WO2021261417A1 - Hydrocarbon generation system - Google Patents

Hydrocarbon generation system Download PDF

Info

Publication number
WO2021261417A1
WO2021261417A1 PCT/JP2021/023306 JP2021023306W WO2021261417A1 WO 2021261417 A1 WO2021261417 A1 WO 2021261417A1 JP 2021023306 W JP2021023306 W JP 2021023306W WO 2021261417 A1 WO2021261417 A1 WO 2021261417A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon
biogas
hydrogen
carbon dioxide
generation unit
Prior art date
Application number
PCT/JP2021/023306
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 成相
巧 遠藤
博之 鎌田
光亮 稲葉
順 辻川
範貴 水上
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2022531957A priority Critical patent/JP7392854B2/en
Publication of WO2021261417A1 publication Critical patent/WO2021261417A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • This disclosure relates to a hydrocarbon generation system.
  • the biogas obtained by methane fermentation contains not only methane but also carbon dioxide, which is usually about 10 to several tens of percent. Therefore, it is not easy to directly use biogas as a raw material for city gas or the like, which requires a high concentration of methane.
  • Patent Document 1 discloses a method for producing high-purity methane, which comprises a concentration step of increasing the methane concentration of biogas by contacting the biogas with a physical absorption liquid and a chemical absorption liquid. There is.
  • the hydrocarbon generation system includes a bioreactor that produces biogas containing methane and carbon dioxide.
  • the hydrocarbon generation system comprises a hydrocarbon generator that produces a hydrocarbon from a raw material containing biogas and hydrogen.
  • the hydrocarbon generation system includes a measurement unit that measures the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generation unit and the flow rate of the biogas. In the hydrocarbon generation system, an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measurement unit and the flow rate of biogas is supplied to the hydrocarbon generation unit.
  • Hydrocarbons may contain at least one of paraffin and olefin.
  • the hydrocarbon generator may include a metanation apparatus that produces methane by metanation from raw materials containing biogas and hydrogen.
  • the hydrocarbon generator may include an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons by a Fischer-Tropsch reaction from a raw material containing biogas and hydrogen.
  • the hydrocarbon generator consists of an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction, and unreacted carbon dioxide discharged from the FT synthesizer.
  • the hydrocarbon generator consists of an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction, and methane by metanation from a raw material containing biogas and hydrogen. May include a metanation device that produces.
  • the hydrocarbon generation system further comprises a hydrocarbon pre-generation unit that produces a hydrocarbon from a gas containing a gas having a higher carbon dioxide concentration than biogas and a raw material containing hydrogen, and the hydrocarbon generation unit is discharged from the hydrocarbon pre-generation unit.
  • Hydrocarbons may be produced from raw materials containing unreacted carbon dioxide, biogas and hydrogen.
  • the hydrocarbon pre-producing unit may include a methanation device that produces methane by metanation, and the hydrocarbon generating unit may include a meta-nation device that produces methane by metanation.
  • the bioreactor includes a fermenter, and the fermenter may be heated by the heat of reaction generated in the hydrocarbon generator.
  • FIG. 1 is a schematic view showing a hydrocarbon generation system according to an embodiment.
  • FIG. 2 is a schematic view showing an example of a hydrocarbon generation unit according to an embodiment.
  • FIG. 3 is a schematic view showing an example of a hydrocarbon generation unit according to an embodiment.
  • FIG. 4 is a schematic diagram showing a hydrocarbon generation system according to an embodiment.
  • the hydrocarbon generation system 1 according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • the hydrocarbon generation system 1 according to the present embodiment includes a bioreactor 10, a purification unit 20, a hydrocarbon generation unit 30, a hydrogen supply unit 40, a measurement unit 50, and a control unit 60.
  • the hydrocarbon generation unit 30 can generate hydrocarbons from the biogas without recovering the biogas generated in the bioreactor 10 by a carbon dioxide recovery device or the like. .. Therefore, carbon dioxide contained in biogas can be used as a valuable resource without being separated.
  • Bioreactor 10 The bioreactor 10 produces biogas containing methane and carbon dioxide.
  • Biogas can be produced from biomass as a raw material.
  • Biomass is a resource derived from animals and plants, and by using such renewable energy instead of fossil resources, it is possible to suppress the emission of carbon dioxide, which is considered to be one of the causes of global warming.
  • Biomass includes, for example, wood, herbs, paper, livestock excrement, domestic wastewater such as sewage sludge and septic tank sludge, and organic matter such as food waste.
  • biomass that has undergone pretreatment such as crushing and diluting the supplied raw material and removing foreign substances in the supplied raw material is supplied to the bioreactor 10. May be good.
  • the bioreactor 10 may be a batch type in which the supply, fermentation and discharge of raw materials are repeated as one unit, or may be a continuous type in which the supply, fermentation and discharge of raw materials are continuously performed simultaneously.
  • the bioreactor 10 may include a fermenter for performing a methane fermentation treatment.
  • the bioreactor 10 may include only a single fermenter or may include a plurality of fermenters.
  • the bioreactor 10 may include a heating unit that heats the temperature in the fermenter to a predetermined temperature so that the fermentation temperature becomes the optimum temperature.
  • the bioreactor 10 includes a fermenter, and the fermenter may be heated by the reaction heat generated in the hydrocarbon generation unit 30.
  • the hydrocarbon generation unit 30 can generate a hydrocarbon by a methanation reaction, a Fischer-Tropsch reaction, or the like, and these reactions are generally exothermic reactions. By heating the fermenter with this heat of reaction, the heat energy generated by the reaction can be effectively utilized.
  • the fermenter may contain microorganisms for methane fermentation.
  • the method for retaining microorganisms is not particularly limited, and examples thereof include a fixed bed method, a fluidized bed method, and a USAB (upward flow anaerobic sludge bed) method.
  • a carrier carrying a microorganism is usually filled in a fermenter.
  • a carrier carrying a microorganism is usually housed in a fermenter and flows in the fermenter.
  • a granule in which microorganisms are aggregated without being supported on a carrier is usually housed in a fermenter.
  • the particle size of the granule is, for example, about 0.5 to 2 mm.
  • methane fermentation many anaerobic microorganisms produce methane from biomass. Specifically, organic substances including proteins, carbohydrates and lipids are hydrolyzed to produce amino acids, sugars and fatty acids. Amino acids, sugars and fatty acids are decomposed into acetic acid, carbon dioxide and hydrogen. Then, the methanogen produces methane from acetic acid, carbon dioxide and hydrogen. In the bioreactor 10, digestive juice is also produced by methane fermentation.
  • the methanogen may contain a high temperature methanogen that is active at a high temperature such as 50 ° C to 60 ° C, and may contain a medium temperature methanogen that is active at a medium temperature such as 35 ° C to 38 ° C. You may be. When high temperature methanogens are used, the time for methane fermentation can be shortened. When low-temperature methane bacteria are used, the temperature required for heating the fermenter can be reduced.
  • Biogas includes methane and carbon dioxide as described above.
  • the carbon dioxide contained in the biogas is, for example, 10% by volume to 40% by volume.
  • biomass may contain sulfur components such as hydrogen sulfide and methyl mercaptan, organic polysiloxane, and impurities such as ammonia, depending on the components contained in the raw material biomass. .. Therefore, by removing the impurities as described above by the purification unit 20, it is possible to suppress the adhesion of impurities to the hydrocarbon generation unit 30 and the piping, which will be described later, and the poisoning of the catalyst of the hydrocarbon generation unit 30. .. When the need to remove these impurities is low, the purification unit 20 is not required, so that the hydrocarbon generation system 1 does not have to include the purification unit 20.
  • the hydrocarbon generation unit 30 generates a hydrocarbon from a raw material containing biogas and hydrogen.
  • the hydrocarbon generation unit 30 By generating hydrocarbons from the biogas generated by the bioreactor 10 and the hydrogen-containing raw materials supplied by the hydrogen supply unit 40, carbon dioxide contained in the biogas can be used as a valuable resource, and is a fossil resource. The use of can be reduced. Since the amount of carbon dioxide in the product can be reduced, there is less need to recover it with a carbon dioxide recovery device that uses a chemical absorption method, etc., and the equipment required to recover carbon dioxide from biogas Installation and maintenance costs can be reduced.
  • the hydrocarbon generation unit 30 includes a reactor, and the catalyst may be arranged in a flow path through which the raw material supplied to the reactor passes. Hydrocarbons can be produced by contacting the raw material with the catalyst.
  • the hydrocarbon preferably contains, for example, at least one of paraffin and olefin. Paraffin means alkane and olefin means alkene. Since these hydrocarbons can be used as an energy source and a raw material for chemical products, they have high utility value.
  • Hydrocarbons can be produced by a methanation reaction, a Fischer-Tropsch reaction, or the like, as described later. These reactions are generally exothermic reactions, and the temperature of the catalyst layer may reach 700 ° C. or higher depending on the conditions. However, since biogas contains methane and the concentration of carbon dioxide is reduced by hydrocarbons, the reaction can proceed under relatively mild conditions. Therefore, the generation of heat of reaction can be suppressed, and the heat resistant temperature of the catalyst layer and the reactor can be lowered. These reaction conditions are, for example, a reaction temperature of 200 ° C. to 400 ° C. and a pressure in the reactor of 0.1 MPa to 10 MPa.
  • the hydrocarbon generation unit 30 may include a metanation device 31 that produces methane by metanation from a raw material containing biogas and hydrogen.
  • a product containing methane and water can be produced from a raw material containing carbon dioxide and hydrogen. Therefore, by removing water from the product, a product having a high methane concentration can be obtained. Therefore, the methane obtained by the hydrocarbon generation unit 30 can be directly used as an energy source in the factory or directly supplied as city gas.
  • the methanation device 31 may include a known reactor such as a multi-tube reactor such as a shell-and-tube reactor.
  • the selectivity of methane produced by methane is high, for example, methane is produced from 85% or more of the carbon dioxide contained in the raw material.
  • the rate at which methane is produced depends on the reaction conditions and may be 90% or more, or 95% or more.
  • the catalyst used in the metanation apparatus 31 is not particularly limited as long as it can generate methane, and a known catalyst such as a nickel catalyst or a ruthenium catalyst can be used.
  • a nickel catalyst is a catalyst containing nickel as an active ingredient
  • a ruthenium catalyst is a catalyst containing ruthenium as an active ingredient.
  • the content of the active ingredient is preferably 0.5% by mass or more, and more preferably 10% by mass or more of the whole catalyst.
  • the content of the active ingredient is preferably 10% by mass or more of the entire catalyst
  • ruthenium is contained as the active ingredient
  • the content of the active ingredient is the content of the entire catalyst. It is preferably 0.5% by mass or more. From the viewpoint of cost and high methane selectivity, it is preferable that the metanation apparatus 31 is provided with a nickel catalyst.
  • the hydrocarbon generation unit 30 may include an FT synthesizer 32 that produces a hydrocarbon of at least one of paraffin and olefin by a Fischer-Tropsch reaction from a raw material containing biogas and hydrogen.
  • hydrocarbons of at least one of paraffin and olefin can be produced from a raw material containing carbon dioxide and hydrogen.
  • paraffin and olefin contains a hydrocarbon having 1 to 4 carbon atoms.
  • paraffin having 1 to 4 carbon atoms include methane, ethane, propane and butane.
  • olefins having 1 to 4 carbon atoms include ethylene, propylene, 1-butene, 2-butene, isobutene and 1,3-butadiene. Among these, olefins having 2 or more and 4 or less carbon atoms are useful because they can be used as raw materials for plastics.
  • the product produced by the FT synthesizer 32 may contain a compound other than the above.
  • the FT synthesizer 32 may include, for example, a known reactor such as a multi-tube reactor such as a shell-and-tube reactor, a fluidized bed reactor or a slurry bed reactor.
  • the product produced by the Fischer-Tropsch reaction usually contains multiple types of hydrocarbons.
  • hydrocarbons of at least one of paraffin and olefin are produced from carbon dioxide of 20% or more and less than 85% of the carbon dioxide contained in the raw material.
  • the rate at which hydrocarbons are produced depends on the reaction conditions and may be 35% or more, or 50% or more. Further, the ratio of hydrocarbons produced may be 65% or less, or 55% or less.
  • the catalyst used in the FT synthesizer 32 is not particularly limited as long as it can generate a hydrocarbon of at least one of paraffin and olefin, and a known catalyst such as an iron catalyst or a cobalt catalyst can be used. .. Iron catalysts can mainly produce light hydrocarbons, and cobalt catalysts can mainly produce heavy hydrocarbons, including waxes. Further, the iron catalyst can mainly produce olefins and paraffin, and the cobalt catalyst can mainly produce paraffin.
  • the iron catalyst is a catalyst containing iron as an active ingredient, and the cobalt catalyst is a catalyst containing cobalt as an active ingredient. The content of the active ingredient is preferably 10% by mass or more of the whole catalyst. It is preferable that the FT synthesizer 32 is provided with an iron catalyst. This makes it possible to produce a light olefin (lower olefin) that can also be used as a raw material for plastics.
  • the hydrocarbon generation unit 30 may include at least one of the methanation device 31 and the FT synthesizer 32. That is, the hydrocarbon generation unit 30 may include only the methanation device 31, may include only the FT synthesizer 32, or may include both the metanation device 31 and the FT synthesizer 32. ..
  • the hydrocarbon generation unit 30 may include an FT synthesizer 32 and a methanation device 31, as shown in FIG. 2, for example.
  • the FT synthesizer 32 may produce at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction.
  • the methanation device 31 may generate methane by methanation from a raw material containing unreacted carbon dioxide and hydrogen discharged from the FT synthesizer 32.
  • the FT synthesizer 32 can generate at least one of paraffin and olefin hydrocarbons from carbon dioxide, but is discharged from the FT synthesizer 32 without being converted to hydrocarbons as compared with the metanation device 31. There is a tendency for a large amount of unreacted carbon dioxide. Therefore, by arranging the methanation device 31 in series after the FT synthesizer 32, methane can be produced from unreacted carbon dioxide with a high selectivity by the methanation device 31. Therefore, the amount of carbon dioxide discharged as an unreacted product from the hydrocarbon generation unit 30 can be reduced, and the unreacted carbon dioxide can be effectively used. In addition, since the concentration of carbon dioxide in the product can be reduced, the amount of heat in the product can be improved. Since the FT synthesizer 32 produces not only hydrocarbons but also water, it is preferable that a gas-liquid separator capable of removing water is provided between the FT synthesizer 32 and the methanation device 31. ..
  • the hydrocarbon generation unit 30 may include an FT synthesizer 32 and a methanation device 31.
  • the FT synthesizer 32 may produce at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction.
  • the methanation device 31 may generate methane by methanation from a raw material containing biogas and hydrogen.
  • the metanation device 31 can generate methane with a high selectivity.
  • the FT synthesizer 32 can generate at least one of paraffin and olefin hydrocarbons.
  • the calorific value of the gas generated by the metanation apparatus 31 can be adjusted by mixing the methane produced by the metanation apparatus 31 and the hydrocarbon produced by the FT synthesis apparatus 32.
  • FIGS. 2 and 3 have described a mode in which the metanation device 31 and the FT synthesizer 32 are arranged in series or in parallel.
  • the hydrocarbon generation unit 30 may be a combination of these.
  • the metanation device 31 and the FT synthesizer 32 are arranged in parallel as in the form of FIG. 3, and the metanation device 31 is arranged in series as in the form of FIG. 2 after the FT synthesizer 32. good.
  • FIGS. 2 and 3 an example in which two different hydrogen supply units 40 supply hydrogen to the FT synthesizer 32 and the metanation device 31 has been described, but the FT synthesizer 32 and the meta are described by a common hydrogen supply unit 40. Hydrogen may be supplied to the nation device 31.
  • the methanation device 31 may include only a single reactor, or may include a plurality of reactors.
  • the FT synthesizer 32 may include only a single reactor or may include a plurality of reactors.
  • the number of reactors can be appropriately determined, but when the concentration of carbon dioxide in the biogas is high, it is preferable that the hydrocarbon generation unit 30 includes a plurality of reactors. On the other hand, when the concentration of carbon dioxide in the biogas is low, the hydrocarbon generator 30 may contain only a single reactor.
  • each reactor may be arranged in series or in parallel.
  • the hydrocarbon generation system 1 may include a separation device that separates hydrocarbons according to the chemical structure by fractional distillation or the like.
  • the separation device may include at least one separation column such as a demethane column, a deethane column, a deethylene column, a depropane column, a depropylene column, a debutane column and a debutene column.
  • separation towers a plurality of types of hydrocarbons can be separated according to the chemical structure such as methane, ethane, ethylene, propane, propylene, butane and butene.
