CA2578271C - Construction element for heat insulation - Google Patents

Construction element for heat insulation Download PDF

Info

Publication number
CA2578271C
CA2578271C CA2578271A CA2578271A CA2578271C CA 2578271 C CA2578271 C CA 2578271C CA 2578271 A CA2578271 A CA 2578271A CA 2578271 A CA2578271 A CA 2578271A CA 2578271 C CA2578271 C CA 2578271C
Authority
CA
Canada
Prior art keywords
insulating body
construction element
element according
reinforcement elements
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2578271A
Other languages
French (fr)
Other versions
CA2578271A1 (en
Inventor
Hubert Fritschi
Yasufumi Tobishima
Noboru Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Publication of CA2578271A1 publication Critical patent/CA2578271A1/en
Application granted granted Critical
Publication of CA2578271C publication Critical patent/CA2578271C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Insulated Conductors (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A construction element for heat insulation between a ceiling and a balcony is provided, which includes an insulating body and reinforcement elements crossing the insulating body that are connected to both construction parts. Here, horizontally adjacent to the insulating body, at least one additional insulating body is arranged, with an additional tensile reinforcement element being provided in a lower half thereof for earthquake stress, protruding in the horizontal direction in reference to the insulating body.

Description

CONSTRUCTION ELEMENT FOR HEAT INSULATION
The present invention relates to a construction element for heat insulation between two building parts, in particular between a ceiling or wall and a construction part = protruding from said building, such as a balcony, at least comprising an insulating = body and reinforcement elements crossing said insulating body and connected to each of the two construction parts, with tensile reinforcement elements being provided as reinforcement elements, at least arranged in an upper area and protruding particularly horizontally in reference to the insulating body and compression elements being provided arranged in the lower area of this insulating body.
In certain regions, construction elements for heat insulation are subject to strict regulations with regard to earthquake safety; here, the sufficiently known = construction elements for heat insulation must be able to absorb additional dynamic stress, which requirement previously has been largely neglected and/or was not focused on. For example, if the construction element for heat insulation serves to support protruding balcony plates and is designed such that it can support its own weight and can absorb forces and momentums affecting the balcony plate from the ' outside, now forces and momentums acting in the opposite direction are added, for = example such that the construction parts adjacent to the construction element are accelerated to a different degree by the vibrations of an earthquake and can be pulled apart, for example; or the protruding construction part is subjected to a force or momentum component acting vertically upward against the effective direction of the weight as a result of a tipping motion, which conventionally used compression . rods in the lower insulating area and, tensile rods in the upper insulating area cannot withstand alone.

