CA2526300A1 - Processing biological waste materials to provide energy - Google Patents

Processing biological waste materials to provide energy Download PDF

Info

Publication number
CA2526300A1
CA2526300A1 CA002526300A CA2526300A CA2526300A1 CA 2526300 A1 CA2526300 A1 CA 2526300A1 CA 002526300 A CA002526300 A CA 002526300A CA 2526300 A CA2526300 A CA 2526300A CA 2526300 A1 CA2526300 A1 CA 2526300A1
Authority
CA
Canada
Prior art keywords
waste materials
biogas
rich
synthesis gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002526300A
Other languages
French (fr)
Inventor
Michael Joseph Bowe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CompactGTL PLC
Original Assignee
Accentus Plc
Michael Joseph Bowe
Compactgtl Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accentus Plc, Michael Joseph Bowe, Compactgtl Plc filed Critical Accentus Plc
Publication of CA2526300A1 publication Critical patent/CA2526300A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Abstract

Biological waste materials are mixed with water and subjected to intense ultrasonic irradiation (14), before being supplied to an anaerobic digester (16), so that a biogas is generated which contains methane. The biogas is supplied to a catalytic reformer unit (20) to form a synthesis gas; steam may also be supplied, and the proportion of steam to methane is adjustable so that the synthesis gas may be rich in hydrogen or alternatively rich in carbon monoxide. Adjusting the proportion of steam to biogas enables the output of the process to be adjusted according to market conditions. If the synthesis gas is rich in hydrogen, it may be supplied to a fuel cell (26) to generate electricity, while if it is rich in carbon monoxide, it may be used to generate liquid hydrocarbons in a Fischer-Tropsch synthesis reactor (32).

Description

_ 2 -Processing Biological Waste Materials to Provide Energy The present invention relates to a process and an apparatus for processing biological waste materials, which may be based on plant or animal waste products, to provide energy in useful forms such as electricity or hydrocarbon fuel.
The use of anaerobic digestion to produce a biogas from biological waste materials is known, but the resulting gas mixture, which primarily consists of methane and a significant proportion of carbon dioxide, has been perceived as suitable only for combustion to generate heat or electricity. For example JP 2002-336898 A (Ebara) describes a process for treating sludge from a waste water treatment, in which the sludge is treated with ultrasound and then subjected to methane fermentation, so that cells are broken down, and the decomposition rate in the fermentation stage is increased. Similarly, DE l96 15 551 A (Ingan GmbH) describes a multistage anaerobic treatment for a wide range of waste biomass materials, using ultrasound to disrupt cells, and digestion to generate methane; this may also entail warming the waste material and adjusting its pH. The present invention involves the appreciation that biogas may be used as a flexible feedstock so that energy may be provided in a variety of ways.
According to the present invention there is provided a process for treating biological waste materials, the process comprising the steps of:
a) combining the waste materials with water, unless the waste materials already include significant quantities of water;
b) subjecting the waste materials and water to intense ultrasonic irradiation;
c) feeding the irradiated waste materials into an anaerobic digester, so that a biogas is generated containing methane;
characterised by d) feeding the biogas to a oatalytic reformer unit to form a synthesis gas; and e) adjusting the proportion of steam to methane in the gas mixture in the reformer unit, such that the synthesis gas may be rich. in hydrogen or alternatively rich in carbon monoxide.
Adjusting the proportion of steam to methane enables the output of the process to be adjusted according to market conditions. Thus the process preferably includes at least one of the additional steps:
f) if the synthesis gas is rich in hydrogen, supplying it to a fuel cell to generate electricity; or g) if the synthesis gas is rich in carbon monoxide, supplying it to a Fischer-Tropsch synthesis reactor to generate liquid hydrocarbons.
It will be appreciated that the biogas may contain sulphurous compounds, and it may therefore be desirable to subject the biogas to desulphurisation before it is fed to the catalytic reformer unit.
The invention also provides apparatus for performing the said process.
The invention will now be further and more particularly described by way of example only, and with reference to the accompanying drawings in which:
Figure 1 shows a diagrammatic view of a plant for performing the overall prooesses of the invention Referring to figure 1, a plant 10 is shown for treating biomass waste to generate energy. A biomass waste stream 11, which may include plant and/or animal waste, is combined with water (unless it is already sufficiently wet) and the mixture is passed through an ultrasonic irradiation duct 12 surrounded by ultrasonic transducers 14 energised so that the mixture is conditioned: the effect of the intense ultrasound may be to break down some of the particulate materials in the waste, and to increase the rate of hydrolysis, and also to release water-soluble nutrients from the waste so that they are more readily accessible to microorganisms.
The treated wet waste stream is fed into an anaerobic digester 16. The non-digestible solid materials emerge as a compost, while the bulk of the biodegradable waste material generates a biogas stream 18. This typically comprises between 55 and 60% methane and between 30 and 45% carbon dioxide, with a proportion of water vapour.
Preferably the ultrasonic transducers 14 are attached to the wall of the tube 12 in an array extending both circumferentially and longitudinally, each transducer being connected to a signal generator so that each transducer radiates no more than 3 W/cm2, the transducers being sufficiently close together and the number of transducers being sufficiently high that the power dissipation within the vessel is between 25 and 150 W/litre. The values of power given here are those of the electrical power delivered to the transducers, as this is relatively easy to determine. Such an irradiation vessel is described in WO 00/35579. It is desirable to ensure no focusing of the ultrasound occurs, and this may be achieved by energising groups of adjacent transducers in succession. Where the vessel is cylindrical it is particularly preferable to avoid energising diametrically opposite transducers at the same time. The non-focusing can also be achieved by energising adjacent transducers, or adjacent groups of transducers, at different frequencies; and in particular to vary the frequency at which each transducer or group~of transducers is energized over a limited range, for example between 19.5 kHz and 20.5 kHz.
The biogas is fed to a compact catalytic reformer 20 in which it flows through a reaction channel 21 kept at an elevated temperature that may for example be 800°C.
The first stage involves steam reforming, in which methane reacts with water vapour, that is to say the reaction:
H20 + CH4 -~ CO + 3 HZ
This reaction is endothermic, and may be catalysed by a rhodium or platinum/rhodium catalyst in the reaction channel 21. The heat required to cause this reaction may be provided by combustion in an adjacent channel 22 of an inflammable gas such as methane or hydrogen, which is exothermic and may be catalysed by a palladium/platinum catalyst. In both cases the catalyst is preferably on a stabilised-alumina support which forms a coating typically less than 100 microns thick on a metal substrate. Both these reactions may take place at atmospheric pressure, although alternatively the reforming reaction might take place at an elevated pressure. The heat generated by the combustion would be conducted through the metal sheet separating the adjacent channels. The steam reforming reaction can be encouraged by adding steam to the biogas stream before it is supplied to the reaction channel 21.
If no steam is added the biogas will undergo the dry reforming reaction:
COZ + CH4 --~ 2 CO + 2 Hz The proportion of methane that undergoes dry reforming can be enhanced by cooling the biogas stream 18 to condense and remove water vapour. Hence by adjusting the proportion of water added at the inlet to the reaction channel 21, the ratio of hydrogen to carbon monoxide in the resulting synthesis gas stream 24 can be adjusted between about 2:1 to 1:1.
On the other hand, if a larger proportion of water vapour is added then some of the carbon monoxide will undergo the water gas shift reaction, which increases the proportion of hydrogen still further:
CO -~- H20 -~ COz + Hz One option is then to supply the synthesis gas 24 to a fuel cell 26 in which the hydrogen gas reacts indirectly with oxygen from the air to generate electricity and to produce water. In this case reformer 20 should be operated to maximise the proportion of hydrogen in the synthesis gas stream 24. For some types of fuel cell 26, for example a solid oxide cell, the hydrogen/carbon monoxide mixture may be supplied directly to the fuel cell. Alternatively the hydrogen gas may be separated from the other gases using a membrane separation unit 28, for example using a platinum or palladium membrane, or a palladium/copper membrane, so as to generate pure hydrogen gas for use in the fuel cell 26. In this case the fuel cell may be a proton exchange membrane cell. The resulting tail gas, consisting primarily of carbon monoxide, is preferably supplied to the combustion channel 22.
The other option is to subject the synthesis gas 24 to a Fischer-Tropsch synthesis to generate a longer chain hydrocarbon, that is to say a reaction of the type:
n CO ~- 2 n Hz -~ ( CH2 ) n + n H20 which is an exothermic reaction, occurring at an elevated temperature, typically between 190 and 300°C, for example 210°C, and an elevated pressure typically between 2 MPa and 4 MPa, for example 2.5 MPa, in the presence of a Catalyst such as cobalt, with a platinum or ruthenium promoter. In this case the synthesis gas stream 24 is compressed by a pump 30 and then supplied to a compact catalytic reactor 32, to flow through reaction channels 33 adjacent to heat exchange channels 34. The exact nature of the organic compounds formed by the reaction depends on the temperature, the pressure, the residence time and the catalyst, as well as the ratio of carbon monoxide to hydrogen. The heat given out by this synthesis reaction may be used to provide at least part of the heat required by the steam/methane reforming reaction, for example a heat transfer fluid may be used to transfer the heat from the reactor 32 and used to preheat at least one of the streams supplied to the reforming reactor 20. The preferred catalyst for the Fischer-Tropsch synthesis comprises a coating of lanthanum-stabilised gamma-alumina with about 10-400 cobalt (by weight compared to the alumina), and with a ruthenium/platinum promoter which is less than loo the weight of the cobalt, and with a basicity promoter such as gadolinium oxide which may be less than 5o the weight of the cobalt.
The gas stream emerging from 30 Fischer-Tropsch reactor 32 will contain hydrocarbons of a range of different molecular weights, and also water vapour.
These may be condensed to provide the desired high molecular weight hydrocarbons as an. output stream 36.
The low molecular weight tail gases (consisting primarily of hydrogen, methane and ethane) are supplied to the combustion channel 22 of the reforming reactor 20. The water that also condenses may be separated from the hydrocarbons and may be returned to the digester 16.
If the biogas stream 18 contains any sulphur-containing compounds it is preferably desulphurised before reaching the reforming reactor 20. This may involve a liquid scrubbing absorption, for example using an aqueous solution of a chelated ferric salt. This converts the ferric salt to the ferrous form; the solution can be recirculated through an air scrubber to regenerate the ferric salt and to form a precipitate of sulphur. Alternatively, it may use a desulphurisation technique that requires elevated temperatures, for ,example a solid state absorption process.
A benefit of subjecting the waste stream 11 to intense ultrasound is that the bio-availability of plant cellulose is increased by disrupting lignin layers, so that the rate of digestion in the digester 16 is increased and that the waste stream may contain significant proportions of woody material containing lignin. The process is particularly suited to treating wet organic materials, as no drying is required and indeed in some cases no water will need to be added. The ultrasound enhances the rate of digestion so that the retention time in the digester 16 is reduced and consequently a smaller digester 16 can be used to treat a given quantity of waste material.
It will be appreciated that both the fuel cell 26 and the digester 16 also generate heat. This heat may itself be useful, for example for community heating.

_ g _ The plant 10 shown in figure 1 might for example be used to treat 20 tonnes of organic waste of approximately 15% by weight of solids, and to produce about seven barrels per day of synthetic high-quality hydrocarbon that may be converted to automotive fuel use.

Claims (7)

1. A process for treating biological waste materials, the process comprising the steps of:

a) combining the waste materials with water, unless the waste materials already include significant quantities of water;

b) subjecting the waste materials and water to intense ultrasonic irradiation;

c) feeding the irradiated waste materials into an anaerobic digester, so that a biogas is generated containing methane;

characterised by d) feeding the biogas to a catalytic reformer unit to form a synthesis gas; and e) adjusting the proportion of steam to methane in the gas mixture in the reformer unit, such that the synthesis gas may be rich in hydrogen or alternatively rich in carbon monoxide.
2. A process as claimed in claim 1 that also includes at least one of the additional steps:

f) if the synthesis gas is rich in hydrogen, supplying it to a fuel cell to generate electricity; or g) if the synthesis gas is rich in carbon monoxide, supplying it to a Fischer-Tropsch synthesis reactor to generate liquid hydrocarbons.
3. A process as claimed in claim 1 or claim 2 wherein the biogas is subjected to desulphurisation before it is fed to the catalytic reformer unit.
4. A process as claimed in claim 1 or claim 2 wherein the biogas is cooled to condense and separate water vapour from it, before it is fed to the catalytic reforming unit.
5. A plant for treating biological waste materials, the plant comprising:

a) means to combine the waste materials with water, unless the waste materials already include significant quantities of water;

b) an ultrasonic irradiator to subject the waste materials and water to intense ultrasonic irradiation;

c) an anaerobic digester for digesting the ultrasonically irradiated waste materials so that a biogas is generated that contains methane;

characterised by d) a catalytic reformer unit to form a synthesis gas, to which biogas from the digester is supplied; and e) means to adjust the proportion of steam to methane in the gas mixture in the reformer unit, such that the synthesis gas may be rich in hydrogen or alternatively rich in carbon monoxide
6. A plant as claimed in claim 5 that also includes:

f) a fuel cell to generate electricity; and g) a Fischer-Tropsch synthesis reactor to generate liquid hydrocarbons;

and means to control the proportions of the synthesis gas supplied to the fuel cell or to the Fischer-Tropsch synthesis reactor.
7. A plant as claimed in claim 5 or claim 6 also comprising means to remove water vapour from the biogas supplied to the reformer unit, so as to further adjust the proportion of steam to methane undergoing reforming.
CA002526300A 2003-06-25 2004-06-15 Processing biological waste materials to provide energy Abandoned CA2526300A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0314806.1 2003-06-25
GBGB0314806.1A GB0314806D0 (en) 2003-06-25 2003-06-25 Processing biological waste materials to provide energy
PCT/GB2004/002491 WO2005001976A1 (en) 2003-06-25 2004-06-15 Processing biological waste materials to provide energy

Publications (1)

Publication Number Publication Date
CA2526300A1 true CA2526300A1 (en) 2005-01-06

Family

ID=27637318

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002526300A Abandoned CA2526300A1 (en) 2003-06-25 2004-06-15 Processing biological waste materials to provide energy

Country Status (5)

Country Link
EP (1) EP1636869A1 (en)
CA (1) CA2526300A1 (en)
GB (1) GB0314806D0 (en)
NO (1) NO20056062L (en)
WO (1) WO2005001976A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122840A1 (en) * 2021-05-12 2022-11-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation and process for the production of synthesis gas having a means of limiting CO2 emissions by means of steam
WO2023242358A1 (en) * 2022-06-17 2023-12-21 Topsoe A/S Combination of synthesis section and biogas producing unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094821A4 (en) * 2006-11-21 2012-06-13 Univ Columbia Methods and systems for accelerating the generation of methane from a biomass
RU2535967C1 (en) * 2013-09-02 2014-12-20 Общество с ограниченной ответственностью "Научная интеграция" Method of preparation of raw material for anaerobic processing of organic wastes and the unit for its implementation
FR3066502B1 (en) * 2017-05-16 2021-08-06 Yannco DEVICE FOR TRANSFORMATION OF ORGANIC MATERIALS INTO MIXTURES OF METHANE (CH4) AND / OR HYDROGEN (H2) AND / OR CARBON DIXOYDE (CO2), BY COUPLING THERMOCHEMICAL AND BIOLOGICAL PROCESSES
RU186729U1 (en) * 2018-05-24 2019-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный аграрный университет" (ФГБОУ ВО Южно-Уральский ГАУ) PLANT FOR PRODUCING BIOGAS AND EFFLUENT DISINFECTION
CN113460963A (en) * 2021-08-03 2021-10-01 乔治洛德方法研究和开发液化空气有限公司 Method for producing hydrogen from biogas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615551C2 (en) * 1996-04-19 1998-01-15 Ingan Gmbh Ingenieurbetrieb Fu Process for multi-stage anaerobic treatment of biomass for the production of biogas and device for carrying out the process
JP3103332B2 (en) * 1997-10-23 2000-10-30 株式会社東芝 Fuel cell power generation equipment
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
GB9827360D0 (en) * 1998-12-12 1999-02-03 Aea Technology Plc Process and apparatus for irradiating fluids
EP1192238A1 (en) * 1999-03-31 2002-04-03 Syntroleum Corporation Fuel-cell fuels, methods, and systems
JP2001023677A (en) * 1999-07-13 2001-01-26 Ebara Corp Fuel cell power generating method and fuel cell power generating system
CN1215592C (en) * 2000-03-02 2005-08-17 株式会社荏原制作所 Fuel cell power generation method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122840A1 (en) * 2021-05-12 2022-11-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation and process for the production of synthesis gas having a means of limiting CO2 emissions by means of steam
WO2023242358A1 (en) * 2022-06-17 2023-12-21 Topsoe A/S Combination of synthesis section and biogas producing unit

Also Published As

Publication number Publication date
NO20056062L (en) 2005-12-20
GB0314806D0 (en) 2003-07-30
WO2005001976A1 (en) 2005-01-06
EP1636869A1 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US20070029264A1 (en) Processing biological waste materials to provide energy
Budzianowski Negative net CO2 emissions from oxy-decarbonization of biogas to H2
CA3032787C (en) Method and device for biogas upgrading and hydrogen production from anaerobic fermentation of biological material
KR20060126604A (en) Processing natural gas to form longer-chain hydrocarbons
KR20060127197A (en) Converting natural gas to longer-chain hydrocarbons
JP2006274013A (en) Biomass gasification system
Deheri et al. Purified biohythane (biohydrogen+ biomethane) production from food waste using CaO2+ CaCO3 and NaOH as additives
CA2338494A1 (en) Catalytic microwave conversion of gaseous hydrocarbons
CA3052504A1 (en) Production of liquid hydrocarbons, biofuels and uncontaminated co2 from gaseous feedstock
WO2016203944A1 (en) Synthesis gas production method and apparatus
CA2526300A1 (en) Processing biological waste materials to provide energy
KR101953550B1 (en) An Hydrogen Manufacturing Apparatus and a Method of Producing Hydrogen using Thereof
RU2006114573A (en) HIGH TEMPERATURE REFORMING
Verma et al. Overview of biogas reforming technologies for hydrogen production: advantages and challenges
JP4113951B2 (en) Methanol production method using biomass
WO2017027330A1 (en) Conversion of greenhouse gases to synthesis gas by dry reforming
WO2021261417A1 (en) Hydrocarbon generation system
RU2006122358A (en) ORGANIC WASTE PROCESSING METHOD (OPTIONS)
CN117677686A (en) Apparatus and method for producing synthetic fuel without discharging carbon dioxide
JP7069892B2 (en) Hydrogen production method
Madhania et al. Biogas quality upgrading by carbon mineralization with calcium hydroxide solution in continuous bubble column reactor
US20220323927A1 (en) Process and apparatus for providing a feedstock
JPH1135503A (en) Production apparatus for methanol from digestion gas
WO2023242360A1 (en) Combination of methanol loop and biogas producing unit
WO2023242358A1 (en) Combination of synthesis section and biogas producing unit

Legal Events

Date Code Title Description
FZDE Dead