  • the hydrogen supply unit 40 supplies hydrogen to the hydrocarbon generation unit 30.
  • the hydrogen supply unit 40 may include a hydrogen generation unit 41 and a hydrogen tank 42.
  • the hydrogen generation unit 41 is not particularly limited as long as it can generate hydrogen, but it is preferable to use renewable energy to generate hydrogen. By utilizing renewable energy, carbon dioxide emissions can be reduced as a whole in the hydrocarbon generation system 1.
  • the hydrogen generation unit 41 may use renewable energy such as solar power, wind power, and hydraulic power to electrolyze water to generate hydrogen. Further, the hydrogen supply unit 40 may gasify the biomass to generate hydrogen.
  • the hydrogen tank 42 may store the hydrogen generated by the hydrogen generation unit 41, or a commercially available hydrogen tank filled with hydrogen may be used.
  • Hydrogen may be directly supplied from the hydrogen generation unit 41 to the hydrocarbon generation unit 30 without going through the hydrogen tank 42, or may be supplied from the hydrogen tank 42 to the hydrocarbon generation unit 30.
  • the mixed gas containing carbon dioxide and hydrogen may be compressed by a compressor and supplied to the hydrocarbon generation unit 30.
  • the measuring unit 50 measures the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generating unit 30 and the flow rate of the biogas.
  • an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measurement unit 50 and the flow rate of biogas is supplied to the hydrocarbon generation unit 30.
  • the concentration of carbon dioxide contained in biogas and the flow rate of biogas may vary depending on a plurality of factors such as the state of bioreactor 10, microorganisms and biomass contained in raw materials. Therefore, when a predetermined fixed amount of hydrogen is supplied to the hydrocarbon generation unit 30, the amount of carbon dioxide supplied to the hydrocarbon generation unit 30 varies depending on the above-mentioned plurality of elements, and the target hydrocarbon is efficiently produced. It may not be possible to obtain it well. Further, in order to efficiently obtain a hydrocarbon having a desired chemical structure, it is preferable to make an optimum ratio of carbon dioxide and hydrogen supplied to the hydrocarbon generation unit 30.
  • the concentration of carbon dioxide in the biogas and the flow rate of the biogas are measured, and hydrogen is supplied to the hydrocarbon generation unit 30 according to the concentration of carbon dioxide and the flow rate of the biogas.
  • the mixed gas adjusted so that the ratio of carbon dioxide and hydrogen is within a predetermined range can be supplied to the hydrocarbon generation unit 30. This makes it possible to efficiently generate hydrocarbons of a desired chemical species from carbon dioxide in biogas.
  • the measuring unit 50 may include a densitometer and a flow meter.
  • the densitometer is not particularly limited as long as it can measure the concentration of carbon dioxide, and a known densitometer can be used.
  • the flow meter is not particularly limited as long as it can measure the flow rate of biogas, and a known flow meter can be used.
  • the measuring unit 50 may include an integrated measuring instrument capable of measuring the concentration and the flow rate, or may include a plurality of separate measuring instruments in which the densitometer and the flow meter are separated from each other.
  • the hydrogen supply unit 40 may adjust the hydrogen supply amount based on the signal related to the concentration of carbon dioxide generated by the measurement unit 50 and the flow rate of biogas.
  • the hydrocarbon generation system 1 may include a control unit 60 that controls the amount of hydrogen supplied from the hydrogen supply unit 40.
  • the control unit 60 may calculate, for example, the amount of hydrogen supplied by the hydrogen supply unit 40 based on the signal generated by the measurement unit 50.
  • the control unit 60 may control the hydrogen supply unit 40 so that the calculated amount of hydrogen is supplied to the hydrocarbon generation unit 30.
  • the control unit 60 may adjust the amount of hydrogen supplied to the hydrocarbon generation unit 30 by a flow rate regulator such as a pump.
  • the control unit 60 may control the hydrogen supply amount of at least one of the hydrogen generation unit 41 and the hydrogen tank 42.
  • the control unit 60 may control the amount of hydrogen generated by the hydrogen generation unit 41 according to the remaining amount of the hydrogen tank 42.
  • the control unit 60 may include a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU can read the program stored in the ROM and execute instructions such as arithmetic and control according to the program.
  • the program may include, for example, a process of calculating the supply of hydrogen from the concentration of carbon dioxide and the flow rate of biogas.
  • the program may be stored in advance in a recording medium other than the ROM, or may be supplied to the recording medium via a wide area communication network including the Internet or the like.
  • the RAM stores information acquired from the measurement unit 50 or the like, and the CPU can read the information stored in the RAM and use it for processing such as calculation.
  • the hydrocarbon generation system 1 has a bioreactor 10 that produces biogas containing methane and carbon dioxide, and a hydrocarbon generation that produces hydrocarbons from a raw material containing biogas and hydrogen.
  • a unit 30 is provided. Since hydrocarbons are generated from carbon dioxide in the hydrocarbon generation unit 30, carbon dioxide contained in biogas can be used as a valuable resource without being separated by a carbon dioxide recovery device using a chemical absorption method or the like. can. Therefore, the installation and maintenance costs required for the carbon dioxide capture device can be reduced. In addition, since biogas is used as a raw material, the use of fossil resources such as natural gas can be reduced.
  • the hydrocarbon generation system 1 further includes a measurement unit 50 for measuring the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generation unit 30 and the flow rate of the biogas. Then, an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measuring unit 50 and the flow rate of the biogas is supplied to the hydrocarbon generating unit 30. Therefore, a mixed gas adjusted so that the ratio of carbon dioxide and hydrogen is within a predetermined range can be supplied to the hydrocarbon generation unit 30, and the target hydrocarbon can be efficiently produced from the carbon dioxide in the biogas. Can be generated well.
  • the hydrocarbon generation system 1 has a bioreactor 10, a purification unit 20, a hydrocarbon generation unit 30, a hydrogen supply unit 40, and a measurement unit, similarly to the hydrocarbon generation system 1 according to the first embodiment. It includes 50 and a control unit 60. Further, the hydrocarbon generation system 1 according to the present embodiment includes a carbon dioxide recovery device 70, a hydrocarbon pre-generation unit 35, a hydrogen supply unit 45, a measurement unit 51, and a control unit 61.
  • the bioreactor 10, the purification unit 20, the hydrocarbon generation unit 30, the hydrogen supply unit 40, the measurement unit 50, and the control unit 60 are the same as those of the hydrocarbon generation system 1 according to the first embodiment, and thus the description thereof will be omitted. .. Further, since the hydrocarbon pre-generation unit 35, the hydrogen supply unit 45, the measurement unit 51, and the control unit 61 are the same as the above-mentioned hydrocarbon generation unit 30, hydrogen supply unit 40, measurement unit 50, and control unit 60. , The description is omitted. Further, since the hydrogen supply unit 45 includes a hydrogen generation unit 46 and a hydrogen tank 47, and the hydrogen generation unit 46 and the hydrogen tank 47 are the same as the hydrogen generation unit 41 and the hydrogen tank 42, the description thereof will be omitted.
  • the carbon dioxide recovery device 70 recovers carbon dioxide from a gas containing carbon dioxide emitted from a carbon dioxide generation source.
  • the carbon dioxide generation source is, for example, a power plant or a factory that emits carbon dioxide by burning fuel.
  • the carbon dioxide recovery device 70 discharges a gas having a carbon dioxide concentration higher than that of the gas to be recovered from the gas containing carbon dioxide to be recovered.
  • the carbon dioxide recovery device 70 can recover carbon dioxide by, for example, a chemical absorption method, a pressure swing adsorption method, a temperature swing adsorption method, a membrane separation concentration method, or the like.
  • the concentration of carbon dioxide emitted from the carbon dioxide recovery device 70 may be higher than the concentration of carbon dioxide in the biogas.
  • the gas emitted by the carbon dioxide capture device 70 contains, for example, 90% or more carbon dioxide in terms of molar ratio.
  • the concentration of carbon dioxide emitted from the carbon dioxide recovery device 70 is preferably 95% or more, more preferably 99% or more in terms of molar ratio.
  • the high-concentration carbon dioxide emitted from the carbon dioxide recovery device 70 is supplied to the hydrocarbon pre-generation unit 35.
  • the concentration of carbon dioxide in the gas supplied to the hydrocarbon pre-generating unit 35 and the flow rate of biogas are measured by the measuring unit 51.
  • the hydrogen supply unit 45 may adjust the hydrogen supply amount based on the signals related to the concentration of carbon dioxide generated by the measurement unit 51 and the flow rate of the biogas.
  • the control unit 61 may calculate the amount of hydrogen supplied by the hydrogen supply unit 45 based on the signal generated by the measurement unit 51. Similar to the control unit 60, the control unit 61 may control the hydrogen supply unit 45 so that the calculated amount of hydrogen is supplied to the hydrocarbon pre-generation unit 35.
  • control unit 61 may control the hydrogen supply amount of at least one of the hydrogen generation unit 46 and the hydrogen tank 47. Then, the amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measuring unit 51 and the flow rate of the biogas is supplied to the hydrocarbon pre-generating unit 35.
  • the hydrocarbon pre-generating unit 35 may generate a hydrocarbon from a gas having a carbon dioxide concentration higher than that of biogas and a raw material containing hydrogen.
  • the hydrocarbon produced by the hydrocarbon pre-producing unit 35 may contain at least one of paraffin and olefin.
  • the hydrocarbon pre-generation unit 35 may include at least one of a methanation device and an FT synthesis device.
  • the metanation apparatus may include only a single reactor, or may include a plurality of reactors.
  • the FT synthesizer may include only a single reactor or may include multiple reactors. When the methanation device and the FT synthesizer include a plurality of reactors, each reactor may be arranged in series or in parallel.
  • a cooler 81 and a gas-liquid separator 82 may be provided in the pipe connecting the hydrocarbon pre-generating unit 35 and the hydrocarbon generating unit 30.
  • the product produced by the hydrocarbon pre-producing unit 35 is cooled by the cooler 81, the water contained in the product is condensed, and the water is removed from the product by the gas-liquid separator 82.
  • the product from which the water has been removed is supplied to the hydrocarbon generation unit 30.
  • the hydrocarbon generation unit 30 may generate a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit 35.
  • the hydrocarbon produced by the hydrocarbon generator 30 may contain at least one of paraffin and olefin.
  • the hydrocarbon generation unit 30 may include at least one of the methanation device 31 and the FT synthesizer 32, as in the above embodiment.
  • the metanation device 31 may include only a single reactor, or may include a plurality of reactors.
  • the FT synthesizer 32 may include only a single reactor or may include a plurality of reactors. When the methanation device 31 and the FT synthesizer 32 include a plurality of reactors, each reactor may be arranged in series or in parallel.
  • a connection pipe may be provided at the discharge port for discharging the product generated by the hydrocarbon generation unit 30, and a cooler 83 and a gas-liquid separator 84 may be provided at the connection pipe.
  • the product produced by the hydrocarbon generator 30 is cooled by the cooler 83 to condense the water, and the water is removed by the gas-liquid separator 84.
  • the product produced by the hydrocarbon generation unit 30 contains high-concentration hydrocarbons, it can be used as it is as an energy source in a factory or directly supplied as city gas. Hydrocarbons such as olefins can also be used as raw materials for plastics. In the hydrocarbon generation unit 30, various hydrocarbons may be separated by the separation device as described above.
  • the hydrocarbon generation system 1 has a bioreactor 10 that produces biogas containing methane and carbon dioxide, and a hydrocarbon generation that produces hydrocarbons from a raw material containing biogas and hydrogen.
  • a unit 30 is provided. Since hydrocarbons are generated from carbon dioxide in the hydrocarbon generation unit 30, carbon dioxide contained in biogas can be used as a valuable resource without being separated by a carbon dioxide recovery device using a chemical absorption method or the like. can. In addition, since biogas is used as a raw material, the use of fossil resources such as natural gas can be reduced.
  • the hydrocarbon generation system 1 may further include a hydrocarbon pre-generation unit 35 that generates a hydrocarbon from a gas having a carbon dioxide concentration higher than that of biogas and a raw material containing hydrogen.
  • the hydrocarbon generation unit 30 may generate a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit 35.
  • the hydrocarbon pre-generation unit 35 may include a metanation device that produces methane by metanation
  • the hydrocarbon generation unit 30 may include a meta-nation device that produces methane by metanation. This makes it possible to efficiently generate a gas containing a high concentration of methane from a gas containing a high concentration of carbon dioxide and a biogas. Therefore, by injecting such a gas into an existing gas conduit, it becomes easy to use it as city gas.
  • the gas composition at the inlet of the hydrocarbon generation unit 30 when the hydrocarbon pre-generation unit 35 includes a methanation device and the carbon dioxide conversion rate in the hydrocarbon pre-generation unit 35 is 70%, 80% and 90% is as follows. It is a street.
  • the gas composition was calculated by a molar ratio based on the reaction formula of CO 2 + 4H 2 ⁇ CH 4 + 2H 2 O, and it was assumed that water was removed by the gas-liquid separator 82.
  • the gas supplied from the hydrocarbon pre-generating unit 35 to the hydrocarbon generating unit 30 includes methane and carbon dioxide as in the case of biogas. Therefore, by supplying the product produced by the hydrocarbon pre-generating unit 35 to the hydrocarbon generating unit 30, a gas having a carbon dioxide concentration closer to that of the biogas than the gas supplied to the hydrocarbon pre-generating unit 35 is carbonized. It can be supplied to the hydrogen generation unit 30. From the viewpoint of approaching the composition of biogas, the carbon dioxide conversion rate of the hydrocarbon pre-producing unit 35 is preferably 80% or more.
  • the hydrocarbon pre-generation unit 35 includes a single reactor, and the gas supplied to the hydrocarbon generation unit 30 by the single reactor may be brought closer to the composition of biogas. Further, the hydrocarbon pre-generation unit 35 may include a plurality of reactors, and the gas supplied to the hydrocarbon generation unit 30 by the plurality of reactors may be brought close to the composition of biogas.
  • the composition of the biogas is close to that, for example, the methane concentration in the gas produced by the hydrocarbon pre-producing unit 35 and supplied to the hydrocarbon generating unit 30 is -10% with respect to the methane concentration of the biogas. It means that it is within the range of ⁇ + 10%.
  • the supply amount of hydrogen supplied from the hydrogen supply unit 40 to the hydrocarbon generation unit 30 is controlled by the control unit 60, and is supplied from the hydrogen supply unit 45 to the hydrocarbon pre-generation unit 35.
  • the amount of hydrogen supplied is controlled by the control unit 61.
  • hydrogen may be supplied to the hydrocarbon generation unit 30 and the hydrocarbon pre-generation unit 35 from one common hydrogen supply unit.
  • the hydrogen supply amount of the hydrogen supply unit 40 and the hydrogen supply unit 45 may be controlled by one common control unit.
  • the carbon dioxide concentration in the gas discharged from the carbon dioxide recovery device 70 tends to have a smaller fluctuation than the carbon dioxide concentration in the biogas. Therefore, the hydrocarbon generation system 1 does not have to include the measurement unit 51 and the control unit 61.
  • the hydrocarbon generation system 1 includes a bioreactor 10 that generates biogas containing methane and carbon dioxide, and a hydrocarbon generation unit 30 that generates hydrocarbons from a raw material containing biogas and hydrogen. Be prepared.
  • a bioreactor 10 that generates biogas containing methane and carbon dioxide
  • a hydrocarbon generation unit 30 that generates hydrocarbons from a raw material containing biogas and hydrogen. Be prepared.
  • carbon dioxide contained in biogas can be used as a valuable resource without being separated. Therefore, the hydrocarbon generation system 1 does not have to include the measurement unit 50 and the control unit 60.
  • the hydrocarbon generation system 1 is a hydrocarbon pregeneration that produces a hydrocarbon from a bioreactor 10 that produces a biogas containing methane and carbon dioxide, and a gas having a higher carbon dioxide concentration than the biogas and a raw material containing hydrogen.
  • a unit 35 may be provided.
  • the hydrocarbon generation system 1 may include a hydrocarbon generation unit 30 that generates a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit 35. Even with such a hydrocarbon generation system 1, carbon dioxide contained in biogas can be used as a valuable resource without being separated.
  • hydrocarbons can be efficiently generated, and a gas having a composition similar to that of biogas can be supplied to the hydrocarbon generation unit 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A hydrocarbon generation system (1) is provided with a bioreactor (10) that generates a bio-gas including methane and carbon dioxide. The hydrocarbon generation system (1) is provided with a hydrocarbon generation unit (30) that generates hydrocarbon from raw materials including the bio-gas and hydrogen. The hydrocarbon generation system (1) is provided with a measurement unit (50) that measures the concentration of carbon dioxide in the bio-gas and the flow rate of the bio-gas supplied to the hydrocarbon generation unit (30). In the hydrocarbon generation system (1), hydrogen is supplied to the hydrocarbon generation unit (30) in a quantity according to the concentration of carbon dioxide and the flow rate of the bio-gas measured by the measurement unit (50).