Although it would be possible in an easy manner to drastically increase the number of reinforcement elements in the construction element for heat insulation and to arrange them at different positions so that each position affected by a force or momentum is provided with an appropriate reinforcement element; however, this would not only drastically increase the material expenses of such a construction element but also the heat insulation features would considerably worsen by the respectively enlarged cross-sectional area of the reinforcement elements extending between the two adjacent construction parts.
Therefore, the present invention is based on an object of providing a construction element for heat insulation of the type mentioned at the outset, which allows a targeted and only partially implemented increase of the number of reinforcement elements using conventional parts, and thus to avoid, on the one hand, a static and dynamic oversizing of the reinforcement elements and, on the other hand, an enlargement of the cross-sectional area of the reinforcement elements extending between the two adjacent construction parts compromising the heat insulation features.
The objective is attained according to the invention in that horizontally adjacent to the insulating body at least one additional insulating body is arranged, aligned therewith, that the additional insulating body in the area of its lower half is provided with additional tensile reinforcement elements for earthquake stress, which protrude in the horizontal direction in reference to the insulating body. By combining a conventional construction element for heat insulation with another insulating body equipped for earthquake stress, which is merely provided with additional tensile reinforcement elements in the lower part of the insulating body, the following advantages develop, in particular; the conventional construction elements for heat insulation are used, as in the past, to compensate for the normal static and dynamic stress; therefore, the additional insulating bodies, aligned adjacent therewith, have no influence on the size and composition of conventional =
construction elements for heat insulation, which facilitates the planning, sizing, and implementation of the combined construction element for heat insulation.
The aligned adjacent additional insulating body only needs the additional tensile reinforcement elements mentioned in order to allow the compensation of tensile forces developing during earthquakes in the lower area of the insulating body, which can not be compensated and/or transferred by the compression elements and lateral reinforcement rods conventionally present in this plane.
Advantageously, the tensile reinforcement elements arranged in the conventional insulating body also act in case of an earthquake for transferring forces into the area of the upper half of the insulating body and/or for transferring lateral forces. Thus, except for the additional tensile force elements the additional insulating body needs no additional other reinforcement elements. Thus, it is apparent that the attached additional insulating body with the additional tensile reinforcement elements alone cannot provide and/or ensure sufficient function, neither for earthquake stress nor for normal stress, and that only together with the adjacent conventional construction elements for heat insulation can it fulfill its assigned tasks.
With regard to the additional tensile reinforcement element, it is usefully embodied in a rod-shaped manner known per se and protrudes beyond the additional insulating body in order to extend far into the adjacent construction parts and be appropriately well anchored in them, The additional tensile elements may furthermore be provided, at least at the face end, with a plate-shaped force transfer profile, which extends particularly in a generally vertical plane parallel to the plane of the insulating body. This way, the necessary force introduction area is considerably shortened, which for example is advantageous when additional constructive parts, such as supports etc. are provided in the mounting area of the additional tensile reinforcement elements, into which the additional tensile reinforcement elements may not extend.
Therefore, the additional insulating body is provided with two additional tensile reinforcement elements arranged at a horizontal distance apart from each other.
Thus, the additional insulating body is only provided with two additional tensile reinforcement elements, however, it is sufficiently sized to fulfill its intended tasks.
Horizontally adjacent to the additional insulating body, a second insulating body aligned thereto with integrated tensile and pressure reinforcement elements is arranged so that a constant row of conventional construction elements for heat insulation is only interrupted by a short section of an additional insulating body with only two additional tensile reinforcement elements, in particular.
More specifically, the invention provides a construction element for heat insulation between two building parts, the construction element comprising:
an insulating body; and reinforcing elements crossing the insulating body and connected to each of the two building parts, the reinforcement elements comprising tensile reinforcement elements which are provided as protruding reinforcement elements at least in the upper area of the insulating body and pressure elements being arranged in the lower area of the insulating body, wherein, horizontally adjacent to the insulating body, at least one additional insulating body is arranged aligned therewith, and wherein in the area of a lower half thereof the additional insulating body is provided with additional tensile reinforcement elements for earthquake stress, which protrude in the horizontal direction in reference to the insulating body.
Additional features and advantages of the present invention are discernable from the following description of an exemplary embodiment using the drawings. Shown are:
Figure 1 is a perspective side view of a construction element according to the invention for heat insulation; and Figure 2 is a schematic front view of the construction element according to the invention for heat insulation.
A construction element for heat insulation 1 according to the invention is shown in Figure 1, which comprises a combination of two conventional construction elements for heat insulation 2 with a construction element for heat insulation 3 designed for earthquake stress. The conventional construction elements 2 are provided with an insulating body 12 as well as reinforcement elements allocated to the insulating body 12, and which extend through it in a plane substantially perpendicular to its longitudinal extension, and only partially protruding in reference to the insulating body 12. In the exemplary embodiment of Figure 1, in the conventional construction elements 2, upper reinforcement tensile rods 4 extending in the - 4a -horizontal direction are provided as reinforcement elements 5, as are lower compression supports, ending approximately flush with the insulating body, as well as lateral reinforcement rods 6 extending diagonally from the top downwards through the insulating body and being bent outside said insulating body in a horizontal direction. These conventional reinforcement elements, as discernible in Figure 1, are arranged according to a grid, predetermined and adjusted and/or adjustable to the respective stress. The insulating body of such a construction element for heat insulation 2 is generally divided in the horizontal direction in the area of the reinforcement elements in order to facilitate the assembly and/or positioning of the reinforcement elements.
Another insulating body 14 is arranged between the two conventional construction elements for heat insulation 2, extending in the vertical plane of the adjacent insulating body 12 flush thereto and being provided with tensile reinforcement elements 15 extending only in the lower area of the insulating body for compensating for earthquake stress, which extend parallel to the tensile reinforcement rods 4 of the conventional construction elements 2 but at a lower height plane.
Figure 2 shows in a schematic front views parts of the conventional construction elements for heat insulation 2 as well as the additional insulating bodies 14 inserted therebetween having the additional tensile reinforcement elements 15, with the additional insulating body and the additional insulating elements forming the construction element for heat insulation particularly embodied for earthquake stress.
From Figure 2 it is discernible how, adjacent to this construction element for earthquake stress, the reinforcement elements are provided in form of tensile reinforcement rods 4, lateral reinforcement rods 5, and compression elements 5.
While the compression elements 5 accept no or almost no other functions for the particular additional earthquake stress, in particular the tensile reinforcement elements 4 serve to compensate the compression and lateral force components developing during earthquakes. This is limited, at least according to calculations, to the tensile reinforcement rods arranged adjacent to this construction element for earthquake stress 3.
It is easily discernible that both the calculation and sizing is very easy when the construction elements for earthquake stress are not changed in their design in reference to conventional construction elements for heat insulation and that the assembly and/or implementation of these construction elements for earthquake stress can occur very easily such that after the assembly and/or implementation of the conventional construction elements for heat insulation a construction element for earthquake stress is added.
In summary, this results in the advantage that by simple means and a minimum of material, conventional construction elements for heat insulation can be retrofitted and/or complemented such that they are designed for earthquake stress, with the reinforcement elements according to the invention for conventional construction elements accept functions for earthquake stress which per se were to be accepted by the construction element, but which can, at least according to calculations, easily be distributed to the adjacent reinforcement elements of the conventional construction elements.

