.1% or less after the treatment is completed. The processing is performed.
[0006]
In the present invention, the base structure is mainly composed of the ferrite phase by performing the heat treatment based on the temperature condition of the heat treatment shown in FIG. That is, in FIG. 1, by maintaining the product at 930 ° C., the cementite forming the pearlite phase in the matrix structure is decomposed to austenite, and gradually cooled in a heat treatment furnace and held at 720 ° C. to maintain the ferrite phase. Encourage the generation of. By this heat treatment, the base structure can be mainly composed of the ferrite phase.
As an effect that the matrix structure is mainly composed of a ferrite phase, there are points that are advantageous in heat cracking resistance, dimensional stability at high temperature, and machinability.
[0007]
By adopting this configuration, the heat-resistant spheroidal graphite cast iron of the present invention exhibits superior oxidation resistance and heat crack resistance than conventional high-Si spheroidal graphite cast iron, and has castability equivalent to that of conventional high-Si spheroidal graphite cast iron. Since machinability can be ensured, it is extremely practical value.
The reason for limiting the component range (% by weight) of the heat-resistant spheroidal graphite cast iron according to the present invention will be described below.
[0008]
C (carbon): 2.7 to 3.2%
C, together with Si, is an important component in cast iron. In general spheroidal graphite cast iron, C3.5% and Si2.5% are standard compositions.
In the present invention, in order to set the Si content high as described later, the C content was determined according to the following. That is, since the C content satisfies the carbon equivalent CE = C% + 0.31Si% = 4.3 to 4.5, the target is 2.7 to 3.2%. The reason for this is that when the CE value is less than 4.3, a hypoeutectic composition is formed, and pinhole defects are likely to occur. When the CE value exceeds 4.5, the hypereutectic composition is too high and carbon dross (graphite segregation) occurs. ) Is likely to occur. Therefore, the range of C content is set to 2.7 to 3.2%.
[0009]
Si (silicon): 4.4-5.0%
Si is an important component in cast iron together with C, and is effective in graphitization of C and ferrite in the base. In general spheroidal graphite cast iron, C3.5% and Si2.5% are standard compositions. In addition, high Si spheroidal graphite cast iron is added at around 4.0% for the purpose of improving oxidation resistance.
In the present invention, the lower limit of the Si content is set to 4.4% for the purpose of further improving the oxidation resistance as compared with the conventional high Si spheroidal graphite cast iron. Further, if the Si content is excessive, the material becomes brittle, so the upper limit is made 5.0%.
[0010]
Mn (manganese): 0.6% or less Mn is an element indispensable for the production of spheroidal graphite cast iron, because S is inevitably contained in the material and is excluded in the form of MnS. In order to promote the formation of pearlite and reduce the thermal crack resistance, the upper limit is made 0.6%. More preferably, the component range is 0.4% or less.
[0011]
Cr (chromium): 0.5 to 1.0%
Cr is not added in general spheroidal graphite cast iron, but may be used, for example, to improve oxidation resistance and high temperature strength for the purpose of high temperature use. In addition, 18% or more of both ferritic and austenitic pipes are added to stainless cast steel and stainless steel pipe, but the generation of carbides causes a reduction in castability and machinability.
In the present invention, 0.5% or more is added for the purpose of improving oxidation resistance and improving heat cracking resistance by strengthening the ferrite matrix. However, if the amount added is too large, the hardness becomes high due to an increase in carbides and the like, resulting in a detrimental effect on the machinability, so the upper limit is made 1.0%.
[0012]
Ni (nickel): 0.1 to 1.0%
Examples of the effect of Ni include austenitization of the base, tensile strength at high temperature, and strengthening of proof stress. For example, 20 to 35% is added to Niresist cast iron and 10 to 20% is added to austenitic stainless cast steel. However, since it is an expensive metal, the cost of these materials is increased.
In the present invention, it is added in an amount of 0.1% or more for the purpose of improving the thermal crack resistance by strengthening the tensile strength and proof stress at high temperatures. However, if the amount added is too large, the tendency of the base to become pearlite becomes strong, so the upper limit is made 1.0%. Further, since the addition is small, it does not cause an increase in cost.