Description

炭化水素生成システムHydrocarbon generation system
 本開示は、炭化水素生成システムに関する。 This disclosure relates to a hydrocarbon generation system.
 近年、大気中の二酸化炭素濃度の上昇を抑制するため、天然ガスのような化石資源に代えてバイオマスのような再生可能エネルギーの利用が促進されている。バイオマスを利用する方法としては、バイオマスをメタン発酵して得られたメタンをエネルギー源として利用することが知られている。 In recent years, in order to suppress the increase in carbon dioxide concentration in the atmosphere, the use of renewable energy such as biomass instead of fossil resources such as natural gas has been promoted. As a method of using biomass, it is known to use methane obtained by methane fermentation of biomass as an energy source.
 しかしながら、メタン発酵により得られるバイオガスには、メタンだけでなく、通常、十~数十パーセント程度の二酸化炭素も含まれている。そのため、高濃度のメタンが要求されるような都市ガスなどの原料としてバイオガスを直接利用することは容易でない。 However, the biogas obtained by methane fermentation contains not only methane but also carbon dioxide, which is usually about 10 to several tens of percent. Therefore, it is not easy to directly use biogas as a raw material for city gas or the like, which requires a high concentration of methane.
 そこで、バイオガスのメタン濃度を高めることによって、高純度のメタンを製造する方法が開発されている。このような方法として、特許文献1には、バイオガスを物理吸収液及び化学吸収液に接触させることによって、バイオガスのメタン濃度を高める濃縮工程を含む、高純度メタンの製造方法が開示されている。 Therefore, a method for producing high-purity methane by increasing the methane concentration of biogas has been developed. As such a method, Patent Document 1 discloses a method for producing high-purity methane, which comprises a concentration step of increasing the methane concentration of biogas by contacting the biogas with a physical absorption liquid and a chemical absorption liquid. There is.
特開2014-88524号公報Japanese Unexamined Patent Publication No. 2014-88524
 特許文献1の方法によれば、バイオガスのメタン濃度を高くすることができるため、高純度メタンを既存のガス導管に注入することによって、都市ガスとしての利用が期待される。しかしながら、上記方法では、バイオガスを吸収液に接触させるための吸収槽、及び吸収液を再生するための再生槽などが必要である。また、炭素循環や温暖化対策の観点から、バイオガスで生成される二酸化炭素は、大気中に放出することなく、有価物としてリサイクルされることが望ましい。 According to the method of Patent Document 1, since the methane concentration of biogas can be increased, it is expected to be used as city gas by injecting high-purity methane into an existing gas conduit. However, the above method requires an absorption tank for bringing the biogas into contact with the absorption liquid, a regeneration tank for regenerating the absorption liquid, and the like. From the viewpoint of carbon cycle and global warming countermeasures, it is desirable that carbon dioxide produced by biogas is recycled as a valuable resource without being released into the atmosphere.
 そこで、本開示は、バイオガスに含まれる二酸化炭素を分離せずに有価物として利用可能な炭化水素生成システムを提供することを目的とする。 Therefore, it is an object of the present disclosure to provide a hydrocarbon generation system that can be used as a valuable resource without separating carbon dioxide contained in biogas.
 本開示に係る炭化水素生成システムは、メタン及び二酸化炭素を含むバイオガスを生成するバイオリアクタを備える。炭化水素生成システムは、バイオガス及び水素を含む原料から炭化水素を生成する炭化水素生成部を備える。炭化水素生成システムは、炭化水素生成部に供給されるバイオガス中の二酸化炭素の濃度及びバイオガスの流量を計測する計測部を備える。炭化水素生成システムでは、計測部で計測される二酸化炭素の濃度及びバイオガスの流量に応じた量の水素が炭化水素生成部へ供給される。 The hydrocarbon generation system according to the present disclosure includes a bioreactor that produces biogas containing methane and carbon dioxide. The hydrocarbon generation system comprises a hydrocarbon generator that produces a hydrocarbon from a raw material containing biogas and hydrogen. The hydrocarbon generation system includes a measurement unit that measures the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generation unit and the flow rate of the biogas. In the hydrocarbon generation system, an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measurement unit and the flow rate of biogas is supplied to the hydrocarbon generation unit.
 炭化水素はパラフィン及びオレフィンの少なくともいずれか一方を含んでもよい。炭化水素生成部は、バイオガス及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置を含んでもよい。炭化水素生成部は、バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置を含んでもよい。炭化水素生成部は、バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置と、FT合成装置から排出される未反応の二酸化炭素及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置とを含んでもよい。炭化水素生成部は、バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置と、バイオガス及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置とを含んでもよい。炭化水素生成システムは、バイオガスよりも二酸化炭素濃度が高いガス及び水素を含む原料から炭化水素を生成する炭化水素プレ生成部をさらに備え、炭化水素生成部は、炭化水素プレ生成部から排出される未反応の二酸化炭素、バイオガス及び水素を含む原料から炭化水素を生成してもよい。炭化水素プレ生成部はメタネーションによってメタンを生成するメタネーション装置を含み、炭化水素生成部はメタネーションによってメタンを生成するメタネーション装置を含んでもよい。バイオリアクタは発酵槽を含み、炭化水素生成部で生じた反応熱によって発酵槽が加温されてもよい。 Hydrocarbons may contain at least one of paraffin and olefin. The hydrocarbon generator may include a metanation apparatus that produces methane by metanation from raw materials containing biogas and hydrogen. The hydrocarbon generator may include an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons by a Fischer-Tropsch reaction from a raw material containing biogas and hydrogen. The hydrocarbon generator consists of an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction, and unreacted carbon dioxide discharged from the FT synthesizer. And a metanation device that produces methane by metanation from a raw material containing hydrogen. The hydrocarbon generator consists of an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction, and methane by metanation from a raw material containing biogas and hydrogen. May include a metanation device that produces. The hydrocarbon generation system further comprises a hydrocarbon pre-generation unit that produces a hydrocarbon from a gas containing a gas having a higher carbon dioxide concentration than biogas and a raw material containing hydrogen, and the hydrocarbon generation unit is discharged from the hydrocarbon pre-generation unit. Hydrocarbons may be produced from raw materials containing unreacted carbon dioxide, biogas and hydrogen. The hydrocarbon pre-producing unit may include a methanation device that produces methane by metanation, and the hydrocarbon generating unit may include a meta-nation device that produces methane by metanation. The bioreactor includes a fermenter, and the fermenter may be heated by the heat of reaction generated in the hydrocarbon generator.
 本開示によれば、バイオガスに含まれる二酸化炭素を分離せずに有価物として利用可能な炭化水素生成システムを提供することができる。 According to the present disclosure, it is possible to provide a hydrocarbon generation system that can be used as a valuable resource without separating carbon dioxide contained in biogas.
図1は、一実施形態に係る炭化水素生成システムを示す概略図である。FIG. 1 is a schematic view showing a hydrocarbon generation system according to an embodiment. 図2は、一実施形態に係る炭化水素生成部の例を示す概略図である。FIG. 2 is a schematic view showing an example of a hydrocarbon generation unit according to an embodiment. 図3は、一実施形態に係る炭化水素生成部の例を示す概略図である。FIG. 3 is a schematic view showing an example of a hydrocarbon generation unit according to an embodiment. 図4は、一実施形態に係る炭化水素生成システムを示す概略図である。FIG. 4 is a schematic diagram showing a hydrocarbon generation system according to an embodiment.
 以下、いくつかの例示的な実施形態について、図面を参照して説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, some exemplary embodiments will be described with reference to the drawings. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 [第1実施形態]
 まず、第1実施形態に係る炭化水素生成システム1について、図1~図3を用いて説明する。図1に示すように、本実施形態に係る炭化水素生成システム1は、バイオリアクタ10と、精製部20と、炭化水素生成部30と、水素供給部40と、計測部50と、制御部60とを備える。本実施形態に係る炭化水素生成システム1では、バイオリアクタ10で生成されるバイオガスを二酸化炭素回収装置などで回収せずに、炭化水素生成部30でバイオガスから炭化水素を生成することができる。そのため、バイオガスに含まれる二酸化炭素を分離せずに有価物として利用することができる。
[First Embodiment]
First, the hydrocarbon generation system 1 according to the first embodiment will be described with reference to FIGS. 1 to 3. As shown in FIG. 1, the hydrocarbon generation system 1 according to the present embodiment includes a bioreactor 10, a purification unit 20, a hydrocarbon generation unit 30, a hydrogen supply unit 40, a measurement unit 50, and a control unit 60. And. In the hydrocarbon generation system 1 according to the present embodiment, the hydrocarbon generation unit 30 can generate hydrocarbons from the biogas without recovering the biogas generated in the bioreactor 10 by a carbon dioxide recovery device or the like. .. Therefore, carbon dioxide contained in biogas can be used as a valuable resource without being separated.
 (バイオリアクタ10)
 バイオリアクタ10は、メタン及び二酸化炭素を含むバイオガスを生成する。バイオガスは、バイオマスを原料として生成することができる。バイオマスは、動植物に由来する資源であり、化石資源に代えてこのような再生可能エネルギーを利用することにより、地球温暖化の一因とされている二酸化炭素の排出を抑制することができる。バイオマスは、例えば、木材、草本、紙、家畜排せつ物、下水汚泥及び浄化槽汚泥などの生活排水、並びに食品廃棄物などの有機物を含む。バイオガスを効率的に生成するため、必要に応じ、供給される原料の粉砕及び希釈、並びに供給される原料中の異物の除去などの前処理が実施されたバイオマスがバイオリアクタ10に供給されてもよい。
(Bioreactor 10)
The bioreactor 10 produces biogas containing methane and carbon dioxide. Biogas can be produced from biomass as a raw material. Biomass is a resource derived from animals and plants, and by using such renewable energy instead of fossil resources, it is possible to suppress the emission of carbon dioxide, which is considered to be one of the causes of global warming. Biomass includes, for example, wood, herbs, paper, livestock excrement, domestic wastewater such as sewage sludge and septic tank sludge, and organic matter such as food waste. In order to efficiently generate biogas, biomass that has undergone pretreatment such as crushing and diluting the supplied raw material and removing foreign substances in the supplied raw material is supplied to the bioreactor 10. May be good.
 バイオリアクタ10は、原料の供給、発酵及び排出を一単位として繰り返す回分式であってもよく、原料の供給、発酵及び排出を、連続的に同時に行う連続式であってもよい。バイオリアクタ10は、メタン発酵処理を行う発酵槽を含んでいてもよい。バイオリアクタ10は、単一の発酵槽のみを含んでいてもよく、複数の発酵槽を含んでいてもよい。バイオリアクタ10は、発酵温度が最適な温度となるように発酵槽内の温度を所定の温度に加温する加温部を含んでいてもよい。 The bioreactor 10 may be a batch type in which the supply, fermentation and discharge of raw materials are repeated as one unit, or may be a continuous type in which the supply, fermentation and discharge of raw materials are continuously performed simultaneously. The bioreactor 10 may include a fermenter for performing a methane fermentation treatment. The bioreactor 10 may include only a single fermenter or may include a plurality of fermenters. The bioreactor 10 may include a heating unit that heats the temperature in the fermenter to a predetermined temperature so that the fermentation temperature becomes the optimum temperature.
 バイオリアクタ10は発酵槽を含み、炭化水素生成部30で生じた反応熱によって発酵槽が加温されてもよい。後述するように、炭化水素生成部30は、メタネーション反応、及び、フィッシャー-トロプシュ反応などによって炭化水素を生成することができ、これらの反応は、一般的には発熱反応である。この反応熱によって発酵槽を加温することによって、反応によって生じた熱エネルギーを有効利用することができる。 The bioreactor 10 includes a fermenter, and the fermenter may be heated by the reaction heat generated in the hydrocarbon generation unit 30. As will be described later, the hydrocarbon generation unit 30 can generate a hydrocarbon by a methanation reaction, a Fischer-Tropsch reaction, or the like, and these reactions are generally exothermic reactions. By heating the fermenter with this heat of reaction, the heat energy generated by the reaction can be effectively utilized.
 発酵槽には、メタン発酵を行うための微生物が保持されていてもよい。微生物の保持方法としては特に限定されないが、固定床法、流動床法、又はUSAB(上向流嫌気性汚泥床)法などが挙げられる。固定床法では、通常、微生物を担持させた担体が発酵槽内に充填される。流動床法では、通常、微生物を担持させた担体が発酵槽内に収容され、発酵槽内で流動する。USAB法では、通常、担体に担持させずに微生物を凝集させたグラニュールが発酵槽内に収容される。グラニュールの粒子径は、例えば0.5~2mm程度である。 The fermenter may contain microorganisms for methane fermentation. The method for retaining microorganisms is not particularly limited, and examples thereof include a fixed bed method, a fluidized bed method, and a USAB (upward flow anaerobic sludge bed) method. In the fixed bed method, a carrier carrying a microorganism is usually filled in a fermenter. In the fluidized bed method, a carrier carrying a microorganism is usually housed in a fermenter and flows in the fermenter. In the USAB method, a granule in which microorganisms are aggregated without being supported on a carrier is usually housed in a fermenter. The particle size of the granule is, for example, about 0.5 to 2 mm.
 メタン発酵では、多くの嫌気性微生物により、バイオマスからメタンが生成される。具体的には、タンパク質、炭水化物及び脂質を含む有機物が加水分解され、アミノ酸、糖類及び脂肪酸が生成される。アミノ酸、糖類及び脂肪酸は、酢酸、二酸化炭素及び水素に分解される。そして、メタン生成菌によって、酢酸、二酸化炭素及び水素からメタンが生成される。また、バイオリアクタ10では、メタン発酵によって、消化液も生成される。 In methane fermentation, many anaerobic microorganisms produce methane from biomass. Specifically, organic substances including proteins, carbohydrates and lipids are hydrolyzed to produce amino acids, sugars and fatty acids. Amino acids, sugars and fatty acids are decomposed into acetic acid, carbon dioxide and hydrogen. Then, the methanogen produces methane from acetic acid, carbon dioxide and hydrogen. In the bioreactor 10, digestive juice is also produced by methane fermentation.
 メタン生成菌は、50℃~60℃のような高温度で活性を示す高温メタン生成菌を含んでいてもよく、35℃~38℃のような中温度で活性を示す中温メタン生成菌を含んでいてもよい。高温メタン生成菌を用いた場合には、メタン発酵の時間を短くすることができる。低温メタン菌を用いた場合には、発酵槽の加温に要する温度を低減することができる。 The methanogen may contain a high temperature methanogen that is active at a high temperature such as 50 ° C to 60 ° C, and may contain a medium temperature methanogen that is active at a medium temperature such as 35 ° C to 38 ° C. You may be. When high temperature methanogens are used, the time for methane fermentation can be shortened. When low-temperature methane bacteria are used, the temperature required for heating the fermenter can be reduced.
 (精製部20)
 バイオガスには、上述のようにメタン及び二酸化炭素が含まれる。バイオガスに含まれる二酸化炭素は、例えば10体積%~40体積%である。ただし、バイオマスには、メタン及び二酸化炭素以外にも、原料となるバイオマスに含まれる成分によって硫化水素及びメチルメルカプタンなどの硫黄成分、有機ポリシロキサン、並びにアンモニアなどの不純物が含まれている場合がある。そのため、精製部20によって上記のような不純物を除去することにより、後述する炭化水素生成部30及び配管への不純物の付着、及び炭化水素生成部30の触媒の被毒などを抑制することができる。なお、これらの不純物を除去する必要性が低い場合には、精製部20が必要ないため、炭化水素生成システム1は精製部20を備えていなくてもよい。
(Refining unit 20)
Biogas includes methane and carbon dioxide as described above. The carbon dioxide contained in the biogas is, for example, 10% by volume to 40% by volume. However, in addition to methane and carbon dioxide, biomass may contain sulfur components such as hydrogen sulfide and methyl mercaptan, organic polysiloxane, and impurities such as ammonia, depending on the components contained in the raw material biomass. .. Therefore, by removing the impurities as described above by the purification unit 20, it is possible to suppress the adhesion of impurities to the hydrocarbon generation unit 30 and the piping, which will be described later, and the poisoning of the catalyst of the hydrocarbon generation unit 30. .. When the need to remove these impurities is low, the purification unit 20 is not required, so that the hydrocarbon generation system 1 does not have to include the purification unit 20.
 (炭化水素生成部30)
 炭化水素生成部30は、バイオガス及び水素を含む原料から炭化水素を生成する。バイオリアクタ10によって生成されるバイオガス及び水素供給部40によって供給される水素を含む原料から炭化水素を生成することによって、バイオガスに含まれる二酸化炭素を有価物として利用することができ、化石資源の使用を低減することができる。生成物中の二酸化炭素量を低減することができるため、化学吸収法などを用いた二酸化炭素回収装置などで回収する必要性が低くなり、バイオガスから二酸化炭素を回収するために必要な設備の設置及び維持費用を低減することができる。
(Hydrocarbon generator 30)