Claims (13)

1. A construction element for heat insulation between two building parts, the construction element comprising:
a first insulating body; and reinforcing elements crossing the first insulating body and connected to each of the two building parts, the reinforcement elements comprising tensile reinforcement elements which are provided as protruding reinforcement elements at least in an upper area of the first insulating body and pressure elements being arranged in a lower area of the first insulating body, wherein, horizontally adjacent to the first insulating body, at least one additional insulating body is arranged aligned therewith, and wherein in the area of a lower half thereof the additional insulating body is provided with additional tensile reinforcement elements for earthquake stress, which protrude in the horizontal direction in reference to the first insulating body.
2. A construction element according to claim 1, wherein the two building parts comprise a ceiling and a building part protruding from the building.
3. A construction element according to claim 2, wherein the building part protruding from the building comprises a balcony.
4. A construction element according to any one of claims 1 to 3, wherein the tensile reinforcement elements protrude horizontally in reference to the first insulating body.
5. A construction element according to any one of claims 1 to 4, wherein the tensile reinforcement elements arranged in the first insulating body act to transfer compression loads in case of an earthquake.
6. A construction element according to any one of claims 1 to 5, wherein the tensile reinforcement elements arranged in the first insulating body act to transfer lateral forces in case of an earthquake.
7. A construction element according to any one of claims 1 to 6, wherein the reinforcement elements further comprise lateral reinforcement rods.
8. A construction element according to any one of claims 1 to 7, wherein the additional tensile reinforcement elements are rod-shaped.
9. A construction element according to any one of claims 1 to 8, wherein the additional tensile reinforcement elements, at least at a face end, are provided with a plate-shaped force introduction profile.
10. A construction element according to claim 9, wherein the plate-shaped force introduction profile extends in a generally vertical level parallel to the insulating body.
11. A construction element according to any one of claims 1 to 10, wherein the pressure elements arranged in the insulating body extend substantially flush with exterior sides of the insulating body.
12. A construction element according to any one of claims 1 to 11, wherein the additional tensile reinforcement elements are arranged side-by-side to each other and spaced apart a horizontal distance.
13. A construction element according to any one of claims 1 to 12, further comprising a second insulating body which is arranged horizontally adjacent to the additional insulating body, aligned thereto and has integrated tensile reinforcement and pressure elements.
CA2578271A 2006-03-09 2007-02-12 Construction element for heat insulation Active CA2578271C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006011336.5 2006-03-09
DE102006011336A DE102006011336A1 (en) 2006-03-09 2006-03-09 Thermal insulation unit for e.g. balcony, has traction force units arranged in upper region of insulating body, and compressive force units arranged in lower region of insulating body

Publications (2)

Publication Number Publication Date
CA2578271A1 CA2578271A1 (en) 2007-09-09
CA2578271C true CA2578271C (en) 2013-09-10

Family

ID=38336087

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2578271A Active CA2578271C (en) 2006-03-09 2007-02-12 Construction element for heat insulation

Country Status (8)

Country Link
US (1) US20080010913A1 (en)
EP (1) EP1832690B1 (en)
JP (1) JP4621224B2 (en)
AT (1) ATE414201T1 (en)
CA (1) CA2578271C (en)
DE (2) DE102006011336A1 (en)
RU (1) RU2402659C2 (en)
SI (1) SI1832690T1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH701351A1 (en) 2009-06-24 2010-12-31 Stefan Schweizer Cantilever panel.
PL2653625T3 (en) * 2012-04-20 2019-05-31 Halfen Gmbh Thermally insulating component
US10787809B2 (en) * 2015-03-23 2020-09-29 Jk Worldwide Enterprises Inc. Thermal break for use in construction
DE102015109887A1 (en) * 2015-06-19 2016-12-22 Schöck Bauteile GmbH Thermal insulation system for the vertical, load-bearing connection of concrete parts of buildings
BE1023959B1 (en) * 2016-03-17 2017-09-22 Plakabeton Nv FIRE-RESISTANT CONSTRUCTION ELEMENT FOR REALIZING A CONNECTION BETWEEN THERMALLY INSULATED PARTS OF A BUILDING
FR3057586B1 (en) 2016-10-14 2022-07-08 Lesage Dev METHOD FOR MANUFACTURING A BALCONY AND BALCONY OBTAINED
DE102016124736A1 (en) * 2016-12-19 2018-06-21 Schöck Bauteile GmbH Component for thermal insulation
PL3385462T3 (en) * 2017-04-05 2020-11-16 Halfen Gmbh Thermally insulating component
GB201819196D0 (en) 2018-11-26 2019-01-09 Ancon Ltd Building element, system and method
EP3816840A1 (en) * 2019-10-31 2021-05-05 Schöck Bauteile GmbH Method and device for the computer-aided selection and positioning of concrete part connection elements
DE202021000466U1 (en) * 2021-02-01 2021-04-22 Halfen Gmbh Device for the subsequent thermally insulating, force-transmitting connection of a second load-bearing structural part to a first load-bearing structural part and structure with such a device
US20230160207A1 (en) * 2021-11-19 2023-05-25 Stella Nuva Corporation Thermal break product and solution

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676035A (en) * 1986-03-27 1987-06-30 Home Crafts Corporation Reinforced concrete panels with improved welded joint
CH678204A5 (en) * 1989-03-20 1991-08-15 Egco Ag
AT395622B (en) * 1989-06-05 1993-02-25 Josef Fuhs REINFORCEMENT FOR CONNECTING A BALCONY PLATE
JPH0713169Y2 (en) * 1990-03-27 1995-03-29 ウシオ電機株式会社 Short arc type discharge lamp
DE9409322U1 (en) * 1994-06-09 1995-10-12 Dausend, Hans-Werner, 42289 Wuppertal Cantilever panel connection element
DE19640652A1 (en) * 1996-10-02 1998-04-09 Schoeck Bauteile Gmbh Component for thermal insulation
DE19652165C2 (en) * 1996-12-05 1999-06-17 Syspro Gruppe Betonbauteile E Prefabricated component for a cantilevered balcony slab
DE59804141D1 (en) * 1997-02-28 2002-06-20 Johannes Bucher CONNECTING ELEMENT WITH AN INSULATING BODY
AT408675B (en) * 1999-02-12 2002-02-25 Avi Alpenlaendische Vered DEVICE FOR CONNECTING CANTILEVER PLATES TO A WALL OR CEILING CONSTRUCTION
DE29903589U1 (en) * 1999-02-26 1999-05-20 Schöck Bauteile GmbH, 76534 Baden-Baden Component for thermal insulation
DE102005040170A1 (en) * 2005-08-25 2007-03-01 Schöck Bauteile GmbH Heat and sound absorption component for arrangement between building unit and load bearing unit has fire protection components that are accommodated in casing and are arranged crossing insulator
JP3121654U (en) * 2006-02-16 2006-05-25 株式会社テスク Cantilevered balcony construction Z-bar panel and outer wall structure with balcony

Also Published As

Publication number Publication date
EP1832690B1 (en) 2008-11-12
EP1832690A3 (en) 2007-11-21
RU2402659C2 (en) 2010-10-27
ATE414201T1 (en) 2008-11-15
DE502007000227D1 (en) 2008-12-24
RU2007105819A (en) 2008-08-27
SI1832690T1 (en) 2009-02-28
CA2578271A1 (en) 2007-09-09
DE102006011336A1 (en) 2007-09-13
EP1832690A2 (en) 2007-09-12
JP2007239450A (en) 2007-09-20
JP4621224B2 (en) 2011-01-26
US20080010913A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
CA2578271C (en) Construction element for heat insulation
CN107012967A (en) Antidetonation intensifier
KR100955706B1 (en) Structural and seismic damper and its strengthening techniques using multi-layered elastic-plastic castellated plates and elastic rubbers
JP6990979B2 (en) Framing structure of a building
CA2579938C (en) Self centering shaft wall system
JP7031265B2 (en) Building reinforcement structure and building reinforcement method
KR101879291B1 (en) Reinforcement module for preventing falling down of brick wall
KR101259247B1 (en) Damping type structure
KR20170050532A (en) form for composite beam
CN112814223B (en) Assembled steel construction that possesses shock attenuation performance and prefabricated externally-hung wallboard's connected node
JP4758683B2 (en) Reinforcement structure of unit building
JP2007262691A (en) Sliding support, method of mounting it, and base isolation structure
JP2016199882A (en) Handrail fitting structure in balcony
JP6045807B2 (en) Seismic element intensive structure
JP6578553B1 (en) Expansion joint
KR101574628B1 (en) Reinforcement structure of the steel beam
CN109914594A (en) A kind of damping type steel structure node component
CN109184012A (en) A kind of A grades of very golden fire prevention load bearing heat preserving plate
JP6543469B2 (en) Coupling mechanism
JP2015094077A (en) Column reinforcement structure
CN210562845U (en) Combined aluminum profile for curtain wall
JP5399025B2 (en) Fireproof board for curtain wall and support structure of fireproof board
JP2006161862A (en) Vibration damping device for woody housing
JP2015227600A (en) Composite beam
KR102240355B1 (en) Form system for construction of slab for reducing floor impact

Legal Events

Date Code Title Description
EEER Examination request