[0013]
Mo (molybdenum): 1.0% or less Mo, like Ni, can be added for the purpose of enhancing the tensile strength and proof stress at high temperatures and improving the thermal crack resistance. However, if the amount added is too large, the upper limit is set to 1.0% because there is a detrimental effect of increasing the hardness and impairing the machinability due to an increase in carbides.
[0014]
Spheroidizing agent: 0.1% or less As the spheroidizing agent, Mg (magnesium), Ca (calcium), Ce (cerium), etc. can be used. For example, when Mg is too much, Since the generation of carbides and the occurrence of dross (oxide inclusion) defects are observed, it is desirable to calculate and use the yield so that the content after the graphite spheroidization treatment is 0.1% or less.
[0015]
P (Phosphorus): 0.1% or less Since a large amount of P causes Fe and P compounds to precipitate and lowers mechanical properties, it is desirable that the content be 0.1% or less.
[0016]
S (sulfur): 0.04% or less In spheroidal graphite cast iron, if S is large, the spheroidization of graphite is remarkably inhibited, so 0.04% or less is desirable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the heat-resistant spheroidal graphite cast iron of the present invention will be described together with comparative materials based on examples.
[0018]
【Example】
First, steel plate scraps or spheroidal graphite cast iron return scraps as raw materials are melted at a melting temperature of 1500 ° C. using a 300 kg high-frequency induction furnace, and further each alloy of Fe—Si, Fe—Cr, Fe—Mo and Ni ingot The ingredients were adjusted using Next, the molten metal was poured into the ladle in which the Fe—Si—Mg alloy was installed together with the cover material made of steel plate scraps, and spheroidizing treatment was performed by the sandwich method. Then, immediately after the reaction of the spheroidizing treatment was stopped, the molten metal was poured into the Y block mold. At this time, inoculation was performed by adding Fe-Si alloy powder in the ladle or in the pouring flow.
As a result of the above casting operation, the test piece No. 1 according to the present invention having the composition shown in Table 1 was obtained. 1 to 6 and a specimen 7 as a comparative material (conventional high Si spheroidal graphite cast iron) were obtained.
The above specimens 1 to 7 were heat-treated according to the temperature pattern shown in FIG. 1 to obtain a base structure having a ferrite phase, and then processed into a predetermined shape and subjected to the test.
[0019]
In Table 1, the pearlite ratio indicates the area ratio of the pearlite phase to the structure when the entire matrix structure excluding graphite is 100%, and the rest of the structure is the ferrite phase.
From the results shown in Table 1, the specimen No. The pearlite ratio of 1 to 6 is the same as or slightly higher than that of conventional high-Si spheroidal graphite cast iron (specimen No. 7), and there is no problem with the ferrite phase of the base structure. In addition, the specimen No. which is the material of the present invention. The Brinell hardness of 1 to 6 is the same as or slightly higher than that of conventional high-Si spheroidal graphite cast iron, and the machinability is equivalent.
[0020]
2 (A) to (F), the specimen No. which is the material of the present invention. 1 to 6 show cross-sectional structure photographs (magnification: 400 times). Specimen No. as a comparative material shown in Table 1 in FIG. 7 shows a cross-sectional structure photograph (magnification: 400 times) of 7 (known high-Si spheroidal graphite cast iron equivalent material). In the cross-sectional structure photographs shown in FIGS. 2 and 3, the black spherical shape is graphite, the white portion is the ferrite phase, and the striped portion is the pearlite layer. Specimen No. which is the material of the present invention. The base structures of Nos. 1 to 6 are specimen Nos. It is clear from the photograph in the figure that the ferrite phase is mainly the same as in FIG.
Specimen No. 1 as the material of the present invention shown in Table 1. 1-3 are specimen Nos. As comparative materials. No. 7 (known high-Si spheroidal graphite cast iron equivalent material) was obtained by reducing C, increasing Si, adding Cr and Ni, and reducing Mo. No. 4 is a specimen No. as a comparative material. 7 is obtained by reducing C, increasing Si, and adding Cr and Ni. Furthermore, specimen No. Samples Nos. 5 and 6 are sample Nos. As comparative materials. No. 7 is obtained by reducing C, increasing Si, adding Cr and Ni, and increasing Mo.