The hydrocarbon generation unit 30 generates a hydrocarbon from a raw material containing biogas and hydrogen. By generating hydrocarbons from the biogas generated by the bioreactor 10 and the hydrogen-containing raw materials supplied by the hydrogen supply unit 40, carbon dioxide contained in the biogas can be used as a valuable resource, and is a fossil resource. The use of can be reduced. Since the amount of carbon dioxide in the product can be reduced, there is less need to recover it with a carbon dioxide recovery device that uses a chemical absorption method, etc., and the equipment required to recover carbon dioxide from biogas Installation and maintenance costs can be reduced.
 炭化水素生成部30は、反応器を含んでおり、反応器に供給される原料が通過する流路内に触媒が配置されてもよい。原料が触媒に接触することによって炭化水素を生成することができる。炭化水素は、例えば、パラフィン及びオレフィンの少なくともいずれか一方を含むことが好ましい。パラフィンはアルカンを意味し、オレフィンはアルケンを意味する。これらの炭化水素は、エネルギー源及び化学品の原料として用いることができるため、利用価値が高い。 The hydrocarbon generation unit 30 includes a reactor, and the catalyst may be arranged in a flow path through which the raw material supplied to the reactor passes. Hydrocarbons can be produced by contacting the raw material with the catalyst. The hydrocarbon preferably contains, for example, at least one of paraffin and olefin. Paraffin means alkane and olefin means alkene. Since these hydrocarbons can be used as an energy source and a raw material for chemical products, they have high utility value.
 炭化水素は、後述するように、メタネーション反応、及び、フィッシャー-トロプシュ反応などによって生成することができる。これらの反応は、一般的には発熱反応であり、条件によっては触媒層の温度が700℃以上にもなる。しかしながら、バイオガスにはメタンが含まれており、炭化水素により二酸化炭素の濃度が薄まるため、比較的温和な条件で反応を進めることができる。そのため、反応熱の発生を抑制することができ、触媒層及び反応器の耐熱温度を低くすることができる。これらの反応条件は、例えば反応温度が200℃~400℃であり、反応器内の圧力が0.1MPa~10MPaである。 Hydrocarbons can be produced by a methanation reaction, a Fischer-Tropsch reaction, or the like, as described later. These reactions are generally exothermic reactions, and the temperature of the catalyst layer may reach 700 ° C. or higher depending on the conditions. However, since biogas contains methane and the concentration of carbon dioxide is reduced by hydrocarbons, the reaction can proceed under relatively mild conditions. Therefore, the generation of heat of reaction can be suppressed, and the heat resistant temperature of the catalyst layer and the reactor can be lowered. These reaction conditions are, for example, a reaction temperature of 200 ° C. to 400 ° C. and a pressure in the reactor of 0.1 MPa to 10 MPa.
 炭化水素生成部30は、バイオガス及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置31を含んでいてもよい。メタネーション反応では、二酸化炭素と水素とを含む原料からメタンと水とを含む生成物を生成することができる。そのため、生成物から水を除去することにより、メタン濃度の高い生成物を得ることができる。したがって、炭化水素生成部30によって得られるメタンは、工場内のエネルギー源として直接使用したり、都市ガスとして直接供給したりすることができる。メタネーション装置31は、シェルアンドチューブ型反応器のような多管式反応器などの公知の反応装置を含んでいてもよい。 The hydrocarbon generation unit 30 may include a metanation device 31 that produces methane by metanation from a raw material containing biogas and hydrogen. In the methanation reaction, a product containing methane and water can be produced from a raw material containing carbon dioxide and hydrogen. Therefore, by removing water from the product, a product having a high methane concentration can be obtained. Therefore, the methane obtained by the hydrocarbon generation unit 30 can be directly used as an energy source in the factory or directly supplied as city gas. The methanation device 31 may include a known reactor such as a multi-tube reactor such as a shell-and-tube reactor.
 メタネーションによって生成されるメタンの選択率は高く、例えば、原料に含まれる二酸化炭素のうち、85%以上の二酸化炭素からメタンが生成される。メタンが生成される割合は、反応条件に依存し、90%以上である場合もあり、95%以上である場合もある。 The selectivity of methane produced by methane is high, for example, methane is produced from 85% or more of the carbon dioxide contained in the raw material. The rate at which methane is produced depends on the reaction conditions and may be 90% or more, or 95% or more.
 メタネーション装置31で使用される触媒は、メタンを生成することができれば特に限定されず、例えばニッケル触媒又はルテニウム触媒などの公知の触媒を使用することができる。ニッケル触媒はニッケルを活性成分として含む触媒であり、ルテニウム触媒はルテニウムを活性成分として含む触媒である。活性成分の含有量は、触媒全体の0.5質量%以上であることが好ましく、10質量%以上であることがより好ましい。ニッケルを活性成分として含む場合には、活性成分の含有量は、触媒全体の10質量%以上であることが好ましく、ルテニウムを活性成分として含む場合には、活性成分の含有量は、触媒全体の0.5質量%以上であることが好ましい。コスト及び高いメタン選択性の観点から、メタネーション装置31にはニッケル触媒が設けられることが好ましい。 The catalyst used in the metanation apparatus 31 is not particularly limited as long as it can generate methane, and a known catalyst such as a nickel catalyst or a ruthenium catalyst can be used. A nickel catalyst is a catalyst containing nickel as an active ingredient, and a ruthenium catalyst is a catalyst containing ruthenium as an active ingredient. The content of the active ingredient is preferably 0.5% by mass or more, and more preferably 10% by mass or more of the whole catalyst. When nickel is contained as an active ingredient, the content of the active ingredient is preferably 10% by mass or more of the entire catalyst, and when ruthenium is contained as the active ingredient, the content of the active ingredient is the content of the entire catalyst. It is preferably 0.5% by mass or more. From the viewpoint of cost and high methane selectivity, it is preferable that the metanation apparatus 31 is provided with a nickel catalyst.
 炭化水素生成部30は、バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置32を含んでいてもよい。フィッシャー-トロプシュ反応では、二酸化炭素と水素とを含む原料から、パラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成することができる。 The hydrocarbon generation unit 30 may include an FT synthesizer 32 that produces a hydrocarbon of at least one of paraffin and olefin by a Fischer-Tropsch reaction from a raw material containing biogas and hydrogen. In the Fischer-Tropsch reaction, hydrocarbons of at least one of paraffin and olefin can be produced from a raw material containing carbon dioxide and hydrogen.
 パラフィン及びオレフィンの少なくともいずれか一方は、炭素数が1から4の炭化水素を含んでいることが好ましい。炭素数が1から4のパラフィンとしては、例えば、メタン、エタン、プロパン及びブタンが挙げられる。炭素数が1から4のオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン及び1,3-ブタジエンが挙げられる。なお、これらの中でも、炭素数が2以上4以下のオレフィンは、プラスチックの原料になるため有用である。また、FT合成装置32で生成される生成物は、上記以外の化合物を含んでいてもよい。FT合成装置32は、例えば、シェルアンドチューブ型反応器のような多管式反応器、流動層型反応器又はスラリー床型反応器などの公知の反応装置を含んでいてもよい。 It is preferable that at least one of paraffin and olefin contains a hydrocarbon having 1 to 4 carbon atoms. Examples of paraffin having 1 to 4 carbon atoms include methane, ethane, propane and butane. Examples of olefins having 1 to 4 carbon atoms include ethylene, propylene, 1-butene, 2-butene, isobutene and 1,3-butadiene. Among these, olefins having 2 or more and 4 or less carbon atoms are useful because they can be used as raw materials for plastics. Further, the product produced by the FT synthesizer 32 may contain a compound other than the above. The FT synthesizer 32 may include, for example, a known reactor such as a multi-tube reactor such as a shell-and-tube reactor, a fluidized bed reactor or a slurry bed reactor.
 フィッシャー-トロプシュ反応によって生成される生成物は、通常、複数種類の炭化水素を含んでいる。フィッシャー-トロプシュ反応によって生成される生成物には、例えば、原料に含まれる二酸化炭素のうち、20%以上85%未満の二酸化炭素からパラフィン及びオレフィンの少なくともいずれか一方の炭化水素が生成される。炭化水素が生成される割合は、反応条件に依存し、35%以上である場合もあり、50%以上である場合もある。また、炭化水素が生成される割合は、65%以下である場合もあり、55%以下である場合もある。 The product produced by the Fischer-Tropsch reaction usually contains multiple types of hydrocarbons. In the product produced by the Fischer-Tropsch reaction, for example, hydrocarbons of at least one of paraffin and olefin are produced from carbon dioxide of 20% or more and less than 85% of the carbon dioxide contained in the raw material. The rate at which hydrocarbons are produced depends on the reaction conditions and may be 35% or more, or 50% or more. Further, the ratio of hydrocarbons produced may be 65% or less, or 55% or less.
 FT合成装置32で使用される触媒は、パラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成することができれば特に限定されず、例えば鉄触媒又はコバルト触媒などの公知の触媒を使用することができる。鉄触媒は軽質炭化水素を主に生成することができ、コバルト触媒はワックスを含む重質炭化水素を主に生成することができる。また、鉄触媒はオレフィン及びパラフィンを主として生成することができ、コバルト触媒はパラフィンを主として生成することができる。なお、鉄触媒は鉄を活性成分として含む触媒であり、コバルト触媒はコバルトを活性成分として含む触媒である。活性成分の含有量は、触媒全体の10質量%以上であることが好ましい。FT合成装置32には鉄触媒が設けられることが好ましい。これにより、プラスチックの原料にもなる軽質オレフィン(低級オレフィン)を生成することができる。 The catalyst used in the FT synthesizer 32 is not particularly limited as long as it can generate a hydrocarbon of at least one of paraffin and olefin, and a known catalyst such as an iron catalyst or a cobalt catalyst can be used. .. Iron catalysts can mainly produce light hydrocarbons, and cobalt catalysts can mainly produce heavy hydrocarbons, including waxes. Further, the iron catalyst can mainly produce olefins and paraffin, and the cobalt catalyst can mainly produce paraffin. The iron catalyst is a catalyst containing iron as an active ingredient, and the cobalt catalyst is a catalyst containing cobalt as an active ingredient. The content of the active ingredient is preferably 10% by mass or more of the whole catalyst. It is preferable that the FT synthesizer 32 is provided with an iron catalyst. This makes it possible to produce a light olefin (lower olefin) that can also be used as a raw material for plastics.
 炭化水素生成部30は、メタネーション装置31及びFT合成装置32の少なくともいずれか一方を含んでもよい。すなわち、炭化水素生成部30は、メタネーション装置31のみを含んでいてもよく、FT合成装置32のみを含んでいてもよく、メタネーション装置31及びFT合成装置32の両方を含んでいてもよい。 The hydrocarbon generation unit 30 may include at least one of the methanation device 31 and the FT synthesizer 32. That is, the hydrocarbon generation unit 30 may include only the methanation device 31, may include only the FT synthesizer 32, or may include both the metanation device 31 and the FT synthesizer 32. ..
 炭化水素生成部30は、例えば図2に示すように、FT合成装置32と、メタネーション装置31とを含んでいてもよい。FT合成装置32は、バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成してもよい。メタネーション装置31は、FT合成装置32から排出される未反応の二酸化炭素及び水素を含む原料からメタネーションによってメタンを生成してもよい。 The hydrocarbon generation unit 30 may include an FT synthesizer 32 and a methanation device 31, as shown in FIG. 2, for example. The FT synthesizer 32 may produce at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction. The methanation device 31 may generate methane by methanation from a raw material containing unreacted carbon dioxide and hydrogen discharged from the FT synthesizer 32.
 FT合成装置32は、二酸化炭素からパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成することができるが、メタネーション装置31と比較して炭化水素に変換されずにFT合成装置32から排出される未反応の二酸化炭素が多い傾向にある。そこで、FT合成装置32の後段にメタネーション装置31を直列に配置することにより、メタネーション装置31によって未反応の二酸化炭素からメタンを高い選択率で生成することができる。そのため、炭化水素生成部30から未反応物として排出される二酸化炭素の量を低減するとともに、未反応の二酸化炭素を有効利用することができる。また、生成物中の二酸化炭素の濃度を低減することができるため、生成物中の熱量を向上させることができる。なお、FT合成装置32は、炭化水素だけでなく水も生成するため、FT合成装置32とメタネーション装置31との間に、水を除去可能な気液分離器が設けられていることが好ましい。 The FT synthesizer 32 can generate at least one of paraffin and olefin hydrocarbons from carbon dioxide, but is discharged from the FT synthesizer 32 without being converted to hydrocarbons as compared with the metanation device 31. There is a tendency for a large amount of unreacted carbon dioxide. Therefore, by arranging the methanation device 31 in series after the FT synthesizer 32, methane can be produced from unreacted carbon dioxide with a high selectivity by the methanation device 31. Therefore, the amount of carbon dioxide discharged as an unreacted product from the hydrocarbon generation unit 30 can be reduced, and the unreacted carbon dioxide can be effectively used. In addition, since the concentration of carbon dioxide in the product can be reduced, the amount of heat in the product can be improved. Since the FT synthesizer 32 produces not only hydrocarbons but also water, it is preferable that a gas-liquid separator capable of removing water is provided between the FT synthesizer 32 and the methanation device 31. ..
 また、図3に示すように、炭化水素生成部30は、FT合成装置32と、メタネーション装置31とを含んでいてもよい。FT合成装置32は、バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成してもよい。メタネーション装置31は、バイオガス及び水素を含む原料からメタネーションによってメタンを生成してもよい。 Further, as shown in FIG. 3, the hydrocarbon generation unit 30 may include an FT synthesizer 32 and a methanation device 31. The FT synthesizer 32 may produce at least one of paraffin and olefin hydrocarbons from a raw material containing biogas and hydrogen by a Fischer-Tropsch reaction. The methanation device 31 may generate methane by methanation from a raw material containing biogas and hydrogen.
 このように、メタネーション装置31とFT合成装置32とを並列に配置することにより、メタネーション装置31によって高い選択率でメタンを生成することができる。また、FT合成装置32によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成することができる。さらに、メタネーション装置31で生成されたメタンとFT合成装置32で生成された炭化水素を混合することにより、メタネーション装置31で生成されたガスの熱量を調整することもできる。 By arranging the metanation device 31 and the FT synthesizer 32 in parallel in this way, the metanation device 31 can generate methane with a high selectivity. In addition, the FT synthesizer 32 can generate at least one of paraffin and olefin hydrocarbons. Further, the calorific value of the gas generated by the metanation apparatus 31 can be adjusted by mixing the methane produced by the metanation apparatus 31 and the hydrocarbon produced by the FT synthesis apparatus 32.
 なお、図2及び図3では、メタネーション装置31とFT合成装置32とが直列又は並列に配置される形態について説明した。しかしながら、炭化水素生成部30は、これらの組み合わせであってもよい。例えば、図3の形態のようにメタネーション装置31とFT合成装置32とが並列に配置され、FT合成装置32の後段に図2の形態のようにメタネーション装置31が直列に配置されてもよい。 Note that FIGS. 2 and 3 have described a mode in which the metanation device 31 and the FT synthesizer 32 are arranged in series or in parallel. However, the hydrocarbon generation unit 30 may be a combination of these. For example, even if the metanation device 31 and the FT synthesizer 32 are arranged in parallel as in the form of FIG. 3, and the metanation device 31 is arranged in series as in the form of FIG. 2 after the FT synthesizer 32. good.
 また、図2及び図3では、2つの異なる水素供給部40がFT合成装置32及びメタネーション装置31に水素を供給する例について説明したが、共通する水素供給部40によってFT合成装置32及びメタネーション装置31に水素が供給されてもよい。 Further, in FIGS. 2 and 3, an example in which two different hydrogen supply units 40 supply hydrogen to the FT synthesizer 32 and the metanation device 31 has been described, but the FT synthesizer 32 and the meta are described by a common hydrogen supply unit 40. Hydrogen may be supplied to the nation device 31.
 メタネーション装置31は、単一の反応器のみを含んでいてもよく、複数の反応器を含んでいてもよい。同様に、FT合成装置32は、単一の反応器のみを含んでいてもよく、複数の反応器を含んでいてもよい。反応器の数は適宜定めることができるが、バイオガス中の二酸化炭素濃度が高い場合、炭化水素生成部30は複数の反応器を含んでいることが好ましい。一方、バイオガス中の二酸化炭素濃度が低い場合、炭化水素生成部30は単一の反応器のみを含んでいてもよい。メタネーション装置31及びFT合成装置32が複数の反応器を含む場合、各反応器は直列に配置されてもよく、並列に配置されてもよい。 The methanation device 31 may include only a single reactor, or may include a plurality of reactors. Similarly, the FT synthesizer 32 may include only a single reactor or may include a plurality of reactors. The number of reactors can be appropriately determined, but when the concentration of carbon dioxide in the biogas is high, it is preferable that the hydrocarbon generation unit 30 includes a plurality of reactors. On the other hand, when the concentration of carbon dioxide in the biogas is low, the hydrocarbon generator 30 may contain only a single reactor. When the methanation device 31 and the FT synthesizer 32 include a plurality of reactors, each reactor may be arranged in series or in parallel.
 炭化水素生成部30で生成された生成物が複数種類の炭化水素を含む場合、炭化水素生成システム1は化学構造に応じた炭化水素を分留などによって分離する分離装置を備えてもよい。分離装置は、脱メタン塔、脱エタン塔、脱エチレン塔、脱プロパン塔、脱プロピレン塔、脱ブタン塔及び脱ブテン塔のような少なくとも1つの分離塔を含んでいてもよい。これらの分離塔によって、複数種類の炭化水素を、メタン、エタン、エチレン、プロパン、プロピレン、ブタン及びブテンなどのような化学構造に応じて分離することができる。 When the product produced by the hydrocarbon generation unit 30 contains a plurality of types of hydrocarbons, the hydrocarbon generation system 1 may include a separation device that separates hydrocarbons according to the chemical structure by fractional distillation or the like. The separation device may include at least one separation column such as a demethane column, a deethane column, a deethylene column, a depropane column, a depropylene column, a debutane column and a debutene column. With these separation towers, a plurality of types of hydrocarbons can be separated according to the chemical structure such as methane, ethane, ethylene, propane, propylene, butane and butene.
 (水素供給部40)
 水素供給部40は炭化水素生成部30に水素を供給する。水素供給部40は、図1に示すように、水素生成部41及び水素タンク42を含んでいてもよい。水素生成部41は、水素を生成することができれば特に限定されないが、再生可能エネルギーを利用して水素を生成することが好ましい。再生可能エネルギーを利用することにより、炭化水素生成システム1全体として二酸化炭素排出量を低減することができる。水素生成部41は、例えば、太陽光、風力及び水力などの再生可能エネルギーを利用し、水を電気分解して水素を生成してもよい。また、水素供給部40は、バイオマスをガス化して水素を生成してもよい。水素タンク42は、水素生成部41で生成された水素を貯蔵してもよく、水素が充填された市販の水素タンクを用いてもよい。
(Hydrogen supply unit 40)
The hydrogen supply unit 40 supplies hydrogen to the hydrocarbon generation unit 30. As shown in FIG. 1, the hydrogen supply unit 40 may include a hydrogen generation unit 41 and a hydrogen tank 42. The hydrogen generation unit 41 is not particularly limited as long as it can generate hydrogen, but it is preferable to use renewable energy to generate hydrogen. By utilizing renewable energy, carbon dioxide emissions can be reduced as a whole in the hydrocarbon generation system 1. The hydrogen generation unit 41 may use renewable energy such as solar power, wind power, and hydraulic power to electrolyze water to generate hydrogen. Further, the hydrogen supply unit 40 may gasify the biomass to generate hydrogen. The hydrogen tank 42 may store the hydrogen generated by the hydrogen generation unit 41, or a commercially available hydrogen tank filled with hydrogen may be used.
 水素は、水素生成部41から水素タンク42を介さずに炭化水素生成部30に直接供給されてもよく、水素タンク42から炭化水素生成部30に供給されてもよい。二酸化炭素と水素とを含む混合ガスは、圧縮機によって圧縮され、炭化水素生成部30に供給されてもよい。 Hydrogen may be directly supplied from the hydrogen generation unit 41 to the hydrocarbon generation unit 30 without going through the hydrogen tank 42, or may be supplied from the hydrogen tank 42 to the hydrocarbon generation unit 30. The mixed gas containing carbon dioxide and hydrogen may be compressed by a compressor and supplied to the hydrocarbon generation unit 30.
 (計測部50)
 計測部50は、炭化水素生成部30に供給されるバイオガス中の二酸化炭素の濃度及びバイオガスの流量を計測する。炭化水素生成システム1では、計測部50で計測される二酸化炭素の濃度及びバイオガスの流量に応じた量の水素が炭化水素生成部30へ供給される。バイオガスに含まれる二酸化炭素の濃度及びバイオガスの流量は、バイオリアクタ10、微生物及び原料に含まれるバイオマスの状態など複数の要素によって変動するおそれがある。そのため、予め定められた一定量の水素が炭化水素生成部30に供給される場合、上記複数の要素によって炭化水素生成部30に供給される二酸化炭素の量が変動し、目的の炭化水素を効率よく得ることができないおそれがある。また、目的の化学構造を有する炭化水素を効率よく得るためには、炭化水素生成部30に供給される二酸化炭素と水素とを最適な比率にすることが好ましい。
(Measurement unit 50)
The measuring unit 50 measures the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generating unit 30 and the flow rate of the biogas. In the hydrocarbon generation system 1, an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measurement unit 50 and the flow rate of biogas is supplied to the hydrocarbon generation unit 30. The concentration of carbon dioxide contained in biogas and the flow rate of biogas may vary depending on a plurality of factors such as the state of bioreactor 10, microorganisms and biomass contained in raw materials. Therefore, when a predetermined fixed amount of hydrogen is supplied to the hydrocarbon generation unit 30, the amount of carbon dioxide supplied to the hydrocarbon generation unit 30 varies depending on the above-mentioned plurality of elements, and the target hydrocarbon is efficiently produced. It may not be possible to obtain it well. Further, in order to efficiently obtain a hydrocarbon having a desired chemical structure, it is preferable to make an optimum ratio of carbon dioxide and hydrogen supplied to the hydrocarbon generation unit 30.
 そこで、バイオガス中の二酸化炭素の濃度及びバイオガスの流量を計測し、二酸化炭素の濃度及びバイオガスの流量に応じて水素を炭化水素生成部30に供給する。これにより、二酸化炭素と水素との比率が所定の範囲内になるように調整された混合ガスを炭化水素生成部30に供給することができる。これにより、バイオガス中の二酸化炭素から所望の化学種の炭化水素を効率よく生成することができる。 Therefore, the concentration of carbon dioxide in the biogas and the flow rate of the biogas are measured, and hydrogen is supplied to the hydrocarbon generation unit 30 according to the concentration of carbon dioxide and the flow rate of the biogas. As a result, the mixed gas adjusted so that the ratio of carbon dioxide and hydrogen is within a predetermined range can be supplied to the hydrocarbon generation unit 30. This makes it possible to efficiently generate hydrocarbons of a desired chemical species from carbon dioxide in biogas.
 炭化水素生成部30に供給される二酸化炭素に対する水素の量の比は、目的とする化学種によって適宜設定することができるが、例えばモル比で1以上であってもよく、2以上であってもよい。また、炭化水素生成部30に供給される二酸化炭素に対する水素の量の比は、例えばモル比で8未満であってもよく、5未満であってもよい。なお、メタネーションの場合、H/CO比=4.0付近が好ましい。また、オレフィン合成の場合、H/CO=3.0付近が好ましい。 The ratio of the amount of hydrogen to the carbon dioxide supplied to the hydrocarbon generation unit 30 can be appropriately set depending on the target chemical species, but for example, the molar ratio may be 1 or more, or 2 or more. May be good. Further, the ratio of the amount of hydrogen to the carbon dioxide supplied to the hydrocarbon generation unit 30 may be, for example, less than 8 or less than 5 in terms of molar ratio. In the case of metanation, the ratio of H 2 / CO 2 is preferably around 4.0. Further, in the case of olefin synthesis, the vicinity of H 2 / CO 2 = 3.0 is preferable.
 計測部50は、濃度計及び流量計を含んでいてもよい。濃度計は、二酸化炭素の濃度を測定することができれば特に限定されず、公知の濃度計を用いることができる。流量計は、バイオガスの流量を測定することができれば特に限定されず、公知の流量計を用いることができる。計測部50は、濃度及び流量を測定可能な一体型の計測器を含んでいてもよく、濃度計及び流量計がそれぞれ分離した別体型の複数の計測器を含んでいてもよい。水素供給部40は、計測部50で生成された二酸化炭素の濃度及びバイオガスの流量に関連する信号に基づいて水素供給量を調整してもよい。 The measuring unit 50 may include a densitometer and a flow meter. The densitometer is not particularly limited as long as it can measure the concentration of carbon dioxide, and a known densitometer can be used. The flow meter is not particularly limited as long as it can measure the flow rate of biogas, and a known flow meter can be used. The measuring unit 50 may include an integrated measuring instrument capable of measuring the concentration and the flow rate, or may include a plurality of separate measuring instruments in which the densitometer and the flow meter are separated from each other. The hydrogen supply unit 40 may adjust the hydrogen supply amount based on the signal related to the concentration of carbon dioxide generated by the measurement unit 50 and the flow rate of biogas.
 (制御部60)
 炭化水素生成システム1は、水素供給部40から供給される水素供給量を制御する制御部60を備えていてもよい。制御部60は、例えば、計測部50で生成された信号に基づいて水素供給部40が供給する水素の量を算出してもよい。制御部60は、算出された量の水素が炭化水素生成部30に供給されるように水素供給部40を制御してもよい。制御部60は、ポンプなどの流量調整器によって炭化水素生成部30に供給される水素の量を調整してもよい。制御部60は、水素生成部41及び水素タンク42の少なくともいずれか一方の水素供給量を制御してもよい。水素供給部40が水素生成部41及び水素タンク42を含む場合、制御部60は、水素タンク42の残量に応じて水素生成部41が生成する水素の量を制御してもよい。
(Control unit 60)
The hydrocarbon generation system 1 may include a control unit 60 that controls the amount of hydrogen supplied from the hydrogen supply unit 40. The control unit 60 may calculate, for example, the amount of hydrogen supplied by the hydrogen supply unit 40 based on the signal generated by the measurement unit 50. The control unit 60 may control the hydrogen supply unit 40 so that the calculated amount of hydrogen is supplied to the hydrocarbon generation unit 30. The control unit 60 may adjust the amount of hydrogen supplied to the hydrocarbon generation unit 30 by a flow rate regulator such as a pump. The control unit 60 may control the hydrogen supply amount of at least one of the hydrogen generation unit 41 and the hydrogen tank 42. When the hydrogen supply unit 40 includes the hydrogen generation unit 41 and the hydrogen tank 42, the control unit 60 may control the amount of hydrogen generated by the hydrogen generation unit 41 according to the remaining amount of the hydrogen tank 42.
 制御部60は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を含んでいてもよい。CPUは、ROMに記憶されたプログラムを読み込み、プログラムに従って演算及び制御などの命令を実行することができる。プログラムには、例えば、二酸化炭素の濃度及びバイオガスの流量から水素の供給量を算出する処理が含まれていてもよい。プログラムはROM以外の記録媒体に予め格納されていてもよく、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。RAMは、計測部50などから取得した情報を記憶し、CPUはRAMに記憶された情報を読み出して演算などの処理に用いることができる。 The control unit 60 may include a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The CPU can read the program stored in the ROM and execute instructions such as arithmetic and control according to the program. The program may include, for example, a process of calculating the supply of hydrogen from the concentration of carbon dioxide and the flow rate of biogas. The program may be stored in advance in a recording medium other than the ROM, or may be supplied to the recording medium via a wide area communication network including the Internet or the like. The RAM stores information acquired from the measurement unit 50 or the like, and the CPU can read the information stored in the RAM and use it for processing such as calculation.
 以上説明したように、本実施形態に係る炭化水素生成システム1は、メタン及び二酸化炭素を含むバイオガスを生成するバイオリアクタ10と、バイオガス及び水素を含む原料から炭化水素を生成する炭化水素生成部30とを備える。炭化水素生成部30では二酸化炭素から炭化水素が生成されるため、バイオガスに含まれる二酸化炭素を、化学吸収法などを用いた二酸化炭素回収装置などで分離せずに有価物として利用することができる。そのため、二酸化炭素回収装置に必要な設置及び維持費用を低減することができる。また、バイオガスを原料とするため、天然ガスなどの化石資源の使用を低減することもできる。 As described above, the hydrocarbon generation system 1 according to the present embodiment has a bioreactor 10 that produces biogas containing methane and carbon dioxide, and a hydrocarbon generation that produces hydrocarbons from a raw material containing biogas and hydrogen. A unit 30 is provided. Since hydrocarbons are generated from carbon dioxide in the hydrocarbon generation unit 30, carbon dioxide contained in biogas can be used as a valuable resource without being separated by a carbon dioxide recovery device using a chemical absorption method or the like. can. Therefore, the installation and maintenance costs required for the carbon dioxide capture device can be reduced. In addition, since biogas is used as a raw material, the use of fossil resources such as natural gas can be reduced.
 また、本実施形態に係る炭化水素生成システム1は、炭化水素生成部30に供給されるバイオガス中の二酸化炭素の濃度及びバイオガスの流量を計測する計測部50をさらに備える。そして、計測部50で計測される二酸化炭素の濃度及びバイオガスの流量に応じた量の水素が炭化水素生成部30へ供給される。そのため、二酸化炭素と水素との比率が所定の範囲内になるように調整された混合ガスを炭化水素生成部30に供給することができ、バイオガス中の二酸化炭素から目的とする炭化水素を効率よく生成することができる。 Further, the hydrocarbon generation system 1 according to the present embodiment further includes a measurement unit 50 for measuring the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generation unit 30 and the flow rate of the biogas. Then, an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measuring unit 50 and the flow rate of the biogas is supplied to the hydrocarbon generating unit 30. Therefore, a mixed gas adjusted so that the ratio of carbon dioxide and hydrogen is within a predetermined range can be supplied to the hydrocarbon generation unit 30, and the target hydrocarbon can be efficiently produced from the carbon dioxide in the biogas. Can be generated well.
 [第2実施形態]
 次に、第2実施形態に係る炭化水素生成システム1について図4を用いて説明する。
[Second Embodiment]
Next, the hydrocarbon generation system 1 according to the second embodiment will be described with reference to FIG.
 図4に示すように、炭化水素生成システム1は、第1実施形態に係る炭化水素生成システム1と同様に、バイオリアクタ10、精製部20、炭化水素生成部30、水素供給部40、計測部50及び制御部60を備えている。さらに、本実施形態に係る炭化水素生成システム1は、二酸化炭素回収装置70、炭化水素プレ生成部35、水素供給部45、計測部51及び制御部61を備えている。 As shown in FIG. 4, the hydrocarbon generation system 1 has a bioreactor 10, a purification unit 20, a hydrocarbon generation unit 30, a hydrogen supply unit 40, and a measurement unit, similarly to the hydrocarbon generation system 1 according to the first embodiment. It includes 50 and a control unit 60. Further, the hydrocarbon generation system 1 according to the present embodiment includes a carbon dioxide recovery device 70, a hydrocarbon pre-generation unit 35, a hydrogen supply unit 45, a measurement unit 51, and a control unit 61.
 バイオリアクタ10、精製部20、炭化水素生成部30、水素供給部40、計測部50及び制御部60については、第1実施形態に係る炭化水素生成システム1と同様であるため、説明を省略する。また、炭化水素プレ生成部35、水素供給部45、計測部51、及び制御部61については、上述した炭化水素生成部30、水素供給部40、計測部50及び制御部60と同様であるため、説明を省略する。また、水素供給部45は水素生成部46及び水素タンク47を含んでおり、水素生成部46及び水素タンク47は、水素生成部41及び水素タンク42と同様であるため、説明を省略する。 The bioreactor 10, the purification unit 20, the hydrocarbon generation unit 30, the hydrogen supply unit 40, the measurement unit 50, and the control unit 60 are the same as those of the hydrocarbon generation system 1 according to the first embodiment, and thus the description thereof will be omitted. .. Further, since the hydrocarbon pre-generation unit 35, the hydrogen supply unit 45, the measurement unit 51, and the control unit 61 are the same as the above-mentioned hydrocarbon generation unit 30, hydrogen supply unit 40, measurement unit 50, and control unit 60. , The description is omitted. Further, since the hydrogen supply unit 45 includes a hydrogen generation unit 46 and a hydrogen tank 47, and the hydrogen generation unit 46 and the hydrogen tank 47 are the same as the hydrogen generation unit 41 and the hydrogen tank 42, the description thereof will be omitted.
 二酸化炭素回収装置70は、二酸化炭素発生源から排出される二酸化炭素を含有するガスから二酸化炭素を回収する。二酸化炭素発生源は、例えば、燃料が燃焼されることによって二酸化炭素を排出する発電所及び工場などである。二酸化炭素回収装置70は、回収対象となる二酸化炭素を含有するガスから、回収対象となるガスよりも高い二酸化炭素濃度のガスを放散する。二酸化炭素回収装置70は、例えば、化学吸収法、圧力スウィング吸着法、温度スウィング吸着法、又は膜分離濃縮法などによって二酸化炭素を回収することができる。 The carbon dioxide recovery device 70 recovers carbon dioxide from a gas containing carbon dioxide emitted from a carbon dioxide generation source. The carbon dioxide generation source is, for example, a power plant or a factory that emits carbon dioxide by burning fuel. The carbon dioxide recovery device 70 discharges a gas having a carbon dioxide concentration higher than that of the gas to be recovered from the gas containing carbon dioxide to be recovered. The carbon dioxide recovery device 70 can recover carbon dioxide by, for example, a chemical absorption method, a pressure swing adsorption method, a temperature swing adsorption method, a membrane separation concentration method, or the like.
 二酸化炭素回収装置70から放散される二酸化炭素の濃度は、バイオガス中の二酸化炭素濃度よりも大きくてもよい。二酸化炭素回収装置70によって放散されるガスは、例えばモル比で90%以上の二酸化炭素を含有する。二酸化炭素回収装置70から放散される二酸化炭素の濃度は、モル比で95%以上であることが好ましく、99%以上であることがより好ましい。 The concentration of carbon dioxide emitted from the carbon dioxide recovery device 70 may be higher than the concentration of carbon dioxide in the biogas. The gas emitted by the carbon dioxide capture device 70 contains, for example, 90% or more carbon dioxide in terms of molar ratio. The concentration of carbon dioxide emitted from the carbon dioxide recovery device 70 is preferably 95% or more, more preferably 99% or more in terms of molar ratio.
 二酸化炭素回収装置70から放散される高濃度の二酸化炭素は、炭化水素プレ生成部35に供給される。炭化水素プレ生成部35に供給されるガス中の二酸化炭素の濃度及びバイオガスの流量は、計測部51によって計測される。水素供給部45は、水素供給部40と同様に、計測部51で生成された二酸化炭素の濃度及びバイオガスの流量に関連する信号に基づいて水素供給量を調整してもよい。制御部61は、制御部60と同様に、計測部51で生成された信号に基づいて水素供給部45が供給する水素の量を算出してもよい。制御部61は、制御部60と同様に、算出された量の水素が炭化水素プレ生成部35に供給されるように水素供給部45を制御してもよい。制御部61は、制御部60と同様に、水素生成部46及び水素タンク47の少なくともいずれか一方の水素供給量を制御してもよい。そして、計測部51で計測される二酸化炭素の濃度及びバイオガスの流量に応じた量の水素は、炭化水素プレ生成部35へ供給される。 The high-concentration carbon dioxide emitted from the carbon dioxide recovery device 70 is supplied to the hydrocarbon pre-generation unit 35. The concentration of carbon dioxide in the gas supplied to the hydrocarbon pre-generating unit 35 and the flow rate of biogas are measured by the measuring unit 51. Similar to the hydrogen supply unit 40, the hydrogen supply unit 45 may adjust the hydrogen supply amount based on the signals related to the concentration of carbon dioxide generated by the measurement unit 51 and the flow rate of the biogas. Similar to the control unit 60, the control unit 61 may calculate the amount of hydrogen supplied by the hydrogen supply unit 45 based on the signal generated by the measurement unit 51. Similar to the control unit 60, the control unit 61 may control the hydrogen supply unit 45 so that the calculated amount of hydrogen is supplied to the hydrocarbon pre-generation unit 35. Similar to the control unit 60, the control unit 61 may control the hydrogen supply amount of at least one of the hydrogen generation unit 46 and the hydrogen tank 47. Then, the amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measuring unit 51 and the flow rate of the biogas is supplied to the hydrocarbon pre-generating unit 35.
 炭化水素プレ生成部35は、バイオガスよりも二酸化炭素濃度が高いガス及び水素を含む原料から炭化水素を生成してもよい。炭化水素プレ生成部35で生成される炭化水素は、パラフィン及びオレフィンの少なくともいずれか一方を含んでいてもよい。炭化水素プレ生成部35は、炭化水素生成部30と同様に、メタネーション装置及びFT合成装置の少なくともいずれか一方を含んでもよい。また、メタネーション装置は、単一の反応器のみを含んでいてもよく、複数の反応器を含んでいてもよい。同様に、FT合成装置は、単一の反応器のみを含んでいてもよく、複数の反応器を含んでいてもよい。メタネーション装置及びFT合成装置が複数の反応器を含む場合、各反応器は直列に配置されてもよく、並列に配置されてもよい。 The hydrocarbon pre-generating unit 35 may generate a hydrocarbon from a gas having a carbon dioxide concentration higher than that of biogas and a raw material containing hydrogen. The hydrocarbon produced by the hydrocarbon pre-producing unit 35 may contain at least one of paraffin and olefin. Like the hydrocarbon generation unit 30, the hydrocarbon pre-generation unit 35 may include at least one of a methanation device and an FT synthesis device. Further, the metanation apparatus may include only a single reactor, or may include a plurality of reactors. Similarly, the FT synthesizer may include only a single reactor or may include multiple reactors. When the methanation device and the FT synthesizer include a plurality of reactors, each reactor may be arranged in series or in parallel.
 炭化水素プレ生成部35と炭化水素生成部30とを接続する配管には冷却器81及び気液分離器82が設けられていてもよい。炭化水素プレ生成部35で生成された生成物は、冷却器81によって冷却され、生成物に含まれる水分が凝縮し、気液分離器82で生成物から水分が除去される。水分が除去された生成物は炭化水素生成部30に供給される。 A cooler 81 and a gas-liquid separator 82 may be provided in the pipe connecting the hydrocarbon pre-generating unit 35 and the hydrocarbon generating unit 30. The product produced by the hydrocarbon pre-producing unit 35 is cooled by the cooler 81, the water contained in the product is condensed, and the water is removed from the product by the gas-liquid separator 82. The product from which the water has been removed is supplied to the hydrocarbon generation unit 30.
 炭化水素生成部30は、炭化水素プレ生成部35から排出される未反応の二酸化炭素、バイオガス及び水素を含む原料から炭化水素を生成してもよい。炭化水素生成部30で生成される炭化水素は、パラフィン及びオレフィンの少なくともいずれか一方を含んでいてもよい。炭化水素生成部30は、上記実施形態と同様に、メタネーション装置31及びFT合成装置32の少なくともいずれか一方を含んでもよい。また、メタネーション装置31は、単一の反応器のみを含んでいてもよく、複数の反応器を含んでいてもよい。同様に、FT合成装置32は、単一の反応器のみを含んでいてもよく、複数の反応器を含んでいてもよい。メタネーション装置31及びFT合成装置32が複数の反応器を含む場合、各反応器は直列に配置されてもよく、並列に配置されてもよい。 The hydrocarbon generation unit 30 may generate a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit 35. The hydrocarbon produced by the hydrocarbon generator 30 may contain at least one of paraffin and olefin. The hydrocarbon generation unit 30 may include at least one of the methanation device 31 and the FT synthesizer 32, as in the above embodiment. Further, the metanation device 31 may include only a single reactor, or may include a plurality of reactors. Similarly, the FT synthesizer 32 may include only a single reactor or may include a plurality of reactors. When the methanation device 31 and the FT synthesizer 32 include a plurality of reactors, each reactor may be arranged in series or in parallel.
 炭化水素生成部30で生成された生成物を排出する排出口には、接続配管が設けられ、接続配管には冷却器83及び気液分離器84が設けられていてもよい。炭化水素生成部30で生成された生成物は、冷却器83によって冷却されて水分が凝縮し、気液分離器84で水分が除去される。 A connection pipe may be provided at the discharge port for discharging the product generated by the hydrocarbon generation unit 30, and a cooler 83 and a gas-liquid separator 84 may be provided at the connection pipe. The product produced by the hydrocarbon generator 30 is cooled by the cooler 83 to condense the water, and the water is removed by the gas-liquid separator 84.
 炭化水素生成部30で生成された生成物には高濃度の炭化水素が含まれているため、そのまま工場内のエネルギー源として使用したり、都市ガスとして直接供給したりすることができる。また、オレフィンなどの炭化水素は、プラスチックの原料として使用することができる。炭化水素生成部30は上述したような分離装置で各種炭化水素が分離されてもよい。 Since the product produced by the hydrocarbon generation unit 30 contains high-concentration hydrocarbons, it can be used as it is as an energy source in a factory or directly supplied as city gas. Hydrocarbons such as olefins can also be used as raw materials for plastics. In the hydrocarbon generation unit 30, various hydrocarbons may be separated by the separation device as described above.
 以上説明したように、本実施形態に係る炭化水素生成システム1は、メタン及び二酸化炭素を含むバイオガスを生成するバイオリアクタ10と、バイオガス及び水素を含む原料から炭化水素を生成する炭化水素生成部30とを備える。炭化水素生成部30では二酸化炭素から炭化水素が生成されるため、バイオガスに含まれる二酸化炭素を、化学吸収法などを用いた二酸化炭素回収装置などで分離せずに有価物として利用することができる。また、バイオガスを原料とするため、天然ガスなどの化石資源の使用を低減することもできる。 As described above, the hydrocarbon generation system 1 according to the present embodiment has a bioreactor 10 that produces biogas containing methane and carbon dioxide, and a hydrocarbon generation that produces hydrocarbons from a raw material containing biogas and hydrogen. A unit 30 is provided. Since hydrocarbons are generated from carbon dioxide in the hydrocarbon generation unit 30, carbon dioxide contained in biogas can be used as a valuable resource without being separated by a carbon dioxide recovery device using a chemical absorption method or the like. can. In addition, since biogas is used as a raw material, the use of fossil resources such as natural gas can be reduced.
 また、炭化水素生成システム1は、バイオガスよりも二酸化炭素濃度が高いガス及び水素を含む原料から炭化水素を生成する炭化水素プレ生成部35をさらに備えてもよい。炭化水素生成部30は、炭化水素プレ生成部35から排出される未反応の二酸化炭素、バイオガス及び水素を含む原料から炭化水素を生成してもよい。 Further, the hydrocarbon generation system 1 may further include a hydrocarbon pre-generation unit 35 that generates a hydrocarbon from a gas having a carbon dioxide concentration higher than that of biogas and a raw material containing hydrogen. The hydrocarbon generation unit 30 may generate a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit 35.
 これにより、炭化水素プレ生成部35で二酸化炭素が消費され、炭化水素プレ生成部35に供給されるよりも低い二酸化炭素濃度のガスが炭化水素生成部30に供給される。炭化水素プレ生成部35での二酸化炭素の分圧は高いため、炭化水素を効率的に生成することができる。また、炭化水素プレ生成部35から未反応の二酸化炭素も排出されるため、バイオガスに近い組成のガスを炭化水素生成部30に供給することができる。 As a result, carbon dioxide is consumed in the hydrocarbon pre-generation unit 35, and a gas having a carbon dioxide concentration lower than that supplied to the hydrocarbon pre-generation unit 35 is supplied to the hydrocarbon generation unit 30. Since the partial pressure of carbon dioxide in the hydrocarbon pre-generating unit 35 is high, hydrocarbons can be efficiently generated. Further, since unreacted carbon dioxide is also discharged from the hydrocarbon pre-generating unit 35, a gas having a composition similar to that of biogas can be supplied to the hydrocarbon generating unit 30.
 また、炭化水素プレ生成部35はメタネーションによってメタンを生成するメタネーション装置を含み、炭化水素生成部30はメタネーションによってメタンを生成するメタネーション装置を含んでもよい。これにより、高濃度の二酸化炭素を含むガス及びバイオガスから高濃度のメタンを含むガスを効率的に生成することができる。したがって、このようなガスを既存のガス導管に注入することによって、都市ガスとしての利用することが容易になる。 Further, the hydrocarbon pre-generation unit 35 may include a metanation device that produces methane by metanation, and the hydrocarbon generation unit 30 may include a meta-nation device that produces methane by metanation. This makes it possible to efficiently generate a gas containing a high concentration of methane from a gas containing a high concentration of carbon dioxide and a biogas. Therefore, by injecting such a gas into an existing gas conduit, it becomes easy to use it as city gas.
 炭化水素プレ生成部35がメタネーション装置を含み、炭化水素プレ生成部35での二酸化炭素転化率を70%、80%及び90%とした場合の炭化水素生成部30の入口のガス組成は以下の通りである。なお、ガス組成は、CO+4H→CH+2HOの反応式に基づいてモル比で算出し、水は気液分離器82によって除去されたものと仮定した。 The gas composition at the inlet of the hydrocarbon generation unit 30 when the hydrocarbon pre-generation unit 35 includes a methanation device and the carbon dioxide conversion rate in the hydrocarbon pre-generation unit 35 is 70%, 80% and 90% is as follows. It is a street. The gas composition was calculated by a molar ratio based on the reaction formula of CO 2 + 4H 2 → CH 4 + 2H 2 O, and it was assumed that water was removed by the gas-liquid separator 82.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、炭化水素プレ生成部35から炭化水素生成部30に供給されるガスには、バイオガスと同様に、メタン及び二酸化炭素が含まれる。そのため、炭化水素プレ生成部35で生成される生成物を炭化水素生成部30に供給することにより、炭化水素プレ生成部35に供給されるガスよりもバイオガスに近い二酸化炭素濃度のガスを炭化水素生成部30に供給することができる。なお、バイオガスの組成に近づける観点から、炭化水素プレ生成部35の二酸化炭素転化率は80%以上であることが好ましい。 As shown in Table 1, the gas supplied from the hydrocarbon pre-generating unit 35 to the hydrocarbon generating unit 30 includes methane and carbon dioxide as in the case of biogas. Therefore, by supplying the product produced by the hydrocarbon pre-generating unit 35 to the hydrocarbon generating unit 30, a gas having a carbon dioxide concentration closer to that of the biogas than the gas supplied to the hydrocarbon pre-generating unit 35 is carbonized. It can be supplied to the hydrogen generation unit 30. From the viewpoint of approaching the composition of biogas, the carbon dioxide conversion rate of the hydrocarbon pre-producing unit 35 is preferably 80% or more.
 炭化水素プレ生成部35は単一の反応器を含み、単一の反応器によって炭化水素生成部30に供給されるガスをバイオガスの組成に近づけてもよい。また、炭化水素プレ生成部35は複数の反応器を含み、複数の反応器によって炭化水素生成部30に供給されるガスをバイオガスの組成に近づけてもよい。なお、バイオガスの組成が近いとは、例えば、炭化水素プレ生成部35で生成され、炭化水素生成部30に供給されるガス中のメタン濃度が、バイオガスのメタン濃度に対して-10%~+10%の範囲内であることを意味する。 The hydrocarbon pre-generation unit 35 includes a single reactor, and the gas supplied to the hydrocarbon generation unit 30 by the single reactor may be brought closer to the composition of biogas. Further, the hydrocarbon pre-generation unit 35 may include a plurality of reactors, and the gas supplied to the hydrocarbon generation unit 30 by the plurality of reactors may be brought close to the composition of biogas. The composition of the biogas is close to that, for example, the methane concentration in the gas produced by the hydrocarbon pre-producing unit 35 and supplied to the hydrocarbon generating unit 30 is -10% with respect to the methane concentration of the biogas. It means that it is within the range of ~ + 10%.
 なお、本実施形態においては、水素供給部40から炭化水素生成部30に供給される水素の供給量が制御部60によって制御されており、水素供給部45から炭化水素プレ生成部35に供給される水素の供給量が制御部61によって制御されている。しかしながら、共通する1つの水素供給部から炭化水素生成部30及び炭化水素プレ生成部35に水素が供給されてもよい。同様に、共通する1つの制御部によって水素供給部40及び水素供給部45の水素供給量が制御されてもよい。また、二酸化炭素回収装置70から排出されるガス中の二酸化炭素濃度は、バイオガス中の二酸化炭素濃度よりも変動が小さい傾向にある。そのため、炭化水素生成システム1は、計測部51及び制御部61を備えていなくてもよい。 In the present embodiment, the supply amount of hydrogen supplied from the hydrogen supply unit 40 to the hydrocarbon generation unit 30 is controlled by the control unit 60, and is supplied from the hydrogen supply unit 45 to the hydrocarbon pre-generation unit 35. The amount of hydrogen supplied is controlled by the control unit 61. However, hydrogen may be supplied to the hydrocarbon generation unit 30 and the hydrocarbon pre-generation unit 35 from one common hydrogen supply unit. Similarly, the hydrogen supply amount of the hydrogen supply unit 40 and the hydrogen supply unit 45 may be controlled by one common control unit. Further, the carbon dioxide concentration in the gas discharged from the carbon dioxide recovery device 70 tends to have a smaller fluctuation than the carbon dioxide concentration in the biogas. Therefore, the hydrocarbon generation system 1 does not have to include the measurement unit 51 and the control unit 61.
 また、本実施形態に係る炭化水素生成システム1は、メタン及び二酸化炭素を含むバイオガスを生成するバイオリアクタ10と、バイオガス及び水素を含む原料から炭化水素を生成する炭化水素生成部30とを備える。これにより、バイオガスに含まれる二酸化炭素を分離せずに有価物として利用することができる。そのため、炭化水素生成システム1は、計測部50及び制御部60を備えていなくてもよい。 Further, the hydrocarbon generation system 1 according to the present embodiment includes a bioreactor 10 that generates biogas containing methane and carbon dioxide, and a hydrocarbon generation unit 30 that generates hydrocarbons from a raw material containing biogas and hydrogen. Be prepared. As a result, carbon dioxide contained in biogas can be used as a valuable resource without being separated. Therefore, the hydrocarbon generation system 1 does not have to include the measurement unit 50 and the control unit 60.
 すなわち、炭化水素生成システム1は、メタン及び二酸化炭素を含むバイオガスを生成するバイオリアクタ10と、バイオガスよりも二酸化炭素濃度が高いガス及び水素を含む原料から炭化水素を生成する炭化水素プレ生成部35とを備えていてもよい。さらに、炭化水素生成システム1は、炭化水素プレ生成部35から排出される未反応の二酸化炭素、バイオガス及び水素を含む原料から炭化水素を生成する炭化水素生成部30を備えていてもよい。このような炭化水素生成システム1によっても、バイオガスに含まれる二酸化炭素を分離せずに有価物として利用することができる。また、炭化水素を効率的に生成することができ、バイオガスに近い組成のガスを炭化水素生成部30に供給することができる。 That is, the hydrocarbon generation system 1 is a hydrocarbon pregeneration that produces a hydrocarbon from a bioreactor 10 that produces a biogas containing methane and carbon dioxide, and a gas having a higher carbon dioxide concentration than the biogas and a raw material containing hydrogen. A unit 35 may be provided. Further, the hydrocarbon generation system 1 may include a hydrocarbon generation unit 30 that generates a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit 35. Even with such a hydrocarbon generation system 1, carbon dioxide contained in biogas can be used as a valuable resource without being separated. In addition, hydrocarbons can be efficiently generated, and a gas having a composition similar to that of biogas can be supplied to the hydrocarbon generation unit 30.
 特願2020-106800号(出願日:2020年6月22日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2020-106800 (application date: June 22, 2020) are incorporated here.
 いくつかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正または変形をすることが可能である。上記実施形態のすべての構成要素、及び請求の範囲に記載されたすべての特徴は、それらが互いに矛盾しない限り、個々に抜き出して組み合わせてもよい。 Although some embodiments have been described, it is possible to modify or modify the embodiments based on the above disclosure contents. All the components of the embodiment and all the features described in the claims may be individually extracted and combined as long as they do not contradict each other.
 1   炭化水素生成システム
 10  バイオリアクタ
 30  炭化水素生成部
 31  メタネーション装置
 32  FT合成装置
 35  炭化水素プレ生成部
 50  計測部
1 Hydrocarbon generation system 10 Bioreactor 30 Hydrocarbon generator 31 Metanation device 32 FT synthesizer 35 Hydrocarbon pre-generation section 50 Measurement section

Claims (9)

  1.  メタン及び二酸化炭素を含むバイオガスを生成するバイオリアクタと、
     前記バイオガス及び水素を含む原料から炭化水素を生成する炭化水素生成部と、
     前記炭化水素生成部に供給される前記バイオガス中の二酸化炭素の濃度及び前記バイオガスの流量を計測する計測部と、
     を備え、
     前記計測部で計測される二酸化炭素の濃度及び前記バイオガスの流量に応じた量の水素が前記炭化水素生成部へ供給される、炭化水素生成システム。
    A bioreactor that produces biogas containing methane and carbon dioxide,
    A hydrocarbon generator that generates hydrocarbons from the raw materials containing biogas and hydrogen,
    A measuring unit that measures the concentration of carbon dioxide in the biogas supplied to the hydrocarbon generating unit and the flow rate of the biogas.
    Equipped with
    A hydrocarbon generation system in which an amount of hydrogen corresponding to the concentration of carbon dioxide measured by the measurement unit and the flow rate of the biogas is supplied to the hydrocarbon generation unit.
  2.  前記炭化水素はパラフィン及びオレフィンの少なくともいずれか一方を含む、請求項1に記載の炭化水素生成システム。 The hydrocarbon generation system according to claim 1, wherein the hydrocarbon contains at least one of paraffin and olefin.
  3.  前記炭化水素生成部は、前記バイオガス及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置を含む、請求項1に記載の炭化水素生成システム。 The hydrocarbon generation system according to claim 1, wherein the hydrocarbon generation unit includes a metanation apparatus that generates methane by metanation from the biogas and a raw material containing hydrogen.
  4.  前記炭化水素生成部は、前記バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置を含む、請求項1に記載の炭化水素生成システム。 The hydrocarbon generation unit according to claim 1, wherein the hydrocarbon generation unit includes an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from the biogas and a raw material containing hydrogen by a Fischer-Tropsch reaction. system.
  5.  前記炭化水素生成部は、前記バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置と、前記FT合成装置から排出される未反応の二酸化炭素及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置とを含む、請求項1に記載の炭化水素生成システム。 The hydrocarbon generation unit is an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from the raw material containing biogas and hydrogen by a Fischer-Tropsch reaction, and an unreacted unit discharged from the FT synthesizer. The hydrocarbon generation system according to claim 1, further comprising a metanation apparatus for producing methane by metanation from a raw material containing carbon dioxide and hydrogen.
  6.  前記炭化水素生成部は、前記バイオガス及び水素を含む原料からフィッシャー-トロプシュ反応によってパラフィン及びオレフィンの少なくともいずれか一方の炭化水素を生成するFT合成装置と、前記バイオガス及び水素を含む原料からメタネーションによってメタンを生成するメタネーション装置とを含む、請求項1に記載の炭化水素生成システム。 The hydrocarbon generator is an FT synthesizer that produces at least one of paraffin and olefin hydrocarbons from the biogas and hydrogen-containing raw materials by Fischer-Tropsch reaction, and meta from the biogas and hydrogen-containing raw materials. The hydrocarbon generation system of claim 1, comprising a metanation apparatus that produces methane by nation.
  7.  前記バイオガスよりも二酸化炭素濃度が高いガス及び水素を含む原料から炭化水素を生成する炭化水素プレ生成部をさらに備え、
     前記炭化水素生成部は、前記炭化水素プレ生成部から排出される未反応の二酸化炭素、前記バイオガス及び水素を含む原料から炭化水素を生成する、請求項1に記載の炭化水素生成システム。
    Further provided with a hydrocarbon pre-generation unit that generates a hydrocarbon from a gas having a higher carbon dioxide concentration than the biogas and a raw material containing hydrogen.
    The hydrocarbon generation system according to claim 1, wherein the hydrocarbon generation unit produces a hydrocarbon from a raw material containing unreacted carbon dioxide, biogas and hydrogen discharged from the hydrocarbon pre-generation unit.
  8.  前記炭化水素プレ生成部はメタネーションによってメタンを生成するメタネーション装置を含み、
     前記炭化水素生成部はメタネーションによってメタンを生成するメタネーション装置を含む、請求項7に記載の炭化水素生成システム。
    The hydrocarbon pre-generation unit includes a meta-nation device that produces methane by meta-nation.
    The hydrocarbon generation system according to claim 7, wherein the hydrocarbon generation unit includes a metanation apparatus that produces methane by metanation.
  9.  前記バイオリアクタは発酵槽を含み、前記炭化水素生成部で生じた反応熱によって前記発酵槽が加温される、請求項1~8のいずれか一項に記載の炭化水素生成システム。 The hydrocarbon generation system according to any one of claims 1 to 8, wherein the bioreactor includes a fermenter, and the fermenter is heated by the reaction heat generated in the hydrocarbon generation unit.
PCT/JP2021/023306 2020-06-22 2021-06-21 Hydrocarbon generation system WO2021261417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531957A JP7392854B2 (en) 2020-06-22 2021-06-21 Hydrocarbon generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-106800 2020-06-22
JP2020106800 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021261417A1 true WO2021261417A1 (en) 2021-12-30

Family

ID=79281385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023306 WO2021261417A1 (en) 2020-06-22 2021-06-21 Hydrocarbon generation system

Country Status (2)

Country Link
JP (1) JP7392854B2 (en)
WO (1) WO2021261417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057593A1 (en) * 2022-09-14 2024-03-21 株式会社Ihi Hydrocarbon production system and hydrocarbon production method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780309A (en) * 1993-09-16 1995-03-28 Agency Of Ind Science & Technol Catalyst for production of hydrocarbon and production of hydrocarbon
WO2010119972A1 (en) * 2009-04-14 2010-10-21 Ggiジャパン株式会社 Btl fuel production system and method for producing btl fuel
JP2011219708A (en) * 2010-04-13 2011-11-04 Ggi Japan Kk System and method for producing jet biofuel
JP2014510163A (en) * 2011-02-11 2014-04-24 スティーブ・クルースニャク Fischer-Tropsch process enhancement for hydrocarbon fuel preparation
JP2016108382A (en) * 2014-12-03 2016-06-20 東京瓦斯株式会社 Biogas production system
JP2019188281A (en) * 2018-04-19 2019-10-31 日本製鉄株式会社 Catalyst for producing hydrocarbon from carbon dioxide and hydrogen, process for producing said catalyst, and process for producing hydrocarbon from carbon dioxide and hydrogen
JP2020033284A (en) * 2018-08-29 2020-03-05 株式会社日立製作所 Methane production system
JP2020037535A (en) * 2018-09-05 2020-03-12 日立化成株式会社 Methanation system for carbon dioxide
JP2020045430A (en) * 2018-09-19 2020-03-26 東邦瓦斯株式会社 Renewable energy utilization system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077575A (en) 2013-10-18 2015-04-23 岩谷産業株式会社 Hydrocarbon synthesis catalyst, and hydrocarbon production device using the same and method for producing hydrocarbon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780309A (en) * 1993-09-16 1995-03-28 Agency Of Ind Science & Technol Catalyst for production of hydrocarbon and production of hydrocarbon
WO2010119972A1 (en) * 2009-04-14 2010-10-21 Ggiジャパン株式会社 Btl fuel production system and method for producing btl fuel
JP2011219708A (en) * 2010-04-13 2011-11-04 Ggi Japan Kk System and method for producing jet biofuel
JP2014510163A (en) * 2011-02-11 2014-04-24 スティーブ・クルースニャク Fischer-Tropsch process enhancement for hydrocarbon fuel preparation
JP2016108382A (en) * 2014-12-03 2016-06-20 東京瓦斯株式会社 Biogas production system
JP2019188281A (en) * 2018-04-19 2019-10-31 日本製鉄株式会社 Catalyst for producing hydrocarbon from carbon dioxide and hydrogen, process for producing said catalyst, and process for producing hydrocarbon from carbon dioxide and hydrogen
JP2020033284A (en) * 2018-08-29 2020-03-05 株式会社日立製作所 Methane production system
JP2020037535A (en) * 2018-09-05 2020-03-12 日立化成株式会社 Methanation system for carbon dioxide
JP2020045430A (en) * 2018-09-19 2020-03-26 東邦瓦斯株式会社 Renewable energy utilization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057593A1 (en) * 2022-09-14 2024-03-21 株式会社Ihi Hydrocarbon production system and hydrocarbon production method

Also Published As

Publication number Publication date
JP7392854B2 (en) 2023-12-06
JPWO2021261417A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
US9816035B2 (en) Conversion of biomass, organic waste and carbon dioxide into synthetic hydrocarbons
Götz et al. State of the art and perspectives of CO2 methanation process concepts for power-to-gas applications
US8198058B2 (en) Efficient use of biogas carbon dioxide in liquid fuel synthesis
AU2015213716A1 (en) Integrated processes for anaerobic conversion of hydrogen and carbon oxides to alcohol
US20130165709A1 (en) Process and system for converting biogas to liquid fuels
Naqi et al. Techno-economic analysis of producing liquid fuels from biomass via anaerobic digestion and thermochemical conversion
WO2012062633A1 (en) Process and apparatus for producing ethylene via preparation of syngas
US11946001B2 (en) Process and system for producing fuel
Damyanova et al. Biogas as a source of energy and chemicals
WO2019114706A1 (en) Catalysis-based hydrogen production method by using biogas slurry
WO2021261417A1 (en) Hydrocarbon generation system
US20240109827A1 (en) Biogas conversion to mixed alcohols
Budzianowski et al. Analysis of solutions alleviating CO2 emissions intensity of biogas technology
Testa et al. Challenges and opportunities of process modelling renewable advanced fuels
Amos Biological water-gas shift conversion of carbon monoxide to hydrogen: Milestone completion report
CN101801843A (en) Hydrogen and carbon utilization in synthetic fuels production plants
Bargiacchi et al. Power to methane
CA2942430C (en) A salt separator and a method for producing a methane-containing gas mixture from biomass using a salt separator
Sabah et al. Hydrogen Production by Dark Fermentation
KR101416755B1 (en) Apparatus for manufacturing biofuel using supercritical water gasification
US11795121B2 (en) Hydrocarbon generation system and hydrocarbon generation method
Bargiacchi et al. 1Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Pisa, Italy, 2Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
JP2024513395A (en) Processes and equipment for providing feedstock
Yang et al. Optimization Models for Process Water Networks and Their Application to Biofuel Processes
BR112020014839A2 (en) PROCESSES TO PRODUCE A FERMENTABLE GAS CHAIN AND TO REMOVE OXYGEN, ACETYLENE AND HYDROGEN CYANIDE FROM AN INPUT GAS CHAIN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828488

Country of ref document: EP

Kind code of ref document: A1