[0021]
[Table 1]
Figure 0003821310
[0022]
Specimen No. obtained above. In order to evaluate the oxidation resistance at high temperature about 1-7, the oxidation test was done. In the oxidation test, the holding temperature was set at two levels of 800 ° C. and 850 ° C., and the intermittent heating was repeated 250 cycles with the temperature rising from 12 minutes to holding 6 minutes to temperature falling 20 minutes as one cycle, and the oxidation loss was measured. The result is shown in FIG. In the bar graph of FIG. 4, hatching on a white background is 800 ° C., and hatching on a black background is 850 ° C.
[0023]
Specimen No. as the material of the present invention. Nos. 1 to 6 show improved oxidation weight loss, and specimen No. 1 which is a conventional material. The oxidation weight loss of 7 is about 45 (mg / cm 2 ) at 800 ° C. The oxidation weight loss of 1 and 2 was 10 to 15 (mg / cm 2 ), and the improvement was remarkable. This result is the same at 850 ° C., and the specimen No. No. 7 oxidation loss of about 60 (mg / cm 2 ), the specimen No. In 1 and 2, the oxidation weight loss is improved to 6 to 16 (mg / cm 2 ), and it is clear that it can cope with a higher temperature than the conventional material.
The above results indicate that the specimen No. 7 (known high-Si spheroidal graphite cast iron) is an effect of improving oxidation resistance by adding Si and limiting addition of Cr, and shows the superiority of the present invention.
[0024]
Next, Specimen No. In order to evaluate the thermal crack resistance at high temperature about 1-7, the thermal fatigue test was done. The thermal fatigue test uses an electro-hydraulic servo thermal fatigue tester, and repeatedly heats and cools the parallel part of the round bar test piece (hereinafter referred to as TP) shown in FIG. 5 to mechanically restrain the expansion and contraction of the test piece. The test piece was broken by the strain generated by The evaluation was performed by repeating the heating and cooling until the test piece was broken. Each numerical value described in FIG. 5 indicates the dimension (mm) of the TP.
[0025]
In the case of the example, the lower limit temperature is 150 ° C., the upper limit temperature is 800 ° C., heating and cooling are performed in a temperature cycle in which the temperature rise is 2 minutes to the holding 1 minute to the temperature falling 4 minutes as one cycle. It was set to 0.25. Here, the restraint rate is a value obtained by the following equation.
Restraint rate = (free elongation−constraint elongation) / free elongation Since the restraint rate of exhaust system parts of an actual automobile engine is estimated to be about 0.1 to 0.4, the restraint rate is determined in the thermal fatigue test of this example. Was set to 0.25. The test results are shown in the bar graph of FIG. Specimen No. which is a conventional material. No. 7 has a thermal fatigue life of about 440 times, while specimen No. 7 which is an invention material in particular. The thermal fatigue life of No. 2 is 1250 times, nearly three times longer, and it is clear that the thermal crack resistance is improved. Other invention materials also have a thermal fatigue life that is about twice or more that of conventional materials and have improved thermal crack resistance.
[0026]
Next, in order to confirm the heat crack resistance when actually used in the exhaust manifold, the 120 ° bend pipe shown in FIG. 1 to 6 and the specimen No. 7 made. The end flanges of the 120 ° bend pipe were fixed, a combustion gas was allowed to flow inside the pipe, and an endurance test was performed by the same cycle heating as that of an actual exhaust manifold, and an evaluation of the thermal crack resistance was attempted. The temperature cycle of the test was an endurance test with a lower limit temperature of 150 ° C., an upper limit temperature of 800 ° C., and a cycle of 5 minutes to 4 minutes of cooling. In this case, the restraint rate corresponded to 0.35. The test results are shown in FIG.
Specimen No. which is a conventional material. The thermal fatigue life of the 120 ° bend pipe according to No. 7 is about 150 times, whereas the specimen No. As shown in FIG. 8, the thermal fatigue life of the 120 ° bend pipes Nos. 1 to 6 was equal to or higher than that of the conventional material. Among the materials of the present invention, in particular, the specimen No. The 120 ° bend pipe made of 4 has a thermal fatigue life of 520 times, and the elongation of the thermal fatigue life is remarkable.
The above effect is the result of the specimen No. This is the effect of improving the high-temperature tensile strength and proof stress by adding Cr and Ni to 7 and limiting the strength of the present invention.
[0027]
【The invention's effect】
As described above, the heat-resistant spheroidal graphite cast iron of the present invention is a conventional high-Si spheroidal graphite in an environment subject to repeated heat loads of 800 ° C. to 150 ° C. due to the effect of increasing the amount of Si and the limited addition of Cr and Ni. It is clear that it has better oxidation resistance and heat crack resistance than cast iron. In addition, it has the same castability and machinability as conventional high-Si spheroidal graphite cast iron and can be easily manufactured, and has extremely high practical value.
When the material of the present invention is used in turbocharger housings, exhaust manifolds, etc., which are exhaust parts of automobile engines, it becomes possible to cope with higher exhaust gas temperatures that could not be handled by conventional high-Si spheroidal graphite cast iron. Compared to high-grade materials such as austenitic spheroidal graphite cast iron and stainless steel cast that have been used to cope with the high temperature of exhaust gas, it is possible to provide a turbocharger housing and an exhaust manifold at a lower cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a heat treatment cycle relating to the production of heat-resistant spheroidal graphite cast iron of the present invention.
FIGS. 2A to 2F are diagrams showing structural photographs (magnification: 400 times) of a cross section of the material of the present invention.
FIG. 3G is a diagram showing a structural photograph (magnification: 400 times) of a cross-section of a comparative material.
FIG. 4 is a graph showing the results of an oxidation test of the material of the present invention and a conventional material.
FIG. 5 is a view showing the shape of a round bar test piece used in a thermal fatigue test of the material of the present invention and a conventional material.
FIG. 6 is a graph showing the results of a thermal fatigue test using a round bar specimen of the present invention material and a conventional material.
FIG. 7 is a diagram showing the shape of a 120 ° bend pipe used for evaluating the thermal crack resistance of the material of the present invention and the conventional material.
FIG. 8 is a graph showing the results of a durability test of a 120 ° bend pipe of the material of the present invention and a conventional material.
[Explanation of symbols]
1 Bend pipe

Claims (2)

重量比でC2.7〜3.2%、Si4.4〜5.0%、Mn0.6%以下、Cr0.5〜1.0%、Ni0.1〜1.0%、Mo1.0%以下、球状化処理剤0.1%以下、残部実質的にFeよりなる耐酸化性、耐熱亀裂性に優れた自動車用エンジンの排気系部品用の耐熱球状黒鉛鋳鉄。C2.7-3.2% by weight ratio, Si 4.4-5.0%, Mn 0.6% or less, Cr 0.5-1.0%, Ni 0.1-1.0%, Mo 1.0% or less A heat-resistant spheroidal graphite cast iron for automobile engine exhaust system parts, which is excellent in oxidation resistance and heat cracking resistance, comprising a spheroidizing agent of 0.1% or less and the balance being substantially Fe. 基地組織をフェライト相主体とし、黒鉛が球状化していることを特徴とする請求項1記載の組成の耐酸化性、耐熱亀裂性に優れた自動車用エンジンの排気系部品用の耐熱球状黒鉛鋳鉄。The heat-resistant spheroidal graphite cast iron for an exhaust system part of an automobile engine having excellent oxidation resistance and heat cracking resistance having the composition according to claim 1, wherein the base structure is mainly composed of a ferrite phase and the graphite is spheroidized.
JP24648995A 1995-09-25 1995-09-25 Heat resistant spheroidal graphite cast iron Expired - Fee Related JP3821310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24648995A JP3821310B2 (en) 1995-09-25 1995-09-25 Heat resistant spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24648995A JP3821310B2 (en) 1995-09-25 1995-09-25 Heat resistant spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JPH0987796A JPH0987796A (en) 1997-03-31
JP3821310B2 true JP3821310B2 (en) 2006-09-13

Family

ID=17149166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24648995A Expired - Fee Related JP3821310B2 (en) 1995-09-25 1995-09-25 Heat resistant spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP3821310B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129969A (en) * 2000-10-25 2002-05-09 Nsk Ltd Rotation supporting device for turbocharger
KR20030028909A (en) * 2001-10-04 2003-04-11 현대자동차주식회사 Heat resist cast iron for exhaust system of automobile
ATE456684T1 (en) 2004-03-04 2010-02-15 Hitachi Metals Ltd HEAT RESISTANT CAST IRON AND EXHAUST SYSTEM PART THEREOF
KR101438825B1 (en) * 2008-06-23 2014-09-05 현대자동차주식회사 Ferritic nodular cast iron
JP4825886B2 (en) * 2009-02-27 2011-11-30 トヨタ自動車株式会社 Ferritic spheroidal graphite cast iron
CN102485931B (en) * 2010-12-06 2014-06-18 沈阳铸造研究所 Magnetic cast iron and casting process of casting made of the material
SE1250101A1 (en) * 2011-04-01 2012-10-02 Scania Cv Ab Cast iron alloy as well as exhaust gas conducting component
CN103146990B (en) * 2013-03-29 2016-07-06 天津新伟祥工业有限公司 Vehicle turbine housing high silicon molybdenum chromium magnesium iron material and preparation method thereof
CN103509992A (en) * 2013-10-15 2014-01-15 沈阳工业大学 Study and preparation of heat-resistant nodular cast iron
CN114561507B (en) * 2022-02-25 2023-11-17 锦州捷通铁路机械股份有限公司 Method for regulating and controlling ferrite grain size of spheroidal graphite cast iron

Also Published As

Publication number Publication date
JPH0987796A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP5862570B2 (en) Ferritic heat-resistant cast steel having excellent hot water flow, gas defect resistance, toughness and machinability, and exhaust system parts comprising the same
JP2009540115A (en) Cast iron alloy with excellent high-temperature oxidation resistance
KR101013843B1 (en) High Strength and High Oxidation Resist Hi Silicon Ferritic CGI Cast Iron
JP3821310B2 (en) Heat resistant spheroidal graphite cast iron
EP2401412A1 (en) Ferritic spheroidal graphite cast iron
JP6481692B2 (en) Austenitic heat-resistant cast steel with excellent thermal fatigue characteristics and exhaust system parts composed thereof
KR101745927B1 (en) Heat-resistant, ferritic cast steel having excellent room-temperature toughness, and exhaust member made thereof
JP2011012313A (en) Ferritic spheroidal graphite cast iron and method of manufacturing the same, and exhaust gas system parts for automobile using this
JP3700977B2 (en) Austenitic heat-resistant cast steel with low cost, good castability, high-temperature strength and oxidation resistance, and exhaust system parts made of it
Delin et al. High silicon cast iron with mixed graphite (MG) shapes for elevated temperature applications
JPH0686642B2 (en) Heat resistant spheroidal graphite cast iron
JPH0524977B2 (en)
JPH06322473A (en) Ferro alloy for casting and its manufacture
JP2018154863A (en) Spheroidal graphite cast iron and exhaust component
KR20220015198A (en) Speroidal graphite cast-iron and engine exhaust system components therefrom
JP2004169135A (en) Ferritic heat resistant spheroidal graphite cast iron
JPH04325658A (en) Heat resistant cast steel
JPH0359967B2 (en)
JPH06322475A (en) Parts for exhaust system and its manufacture
JPH06322474A (en) Ferro alloy for casting and its manufacture
JP2579151B2 (en) Heat-resistant cast steel
JPS6230857A (en) Heat resistant cast steel
CN111926242A (en) High-silicon-molybdenum nodular cast iron material and preparation method thereof
KR20090025667A (en) Method for manufacturing high strength ferritic cast steel parts
JPH0559978B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees