CA2479647A1 - Human deubiquitinating protease gene on chromosome 7 and its murine ortholog - Google Patents

Human deubiquitinating protease gene on chromosome 7 and its murine ortholog Download PDF

Info

Publication number
CA2479647A1
CA2479647A1 CA002479647A CA2479647A CA2479647A1 CA 2479647 A1 CA2479647 A1 CA 2479647A1 CA 002479647 A CA002479647 A CA 002479647A CA 2479647 A CA2479647 A CA 2479647A CA 2479647 A1 CA2479647 A1 CA 2479647A1
Authority
CA
Canada
Prior art keywords
ser
pro
lys
ala
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002479647A
Other languages
French (fr)
Inventor
Chang Hahn
Hong Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Pharmaceuticals Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0218518.9A external-priority patent/GB0218518D0/en
Application filed by Individual filed Critical Individual
Publication of CA2479647A1 publication Critical patent/CA2479647A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6472Cysteine endopeptidases (3.4.22)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Human and murine analogs of DUBs, hematopoietic-specific, cytokine-inducible deubiquitinating proteases, clustered on chromosome 7 and their respective regulatory regions are identified. The nucleotide or proteins encoded thereb y may be used in assays to identify inhibitors of hDUB7 or mDUB7. The inventio n also includes transducing peptides comprising an NLS or transducing sequence of hDUB7 or mDUB7 linked to a cargo molecule, and methods of delivering a biologically active protein, therapeutically effective compound, antisense nucleotide, or test compound to a cell wherein a transducing peptide is adde d exogenously to a cell.

Description

AND ITS MURINE ORTHOLOG
Background of the Invention The role of ubiquitin in protein degradation was discovered and the main enzymatic reactions of this system elucidated in biochemical studies in a cell-free system from reticulocytes. In this system, proteins are targeted for degradation by covalent ligation to 0 ubiquitin, a 76-amino-acid-residue protein. Briefly, ubiquitin-protein ligation requires the sequential action of three enzymes. The C-terminal Gly residue of ubiquitin is activated in an ATP-requiring step by a specific activating enzyme, El (Step 1). This step consists of an intermediate formation of ubiquitin adenylate, with the release of PP;, followed by the binding of ubiquitin to a Cys residue of El in a thiolester linkage, with the release of AMP. Activated ubiquitin is next transferred to an active site Cys residue of a ubiquitin-carrier protein, E2 (Step 2). W the third step catalyzed by a ubiquitin-protein ligase or E3 enzyme, ubiquitin is linked by its C-terminus in an amide isopeptide linkage to an -amino group of the substrate protein's Lys residues (Step 3).
Proteins ligated to polyubiquitin chains are usually degradedby the 26S
proteasome complex that requires ATP hydrolysis for its action. The 26S proteasome is formedby an ATP-dependent assembly of a 20S proteasome, a complex that contains the protease catalytic sites, with 19S "cap" or regulatory complexes. The 19S complexes contain several ATPase subunits and other subunits that are presumably involved in the specific action of the 26S
?5 proteasome on ubiquitinylatedproteins. The roles of ATP in the assembly of the 26S
proteasome complex and in its proteolytic action are not understood. The action of the 26S
proteasome presumably generates several types of products: free peptides, short peptides still linked to ubiquitin via their Lys residues, and polyubiquitin chains (Step 4).
The latter two products are converted to free and reusable ubiquitin by the action of ubiquitin-C-terminal 3o hydrolases or isopeptidases (Steps 5 and 6). Some isopeptidases may also disassemble certain ubiquitin-protein conjugates (Step 7) and thus prevent their proteolysis by the 26S proteasome.
The latter type of isopeptidase action may have a correction function to salvage incorrectly ubiquitinylated proteins or may have a regulatory role. Short peptides formed by the above processes can be further degraded to free amino acids by cytosolic peptidases (Step 8).
Ubiquitin-mediated degradation of protein is involved in various biological processes.
The selective and prograrmned degradation of cell-cycle regulatory proteins, such as cyclins, inhibitors of cyclin-dependent l~inases, and anaphase inhibitors are essential events in cell-cycle progression. Cell growth and proliferation are further controlled by ubiquitin-mediated degradation of tumor suppressors, protooncogenes, and components of signal transduction systems. The rapid degradation of numerous transcriptional regulators is involved in a variety of signal transduction processes and responses to environmental cues. The ubiquitin system is clearly involved in endocytosis and down-regulation of receptors and transporters, as well as in the degradation of resident or abnormal proteins in the endoplasmic reticulum. There are strong indications for roles of the ubiquitin system in development and apoptosis, although the target proteins involved in these cases have not been identified. Dysfunction in several l5 ubiquitin-mediated processes causes pathological conditions, including malignant transformation.
Our knowledge of different signals in proteins that mark them for ubiquitinylation is also limited. Recent reports indicate that many proteins are targeted for degradation by ?0 phosphorylation. It was observed previously that many rapidly degraded proteins contain PEST elements, regions enriched in Pro, Glu, Ser, and Thr residues. More recently, it was pointed out that PEST elements are rich in S/TP sequences, which are minimum consensus phosphorylation sites for Cdks and some other protein kinases. Indeed, it now appears that in several (though certainly not all) instances, PEST elements contain phosphorylation sites 25 necessary for degradation. Thus multiple phosphorylations within PEST
elements are required for the ubiquitinylation and degradation of the yeast Gl cyclins Cln3 and Cln2, as well as the Gcn4 transcriptional activator. Otherproteins, such as the mammalian Gl regulators cyclin E
and cyclin D 1, are targeted for ubiquitinylation by phosphorylation at specific, single sites. In the case of the IkBoc inhibitor of the NF-kB transcriptional regulator, phosphorylation at two 3o specific sites, Ser-32 and Ser-36, is required for ubiquitin ligation. /3-cateinin, which is targeted for ubiquitin-mediated degradation by phosphorylation, has a sequence motif similar to that of llcBa around these phosphorylation sites. However, the homology in phosphorylation patterns of these two proteins is not complete, because phosphorylation of other sites of 13-cateun is also required for its degradation. Other proteins targeted for degradation by phosphorylation include the Cdk inhibitor Siclp and the STATl transcription factor. Though different patterns of phosphorylation target different proteins for degradation, a common feature appears to be that the initial regulatory event is carried out by a protein kinase, while the role of a ubiquitin ligase would be to recognize the phosphorylated form of the protein substrate. It further appears that different ubiquitin ligases recognize different phosphorylation patterns as well as additional motifs in the various protein substrates.
However, the identity of such E3s is unknown, except for some PULC-type ubiquitin ligases that act on some phosphorylated cell-cycle regulators in the budding yeast.
The multiplicity of l0 signals that target proteins for ubiquitin-mediated degradation (and of ligases that have to recognize such signals) is underscored by observations that the phosphorylation of some proteins actually prevents their degradation. Thus the phosphorylation of the c-Mos protooncogene on Ser3 and the multiple phosphorylations of c-Fos and c-Jun protooncogenes at multiple sites by MAP kinases suppress their ubiquitinylation and degradation.
In addition to the families of enzymes involved in conjugation of ubiquitin, a very large family of deubiquitinating enzymes has recently been identified from various organisms.
These enzymes have several possible functions. First, they may have peptidase activity and cleave the products of ubiquitin genes. Ubiquitin is encoded by two distinct classes of genes.
2o One is a polyubiquitin gene, wluch encodes a linear polymer of ubiquitins linked through peptide bonds between the C-terminal Gly and N-terminal Met of contiguous ubiquitin molecules. Each copy of ubiquitin must be released by precise cleavage of the peptide bond between Gly-76-Met-1 of successive ubiquitinmoieties. The other class of ubiquitin genes encodes ubiquitin C-terminal extension proteins, which are peptide bond fusions between the C-terminal Gly of ubiquitin and N-terminal Met ofthe extension protein. To date, the extensions described are ribosomal proteins consisting of 52 or 76-~0 amino acids. These ubiquitin fusion proteins are processed to yield ubiquitin and the corresponding C-terminal extension proteins. Second, deubiquitinating enzymes may have isopeptidase activities. When a target protein is degraded, deubiquitinating enzymes can cleave the polyubiquitin chain from 3o the target protein or its remnants. The polyubiquitin chain must also be disassembledby deubiquitinating enzymes during or after proteolysis by the 26 S proteasome, regenerating free monomeric ubiquitin. In this way, deubiquitinating enzymes can facilitate the ability of the 26 S proteasome to degrade ubiquitinated proteins. Third, deubiquitinating enzymes may hydrolyze ester, thiolester, and amide linkages to the carboxyl group of Gly-76 of ubiquitin.
Such nonfunctional linlcages may arise from reactions between small intracellular compounds such as glutathione and the E1-, E2-, or E3-ubiquitin thiolester intermediates. Fourth, deubiquitinating enzymes may compete with the conjugating system by removing ubiquitin from protein substrates, thereby rescuing them from degradation or any other function mediated by ubiquitination. Thus generation of ubiquitin by deubiquitinating enzymes from the linear polyubiquitin and ubiquitin fusion proteins and from the branched polyubiquitin ligated to proteins should be essential for maintaining a sufficientpool of free ubiquitin. Many deubiquitinating enzymes exist, suggesting that these deubiquitinating enzymes recognize o distinct substrates and are therefore involved in specific cellular processes. Although there is recent evidence to support such specificity of these deubiquitinating enzymes, the structure-function relationships of these enzymes remain poorly studied.
Deubiquitinating enzymes can be divided broadly on the basis of sequence homology l5 into two classes, the ubiquitin-specific processing protease (UBP or USP, also known as type 2 ubiquitin C-terminal hydrolase (type 2 UCH)) and the UCH, also known as type 1 UCH).
UCH (type 1 UCH) enzymes hydrolyze primarily C-terminal esters and amides of ubiquitin but may also cleave ubiquitin gene products and disassemble polyubiquitin chains . They have in common a 210-amino acid catalytic domain, with four highly conserved blocks of sequences that identify these enzymes. They contain two very conserved motifs, the CYS and HIS boxes. Mutagenesis studies revealed that the two boxes play important roles in catalysis.
Some UCH enzymes have significant C-terminal extensions. The functions of the C-terminal extensions are still unknown but appear to be involved in proper localization of the enzyme.
The active site of these UCH enzymes contains a catalytic triad consisting of cysteine, 25 histidine, and aspartate and utilizes a chemical mechanism similar to that of papain. The crystal structure of one of these, UCH-L3, has been solved at 1.~ 1~
resolution. The enzyme comprises a central antiparallel 13-sheet flanked on both sides by helices.
The 13-sheet and one of the helices are similar to those observed in the thiol protease cathepsin B. The similarity includes the three amino acid residues that comprise the active site, Cys95, Hisls9, and Aspl84.
3o The active site appears to fit the binding of ubiquitin that may anchor also at an additional site.
The catalytic site in the free enzyme is masked by two different segments of the molecule that limit nonspecific hydrolysis and must undergo conformational rearrangement after substrate binding.

UBP (type 2 UCH) enzymes are capable of cleaving the ubiquitin gene products and disassembling polyubiquitin chains after hydrolysis. It appears that there is a core region of about 450 amino acids delimited by CYS and HIS boxes. Many of these isoforms have N-terminal extensions and a few have C-terminal extensions. In addition, there are variable sequences in the core region of many of the isoforms. The functions of these divergent sequences remain poorly characterized. Another interesting function of specific UBPs is the regulation of cell proliferation. It was observed that cytokines induced in T-cells specific de-ubiquitinating enzymes (DUBS), termed DUB-1 and DUB-2. DUB-1 is induced by stimulation l0 of the cytokine receptors for IL-3, IL-5, and GM-CSF, suggesting a role in its induction for the J3-common (betac) subunit of the interleukin receptors. Overexpression of a dominant negative mutant of JAK2 inhibits cytokine induction of DUB-1, suggesting that the regulation of the enzyme is part of the cell response to the JAI~/STAT signal transduction pathway. Continued expression of DUB-1 arrests cells at Gl; therefore, the enzyme appears to regulate cellular 15 growth via control of the Go-Gl transition. The catalytic conserved Cys residue of the enzyme is required for its activity. DUB-2 is induced by IL-2 as an immediate early (IE) gene that is down-regulated shortly after the initiation of stimulation. The function of this enzyme is also obscure. It may stimulate or inhibit the degradation of a critical cell-cycle regulator.
20 Cytokines, such as interleukin-2 (IL-2), activate intracellular signaling pathways via rapid tyrosine phosphorylation of their receptors, resulting in the activation of many genes involved in cell growth and survival. The deubiquitinating enzyme DUB-2 is induced in response to IL-2 and is expressed in human T-cell lymphotropic virus-I (HTLV-1)-transformed T cells that exhibit constitutive activation of the IL-2 JAI~/STAT
(signal 25 transducers and activators of transcription) pathway, and when expressed in BalF3 cells DUB-2 markedly prolonged IL-2-induced STATE phosphorylation. Although DUB-2 does not enhance TL-2-mediatedproliferation, when withdrawn from growth factor, cells expressing DUB-2 had sustained STATE phosphorylation and enhanced expression of IL-2-induced genes cis and c-myc. DUB-2 expression markedly inhibited apoptosis induced by cytokine 30 withdrawal allowing cells to survive. Therefore, DUB-2 has a role in enhancing signaling through the JAK/STAT pathway, prolonging lymphocyte survival, and, when constitutively expressed, may contribute to the activation of the JAK/STAT pathway observed in some transformed cells. (Migone, T.-S., et al., Blood. 2001;98:1935-1941).

Protein ubiquitination is an important regulator of cytokine-activated signal transduction pathways and hematopoietic cell growth. Protein ubiquitination is controlled by the coordinate action of ubiquitin-conjugating enzymes and deubiquitinating enzymes.
Recently a novel family of genes encoding growth-regulatory deubiquitinating enzymes (DUB-1 and DUB-2) has been identified. DUBS are immediate-early genes and are induced rapidly and transiently in response to cytokine stimuli. By means of polymerase chain reaction amplification with degenerate primers for the DUB-2 complementary DNA, 3 marine bacterial artificial chromosome (BAC) clones that contain DUB gene sequences were isolated. One BAC contained a novel D UB gene (D UB-2A) with extensive homology to D UB-2.
Like D UB-1 and D UB-2, the D UB-2A gene consists of 2 exons. 'The predicted DUB-2A
protein is highly related to other DUBS throughout the primary amino acid sequence, with a hypervariable region at its C-terminus. W vitro, D UB-2A had functional deubiquitinating activity; mutation of its conserved amino acid residues abolished this activity. The 5' flanking sequence of the DUB-2A gene has a hematopoietic-specific functional enhancer sequence. It is proposed that there are at least 3 members of the D UB subfamily (D UB-1, D UB-2, and D UB-2A) and that different hematopoietic cytokines induce specific DUB genes, thereby initiating a cytokine-specific growthresponse. (Baek , I~.-H., et al, Blood. 2001;9:636-642).
Protein ubiquitination also serves regulatory functions in the cell that do not involve proteasome-mediated degradation. For example, Hicke and Riezman have recently demonstrated ligand-inducible ubiquitination of the Stet receptor in yeast.
Ubiquitination of the Stet receptor triggers receptor endocytosis and receptor targeting to vacuoles, not proteasomes. Also, Chen et al. have demonstrated that activation of the IB
kinase requires a rapid, inducible ubiquitination event. This ubiquitination event is a prerequisite for the specific phosphorylation of IB and does not result in subsequent proteolysis of the kinase complex. The ubiquitination of Stet and IB kinase appears reversible, perhaps resulting from the action of a specific deubiquitinating enzyme.
A large superfamily of genes encoding deubiquitinating enzymes, or UBPs, has recently been identified. UBPs are ubiquitin-specific thiol-proteases that cleave either linear ubiquitin precursor proteins or post-translationally modified proteins containing isopeptide ubiquitin conjugates. The large number of UBPs suggests that protein ubiquitination, like protein phosphorylation, is a highly reversible process that is regulated in the cell.
Interestingly, UBPs vary greatly in length and structural complexity, suggesting functional diversity. While there is little amino acid sequence similarity throughout their coding region, sequence comparison reveals two conserved domains. The Cys domain contains a cysteine residue that serves as the active enzymatic nucleophile. The His domain contains a histidine residue that contributes to the enzyme's active site. More recent evidence demonstrates six homology domains contained by all members ofthe ubp superfamily.
Mutagenesis of conserved residues in the Cys and His domains has identified several residues that are essential for UBP activity.
Recently, a growth regulatory deubiquitinating enzyme, DUB-1, that is rapidly induced in response to cytokine receptor stimulation was identified. DUB-1 is specifically induced by the receptors for IL-3, granulocyte macrophage-colony-stimulating factor, and IL-5, suggesting a specific role for the c subunit shared by these receptors. In the process of cloning theDUB-1 gene, a family of related, cross-hybridizing DUB genes was identified. From this, other DUB genes might be inducedby different growth factors. Using this approach, an IL-2-inducible DUB enzyme, DUB-2 and closely related DUB-2a were identified. DUB-1 and 2o DUB-2 are more related to each other than to other members of the ubp superfamily and thereby define a novel subfamily of deubiquitinating enzymes.
Hematopoietic-specific, cytokine induced DUBs in marine system have shown to prolong cytokine receptor, see Migone, T. S., et al. (2001). The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal, Blood 9~, 1935-41;
Zhu, Y., et al., (1997). DUB-2 is a member of a novel family of cytokine-inducible deubiquitinating enzymes, J Biol Chem 272, 51-7 and Zhu, Y., et al., (1996). The marine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor, Mol Cell Biol 16, 480~-17.). These effects are likely due to the deubiquitination of receptors or other signaling intermediates by DUB-1 or DUB-2, marine analogs of hDUBs. Inhibition of hDUBs may achieve downregulation of specific cytokine receptor signaling, thus modulating specific immune responses.

Cytokines regulate cell growth by inducing the expression of specific target genes. A
recently identified a cytokine-inducible, immediate-early gene, DUB-1, encodes a deubiquitinating enzyme with growth regulatory activity. In addition, a highly related gene, DUB-2, that is induced by interleukin-2 was identified. The DUB-2 mRNA was induced in T
cells as an immediate-early gene and was rapidly down-regulated. Like DUB-1, the DUB-2 protein had deubiquitinating activity iya vitf-o. When a conserved cysteine residue of D UB-2, required for ubiquitin-specific thiol protease activity, was mutated to serine (C60S), deubiquitinating activitywas abolished. DUB-1 and DUB-2 proteins are highly related throughout their primary amino acid sequence except for a hypervariable region at their COOH terminus. Moreover, the DUB genes co-localize to a region of mouse chromosome 7, suggesting that they arose by a tandem duplication of an ancestral DUB gene.
Additional DUB
genes co-localize to this region, suggesting a larger family ofcytokine-inducible DUB
enzymes. We propose that different cytokines induce specific DUB genes. Each induced DUB
l5 enzyme thereby regulates the degradation or the ubiquitination state of an unknown growth regulatory factor, resulting in a cytokine-specific growth response.
On the basis of these structural criteria, additional members of the DUB
subfamily can be identified in the GenBank~. The highest degree of homology is in the Cys and His domains.
Additionally, this putative humanDUB protein contains a Lys domain (amino acids 400-410) zo and ahypervariable region (amino acids 413-442).
Murine DUB (mDUB) subfamily members differ from other IJBPs by functional criteria as well. mDUB subfamily members are cytokine-inducible, immediate-early genes and may therefore play regulatory roles in cellular growth or differentiation.
Also, DUB proteins 25 are unstable and are rapidly degraded by ubiquitin-mediated proteolysis shortly after their induction.
mDUB reports demonstrate that specific cytokines, such as IL-2 and IL-3, induce specific deubiquitinating enzymes (D UBs). The D UB proteins may modify the ubiquitin-3o proteolytic pathway and thereby mediate specific cell growth or differentiation signals. These modifications are temporally regulated. The DUB-2 protein, for instance, is rapidly but transiently induced by IL-2. Interference of D UB enzymes with specific isopeptidase inhibitors may block specific cytokine signaling events.

The prior art teaches some partial sequences with homology to DUBS;
specifically Human cDNA sequence SEQ m N0:17168 in EP1074617-A2; a human protease and protease inhibitor PPIM-4 encoding cDNA; in W0200110903-A2 and human ubiquitin protease 23431 coding sequence in W0200123589-A2.
References 1. Baek, K. H., Mondoux, M. A., faster, R., Fire-Levin, E., and D'Andrea, A.
D. (2001). DUB-2A, a new member of the DUB subfamily of hematopoietic deubiquitinating enzymes, Blood 98, 636-42.
LO 2. faster, R., Baek, K. H., and D'Andrea, A. D. (1999). Analysis of cis-acting sequences and trans-acting factors regulating the interleukin-3 response element of the DUB-1 gene, Biochim Biophys Acta 1446, 308-16.
3. faster, R., Zhu, Y., Pless, M., Bhattacharya, S., Mathey-Prevot, B., and D'Andrea, A. D. (1997).
JAK2 is required for induction of the murine DUB-1 gene, Mol Cell Biol 17, 3364-72.
15 4. Migone, T. S., Humbert, M., Rascle, A., Sanden, D., D'Andrea, A., Johnston, J. A., Baek, K. H., Mondoux, M. A., faster, R., Fire-Levin, E., et al. (2001). The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal, Blood 98, 1935-41.
Zhu, Y., Carroll, M., Papa, F. R., Hochstrasser, M., and D'Andrea, A. D.
(1996a). DUB-1, a ~0 deubiquitinating enzyme with growth-suppressing activity, Proc Natl Acad Sci U S A 93, 3275-9.
6. Zhu, Y., Lambert, K., Corless, C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and D'Andrea, A.
D. (1997). DUB-2 is a member of a novel family of cytokine-inducible deubiquitinating enzymes, J
Biol Chem 272, 51-7.
7. Zhu, Y., Pless, M., Inhorn, R., Mathey-Prevot, B., and D'Andrea, A. D.
(1996b). The rnurine DUB-1 25 gene is specifically induced by the betac subunit of interleukin-3 receptor, Mol Cell Biol 16, 4808-17.
Scott Emr described a role for monoubiquitination in protein sorting in the late endosome, which has a role in determining which proteins, both newly synthesized and endocytosed, will be delivered to the lumen of the vacuole and which to its limiting membrane.
Proteins 3o destined for lumen are sorted into internal vesicles at the multivesicular body (MVB) stage of endosome maturation, whereas proteins destined for the vacuolar membrane, or for recycling to the plasma membrane, remain in the endosome's limiting membrane. Emr showed that the sorting of a vacuolar hydrolase into MVB vesicles requires the monoubiqutination of this cargo molecule at a specific lysine residue (Katzmann et al., 2001). Thus, monoubiquitination 35 is a green light for traffic to proceed from this important intracellular intersection to the lumen of the vacuole. The policeman directing the traffic is an endosome-localized protein complex called ESCRT-I, one of whose components, Vps23, plays a key role in recognizing the cargo's ubiquitin signal (I~atzmann et al., 2001). Vps23 is one of a small family of UEV proteins (ubiquitin E2 variants) that resemble E2s but cannot perform canonical E2 functions. The ESCRT-I complex binds ubiquitin, and a mutation in Vps23 that cripples ubiquitin-dependent sorting in the MVB pathway abolishes ubiquitin binding to ESCRT-I. A model in which Vsp23 binds ubiquitin directly, while still inferential, received support from structural studies of a different UEV protein. Intriguingly, the mammalian homolog of Vps23, known as tsg101, is a tumor suppressor (Li and Cohen, 1996) The current results suggest that mutations in tsg101 could cause persistent signaling by growth factor receptors because of inappropriate receptor recycling to the plasma membrane, thus leading to tumorigenesis.
A role for monoubiquitination in triggering the first step of endocytosis-the internalization of plasma membrane proteins-is well established (Hicke, 2001), but how this signal is recognized has been unclear. Linda Hicke reported that yeast Entl is vital for the ubiquitin-dependent endocytosis of yeast factor receptor (see also Wendland et al., 1999). Entl carries a proposed ubiquitin binding motif called the UllVI domain (Hofinann and Falquet, 2001 ), and Hicke showed that Entl indeed binds ubiquitin directly. Entl also binds clathrin (Wendland et al., 1999) and so is poised to link monoubiquitinated cargo molecules to the endocytic machinery. Hicke's and Emr's results suggest that the ability of monoubiquitin to signal two different trafficking outcomes relies in part on distinct localizations of the relevant signal-recognizing components-Entl resides at the plasma membrane, while ESCRT-I is associated with late endosomes.
'S Fanconi Anemia (FA) is a rare cancer susceptibility disorder associated with cellular sensitivity to DNA damage that can be caused by mutations in at least seven genes. Alan D'Andrea shed new light on the molecular basis of FA: monoubiquitination of a specific lysine residue in one FA protein, known as D2, requires the activities of four upstream FA
genes and leads to the relocalization of D2 within the nucleus (Garcia-Higuera et al., 2001 ).
30 In normal cells, monoubiquitination of D2 is strongly augmented following DNA damage and is strictly required for damage-associated targeting of D2 and BRCAl to subnuclear foci.
Thus, D2 monoubiquitination links an FA protein complex to the BRCAl repair machinery.
Although the downstream events in this pathway are still unclear, localization of the signal-recognizing factors) will likely be critical. This new function of ubiquitin carnes a strong flavor of certain roles of Sumo-1, a UbL that has been implicated in protein targeting to specific subnuclear structures (Hochstrasser, 2000).
Polyubiquitin chains are well known as a signal for substrate destruction by 26S proteasomes.
But there are several kinds of chains, linked through different lysines of ubiquitin, suggesting that different chains might be distinct signals (Pickart, 2000). James Chen provided rigorous proof of this hypothesis by showing that noncanonical polyubiuqitination can activate phosphorylation-in contrast to numerous examples of the converse regulation (Hershko and to Ciechanover, 1998). Postreplicative DNA repair and the activation of IkBa, kinase (IKK) require chains linked through Lys63, rather than the Lys48-chains that usually signal proteasomal proteolysis. Chen found that Takl kinase is a downstream target of Lys63-chain signaling in the II~K activation pathway. The assembly of these chains depends on an unusual UEV/E2 complex and a RING finger protein, Traf6 (Deng et al., 2000). (The RING
finger defines a large E3 family.) Modification of Traf6 with a Lys63-chain leads to the activation of Takl, which in turn phosphorylates IKI~ (Wang et al., 2001). Activated IKKK
then phosphorylates IkBa and triggers its tagging with Lys48-chains. Only then do proteasomes enter the picture-they degrade IkBa, and thereby free its partner, NFkB, to translocate to the nucleus and activate the expression of inflammatory response genes. Chen's results suggest z0 that Traf6 is the target of the Lys63-chain, as well as a catalyst of its assembly. Indeed, many other RING E3s also self modify-although the consequence is more apt to be suicide (cf.
tagging with Lys48-chains) than the kind of personality change seen with Traf6 (Joazeiro and Weissman, 2000). It remains to be seen if a similar mechanism applies in DNA
repair, where a different RING protein, the RadS helicase, binds to a related UEV/E2 complex (Ulrich and Jentsch, 2000). New genetic data reported by Helle Ulrich confirmed the central importance of RadS in Lys-63 chain signaling in DNA repair (Ulrich, 2001).
These reports suggest a variety of new functions of protein ubiquitination and its potential involvement of subcellular trafficking including nucleus and the lumen of the intracellular 3o vesicles. Thus regulation of ubiquitination by deubiquitinating proteases in various subcellular localization is become a critical issue.

Recently, a number of proteins have been identified as capable of transducing, that is, moving across cellular and nuclear membranes in an energy-independent manner.
Transducing sequences have been identified in proteins involved in circadian rhythm, such as human Period proteins. It is thought that these proteins move more freely through cellular and nuclear membranes, and that this movement permits concerted control. No other enzymes involved in the deubiquitination activities have been identified as being capable of transducing or having NLS until now.
The presence of an NLS at the C-terminal suggests that the hDUB7 and its marine ortholog, to mDUB7, are capable of translocating to the nucleus, possibly by importin-dependent manner and that these DUBS have a role in deubiquitinating ubiquitinated nuclear proteins andlor ubiquitinated proteins that are translocated to the nucleus. This has never been identified before. Protein ubiquitination targets selectively to proteasome degradation and/or provides facilitating protein localization. Thus, nuclear protein deubiquitination may have a role in l5 unique function in regulation of nuclearprotein degradation as well as nuclear protein localization. The same logic can be applied to the vesicular targeting of DUB7 by targeting sequence, regulating vesicular protein degradation as well as invloved in traficking of vesicular proteins.
ao References Katzmann D.J., Babst M. and Emr S.D. (2001) LTbiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell, 106:145-155.
Li L. and Cohen S.N. (1996) tsg101: a novel tumor susceptibility gene isolated by controlled Z5 homozygous functional knockout of allelic loci in mammalian cells. Cell, 85:319-329.
Hicke L. (2001) A new ticket for entry into budding vesicles-ubiquitin. Cell, 106:527-530.
Wendland B., Steece K.E. and Emr S.D. (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin, and are required for endocytosis. EMBO J., 18:4383-4393.
Hofinann K. and Falquet L. (2001) A ubiquitin-interacting motif conserved in components of 3o the proteasomal and lysosomal protein degradation systems. T~ehds Biochem.
Sci., 26:347-350.

Garcia-Higuera L, Taniguchi T., Ganesan S., Meyn M.S., Timmers C., Hejna J., Grompe M.
and D'Andrea A.D. (2001) Interaction of the Fanconi Anemia proteins and BRCAl in a common pathway. Mol. Cell, 7:249-262.
Hochstrasser M. (2000) Evolution and function of ubiquitin-lilce protein-conjugation systems.
Nat. Cell Biol., 2:E153-E157.
Pickart C.M. (2000) Ubiquitin in chains. Trehds Biochem. Sci., 25:544-548.
Pickart C.M. (2000) Ubiquitin in chains. Ti°ends Bioclzem. Sci., 25:544-548.
Hershko A. and Ciechanover A. (1998) The ubiquitin system. Af~nu. Rev.
Biochem., 67:425-479.
to Deng L., Wang C., Spencer E., Yang L., Braun A., You J., Slaughter C., Pickart C. and Chen Z.J. (2000) Activation of the IkB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103:351-361.
Wang C., Deng L., Hong M., Akkaraju G.R., moue J.-I. and Chen Z.J. (2001) TAKl is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412:346-351.
Joazeiro C.A.P. and Weissman A.M. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell, 102:549-552.
Ulrich H. (2001) The srs2 suppressor of UV sensitivity acts specifically on the RADS- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res., 29:3487-3494.
Ulrich H.D. and Jentsch S. (2000) Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J., 19:3388-3397.
Summary of the Invention The present invention is directed to identification of human homolog of marine DUBS, hematopoietic-specific, cytol~ine-inducible deubiquitinating proteases found on chromosome 7, respective regulatory region and its marine ortholog, named as hDUB7 and mDUB7, respectively. Both hDUB7 and its marine ortholog mDUB7 were identified by searching human and mouse genome databases using marine DUB-1 and DUB-2 sequences. These genes (hDUB7 and mDUB7) share open reading frames (ORFs) that are 67% amino acid identity to each other, when gaps caused by deletion was not counted as mismatch, and exhibit 75% identity in nucleotide sequence. Furthermore, both hDUB7 and mDUB7 share 48% identity to marine DUBs, DUB 1 and DUB2 within 297 amino acids core DUB
sequences. In addition, hDUB7 and mDUB7 genes share open reading frames that are greater than 92% amino acid identity within 540 amino acids N-terminal ubiquitin protease domain (with 98.4% identity within 313 amino acid core). These genes also exhibit 74%
identity within 138 amino acids C-terminal conserved domain containing several putative nuclear localization sequences (NLSs) and stretchs of amino acid sequences that is known to possess transducing capacity (h AKKHT~KSKKKI~I~SKDKHR and HRHKKKKKKKKRHSRK).
Therefore, the present invention is also directed to a transducing peptide comprising an NLS
or transducing sequence of hDUB7 or mDUB7 linked to a cargo molecule. The invention also includes a transducing peptide comprsing an NLS or transducing sequence is selected from the group consisting of a peptidyl fragment comprising K AKKHKKSKKKKKSKDKHR, HRHKKKKKKKKRHSRK, KKHKKSKKKI~KSI~DI~HR, and HRHRKKKKKKKR_H_SRI~.
to The invention also comprsises a transducing peptide wherein the cargo molecule is a biologically active protein, therapeutically effective compound, antisense nucleotide, or test compound. The invention also includes a method of delivering a biologically active protein, therapeutically effective compound, antisense nucleotide, or test compound to a cell wherein a transducing peptide is added exogenously to a cell.
Manipulation of these gene products by small molecular compounds can (1) reduce inflammation by regulating proinflammatory cytokine signaling, (2) modulate autoimmune diseases by regulating cytokine receptor signaling that are critical for lymphocytes proliferation, and (3) immure over-reaction during infection using above mechanisms.
Search methods for identifyi~ hDUB7 and mDUB7:
mDUBl (LT41636), mDUB2 (U70368), and mDUB2A (AF393637) DNA sequences were used to search against nr (All non-redundant GenBank CDS
translations+PDB+SwissProt+PIR+PRF) in GenBank for potential homologs.
Homology was found to a cDNA (AI~022759) whose C terminal was incomplete (3660 nucleotides capable of expressing 1197 amino acids run-off translation). In order to in silico clone the full length.
Both EST extending and genomic sequence annotation methods were used. Sequence of AK022759 was searched against human ESTs and genomic sequences. AK022759 was extended manually based on matching ESTs and mapped genomic sequence on contig NT 007844.8 from chromosome 7. From these full-length sequence for open reading frame for hDUB7 was generated (3951 nucleotides long DNA segment capable of generating 1316 amino acids long polypeptide).

For in silico cloning of the putative full length of mDUB7, hDUB7 amino acid sequence was used to search against nr by blastp. The highest match to Mouse proteins is a protein similar to mDUB2. The accession number for this protein is BAB27190 and for nucleotide sequence is AK010801 (1485 nucleotide long capable of translating 487 amino acids run-on translation). Based on Genbank annotation, the gene has partial sequence with C terminal incomplete. In order to get the full length of mDUB7, nucleotide sequence of AK010801 was used to search against Mouse Genomic sequence. There was no match to Mouse curated NT
contigs _ -database and match was found on contig 70795 from Mouse Arachne Nov30 database (preliminary assembly of the mouse WGS reads based on an Nov 9th freeze of the WGS -data) in Genbank. Putative genes from contig_70795 were annotated by GENSCAN
prediction. There is one putative protein with extended/finished C terminal aligned perfectly with BAB27190 except having 33 amino acids missing in the middle of sequence.
The nucleotide sequence of the 33 amino acids segment from BAB27190 was searched against the Mouse genomic sequence and found it matched to the genomic sequence region that generates the putative full length mDUB7 and has potential splice sites on the borders.
It implies that exon was missed by GENSCAN annotation. A full length mouse DUB7 was constructed by adding 33 amino acids to the putative protein according to the genomic sequence alignment (3981 nucleotides long open reading frame capable of generating 1326 amino acids long polypeptide). The final mDUB7 sequence was aligned with hDUB7 and showed 67%
,o homology in amino acid level and 75% homology in nucleotide level.
TaqMan peal time PCR analysis of expYession of hDUB7 in human immunocytes upon various stimulation t5 Protocol of reverse transcription (RT) from total cellular RNA using random hexamer as primer (using TaqMan Reverse Transcription Reagents Cat# N808-0234) 1 ug of total RNA preparation in 100 ul of lxTaqMan RT Buffer Mix, 5.5mM MgCl2 , 0.5 mM dNTPs, 2.5 uM Random Hexamers, 40 U RNAse inhibitor, 125U Multiscribe Reverse 30 Transcriptase. Mix by pipeting up and down. Incubate 25°C for 10 minutes (annealing step), 48°C for 30 minutes (reverse transcription), and 95°C for 5 minutes (heat killing of the enzyme). The samples can be left at the machine at 4°C, or alternatively, can be stored at -20°C. Yield of cDNA synthesis can be measured by incorporation of small portion of radioactive dATP (or dCTP). Average efficiency for this protocol is between 60-80% of conversion of RNA to cDNA.
Protocol of TaqMan real-time quantitative PCR
1 ul of TaqMan RT product in 12.5 ul of lx master Mix (Applied Biosystems Cat#
4304437)containing all necessary reaction components except primers and probes, 0.9 uM
forward primer , 0.9 uM reverse primer, 0.2 uM probe. Mix by pipetting up and down.
Samples containing GADPH primer pair and probe were also prepared as control.
Thermal to cycling and detection of the real-time amplification were performed using the ABI PRISM
7900HT Sequuence Detection System. The quantity of target gene is given relative to the GADPH control based on Ctvalues determined during the exponential phase of PCR.
Primer-probe set used is as follow:
Forward Primer 5'-CCACGACAGAACTGCACTTGTAG-3' Reverse Primer 5'- CCGGGACTTTCCATTTTCG-3' Probe sequence 5'- CAACTGTAACCTCTCTGATCGGTTTCACGAA-3' 2o Table 1. Expression of hDUB7 in PBMC stimulated with LPS (100 ng/ml) for 1.5, land 24 hours by TaqMan (Donor 1).
LPS Stimulation/Time 1.5 hours 7 hours 24 hours Fold Upregulation upon 0.9 ~ 1.5 1.0 stimulation Table 2. Expression of DUB7 in PBMC stimulated with LPS (100 ng/ml) and/or PHA
(5 ug/ml) for 1.5, 7, 24 hour s by TaqMan (donor 2, donor 3) Donor 2 Fold Upre lation upon stimulation Stimuli/time LPS PHA LPS + PHA

1.5 hours 1.1 1.2 1.1 7 hours 3.3 9.2 9.2 24 hours 0.2 0.3 0.3 Donor 3 Fold U regulation upon stimulation Stimuli/time LPS PHA LPS + PHA

1.5 hours 1.2 1.0 1.2 7 hours 3.5 8.2 9.3 24 hours 0.5 0.5 0.6 Table 3. Expression of hDUB7 in enriched B cells stimulated with LPS (100 ng/ml) or IL-4 and anti-CD40 mAb for 4 and 20 hours by TaqMan (Donor 4).
Donor 4 ~ Fold U rp egulation upon stimulation Stimuli/time LPS _ __IL-4, anti-CD40 mAb 4 hours 1.11 2.44 20 hours 0.70 1.0 Table 4. Expression of hDUB7 in entiched CD4+ T cells stimulated with anti-CD3 and anti-CD28 mAbs for 3,6 and 18 hours by TaqMan (Donor 5).
mAbs Stimulation/Time 3 hours 6 hours 18 hours Fold Upregulation upon 1.36 ~ 1.74 0.37 stimulation to Table 5. Expression of hDUB7 in differentiated ThO, Thl and Th2 CD4+ T
cells (Day 4 after differentiation) stimulated with anti-CD3 and anti-CD28 mAbs for 8 hours by TaqMan (Donor 6).
mAbs Stimulation ~ Th0 ~ Thl ~ Th2 Fold Upre~ulation upon stimulation 2.60 0.36 ~ 1.72 Table 6. Expression of hDUB7 in differentiated ThO, Thl and Th2 CD4+ T cells (Day 7 after differentiation) stimulated with anti-CD3 and anti-CD28 mAbs for 8 and 18 hours by TaqMan (Donor 6).
mAbs Stimulation Th0 Thl Th2 Fold Upregulation in 8 hours1.38 1.11 1.71 Fold Upregulation in 18 0.94 0.81 1.47 hours Table 7. Expression of hDUB7 in various tissue examined by Affymatrix chip analysis Tissue Relative Intensity Con Adipose_12287 Con Adipose 4190 CV_Heart_1 2545 CV_Heart_2 3907 CV_Heart 3 5367 CV Pericardia_13682 Dig Colon 2387 Dig Colon 2894 Dig Esophagus_15004 Dig Esophagus1658 Dig FetalLiver_1 1288 Dig FetalLiver_2 4676 Dig FetalLiver_3 829 Dig FetalLiver_4 3161 Dig Liver 1 3094 Dig Liver 2 1527 Dig Liver 3 3410 Dig Pancreas_l 3731 Dig Pancreas 2 4837 Dig Rectum_1 2329 Dig Rectum 2 1851 Dig SalivaryGland_12337 Dig SalivaryGland_22110 Dig SmallIntestine_12838 Dig SmallIntestine_22662 Dig Stomach_1 2187 End_AdrenalGland_1591 End_AdrenalGland_22199 End Thyroid 1 2564 End Thyroid 2 2392 End Thyroid 3 3522 Exo_Breast_1 3673 Exo_Breast_2 6173 Exo_MammaryGland 3741 _1 Imm_BoneMarroW_1 1090 hnm Spleen 1 2429 hnm_Thymus_1 3666 Imm Thymus 2 1759 Rep Cervix_1 4482 Rep Cervix 2 3 3 Rep Placenta_1 1248 Rep Placenta_2 2378 Rep Placenta_3 1622 Rep Prostate_1 5128 Rep Prostate_2 2762 Rep Testis_l 2252 Rep Testis 2 3196 Rep Uterus_1 4720 Rep Uterus 2 3789 Res Lung 1 2313 Res Lung 2 3177 Res Lung 3 4409 Res Lung 4 2366 Res_Trachea_1 2152 Res_Trachea_2 2358 Res_Trachea_3 812 Res_Trachea_4 812 Sk_SkeletalMuscle_12838 Sk SkeletalMuscle6106 Skin Skin 1 5500 Uri_Kidney 1 3593 Uri Kidney 2 1311 Uri Kidney 3 2747 Uri Kidney_4 1530 NS_Brain_1 3214 NS_Brain_2 2173 NS_Brain_3 1332 NS_Brain_4 2604 NS_Brain_5 1663 NS_Cerebellum_l3175 NS_Cerebellum_21766 NS_FetalBrain_14299 NS_FetalBrain_22549 NS_FetalBrain_34027 NS SpinalCord_l2976 NS SpinalCord_23999 NS SpinalCord 4614 Table 8. Expression of mDUB7 in various tissue examined by Affymatrix chip analysis Mouse Organ Relative Intentisty #

A stomach 56 A stomach 11 B stomach 175 B stomach 97 C stomach 178 C stomach 126 A lymph 516 A lymph 365 B lymph 494 B lymph 335 C lymph 475 C lymph 509 A thymus 913 A thymus 1015 B thymus 881 B thymus 927 C thymus 834 C thymus 975 A prostate327 A prostate350 B prostate75 B prostate423 C prostate405 C prostate267 A uterus 549 A uterus 372 B uterus 225 B uterus 418 C uterus 335 C uterus 401 Deubiquitination Assay Confirmation that the DUB is a deubiquitinating enzyme may be shown using 5 previously identified deubiquitination assay of ubiquitin--galactosidase fusion proteins, as described previously in the literature. Briefly, a fragment of the DUB, of approximately 1,500 nucleotides, based on the wild-type DUB cDNA (corresponding to amino acids 1 to about 500) and a cDNA containing a missense mutation are generated by PCR and inserted, in frame, into pGEX (Pharmacia), downstream of the glutathione S-transferase (GST) coding to element. Ub-Met--gal is expressed from a pACYC184-based plasmid. Plasmids are co-transformed as indicated into MC1061 Esche~ichia coli. Plasmid-bearing E. coli cells are lysed and analyzed by immunoblotting with a rabbit anti--gal antiserum (Cappel), a rabbit anti-GST antiserum (Santa Cruz), and the ECL system (Amersham Corp.).
in vitro deubiquitinating enzyme activity may be shown from purified hDUB fusion protein using 15 commercial polyubiquitinated protein as substrate.
HDUB7 and znDUB7 are potential inflanzatory cytokins specific Izzznzediate-early genes mDUB-I was originally cloned as an IL-3-inducible immediate-early gene.
Similarly, mDUB-2 was cloned as an IL-2-inducible immediate-early gene. We examined inducibility as ?o well as cell-type specific expression of these genes using Affymatrix-Chip analysis and multiple TaqMan analysis from human organ RNA samples and human immunocytes RNA
samples. Our data suggest that expression of hDUB7 are not apparent in monoocytes and other myoloid cell types but high in fresh human PBMC from several donor.
Furthermore, enriched cell populations of several lymphocytes, including B cells, CD4+ T
cells of Th-1 and ?5 Th-2 differentiation conditions as well as bulk CD4+ T cells showed significant upregulation upon appropriate stimulations. Currently, we can not rule out the possibility of upregulation upon stimulation in CD8+ T cells and potentially NI~/NK-T cells.
The DUB Subfamily of the ubp Superfamily 3o From these data we propose that hDUB4s and hDUB8s are members of a discrete subfamily of deubiquitinating enzymes that shows the strongest similarity to mDUB
subfamily including mDUBl, mDUB2, and mDUB2A, called the DUB subfamily. DUB
subfamily members contain distinct structural features that distinguish them from other ubps.

First, DUB subfamily members are comparatively small enzymes of approximately amino acids. Second, D UB subfamily members share amino acid similarity not only in the Cys and His domains but also throughout theirprimary amino acid sequence. For instance, DUB
proteins contain a lysine-rich region (Lys domain) and a HV domain near their carboxyl terminus.
The regulatory regions, or promoter regions, of each of the hDUB7 was analyzed for putative transcription factor binding motifs using TRANSFACFind, a dynamic programming method, see Heinemeyer, T., et al., "Expanding the TRANSFAC database towards an expert 1o system of regulatory molecular mechanisms" Nucleic Acids Res. 27, 318-322, (1999). The Transfac database provides eukaryotic cis- and trans-acting regulatory elements. The data is shown as table X.
Table 9, putative transcription factor binding motifs within the hDUB7 regulatory or promoter 15 region. The position is indicated by nucleotides used in the table 9.
TransfacPosition(Score)Name Descri tion M00148 1960..1966(100)SRY sex-determining region Y gene product 876..870(100) 1357..1351 (92) 1881..1875(92) 1749..1755(90) 118..124(90) 267..261 (90) 275..269(90) 1663..1669(90) 1313..1319(90) 1860..1854(90) 108..114(90) M00240 491..497(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog 1512..1506(90) 1894..1888(90) M00028 1844..1848(100)HSF heat shock factor (Drosophila) 1835..1839(100) 251..247(100) 265..261 (100) 273..269(100) 1429..1433(100) 1315..1319(100) 1264..1268 100) 1060..1064 100) 1014..1010(100) 1540..1536(100) 1559..1555(100) 1619..1615(100) 110..114(100) 66..70(100) 1950..1946(100 1737..1741 95) 1635..1639(95) 651..647 95) 1103..1107(95 1082..1078(95 16..20(95) 1674..1678(94 1189..1185(94) 880..876(91) M00029 247..243(100) 1667..1671 ( 100) 1210..1206(100) 1745..1741 100) 71..75(100) 1844..1848(96) 1835..1839(96) 265..261 (96) 273..269(96) 1429..1433(96) 1315..1319(96) 1264..1268(96) 1060..1064(96) 1014..1010(96) 1540..1536(96) 1559..1555(96) 1619..1615(96) 110..114(96) 1950..1946(96) 1674..1678(95) 1189..1185(95) 1737..1741(93) 1635..1639(93) 651..647(93) 1103..1107(93) 1082..1078(93) 16..20(93) 1120..1124(90) 139..143(90) M00101 1418..1412( 100) 1689..1695(98) 1566..1572(98) 1460..1466(98) 1319..1325 98) 969..975(98) 1463..1457(98) 1614..1608(98) 1065..1059(94) 1599..1605(93) 1375..1369(93) 1840..1834(93) 1859..1865(92) 1168..1174(92) 1218..1212(92) 1478..1484(90) M00048 447..452(100) ADRl alcohol dehydrogenase gene regulator 1 535..540(95) 1716..1721(93) 459..454(93) 558..553(93) 1180..1185(93) 305..310(93) 38..43(92) M00354 1951..1941 Dof3 Dof3 - single zinc finger transcription 99 factor 1560..1550(95) 104..114(93) 65..75(91) M00227 1920..1928(98)v-Myb v-Myb M00141 521..513(98) Lyf 1 LyF-1 828..820(98) M00344 806..795(98) RAV1 3'-part ofbipartite RAV1 binding site, interacting with A.P2 domain 806..817(92) 1949..1960(92) M00253 1139..1146(98)cap cap signal for transcription initiation 681..688 96) 374..381 (96) 299..306(95) 1674..1667(94) 1737..1730(91) 31..24(91) 16..9(91) 1701..1694(91) 1909..1902(90) 619..626(90 1368..1375(90) M00286 577..564(97) GKLF gut-enriched I~rueppel-like factor 271..258(96) M00199 684..676(96) AP-1 AP-1 binding site 676..684(95) M00183 227..218(96 c-Myb c-Myb 28..37(95 1247..1238(90) M00154 1714..1721(96)STRE stress-response element M00140 1824..1831(96 Bcd Bicoid 834..841 (93) 527..534(93) M00100 1418..1412(96)CdxA CdxA

1209..1215 92) 1348..1354(91) M00291 1652..1667(95)Freac-3 Fork head RElated Activator-3 M00073 1948..1958(95)deltaEFl deltaEF1 807..797(95) 1452..1442(92) 805..815(90) M00216 1176..1167(95)TATA Retroviral TATA box M00120 1952..1942(95)dl dorsal 1561..1551(93) M00042 1861..1852(95 Sox-5 Sox-5 1790..1781(91) M00174 675..685(95) AP-1 activator protein 1 M00230 1797..1808(95)Skn-1 maternal gene product M00272 1024..1033(94)p53 tumor suppressor p53 103 3 ..1024(94) M00160 1862..1851(94)SRY sex-determining region Y gene product M00022 111..120(94) Hb Hunchback 436..427(91) 584..575(91) M00053 447..456(94) c-Rel c-Rel M00249 1244..1256(93)CHOP- heterodimers of CHOP and C/EBPalpha C/EBPalpha M00142 1367..1362(93)NIT2 activator of nitrogen-regulated genes 1348..1343(91) M00289 1670..1658(93)HFH-3 HNF-3/Fkh Homolog 3 (= Freac-6) M00019 1381..1366(93)Dfd Deformed 1593..1608(91) M00147 1903..1912(92)HSF2 heat shock factor 2 M00184 806..815(92) MyoD myoblast determining factor M00345 225..218(92) GAmyb GA-regulated myb gene from barley M00094 1658..1670(92)BR-C Broad-Complex Z4 1398..1386(90) M00349 1200..1191 GATA-2 GATA-binding factor 2 (92) M00077 443..451 (92) GATA-3 GATA-binding factor 3 M00087 388..399(91) Ik-2 Ikaros 2 M00099 1268..1283(91)S8 S8 M00285 1399..1411(91)TCF11 TCF11/KCR-F1/Nrfl homodimers M00241 1224..1217(91)Nl~-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog 1526..1519(91) M00283 1863..1878(90)Zeste Zeste transvection gene product M00046 1113..1105(90)GCRl GCRl M00353 1069..1079 Dof2 DofZ - single zinc finger transcription 90) factor 1951..1941 (90) M00263 985..994(90) StuAp Aspergillus Stunted protein M00051 448..457(90) NF-kappaB NF-kappaB (p50) M00350 1200..1191(90)DATA-3 GATA-binding factor 3 M00276 1851..1860(90)Matl-Mc M-box interacting with Matt-Mc M00075 1936..1945(90)DATA-1 GATA-binding factor 1 442..451 (90) M00355 279..269(90) PBF PBF (MPBF) 1897..1887(90) M00352 1775..1785(90)Dofl Dofl / MNBla - single zinc finger transcription factor M00294 1670..1658(90)HFH-8 HNF-3lFkh Homolog-8 M00131 1762..1748(90)HNF-3beta Hepatocyte Nuclear Factor 3beta M00137 1320..1332(90)Oct-1 octamer factor 1 M00054 448 457(90) NF-kappaB NF-kappaB
~

Table 10. Nucleotide sequence of coding region of human DUB7 (hDUB7) ATGACCATAGTTGACAAAGCTTCTGAATCTTCAGACCCATCAGCCTATCAGAATC
AGCCTGGCAGCTCCGAGGCAGTCTCACCTGGAGACATGGATGCAGGTTCTGCCAG
CTGGGGTGCTGTGTCTTCATTGAATGATGTGTCAAATCACACACTTTCTTTAGGAC
CAGTACCTGGTGCTGTAGTTTATTCGAGTTCATCTGTACCTGATAAATCAA.A.ACCA
TCACCACAA.AAGGATCAAGCCCTAGGTGATGGCATCGCTCCTCCACAGAAAGTTC
TTTTCCCATCTGAGAAGATTTGTCTTAAGTGGCAACAAACTCATAGAGTTGGAGCT
GGGCTCCAGAATTTGGGCAATACCTGTTTTGCCAATGCAGCACTGCAGTGTTTAA
~o CCTACACACCACCTCTTGCCAATTACATGCTATCACATGAACACTCCAAA.ACATGT
CATGCAGAAGGCTTTTGTATGATGTGTACAATGCAAGCACATATTACCCAGGCAC
TCAGTAATCCTGGGGACGTTATTAAACCAATGTTTGTCATCAATGAGATGCGGCG
TATAGCTAGGCACTTCCGTTTTGGAAACCAAGAAGATGCCCATGAATTCCTTCAA
TACACTGTTGATGCTATGCAGAAAGCATGCTTGAATGGCAGCAATAAATTAGACA
is GACACACCCAGGCCACCACTCTTGTTTGTCAGATATTTGGAGGATACCTAAGATC
TAGAGTCAAATGTTTAAATTGCAAGGGCGTTTCAGATACTTTTGATCCATATCTTG
ATATAACATTGGAGATAAAGGCTGCTCAGAGTGTCAACAAGGCATTGGAGCAGTT
TGTGAAGCCGGAACAGCTTGATGGAGAAA.ACTCGTACAAGTGCAGCAAGTGTAA
AAAGATGGTTCCAGCTTCAAAGAGGTTCACTATCCATAGATCCTCTAATGTTCTTA
?o CACTTTCTCTGAAACGTTTTGCAAATTTTACCGGTGGAAAAATTGCTAAGGATGTG
AAATACCCTGAGTATCTTGATATTCGGCCATATATGTCTCAACCCAACGGAGAGC
CAATTGTCTACGTCTTGTATGCAGTGCTGGTCCACACTGGTTTTAATTGCCATGCT
GGCCATTACTTCTGCTACATAAAAGCTAGCAATGGCCTCTGGTATCAA.ATGAATG
ACTCCATTGTATCTACCAGTGATATTAGATCGGTACTCAGCCAACAAGCCTATGTG
?s CTCTTTTATATCAGGTCCCATGATGTGAAAAATGGAGGTGAACTTACTCATCCCAC
CCATAGCCCCGGCCAGTCCTCTCCCCGCCCCGTCATCAGTCAGCGGGTTGTCACCA
ACAAACAGGCTGCGCCAGGCTTTATCGGACCACAGCTTCCCTCTCACATGATAAA
GAATCCACCTCACTTAAATGGGACTGGACCATTGAAAGACACGCCAAGCAGTTCC
ATGTCGAGTCCTAACGGGAATTCCAGTGTCAACAGGGCTAGTCCTGTTAATGCTT
3o CAGCTTCTGTCCAAAACTGGTCAGTTAATAGGTCCTCAGTGATCCCAGAACATCCT
AAGAAACAAAAAATTACAATCAGTATTCACAACAAGTTGCCTGTTCGCCAGTGTC
AGTCTCAACCTAACCTTCATAGTAATTCTTTGGAGAACCCTACCAAGCCCGTTCCC
TCTTCTACCATTACCAATTCTGCAGTACAGTCTACCTCGAACGCATCTACGATGTC
AGTTTCTAGTAAAGTAACAAA.ACCGATCCCCCGCAGTGAATCCTGCTCCCAGCCC
3s GTGATGAATGGCAAATCCAAGCTGAACTCCAGCGTGCTGGTGCCCTATGGCGCCG
AGTCCTCTGAGGACTCTGACGAGGAGTCAAAGGGGCTGGGCAAGGAGAATGGGA
TTGGTACGATTGTGAGCTCCCACTCTCCCGGCCAAGATGCCGAAGATGAGGAGGC
CACTCCGCACGAGCTTCAAGAACCCATGACCCTAAACGGTGCTAATAGTGCAGAC
AGCGACAGTGACCCGAAAGAAAACGGCCTAGCGCCTGATGGTGCCAGCTGCCAA
4o GGCCAGCCTGCCCTGCACTCAGAA.AATCCCTTTGCTAAGGCAAACGGTCTTCCTG
GAAAGTTGATGCCTGCTCCTTTGCTGTCTCTCCCAGAAGACAAA.ATCTTAGAGAC
CTTCAGGCTTAGCAACAAACTGAAAGGCTCGACGGATGAAATGAGTGCACCTGG
AGCAGAGAGGGGCCCTCCCGAGGACCGCGACGCCGAGCCTCAGCCTGGCAGCCC
CGCCGCCGAATCCCTGGAGGAGCCAGATGCGGCCGCCGGCCTCAGCAGCACCAA
4s GAAGGCTCCGCCGCCCCGCGATCCCGGCACCCCCGCTACCAAAGAAGGCGCCTGG
GAGGCCATGGCCGTCGCCCCCGAGGAGCCTCCGCCCAGCGCCGGCGAGGACATC
GTGGGGGACACAGCACCCCCTGACCTGTGTGATCCCGGGAGCTTAACAGGCGATG
CGAGCCCGTTGTCCCAGGACGCAAAGGGGATGATCGCGGAGGGCCCGCGGGACT
CGGCGTTGGCGGAAGCCCCGGAAGGGTTGAGTCCGGCTCCGCCTGCGCGGTCGGA
so GGAGCCCTGCGAGCAGCCACTCCTTGTTCACCCCAGCGGGGACCACGCCCGGGAC

GCTCAGGACCCATCCCAGAGCTTGGGCGCACCCGAGGCCGCAGAGCGGCCGCCA
GCTCCTGTGCTGGACATGGCCCCGGCCGGTCACCCGGAAGGGGACGCTGAGCCTA
GCCCCGGCGAGAGGGTCGAGGACGCCGCGGCGCCGAAAGCCCCAGGCCCTTCCC
CAGCGAAGGAGAA.AATCGGCAGCCTCAGAAAGGTGGACCGAGGCCACTACCGCA
GCCGGAGAGAGCGCTCGTCCAGCGGGGAGCCCGCCAGAGAGAGCAGGAGCAAG
ACTGAGGGCCACCGTCACCGGCGGCGCCGCACCTGCCCCCGGGAGCGCGACCGC
CAGGACCGCCACGCCCCGGAGCACCACCCCGGCCACGGCGACAGGCTCAGCCCT
GGCGAGCGCCGCTCTCTGGGCAGGTGCAGTCACCACCACTCCCGACACCGGAGCG
GGGTGGAGCTGGACTGGGTCAGACACCACTACACCGAGGGCGAGCGTGGCTGGG
o GCCGGGAGAAGTTCTACCCCGACAGGCCGCGCTGGGACAGGTGCCGGTACTACC
ATGACAGGTACGCCCTGTACGCTGCCCGGGACTGGAAGCCCTTCCACGGCGGCCG
CGAGCACGAGCGGGCCGGGCTGCACGAGCGGCCGCACAAGGACCACAACCGGGG
CCGTAGGGGCTGCGAGCCGGCCCGGGAGAGGGAGCGGCACCGCCCCAGCAGCCC
CCGCGCAGGCGCGCCCCACGCCCTCGCCCCGCACCCCGACCGCTTCTCCCACGAC
~5 "AGAACTGCACTTGTAGCCGGAGACAACTGTAACCTCTCTGATCGGTTTCACGAAC
ACGAA.A.ATGGAAAGTCCCGGAAACGGAGACACGACAGTGTGGAGAACAGTGACA
GTCATGTTGAAAAGAAAGCCCGGAGGAGCGAACAGAAGGATCCTCTAGAAGAGC
CTAAAGCAAAGAAGCACAAAAAATCAAAGAAGAAAAAGAAATCCAAAGACAAA
CACCGAGACCGCGACTCCAGGCATCAGCAGGACTCAGACCTCTCAGCAGCGTGCT
?o CTGACGCTGACCTCCACAGACAC~,AAAAAAAGAAGAAGAAAAAGAAGAGACATT
CAAGAAAATCAGAGGACTTTGTTAAAGATTCAGAACTGCACTTACCCAGGGTCAC
CAGCTTGGAGACTGTCGCCCAGTTCCGGAGAGCCCAGGGTGGCTTTCCTCTCTCTG
GTGGCCCGCCTCTGGAAGGCGTCGGACCTTTCCGTGAGAAAACGAAACACTTACG
GATGGAAAGCAGGGATGACAGGTGTCGTCTCTTTGAGTATGGCCAGGGTGATTGA
?5 Table 11. Deduced amino acid sequence of coding region of hDUB7 C-terminal potential nuclear localization (as well as targeting) sequences are underlined.
MTIVDKASESSDPSAYQNQPGSSEAVSPGDMDAGSASWGAVSSLNDVSNHTLSLGPV
PGAVVYSSSSVPDKSKPSPQKDQALGDGIAPPQKVLFPSEKICLKWQQTHRVGAGLQ
NLGNTCFANAALQCLTYTPPLANYMLSHEHSKTCHAEGFCMMCTMQAHITQALSNP
GDVIKPMFVINEMRRIARHFRFGNQEDAHEFLQYTVDAMQKACLNGSNKLDRHTQA
TTLVCQIFGGYLRSRVKCLNCKGVSDTFDPYLDITLEIKAAQSVNKALEQFVKPEQLD
GENSYKCSKCKKMVPASKRFTIHRSSNVLTLSLKRFANFTGGKIAKDVKYPEYLDIRP

LSQQAYVLFYIRSHDVKNGGELTHPTHSPGQSSPRPVISQRVVTNKQAAPGFIGPQLPS
4o HMII~NPPHLNGTGPLKDTPSSSMSSPNGNSSVNR.ASPVNASASVQNWSVNRSSVIPEH
PKKQKITISIHNKLLPVRQCQSQPNLHSNSLENPTKPVPSSTITNSAVQSTSNASTMSVSS
KVTKPIPRSESCSQPVMNGKSKLNSSVLVPYGAESSEDSDEESKGLGKENGIGTIVSSH
SPGQDAEDEEATPHELQEPMTLNGANSADSDSDPKENGLAPDGASCQGQPALHSENP
FAKANGLPGKLMPAPLLSLPEDKILETFRLSNKLKGSTDEMSAPGAERGPPEDRDAEP
4.5 QPGSPAAESLEEPDAAAGLSSTKKAPPPRDPGTPATKEGAWEAMAVAPEEPPPSAGE
DIVGDTAPPDLCDPGSLTGDASPLSQDAKGMIAEGPRDSALAEAPEGLSPAPPARSEEP
CEQPLLVHPSGDHARDAQDPSQSLGAPEAAERPPAPVLDMAPAGHPEGDAEPSPGER
VEDAAAPKAPGPSPAKEKIGSLRKVDRGHYRSRRERSSSGEPARESRSKTEGHI~HRRR
RTCPRERDRQDRHAPEHHPGHGDRLSPGERRSLGRCSHHHSRHRSGVELDWVRHHY
5o TEGERGWGREKFYPDRPRWDRCRYYFIDRYALYA.ARDWKPFHGGREHERAGLHERP

HKDHNRGRRGCEPARERERHRPSSPRAGAPHALAPHPDRFSHDRTALVAGDNCNLSD
RFHEHENGKSRKRRHDSVENSDSHVEKKARRSEQKDPLEEPK AKKHi~KSKKKKKSK
DKHRDRDSRHQQDSDLSAACSDADLHRHKKKKKKKKRHSRKSEDFVKDSELHLPRV
TSLETVAQFRRAQGGFPLSGGPPLEGVGPFREKTKHLRMESRDDRCRLFEYGQGD
Table 12. Putative promoter sequence of hDUB7 (2 Kb sequence upstream of initiation AUG) GTAAAGTCTAAACTGAGAAGTGGAAGTGTGAACTGGCTGGAGGTGGAAGGTTGG
A.AAAGAGTCGGAGAA.AAGAACAGCATGTGCAGAGCCCAGAGACAGCAGGGACA
to AAAG CAAGACTTCAGCATGGTGGGAACGTGACGGAGAGGGTGTTT
GGCGAGGTTATTAGGTCAGACAATGTGAAGTCCAGACATTAAGATGTTGTGCTGT
GGGCAGTTGGGCCACTCCTGAAAGGTGTTCTTTCTTCCTTTCCTTTTCTTTCTTTCT
TTTCTTGAGGCAGAGTCTCTCTATGTCAGTCTGGAGTGCAGTGGCATGATCTCGGC
TCACTGCAATCTCTGCCTTCCAGGTTCAAGCAATTTTCCTTGCCTCAGCCTCCCAA
t5 GTAGCTGGGAATACAGGCGTGCGCCACCATGCCTGGTTAATTTTTTTATTTTTAGT
AGAGATGGGGTTTCCCCATGTTGGCCAGGCTGGTCTCGAACTCCTGGACTCAAGT
GATCCACCCACTTTGGCCTCCCAAAGTGCTGGGATTACAGGGGTGTGAGCCACTG
CGCCCCGCCCGGCCTTTTTTTTTTTTTTTTTTGAGACTTAATCTTGCTCTGTCACCA
AGGCTGGATATCAGTGGCACGGTTTTGGCTCTCTGCAACTTCTGTCTCCCAGGTTC
'o AAGCGATTTTCCTGACTCAGCCTCCCAAGTAGTTGAGATTACAGGTACGTGCCAC
CACGCCCGGCTAATTTTTGTATTTTTAGTAGAGATGAGGTTTCACTATGTTGGCCA
GACTGGTCTCAAACGCCTGACCTCAGGTGATTCACCTGCCTCGGCCTCCCAAAAT
GCTGGGATTACAGGTGTGCACCACCATGCCTGGGTAATTTTTGTTTTTCGTAGAGA
CAGGGTCTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCAAGCGATCT
?s GCCCACCTTGGCCTCCCAAGGTGCTGCAATTATAGGCATGAGCCACCGCGCCCGG
CCTCCTGAAAGGTTTTCTACATAGGAGTGGCATGTCTAGATGTGGCTACTGTTGGG
CGATTTTAGAAATATCCCTA.A.AAGCCTTCTGTTGACAGGGTGGCATAACCAGAAG
GAAGCCTGGCTGGGAACGCTGGACCTGGCTCTCAGTCCCAGTTGCTGACTGGTTG
CTTCATTTTATAGGCCCTGGGGATTCTGTCTGATCTCTCATACGTTCTTTATAAAA
3o ATTAAGTTAATGTATGTCCAGCAGTTGATGCAATGCCCAGTACATAGAA.AATGCT
CAATTAGTGGTAGCCCTAATATTTTAAAATAGGACTCAGAAAGAAAATTATAATC
AAGTCCTTTCATAACAGATATTTGTGTTTGAGTTTGATATCAGTAATGGCTTACGG
GTTTTATTTAAAAAGTCATACATTCCATATAAATGAGCCTCTTCAGAAAAATGGTT
TTAAAGGTGAGATCTCTATAATTATAATTTTA,AAA.A ATATAATGTATTTCACTTGG
35 TGCCATTTGCACTTTAAGCACAAA.ATTAAGTCTAGATTTTTTCTGTGTAGTTGATG
CTTTTCTCTGAGGAATTATACTCAAATTGAAGATGTAGTCAAATGTATTACTGTGT
ATAATTTTTCTAGTTTTAAGCAGTATAGAAGGAAAATATAGGTACTTAGTAAATA
AACAGAACTGAGAATTGAAATGTCCAATTATAAACTGAAATGCCAGACTTTTAGG
GGGCATGAAATGAAAATGAGAAGTTCTTTTAATCAAATACTTCACTGAAGATTTT
4o AAA.ATAAAGATTGTTGACATTCAGATTATCATGATGCTAAATGTCCCAAGGGGAT
TATTACAGAAATGTTAGAAAGTACTATTGTTTTTATATTTGAGTGATGTGTTTGAA
AATCACTTTAAA.ATGGCTGGAATGATCTTCCAAGATCTAACGGTAGGGTAAGGAG
ATTGCTTTTCTCACCTGATGAAACAAATACATACTTTTCATCTTTTGCAGAGTTGA
ACAATG
Table 13. Nucleotide sequence of coding region of marine DUB7 (mDUB7) ATGACCATAGTTGACAAAACTGA.ACCTTCAGACCCATCAACCTGTCAGAACCAGC
so CTGGCAGTTGTGAGGCGGTCTCACCTGAAGACATGGACACAGGCTCTGCCAGCTG

GGGCGCTGTGTCTTCAATAAGTGATGTCTCAAGTCACACACTTCCATTAGGGCCA
GTGCCTGGTGCTGTAGTTTATTCTAACTCGTCTGTACCTGAA.AAATCAAAGCCATC
ACCACCAAAGGATCAAGTCCTAGGTGATGGCATTGCTCCTCCTCAA.AAGGTCCTG
TTTCCATCTGAAAAGATTTGTCTTAAGTGGCAACAAAGTCATCGAGTTGGCGCTG
GGCTCCAGAATTTGGGCAACACCTGTTTTGCCAATGCCGCATTGCAGTGTCTGACT
TACACGCCACCCCTCGCCAATTACATGTTATCCCATGAACACTCCAAGACATGCC
ACGCAGAAGGATTTTGTATGATGTGCACGATGCAGACACACATTACCCAGGCACT
TAGCAACCCTGGGGATGTTATCAAGCCGATGTTCGTCATCAATGAAATGCGGCGT
ATAGCTAGACACTTCCGTTTTGGAAACCAAGAAGATGCCCATGAATTTCTTCAGT
io ACACGGTCGATGCCATGCAGAAAGCATGTTTAAATGGCAGCAATAAATTAGACA
GACACACCCAGGCCACCACCCTGGTCTGCCAGATATTTGGAGGCTACCTAAGATC
CCGAGTTAAATGTTTAAATTGCAAGGGTGTTTCAGATACCTTTGATCCATATCTGG
ACATAACGTTGGAGATTAAGGCTGCACAGAGTGTTACCAAGGCGTTAGAGCAGTT
TGTGAAGCCAGAACAACTGGATGGAGAAAACTCCTACAAGTGCAGCAAGTGCAA
~5 AAAAATGGTTCCAGCTTCAAAGAGATTCACAATCCATAGGTCCTCTAATGTTCTTA
CCATCTCACTGAAGCGCTTTGCCAACTTCACCGGTGGAAAGATTGCTAAGGATGT
GAAATATCCTGAGTACCTTGATATCCGGCCCTATATGTCTCAGCCCAATGGAGAG
CCAATTATTTATGTTTTGTATGCTGTGCTGGTGCACACTGGTTTTAATTGTCATGCT
GGCCACTACTTTTGCTACATCAAGGCTAGCAATGGCCTCTGGTATCAGATGAATG
~o ACTCCATCGTGTCCACCAGTGATATCAGAGCAGTGCTTAACCAGCAAGCTTACGT
GCTCTTTTATATCAGGTCCCATGATGTGAAA.AATGGAGGGGAGTCTGCTCATCCT
GCCCATAGCCCCGGCCAATCCTCTCCCCGCCCAGGAGTCAGTCAGCGGGTAGTCA
ACAACAAGCAGGTGGCTCCAGGGTTTATTGGACCCCAGCTGCCTTCCCATGTGAT
GAAGAACACGCCACACTTGAATGGCACCACGCCAGTGAAAGACACACCAAGTAG
as TTCTGTGTCAAGCCCTAACGGAAACACCAGCGTCAATAGGGCCAGTCCTGCTACT
GCTTCGACTTCTGTGCAGAACTGGTCTGTTACCAGACCCTCAGTTATTCCAGATCA
CCCCAAGAAACAAAAAATCACCATCAGTATTCACAACAAGTTGCCTGCTCGCCAG
GGTCAGGCACCACTGAATAACAGCCTCCATGGCCCTTGTCTGGAGGCTCCTAGTA
AGGCGGCACCCTCCTCCACCATCACTAACCCTTCTGCAATACAGTCTACCTCGAAC
3o GTACCCACAACGTCGACTTCCCCCAGTGAGGCCTGTCCCAAGCCCATGGTGAACG
GCAAGGCTAAAGTGGGCGCCAGTGTGCTTGTCCCCTATGGGGCCGAGTCCTCAGA
AGAGTCTGATGAGGAGTCGAAGGGCCTGGCCAAGGAGAACGGTGTGGACATGAT
GGCCGGCACTCACTCCGATAGGCCAGAAGCTGCTGCAGATGACGGTGCTGAGGCT
TCCTCCCATGAGCTTCAAGAACCCGTCCTGCTAAATGGTGCTAATAGCGCAGACA
~s GTGACTCACAAGAGAACAGCCTGGCATTTGACAGTGCCAGCTGCCAGGTCCAGCC
CGAGCTACACACAGAA.AACCTCTTTTCCAAACTTAATGGTCTTCCTGGAAAGGTG
ACGCCTGCTCCTTTGCAGTCTGTTCCTGAAGACAGAATCCTTGAGACCTTCAAGCT
TACCAACCAGGCAAAGGGTCCAGCGGGTGAAGAGAGTTGGACTACGACAGGGGG
AAGCTCTCCAAAGGACCCTGTTTCACAGCTGGAGCCCATCAGTGATGAGCCCAGT
a.o CCCCTTGAGATACCGGAGGCTGTCACCAATGGGAGCACACAGACCCCTTCCACCA
CATCACCCCTGGAGCCCACCATCAGCTGTACCAAAGAAGACTCGTCCGTTGTTGT
CTCAGCTGAACCTGTGGAGGGTTTGCCTTCCGTCCCTGCTCTTTGTAACAGCACTG
GTACTATCTTGGGGGATACCCCAGTGCCCGAATTGTGTGACCCTGGAGACTTGAC
TGCCAACCCGAGCCAGCCAACCGAAGCAGTGAAAGGTGATACAGCTGAGAAGGC
a.s TCAGGACTCTGCCATGGCTGAAGTGGTGGAGAGGCTGAGCCCTGCTCCCTCAGTA
CTCACAGGTGACGGGTGTGAGCAGAAACTCTTACTTTACCTCAGCGCAGAGGGGT
CAGAGGAGACAGAAGACTCTTCCAGAAGCTCGGCGGTCTCTGCTGACACGATGCC
CCCTAAGCCTGACAGGACCACCACCAGCTCCTGTGAAGGGGCTGCCGAGCAGGCT
GCTGGGGACAGAGGCGATGGAGGCCATGTGGGACCCAAAGCTCAGGAGCCTTCC
5o CCAGCCAAGGAAAAGATGAGCAGCCTCCGGAAAGTGGACCGAGGACACTATCGG

AGCCGGAGAGAGCGCTCCTCCAGTGGGGAGCACGTGAGGGACAGCAGGCCCCGG
CCGGAGGACCATCACCATAAGAAGCGGCACTGCTACAGCCGAGAGCGGCCCAAG
CAGGACCGACACCCTACTAATTCATACTGCAATGGGGGCCAGCACTTGGGCCACG
GGGACAGAGCCAGCCCTGAGCGCCGCTCCCTGAGCAGGTATAGTCACCACCACTC

TGAGCATGCTTGGGTCAGGGAGAGATTCTACCAGGACAAGCTGCGGTGGGACAA
GTGCAGGTATTACCACGACAGGTACACGCCCCTATACACGGCCCGGGACGCCCGA
GAATGGCGGCCTCTGCATGGTCGTGAGCATGACCGCCTTGTCCAGTCTGGACGGC
CATACAAGGACAGCTACTGGGGCCGCAAGGGCTGGGAGCTGCAATCCCGGGGGA
o AGGAACGGCCCCACTTCAACAGCCCCCGAGAGGCCCCTAGCCTTGCTGTGCCCCT
CGAGAGACATCTCCAAGAGAAGGCTGCGCTGAGTGTGCAGGACAGCAGCCACAG
TCTCCCTGAGCGCTTTCATGAACACAAAAGTGTCAAGTCGAGGAAGCGGAGGTAT
GAGACTCTAGAAAATAATGATGGCCGTCTAGAA.AAGAAAGTCCACAAA.AGCCTG
GAGAAGGACACGCTAGAGGAGCCAAGGGTGAAGAAGCACAAAAAGTCTAA.AAA

AGTCTGATTTTTCAGGAGCATACTCTGATGCTGACCTCCATAGACACCGGAAGAA
AAAGAAGAAAAAGARAAGGCATTCCAGGAAGTCGGAGGACTTTATAAAGGATGT
TGAGATGCGTTTACCGAAGCTCTCCAGCTACGAGGCCGGCGGCCATTTCCGGAGA
ACAGAGGGCAGCTTTCTCCTGGCTGATGGTCTGCCTGTGGAAGACAGCGGCCCTT
!o TCCGGGAGAAAACGAAGCATTTAAGGATGGAAAGCCGGCCTGACAGATGCCGTC
TGTCGGAGTATGGCCAGGATTCAACATTTTGA
Table 14. Deduced amino acid sequence of coding region of mDUB7 t5 C-terminal potential nuclear localization (as well as targeting) sequences are underlined.
MTIVDKTEPSDPSTCQNQPGSCEAVSPEDMDTGSASWGAVSSISDVSSHTLPLGPVPG
AVVYSNSSVPEKSKPSPPKDQVLGDGIAPPQKVLFPSEKICLKWQQSHRVGAGLQNL
3o GNTCFANAALQCLTYTPPLANYMLSHEHSKTCHAEGFCMMCTMQTHITQALSNPGD
VIKPMFVINEMRRIARHFRFGNQEDAHEFLQYTVDAMQKACLNGSNKLDRHTQATT
LV CQIFGGYLRSRVKCLNCKGV SDTFDPYLDITLEII~AAQS V TKALEQFVKPEQLD GE
NSYKCSKCKKMVPASKRFTIHRSSNVLTISLKRFANFTGGKIAKDVKYPEYLDIRPYM
SQPNGEPIIYVLYAVLVHTGFNCHAGHYFCYIKASNGLWYQMNDSIVSTSDIRAVLNQ
QAYVLFYIRSHDVKNGGESAHPAHSPGQSSPRPGVSQRVVNNKQVAPGFIGPQLPSH
VMKNTPHLNGTTPVKDTPSSSVSSPNGNTSVNRASPATASTSVQNWSVTRPSVIPDHP

P SEACPKPMVNGKAKV GAS VLVPYGAES SEESDEESKGLAKENGVDMMAGTHSDRP
EAAADDGAEASSHELQEPVLLNGANSADSDSQENSLAFDSASCQVQPELHTENLFSK
LNGLPGKVTPAPLQSVPEDRILETFKLTNQAKGPAGEESWTTTGGSSPKDPVSQLEPIS
DEPSPLEIPEAVTNGSTQTPSTTSPLEPTISCTKEDSSVVVSAEPVEGLPSVPALCNSTGT
ILGDTPVPELCDPGDLTANPSQPTEAVKGDTAEKAQDSAMAEVVERLSPAPSVLTGD
GCEQKLLLYLSAEGSEETED S SRS SAV SADTMPPKPDRTTTS S CEGAAEQAAGDRGD
GGHVGPKAQEPSPAKEKMSSLRKVDRGHYRSRRERSSSGEHVRDSRPRl'EDHHHKT~
~5 RHCYSRERPKQDRHPTNSYCNGGQHLGHGDR.ASPERRSLSRYSHHHSRIRSGLEQDW
SRYHHLENEHAW VRERFYQDKLRWDKCRYYHDRYTPLYTARDAREWRPLHGREHD
RLVQSGRPYKDSYWGRKGWELQSRGKERPHFNSPREAPSLAVPLERHLQEKAALSV
QDSSHSLPERFHEHKSVKSRKRRYETLENNDGRLEKKVHKSLEKDTLEEPRVKKHKK

SKI~II~KKSKDKHRDRESRHQQESDFSGAYSDADLuRURKKKKKKKItHSRKSEDFIKD
VEMRLPKLSSYEAGGHFRRTEGSFLLADGLPVEDSGPFREKTKHLRMESRPDRCRLSE
YGQDSTF
Table 15. Nucleotide sequence alignment of hDUB7 and mDUB7 ****************** ***** ************** *** ****** ******

***** * ***** ********** ********* **** ************** ***

********* * * ****** **** ********** * ***** ***** *********

*********** * ** *********** ******** ********** **********

* *************** ******** ** ** ** ** ** ******** *********

**************** **** ******* *********************** ******

*********** *** ******** * ** ***** ***** ** ************ **

** ************** ***** ** ******** ************** ** *****

**** ************** ** ** ******** ***** ** ** ***** ******

***** ***************** ************************************

** ***** ***** ** ***** ************** ** ******************

*********************** ** ** ** ************** ***********

**** ******************** *********** ************** ** ***

HDUB7 ACATTGGAGATAAAGGCTGCTCAGAGTGTCAACAAGGCATTG~AGCAGTTTGTGAAGCCG 840 ** ******** ******** ******** * ****** ** *****************

***** ** ************** ***************** ***** ************

******** ***** ******** ***************** * ** ***** ** ***

** ** ** *********** ******************** ******** ********

***** *********** ***** ************ * ** ** ******** ******

** ***************** *********** ***** ******** ** *********

************** ************** ** ** *********** *** * ** **

* *** ***** ** ***************************************** **

* ******* **************** ************** * ***********

** **** ****** **** ** ***** ***** ***** ***** ** ** ** **

** ***** * ** ***** ***** ** *** ********** ***** *****

**** ** ******** ** **** ***** ***** ******* ** ****** **

***** ** ******** **** ** ******* ** ***** ** ** *********

***** ** ************************* ******* ***** * * ** **

*** *** * ** * ***** **** *** * * ***** ** *****

** ** ******* ****************** * * ** * *** ***

** ****** **** ** ***** ** **** *****

** ** * **** ***** ** ******** *********** ** ** ***** ***

LS ***** ***** **** ********* ** * * * *** * ** * *****
t0 * * *** *** * ****** * **** * * ** *********.******

* ***** *********** ***** ******* * **** *** ****
'S HDUB7 GCGCCTGATGGTGCCAGCTGCCAAGGCCAGCCTGCCCTGCACTCAGAAAATCCCTTTGCT 2082 ** *** ************* * ****** * ** *** ******* * ****

** ** *************** *** ************** **** * ** ******

35 * **** * ********** ***** **** * ** ** * *** **** ****

** *** * * ** **** ****** * * *** **** ***

* ** **** *** ** ** ** * * ** **** ***

* * * **** ** *** ** * * *********** * * * * *

* * * * ** * **** * **** **

*** ******* ** ** ** ** ******* ** ** *** **

****** * ** * * * ** ** * ** *** * * ****** **

**** **** *** ** **** ** ***** * * * * * ** **

****** **** * ** *** ***** ** * *** * * *** * ***

**** ** * * * * * * ** * *** ** **** * **

* ** * * ******* ** **** * ** ** ** * *** *** **

* * ** ** ***** * * *********** ***** ** ** ********

** *********** ***** ** ***************** ***** ******* **

** ** ****** * * * **** *** * ** * *** * * ** * ***

***** * ******** *** * * ** ** ***

******** ***** ******* *********** *** ****** *********

***** ** **** ** ****** ******* * * ***** * **

**** ** **** * ****** ******* **** ** *** ******* **** **

** ***** ********* * *** *** * ********* *** * **

* ** ** ** ***** ** ** * * * * ***** ******** * **

******* * ****** **** * ****** ** *** **** ** * ** ****

***** * * *** *** ** ** ** *** * *** **

**** ** *** * ** * * *** **** ** ***** ****** **

* ** ***** **** ***** * ** * * * ** ** * *** * * * * ***

******* ** * *** ******* * ***** ***** * * *********
HDUB7 A.AAAAATCAAAGAAGAAAAAGAAATCCAAAGACAAACACCGAGACCGCGACTCCAGGCAT 3645 MDUB7 AAAAAGTCTAAAAAGAA.AAAGAAGTCCAAAGATAAACACCGGGATCGAGAAAGCAGGCAC 3669 15 ***** ** ** *********** ******** ******** ** ** ** ******

******** ** ** * **** *** * ****** *********** ****** **

** ************** ** ***** ** ** ** ********* * ** *** **

*** ***** * * ** ****** *** * * ** *** ********* * ****

****** ** *** *** * **** ****** * *** ******** *********

** ** *** *********** ** ****** ** ***** * *************

Table 16. Deduced amino acid sequence alignment of hDUB7 and mDUB7 ******. *,****. ******,***** ***.**********..***,***,*******

**** ****.****** *** ************************.**************

****************************************;*******************

*************************************************.***********

******************************_*****************************

**************.*************************************;*******

*************************************,**,*******************

;**.********** ;*****.***,************.:**,****** *,*******

******;*******.,**.*******,*.****;****************,** *;

**, .** *.* " ******* **.*****,_* *.* **.*,;*.;***.

*..;************.********,****., ...:** * *.* **..******

*********** ;**,** *,**** ** **,** *.* ******. **** *.***

:*****:*:*: **.:.* * . . ..*:* .. :* * ...** *:*.; * :.*

....* :* ..***.: .... * * * .- *.***, *.*****~**,:

.* .. .** ** .:***:**. * *****.. . . *** **;: *.. ....:*.*

;* * .* ** * * ;... ** ** ;.*;* .. ..*** *******..***

****************** .*.**,:.*.*.*.:*; .*** ;****_. :*

***** ** *****.* ****** ***;* ** *,*. *,*;.* **.** *; ***;**

******. **;** ;*.*,** ***.* **.** **.* * ;* ;** ; .

*** ,. :** :*. ...:** . *... *.:*****:, ******::.:**.*.:.

***..:* :**,****;,*******************.*****.**;*,* ********.

****************;** *.;**.::* *. .:***.:*_* *._* *.*, ******

********* ***** ****
Table 17. Amino acid sequence alignment of catalytic domain among marine DUB1, DUB2, hDUB7 and mDUB7. Amino acids that are involved in catalysis in DUBl (Cys-60, Asp-133, and His-307) are underlined.
mDUB1 MVVALSFPEADPALSSPDAPELHQDEAQVVEELTVNGKHSLSWESPQGPGCGLQNTGNSC60 mDUB2 MVVSLSFPEADPALSSPGAQQLHQDEAQVWELTANDKPSLSWECPQGPGCGLQNTGNSC60 hDUB7 VVYSSSSVPDKSKPSPQKDQALGDGIAPPQKVLFPSEKICLKWQQTHRVGAGLQNLGNTC120 mDUB7 VVYSNSSVPEKSKPSPPKDQVLGDGIAPPQKVLFPSEKICLKWQQSHRVGAGLQNLGNTC119 :* . * .. *. * :. * * . * .*.*: .. *,**** **:*

mDUBl YLNAALQCLTHTPPLADYMLSQEHSQTCCSPEGCKLCAMEALVTQSLLHSHSGDVMKPSH120 mDUB2 YLNAALQCLTHTPPLADYMLSQEYSQTCCSPEGCKMCAMEAHVTQSLLHSHSGDVMKPSQ120 hDUB7 FANAALQCLTYTPPLANYMLSHEHSKTCHAEGFCMMCTMQAHITQALSN--PGDVIKPMF178 mDUB7 FANAALQCLTYTPPLANYMLSHEHSKTCHAEGFCMMCTMQTHITQALSN--PGDVIKPMF177 ********.*****.****;*.*;** : * :*;*;: :**:* : _***;**

mDUB1 ILTSA------FHKHQQE_DAHEFLMFTLETMHESCLQVHRQSKPTSEDSSPIHDIFGGWW174 mDUB2 ILTSA------FHKHQQE_DAHEFLMFTLETMHESCLQVHRQSEPTSEDSSPIHDIFGGLW174 hDUB7 VINEMRRIARHFRFGNQE_DAHEFLQYTVDAMQKACLNGSNKLDRHTQATTLVCQIFGGYL238 mDUB7 VINEMRRIARHFRFGNQEDAHEFLQYTVDAMQKACLNGSNKLDRHTQATTLVCQIFGGYL237 .... *: :******** :*:::*:::**: .. . .. .. . :****

mDUB1 RSQIKCLLCQGTSDTYDRFLDIPLDISSAQSVKQALWDTEKSEELCGDNAYYCGKCRQKM234 mDUB2 RSQIKCLHCQGTSDTYDRFLDVPLDISSAQSVNQALWDTEKSEELRGENAYYCGRCRQKM234 hDUB7 RSRVKCLNCKGVSDTFDPYLDITLEIKAAQSVNKALEQFVKPEQLDGENSYKCSICCKKMV298 mDUB7 RSRVKCLNCKGVSDTFDPYLDITLEIKAAQSVTKALEQFVKPEQLDGENSYKCSKCKKMV297 **:;*** *:*.***;* ;**:.*;*.:****,;** ; *.*:* *,*;*
*.;*:: .

mDUBl PASKTLHVHIAPKVLMWLNRFSAFTGNKLDRKVSYPEFLDLKPYLSEPTGGPLPYALYA294 mDUB2 PASKTLHIHSAPKVLLLVLKRFSAFMGNKLDRKVSYPEFLDLKPYLSQPTGGPLPYALYA294 hDUB7 PASKRFTIHRSSNVLTLSLKRFANFTGGKIAKDVKYPEYLDIRPYMSQPNGEPIVYVLYA358 mDUB7 PASKRFTIHRSSNVLTISLKRFANFTGGKIAKDVKYPEYLDIRPYMSQPNGEPIIYVLYA357 **** : ;* :.:** : *;**; * *,*; ..*.***;**;;**,*;*,*
*, *.***

mDUB1 VLVHDGATSHSG_HYFCCVKAGHGKWYKMDDTKVTRCDVTSVLNENAYVLFYVQQANLKQ352 mDUB2 VLVHEGATCHSG_HYFSYVKARHGAWYKMDDTKVTSCDVTSVLNENAYVLFYVQQTDLKQ352 hDUB7 VLVHTGFNCHAG_HYFCYIKASNGLWYQMNDSIVSTSDIRSVLSQQAYVLFYIRSHDVKN417 mDUB7 VLVHTGFNCHAGHYFCYIKASNGLWYQMNDSIVSTSDIRAVLNQQAYVLFYIRSHDVKN416 **** * ,.*;****, :** ;* **:*:*: *; ,*: ;.**..:******;:.
.:*:

usav2002-0022.sT25.txt SEQUENCE LISTING
<110> Aventis Pharmaceuticals, Inc.
Hahn, Chang s Liu, Hong S
<120> HUMAN DEUBIQUITINATING PROTEASE GENE ON CHROMOSOME 7 AND ITS
MURINE ORTHOLOG
<130> USAV2002-0022 Wo PCT
<150> GB 0218518.9 <151> 2002-09-08 <150> us 60/366,601 <151> 2002-03-22 <160> 12 <170> Patentln version 3.2 <210> 1 <211> 19 <212> PRT
<213> Homo Sapiens <400> 1 Lys Ala Lys Lys His Lys Lys Ser Lys Lys Lys Lys Lys Ser Lys Asp Lys His Arg <210> 2 <211> 16 <212> PRT
<213> Homo Sapiens <400> 2 His Arg His Lys Lys Lys Lys Lys Lys Lys Lys Arg His Ser Arg Lys <210> 3 <211> 17 <212> PRT
<213> Homo Sapiens <400> 3 Lys Lys His Lys Lys Ser Lys Lys Lys Lys Lys Ser Lys Asp Lys His Arg <210> 4 <211> 16 <212> PRT
<213> Homo Sapiens <400> 4 usav2002-0022.ST25.txt His Arg His Arg Lys Lys Lys Lys Lys Lys Lys Arg His Ser Arg Lys <210> 5 <211> 23 <212> DNA
<213> Homo Sapiens <400> 5 23 ccacgacaga actgcacttg tag <210> 6 <211> 19 <212> DNA
<213> Homo Sapiens <400> 6 ccgggacttt ccattttcg 19 <210> 7 <211> 31 <212> DNA
<213> Homo Sapiens <400> 7 caactgtaac ctctctgatc ggtttcacga a 31 <210>

<211>

<212>
DNA

<213> Sapiens Homo <400>

atgaccatagttgacaaagcttctgaatcttcagacccatcagcctatcagaatcagcct 60 ggcagctccgaggcagtctcacctggagacatggatgcaggttctgccagctggggtgct 120 gtgtcttcattgaatgatgtgtcaaatcacacactttctttaggaccagtacctggtgct 180 gtagtttattcgagttcatctgtacctgataaatcaaaaccatcaccacaaaaggatcaa 240 gccctaggtgatggcatcgctcctccacagaaagttcttttcccatctgagaagatttgt 300 cttaagtggcaacaaactcatagagttggagctgggctccagaatttgggcaatacctgt 360 tttgccaatgcagcactgcagtgtttaacctacacaccacctcttgccaattacatgcta 420 tcacatgaacactccaaaacatgtcatgcagaaggcttttgtatgatgtgtacaatgcaa 480 gcacatattacccaggcactcagtaatcctggggacgttattaaaccaatgtttgtcatc 540 aatgagatgcggcgtatagctaggcacttccgttttggaaaccaagaagatgcccatgaa 600 ttccttcaatacactgttgatgctatgcagaaagcatgcttgaatggcagcaataaatta 660 gacagacacacccaggccaccactcttgtttgtcagatatttggaggatacctaagatct 720 agagtcaaatgtttaaattgcaagggcgtttcagatacttttgatccatatcttgatata 780 acattggagataaaggctgctcagagtgtcaacaaggcattggagcagtttgtgaagccg 840 gaacagcttgatggagaaaactcgtacaagtgcagcaagtgtaaaaagatggttccagct 900 usav2002-0022.ST25.txt tcaaagaggttcactatccatagatcctctaatgttcttacactttctctgaaacgtttt960 gcaaattttaccggtggaaaaattgctaaggatgtgaaataccctgagta,tcttgatatt1020 cggccatatatgtctcaacccaacggagagccaattgtctacgtcttgtatgcagtgctg1080 gtccacactggttttaattgccatgctggccattacttctgctacataaaagctagcaat1140 ggcctctggtatcaaatgaatgactccattgtatctaccagtgatattagatcggtactc1200 agccaacaagcctatgtgctcttttatatcaggtcccatgatgtgaaaaatggaggtgaa1260 cttactcatcccacccatagccccggccagtcctctccccgccccgtcatcagtcagcgg1320 gttgtcaccaacaaacaggctgcgccaggctttatcggaccacagcttccctctcacatg1380 ataaagaatccacctcacttaaatgggactggaccattgaaagacacgccaagcagttcc1440 atgtcgagtcctaacgggaattccagtgtcaacagggctagtcctgttaatgcttcagct1500 tctgtccaaaactggtcagttaataggtcctcagtgatcccagaacatcctaagaaacaa1560 aaaattacaatcagtattcacaacaagttgcctgttcgccagtgtcagtctcaacctaac1620 cttcatagtaattctttggagaaccctaccaagcccgttccctcttctaccattaccaat1680 tctgcagtacagtctacctcgaacgcatctacgatgtcagtttctagtaaagtaacaaaa1740 ccgatcccccgcagtgaatcctgctcccagcccgtgatgaatggcaaatccaagctgaac1800 tccagcgtgctggtgccctatggcgccgagtcctctgaggactctgacgaggagtcaaag1860 gggctgggcaaggagaatgggattggtacgattgtgagctcccactctcccggccaagat1920 gccgaagatgaggaggccactccgcacgagcttcaagaacccatgaccctaaacggtgct1980 aatagtgcagacagcgacagtgacccgaaagaaaacggcctagcgcctgatggtgccagc2040 tgccaaggccagcctgccctgcactcagaaaatccctttgctaaggcaaacggtcttcct2100 ggaaagttgatgcctgctcctttgctgtctctcccagaagacaaaatcttagagaccttc2160 aggcttagcaacaaactgaaaggctcgacggatgaaatgagtgcacctggagcagagagg2220 ggccctcccgaggaccgcgacgccgagcctcagcctggcagccccgccgccgaatccctg2280 gaggagccagatgcggccgccggcctcagcagcaccaagaaggctccgccgccccgcgat2340 cccggcacccccgctaccaaagaaggcgcctgggaggccatggccgtcgcccccgaggag2400 cctccgcccagcgccggcgaggacatcgtgggggacacagcaccccctgacctgtgtgat2460 cccgggagcttaacaggcgatgcgagcccgttgtcccaggacgcaaaggggatgatcgcg2520 gagggcccgcgggactcggcgttggcggaagccccggaagggttgagtccggctccgcct2580 gcgcggtcggaggagccctgcgagcagccactccttgttcaccccagcggggaccacgcc2640 cgggacgctcaggacccatcccagagcttgggcgcacccgaggccgcagagcggccgcca2700 gctcctgtgctggacatggccccggccggtcacccggaaggggacgctgagcctagcccc2760 ggcgagagggtcgaggacgccgcggcgccgaaagccccaggcccttccccagcgaaggag2820 aaaatcggcagcctcagaaaggtggaccgaggccactaccgcagccggagagagcgctcg2880 tccagcggggagcccgccagagagagcaggagcaagactgagggccaccgtcaccggcgg2940 usav2002-0022.sT25.txt cgccgcacctgcccccgggagcgcgaccgccaggaccgccacgccccggagcaccacccc3000 ggccacggcgacaggctcagccctggcgagcgccgctctctgggcaggtgcagtcaccac3060 cactcccgacaccggagcggggtggagctggactgggtcagacaccactacaccgagggc3120 gagcgtggctggggccgggagaagttctaccccgacaggccgcgctgggacaggtgccgg3180 tactaccatgacaggtacgccctgtacgctgcccgggactggaagcccttccacggcggc3240 cgcgagcacgagcgggccgggctgcacgagcggccgcacaaggaccacaaccggggccgt3300 aggggctgcgagccggcccgggagagggagcggcaccgccccagcagcccccgcgcaggc3360 gcgccccacgccctcgccccgcaccccgaccgcttctcccacgacagaactgcacttgta3420 gccggagacaactgtaacctctctgatcggtttcacgaacacgaaaatggaaagtcccgg3480 aaacggagacacgacagtgtggagaacagtgacagtcatgttgaaaagaaagcccggagg3540 agcgaacagaaggatcctctagaagagcctaaagcaaagaagcacaaaaaatcaaagaag3600 aaaaagaaatccaaagacaaacaccgagaccgcgactccaggcatcagcaggactcagac3660 ctctcagcagcgtgctctgacgctgacctccacagacacaaaaaaaagaagaagaaaaag3720 aagagacattcaagaaaatcagaggactttgttaaagattcagaactgcacttacccagg3780 gtcaccagcttggagactgtcgcccagttccggagagcccagggtggctttcctctctct3840 ggtggcccgcctctggaaggcgtcggacctttccgtgagaaaacgaaacacttacggatg3900 gaaagcagggatgacaggtgtcgtctctttgagtatggccagggtgattga 3951 <210> 9 <211> 1316 <212> PRT
<213> Homo Sapiens <400> 9 Met Thr Ile Val Asp Lys Ala Ser Glu Ser Ser Asp Pro Ser Ala Tyr Gln Asn Gln Pro Gly Ser Ser Glu Ala Val Ser Pro Gly Asp Met Asp Ala Gly Ser Ala Ser Trp Gly Ala Val Ser Ser Leu Asn Asp Val Ser Asn His Thr Leu Ser Leu Gly Pro Val Pro Gly Ala Val Val Tyr Ser Ser Ser Ser Val Pro Asp Lys Ser Lys Pro Ser Pro Gln Lys Asp Gln Ala Leu Gly Asp Gly Ile Ala Pro Pro Gln Lys Val Leu Phe Pro Ser Glu Lys Ile Cys Leu Lys Trp Gln Gln Thr His Arg Val Gly Ala Gly usav2002-0022.ST25.txt Leu Gln Asn Leu Gly Asn Thr Cys Phe Ala Asn Ala Ala Leu Gln Cys Leu Thr Tyr Thr Pro Pro Leu Ala Asn Tyr Met Leu Ser His Glu His Ser Lys Thr Cys His Ala Glu Gly Phe Cys Met Met Cys Thr Met Gln Ala His Ile Thr Gln Ala Leu Ser Asn Pro Gly Asp Val Ile Lys Pro Met Phe Val Ile Asn Glu Met Arg Arg Ile Ala Arg His Phe Arg Phe Gly Asn Gln Glu Asp Ala His Glu Phe Leu Gln Tyr Thr Val Asp Ala Met Gln Lys Ala Cys Leu Asn Gly Ser Asn Lys Leu Asp Arg His Thr Gln Ala Thr Thr Leu Val Cys Gln Ile Phe Gly Gly Tyr Leu Arg Ser Arg Val Lys Cys Leu Asn Cys Lys Gly Val Ser Asp Thr Phe Asp Pro Tyr Leu Asp Ile Thr Leu Glu Ile Lys Ala Ala Gln Ser Val Asn Lys Ala Leu Glu Gln Phe Val Lys Pro Glu Gln Leu Asp Gly Glu Asn Ser Tyr Lys Cys Ser Lys Cys Lys Lys Met Val Pro Ala Ser Lys Arg Phe 2g0 295 300 Thr Ile His Arg Ser Ser Asn Val Leu Thr Leu Ser Leu Lys Arg Phe Ala Asn Phe Thr Gly Gly Lys Ile Ala Lys Asp Val Lys Tyr Pro Glu Tyr Leu Asp Ile Arg Pro Tyr Met Ser Gln Pro Asn Gly Glu Pro Ile Val Tyr Val Leu Tyr Ala Val Leu Val His Thr Gly Phe Asn Cys His Ala Gly His Tyr Phe Cys Tyr Ile Lys Ala Ser Asn Gly Leu Trp Tyr usav2002-0022.ST25.txt Gln Met Asn Asp Ser Ile Val Ser Thr Ser Asp Ile Arg Ser Val Leu Ser Gln Gln Ala Tyr Val Leu Phe Tyr Ile Arg Ser His Asp Val Lys Asn Gly Gly Glu Leu Thr His Pro Thr His Ser Pro Gly Gln Ser Ser Pro Arg Pro Val Ile Ser Gln Arg Val Val Thr Asn Lys Gln Ala Ala Pro Gly Phe Ile Gly Pro Gln Leu Pro Ser His Met Ile Lys Asn Pro Pro His Leu Asn Gly Thr Gly Pro Leu Lys Asp Thr Pro Ser Ser Ser Met Ser Ser Pro Asn Gly Asn Ser Ser Val Asn Arg Ala Ser Pro Val Asn Ala Ser Ala Ser Val Gln Asn Trp Ser Val Asn Arg Ser Ser Val Ile Pro Glu His Pro Lys Lys Gln Lys Ile Thr Ile Ser Ile His Asn Lys Leu Pro Val Arg Gln Cys Gln Ser Gln Pro Asn Leu His Ser Asn Ser Leu Glu Asn Pro Thr Lys Pro Val Pro Ser Ser Thr Ile Thr Asn Ser Ala Val Gln Ser Thr Ser Asn Ala Ser Thr Met Ser Val Ser Ser Lys Val Thr Lys Pro Ile Pro Arg Ser Glu Ser Cys Ser Gln Pro Val Met Asn Gly Lys Ser Lys Leu Asn Ser Ser Val Leu Val Pro Tyr Gly Ala Glu Ser Ser Glu Asp Ser Asp Glu Glu Ser Lys Gly Leu Gly Lys Glu Asn Gly Ile Gly Thr Ile Val Ser Ser His Ser Pro Gly Gln Asp Ala Glu Asp Glu Glu Ala Thr Pro His Glu Leu Gln Glu Pro Met Thr usav2002-0022.ST25.txt Leu Asn Gly Ala Asn Ser Ala Asp Ser Asp Ser Asp Pro Lys Glu Asn Gly Leu Ala Pro Asp Gly Ala Ser Cys Gln Gly Gln Pro Ala Leu His Ser Glu Asn Pro Phe Ala Lys Ala Asn Gly Leu Pro Gly Lys Leu Met Pro Ala Pro Leu Leu Ser Leu Pro Glu Asp Lys Ile Leu Glu Thr Phe Arg Leu Ser Asn Lys Leu Lys Gly Ser Thr Asp Glu Met Ser Ala Pro Gly Ala Glu Arg Gly Pro Pro Glu Asp Arg Asp Ala Glu Pro Gln Pro Gly Ser Pro Ala Ala Glu Ser Leu Glu Glu Pro Asp Ala Ala Ala Gly Leu Ser Ser Thr Lys Lys Ala Pro Pro Pro Arg Asp Pro Gly Thr Pro Ala Thr Lys Glu Gly Ala Trp Glu Ala Met Ala Val Ala Pro Glu Glu ,, Pro Pro Pro Ser Ala Gly Glu Asp Ile Val Gly Asp Thr Ala Pro Pro Asp Leu Cys Asp Pro Gly Ser Leu Thr Gly Asp Ala Ser Pro Leu Ser Gln Asp Ala Lys Gly Met Ile Ala Glu Gly Pro Arg Asp Ser Ala Leu Ala Glu Ala Pro Glu Gly Leu Ser Pro Ala Pro Pro Ala Arg Ser Glu Glu Pro Cys Glu Gln Pro Leu Leu Val His Pro Ser Gly Asp His Ala Arg Asp Ala Gln Asp Pro Ser Gln Ser Leu Gly Ala Pro Glu Ala Ala Glu Arg Pro Pro Ala Pro Val Leu Asp Met Ala Pro Ala Gly His Pro Glu Gly Asp Ala Glu Pro Ser Pro Gly Glu Arg Val Glu Asp Ala Ala usav2002-0022.ST25.txt Ala Pro Lys Ala Pro Gly Pro Ser Pro Ala Lys Glu Lys Ile Gly Ser Leu Arg Lys Val Asp Arg Gly His Tyr Arg Ser Arg Arg Glu Arg Ser Ser Ser Gly Glu Pro Ala Arg Glu Ser Arg Ser Lys Thr Glu Gly His Arg His Arg Arg Arg Arg Thr Cys Pro Arg Glu Arg Asp Arg Gln Asp Arg His Ala Pro Glu His His Pro Gly His Gly Asp Arg Leu Ser Pro Gly Glu Arg Arg Ser Leu Gly Arg Cys Ser His His His Ser Arg His Arg Ser Gly Val Glu Leu Asp Trp Val Arg His His Tyr Thr Glu Gly Glu Arg Gly Trp Gly Arg Glu Lys Phe Tyr Pro Asp Arg Pro Arg Trp Asp Arg Cys Arg Tyr Tyr His Asp Arg Tyr Ala Leu Tyr Ala Ala Arg Asp Trp Lys Pro Phe His Gly Gly Arg Glu His Glu Arg Ala Gly Leu His Glu Arg Pro His Lys Asp His Asn Arg Gly Arg Arg Gly Cys Glu Pro Ala Arg Glu Arg Glu Arg His Arg Pro Ser Ser Pro Arg Ala Gly Ala Pro His Ala Leu Ala Pro His Pro Asp Arg Phe Ser His Asp Arg Thr Ala Leu Val Ala Gly Asp Asn Cys Asn Leu Ser Asp Arg Phe His Glu His Glu Asn Gly Lys Ser Arg Lys Arg Arg His Asp Ser Val Glu Asn Ser Asp ser His Val Glu Lys Lys Ala Arg Arg Ser Glu Gln Lys Asp Pro Leu Glu usav2002-0022.sT25.txt Glu Pro Lys Ala Lys Lys His Lys Lys Ser Lys Lys Lys Lys Lys Ser Lys Asp Lys His Arg Asp Arg Asp Ser Arg His Gln Gln Asp Ser Asp Leu Ser Ala Ala Cys Ser Asp Ala Asp Leu His Arg His Lys Lys Lys Lys Lys Lys Lys Lys Arg His Ser Arg Lys Ser Glu Asp Phe Val Lys Asp Ser Glu Leu His Leu Pro Arg Val Thr Ser Leu Glu Thr Val Ala Gln Phe Arg Arg Ala Gln Gly Gly Phe Pro Leu Ser Gly Gly Pro Pro Leu Glu Gly Val Gly Pro Phe Arg Glu Lys Thr Lys His Leu Arg Met Glu Ser Arg Asp Asp Arg Cys Arg Leu Phe Glu Tyr Gly Gln Gly Asp <210>

<211>

<212>
DNA

<213> Sapiens Homo <400>

gtaaagtctaaactgagaagtggaagtgtgaactggctggaggtggaaggttggaaaaga60 gtcggagaaaagaacagcatgtgcagagcccagagacagcagggacaaaagaaaaaaaaa120 caagacttcagcatggtgggaacgtgacggagagggtgtttggcgaggttattaggtcag180 acaatgtgaagtccagacattaagatgttgtgctgtgggcagttgggccactcctgaaag240 gtgttctttcttcctttccttttctttctttcttttcttgaggcagagtctctctatgtc300 agtctggagtgcagtggcatgatctcggctcactgcaatctctgccttccaggttcaagc360 aattttccttgcctcagcctcccaagtagctgggaatacaggcgtgcgccaccatgcctg420 gttaatttttttatttttagtagagatggggtttccccatgttggccaggctggtctcga480 actcctggactcaagtgatccacccactttggcctcccaaagtgctgggattacaggggt540 gtgagccactgcgccccgcccggccttttttttttttttttttgagacttaatcttgctc600 tgtcaccaaggctggatatcagtggcacggttttggctctctgcaacttctgtctcccag660 gttcaagcgattttcctgactcagcctcccaagtagttgagattacaggtacgtgccacc720 usa v2002-0022.ST25.txt acgcccggctaatttttgtatttttagtagagatgaggtttcactatgttggccagactg780 gtctcaaacgcctgacctcaggtgattcacctgcctcggcctcccaaaatgctgggatta840 caggtgtgcaccaccatgcctgggtaatttttgtttttcgtagagacagggtctcaccat900 gttggccaggctggtctcaaactcctgacctcaagcgatctgcccaccttggcctcccaa960 ggtgctgcaattataggcatgagccaccgcgcccggcctcctgaaaggttttctacatag1020 gagtggcatgtctagatgtggctactgttgggcgattttagaaatatccctaaaagcctt1080 ctgttgacagggtggcataaccagaaggaagcctggctgggaacgctggacctggctctc1140 agtcccagttgctgactggttgcttcattttataggccctggggattctgtctgatctct1200 catacgttctttataaaaattaagttaatgtatgtccagcagttgatgcaatgcccagta1260 catagaaaatgctcaattagtggtagccctaatattttaaaataggactcagaaagaaaa1320 ttataatcaagtcctttcataacagatatttgtgtttgagtttgatatcagtaatggctt1380 acgggttttatttaaaaagtcatacattccatataaatgagcctcttcagaaaaatggtt1440 ttaaaggtgagatctctataattataattttaaaaaatataatgtatttcacttggtgcc1500 atttgcactttaagcacaaaattaagtctagattttttctgtgtagttgatgcttttctc1560 tgaggaattatactcaaattgaagatgtagtcaaatgtattactgtgtataatttttcta1620 gttttaagcagtatagaaggaaaatataggtacttagtaaataaacagaactgagaattg1680 aaatgtccaattataaactgaaatgccagacttttagggggcatgaaatgaaaatgagaa1740 gttcttttaatcaaatacttcactgaagattttaaaataaagattgttgacattcagatt1800 atcatgatgctaaatgtcccaaggggattattacagaaatgttagaaagtactattgttt1860 ttatatttgagtgatgtgtttgaaaatcactttaaaatggctggaatgatcttccaagat1920 ctaacggtagggtaaggagattgcttttctcacctgatgaaacaaatacatacttttcat1980 cttttgcagagttgaacaatg 2001 <210>

<211>

<212>
DNA

<213> musculus Mus <400>

atgaccatagttgacaaaactgaaccttcagacccatcaacctgtcagaaccagcctggc60 agttgtgaggcggtctcacctgaagacatggacacaggctctgccagctggggcgctgtg120 tcttcaataagtgatgtctcaagtcacacacttccattagggccagtgcctggtgctgta180 gtttattctaactcgtctgtacctgaaaaatcaaagccatcaccaccaaaggatcaagtc240 ctaggtgatggcattgctcctcctcaaaaggtcctgtttccatctgaaaagatttgtctt300 aagtggcaacaaagtcatcgagttggcgctgggctccagaatttgggcaacacctgtttt360 gccaatgccgcattgcagtgtctgacttacacgccacccctcgccaattacatgttatcc420 catgaacactccaagacatgccacgcagaaggattttgtatgatgtgcacgatgcagaca480 cacattacccaggcacttagcaaccctggggatgttatcaagccgatgttcgtcatcaat540 usav2002-0022.sT25.txt gaaatgcggcgtatagctagacacttccgttttggaaaccaagaagatgcccatgaattt600 cttcagtacacggtcgatgccatgcagaaagcatgtttaaatggcagcaataaattagac660 agacacacccaggccaccaccctggtctgccagatatttggaggctacctaagatcccga720 gttaaatgtttaaattgcaagggtgtttcagatacctttgatccatatctggacataacg780 ttggagattaaggctgcacagagtgttaccaaggcgttagagcagtttgtgaagccagaa840 caactggatggagaaaactcctacaagtgcagcaagtgcaaaaaaatggttccagcttca900 aagagattcacaatccataggtcctctaatgttcttaccatctcactgaagcgctttgcc960 aacttcaccggtggaaagattgctaaggatgtgaaatatcctgagtaccttgatatccgg1020 ccctatatgtctcagcccaatggagagccaattatttatgttttgtatgctgtgctggtg1080 cacactggttttaattgtcatgctggccactacttttgctacatcaaggctagcaatggc1140 ctctggtatcagatgaatgactccatcgtgtccaccagtgatatcagagcagtgcttaac1200 cagcaagcttacgtgctcttttatatcaggtcccatgatgtgaaaaatggaggggagtct1260 gctcatcctgcccatagccccggccaatcctctccccgcccaggagtcagtcagcgggta1320 gtcaacaacaagcaggtggctccagggtttattggaccccagctgccttcccatgtgatg1380 aagaacacgccacacttgaatggcaccacgccagtgaaagacacaccaagtagttctgtg1440 tcaagccctaacggaaacaccagcgtcaatagggccagtcctgctactgcttcgacttct1500 gtgcagaactggtctgttaccagaccctcagttattccagatcaccccaagaaacaaaaa1560 atcaccatcagtattcacaacaagttgcctgctcgccagggtcaggcaccactgaataac1620 agcctccatggcccttgtctggaggctcctagtaaggcggcaccctcctccaccatcact1680 aacccttctgcaatacagtctacctcgaacgtacccacaacgtcgacttcccccagtgag1740 gcctgtcccaagcccatggtgaacggcaaggctaaagtgggcgccagtgtgcttgtcccc1800 tatggggccgagtcctcagaagagtctgatgaggagtcgaagggcctggccaaggagaac1860 ggtgtggacatgatggccggcactcactccgataggccagaagctgctgcagatgacggt1920 gctgaggcttcctcccatga,gcttcaagaacccgtcctgctaaatggtgctaatagcgca1980 gacagtgactcacaagagaacagcctggcatttgacagtgccagctgccaggtccagccc2040 gagctacacacagaaaacctcttttccaaacttaatggtcttcctggaaaggtgacgcct2100 gctcctttgcagtctgttcctgaagacagaatccttgagaccttcaagcttaccaaccag2160 gcaaagggtccagcgggtgaagagagttggactacgacagggggaagctctccaaaggac2220 cctgtttcacagctggagcccatcagtgatgagcccagtccccttgagataccggaggct2280 gtcaccaatgggagcacacagaccccttccaccacatcacccctggagcccaccatcagc2340 tgtaccaaagaagactcgtccgttgttgtctcagctgaacctgtggagggtttgccttcc2400 gtccctgctctttgtaacagcactggtactatcttgggggataccccagtgcccgaattg2460 tgtgaccctggagacttgactgccaacccgagccagccaaccgaagcagtgaaaggtgat2520 acagctgagaaggctcaggactctgccatggctgaagtggtggagaggctgagccctgct2580 usav2002-0022.ST25.txt ccctcagtactcacaggtgacgggtgtgagcagaaactcttactttacctcagcgcagag2640 gggtcagaggagacagaagactcttccagaagctcggcggtctctgctgacacgatgccc2700 cctaagcctgacaggaccaccaccagctcctgtgaaggggctgccgagcaggctgctggg2760 gacagaggcgatggaggccatgtgggacccaaagctcaggagccttccccagccaaggaa2820 aagatgagcagcctccggaaagtggaccgaggacactatcggagccggagagagcgctcc2880 tccagtggggagcacgtgagggacagcaggccccggccggaggaccatcaccataagaag2940 cggcactgctacagccgagagcggcccaagcaggaccgacaccctactaattcatactgc3000 aatgggggccagcacttgggccacggggacagagccagccctgagcgccgctccctgagc3060 aggtatagtcaccaccactcacggattaggagtggcctggagcaggactggagccggtac3120 caccatttggaaaatgagcatgcttgggtcagggagagattctaccaggacaagctgcgg3180 tgggacaagtgcaggtattaccacgacaggtacacgcccctatacacggcccgggacgcc3240 cgagaatggcggcctctgcatggtcgtgagcatgaccgccttgtccagtctggacggcca3300 tacaaggacagctactggggccgcaagggctgggagctgcaatcccgggggaaggaacgg3360 ccccacttcaacagcccccgagaggcccctagccttgctgtgcccctcgagagacatctc3420 caagagaaggctgcgctgagtgtgcaggacagcagccacagtctccctgagcgctttcat3480 gaacacaaaagtgtcaagtcgaggaagcggaggtatgagactctagaaaataatgatggc3540 cgtctagaaaagaaagtccacaaaagcctggagaaggacacgctagaggagccaagggtg3600 aagaagcacaaaaagtctaaaaagaaaaagaagtccaaagataaacaccgggatcgagaa3660 agcaggcaccagcaggagtctgatttttcaggagcatactctgatgctgacctccataga3720 caccggaagaaaaagaagaaaaagaaaaggcattccaggaagtcggaggactttataaag3780 gatgttgagatgcgtttaccgaagctctccagctacgaggccggcggccatttccggaga3840 acagagggcagctttctcctggctgatggtctgcctgtggaagacagcggccctttccgg3900 gagaaaacgaagcatttaaggatggaaagccggcctgacagatgccgtctgtcggagtat3960 ggccaggattcaacattttga 3981 <210> 12 <211> 1326 <212> PRT
<213> Mus musculus <400> 12 Met Thr Ile Val Asp Lys Thr Glu Pro Ser Asp Pro Ser Thr Cys Gln Asn Gln Pro Gly Ser Cys Glu Ala Val Ser Pro Glu Asp Met Asp Thr Gly Ser Ala Ser Trp Gly Ala Val Ser Ser Ile Ser Asp Val Ser Ser usav2002-0022.ST25.txt His Thr Leu Pro Leu Gly Pro Val Pro Gly Ala Val Val Tyr Ser Asn Ser Ser Val Pro Glu Lys Ser Lys Pro Ser Pro Pro Lys Asp Gln Val Leu Gly Asp Gly Ile Ala Pro Pro Gln Lys Val Leu Phe Pro Ser Glu Lys Ile Cys Leu Lys Trp Gln Gln Ser His Arg Val Gly Ala Gly Leu Gln Asn Leu Gly Asn Thr Cys Phe Ala Asn Ala Ala Leu Gln Cys Leu Thr Tyr Thr Pro Pro Leu Ala Asn Tyr Met Leu Ser His Glu His Ser Lys Thr Cys His Ala Glu Gly Phe Cys Met Met Cys Thr Met Gln Thr His Ile Thr Gln Ala Leu Ser Asn Pro Gly Asp Val Ile Lys Pro Met Phe Val Ile Asn Glu Met Arg Arg Ile Ala Arg His Phe Arg Phe Gly Asn Gln Glu Asp Ala His Glu Phe Leu Gln Tyr Thr Val Asp Ala Met Gln Lys Ala Cys Leu Asn Gly Ser Asn Lys Leu Asp Arg His Thr Gln Ala Thr Thr Leu Val Cys Gln Ile Phe Gly Gly Tyr Leu Arg Ser Arg Val Lys Cys Leu Asn Cys Lys Gly Val Ser Asp Thr Phe Asp Pro Tyr Leu Asp Ile Thr Leu Glu Ile Lys Ala Ala Gln Ser Val Thr Lys Ala Leu Glu Gln Phe Val Lys Pro Glu Gln Leu Asp Gly Glu Asn Ser Tyr Lys Cys Ser Lys Cys Lys Lys Met Val Pro Ala Ser Lys Arg Phe Thr Ile His Arg Ser Ser Asn Val Leu Thr Ile Ser Leu Lys Arg Phe Ala usav2002-0022.sT25.txt Asn Phe Thr Gly Gly Lys Ile Ala Lys Asp Val Lys Tyr Pro Glu Tyr Leu Asp Ile Arg Pro Tyr Met Ser Gln Pro Asn Gly Glu Pro Ile Ile Tyr Val Leu Tyr Ala Val Leu Val His Thr Gly Phe Asn Cys His Ala Gly His Tyr Phe Cys Tyr Ile Lys Ala Ser Asn Gly Leu Trp Tyr Gln Met Asn Asp Ser Ile Val Ser Thr Ser Asp Ile Arg Ala Val Leu Asn Gln Gln Ala Tyr Val Leu Phe Tyr Ile Arg Ser His Asp Val Lys Asn Gly Gly Glu Ser Ala His Pro Ala His Ser Pro Gly Gln Ser Ser Pro Arg Pro Gly Val Ser Gln Arg Val Val Asn Asn Lys Gln Val Ala Pro Gly Phe Ile Gly Pro Gln Leu Pro Ser His Val Met Lys Asn Thr Pro His Leu Asn Gly Thr Thr Pro Val Lys Asp Thr Pro Ser Ser Ser Val Ser Ser Pro Asn Gly Asn Thr Ser Val Asn Arg Ala Ser Pro Ala Thr Ala Ser Thr Ser val Gln Asn Trp ser Val Thr Arg Pro ser val Ile Pro Asp His Pro Lys Lys Gln Lys Ile Thr Ile Ser Ile His Asn Lys Leu Pro Ala Arg Gln Gly Gln Ala Pro Leu Asn Asn Ser Leu His Gly Pro Cys Leu Glu Ala Pro Ser Lys Ala Ala Pro Ser Ser Thr Ile Thr Asn Pro Ser Ala Ile Gln Ser Thr Ser Asn Val Pro Thr Thr Ser Thr Ser Pro Ser Glu Ala Cys Pro Lys Pro Met Val Asn Gly Lys Ala Lys usav2002-0022.ST25.txt Val Gly Ala Ser Val Leu Val Pro Tyr Gly Ala Glu Ser Ser Glu Glu Ser Asp Glu Glu Ser Lys Gly Leu Ala Lys Glu Asn Gly Val Asp Met Met Ala Gly Thr His Ser Asp Arg Pro Glu Ala Ala Ala Asp Asp Gly Ala Glu Ala Ser Ser His Glu Leu Gln Glu Pro Val Leu Leu Asn Gly Ala Asn Ser Ala Asp Ser Asp Ser Gln Glu Asn Ser Leu Ala Phe Asp Ser Ala Ser Cys Gln Val Gln Pro Glu Leu His Thr Glu Asn Leu Phe Ser Lys Leu Asn Gly Leu Pro Gly Lys Val Thr Pro Ala Pro Leu Gln Ser Val Pro Glu Asp Arg Ile Leu Glu Thr Phe Lys Leu Thr Asn Gln Ala Lys Gly Pro Ala Gly Glu Glu Ser Trp Thr Thr Thr Gly Gly Ser Ser Pro Lys Asp Pro Val Ser Gln Leu Glu Pro Ile Ser Asp Glu Pro Ser Pro Leu Glu Ile Pro Glu Ala Val Thr Asn Gly Ser Thr Gln Thr Pro Ser Thr Thr Ser Pro Leu Glu Pro Thr Ile Ser Cys Thr Lys Glu Asp Ser Ser Val Val Val Ser Ala Glu Pro Val Glu Gly Leu Pro Ser Val Pro Ala Leu Cys Asn Ser Thr Gly Thr Ile Leu Gly Asp Thr Pro Val Pro Glu Leu Cys Asp Pro Gly Asp Leu Thr Ala Asn Pro Ser Gln Pro Thr Glu Ala Val Lys Gly Asp Thr Ala Glu Lys Ala Gln Asp Ser Ala Met Ala Glu Val Val Glu Arg Leu Ser Pro Ala Pro Ser Val Leu usav2002-0022.sT25.txt Thr Gly Asp Gly Cys Glu Gln Lys Leu Leu Leu Tyr Leu Ser Ala Glu Gly Ser Glu Glu Thr Glu Asp Ser Ser Arg Ser Ser Ala Val Ser Ala Asp Thr Met Pro Pro Lys Pro Asp Arg Thr Thr Thr Ser Ser Cys Glu 900 ~ 905 910 Gly Ala Ala Glu Gln Ala Ala Gly Asp Arg Gly Asp Gly Gly His Val Gly Pro Lys Ala Gln Glu Pro Ser Pro Ala Lys Glu Lys Met Ser Ser Leu Arg Lys Val Asp Arg Gly His Tyr Arg Ser Arg Arg Glu Arg Ser Ser Ser Gly Glu His Val Arg Asp Ser Arg Pro Arg Pro Glu Asp His His His Lys Lys Arg His Cys Tyr Ser Arg Glu Arg Pro Lys Gln Asp Arg His Pro Thr Asn Ser Tyr Cys Asn Gly Gly Gln His Leu Gly His gg5 1000 1005 Gly Asp Arg Ala Ser Pro Glu Arg Arg Ser Leu Ser Arg Tyr Ser His His His Ser Arg Ile Arg Ser Gly Leu Glu Gln Asp Trp Ser Arg Tyr His His Leu Glu Asn Glu His Ala Trp Val Arg Glu Arg Phe Tyr Gln Asp Lys Leu Arg Trp Asp Lys Cys Arg Tyr Tyr His Asp Arg Tyr Thr Pro Leu Tyr Thr Ala Arg Asp Ala Arg Glu Trp Arg Pro Leu His Gly Arg Glu His Asp Arg Leu Val Gln Ser Gly Arg Pro Tyr Lys Asp Ser Tyr Trp Gly Arg Lys Gly Trp Glu Leu Gln Ser Arg Gly Lys Glu Arg Pro His Phe Asn Ser Pro Arg Glu usav2002-0022.ST25.txt Ala Pro Ser Leu Ala Val Pro Leu Glu Arg His Leu Gln Glu Lys Ala Ala Leu Ser Val Gln Asp Ser Ser His Ser Leu Pro Glu Arg Phe His Glu His Lys Ser Val Lys Ser Arg Lys Arg Arg Tyr Glu Thr Leu Glu Asn Asn Asp Gly Arg Leu Glu Lys Lys Val His Lys Ser Leu Glu Lys Asp Thr Leu Glu Glu Pro Arg Val Lys Lys His Lys Lys Ser Lys Lys Lys Lys Lys Ser Lys Asp Lys His Arg Asp Arg Glu Ser Arg His Gln Gln Glu Ser Asp Phe Ser Gly Ala Tyr Ser Asp Ala Asp Leu His Arg His Arg Lys Lys Lys Lys Lys Lys Lys Arg His Ser Arg Lys Ser Glu Asp Phe Ile Lys Asp Val Glu Met Arg Leu Pro Lys Leu Ser Ser Tyr Glu Ala Gly Gly His Phe Arg Arg Thr Glu Gly Ser Phe Leu Leu Ala Asp Gly Leu Pro Val Glu Asp Ser Gly Pro Phe Arg Glu Lys Thr Lys His Leu Arg Met Glu Ser Arg Pro Asp Arg Cys Arg Leu Ser Glu Tyr Gly Gln Asp Ser Thr Phe

Claims (15)

What is claimed is:
1. An isolated polynucleotide encoding a human deubiquitinating protease selected from the group consisting of hDUB7 and mDUB7.
2. A polypeptide encoding a human deubiquitinating protease selected from the group consisting of hDUB7 and mDUB7.
3. A method of using a polynucleotide according to claim 1, wherein the polynucleotide is used in an assay to identify an inhibitor of a hDUB or mDUB7 of claim 1.
4. A method of using a polypeptide according to claim 2, wherein the polypeptide is used in an assay to identify an inhibitor of a hDUB or mDUB7 of claim 2.
5. A method of reducing inflammation by regulating proinflammatory cytokine signaling, by administering a compound capable of inhibiting a polypeptide according to claim 2.
6. A method of modulating an autoimmune disease by altering cytokine receptor signaling involved in lymphocytes proliferation, by administering a compound capable of inhibiting a polypeptide according to claim 2.
7. A method of modulating an immune reaction during infection, by administering a compound capable of inhibiting a polypeptide according to claim 2.
8. A method of reducing inflammation by regulating proinflammatory cytokine signaling, by administering a compound capable of altering regulation of transcription of a polynucleotide of claim 1.
9. A method of modulating an autoimmune disease by altering cytokine receptor signaling involved in lymphocytes proliferation, by administering a compound capable of altering regulation of transcription of a polynucleotide of claim 1.
10. A method of modulating an immune reaction during infection, by administering a compound capable of altering regulation of transcription of a polynucleotide of claim 1.
11. A method of identifying a modulator of a human deubiquitinating protease, wherein a compound is added to the reporter assay comprising a polynucleotide immediately 5' to a human deubiquitinating protease selected from the group consisting of hDUB7 and mDUB7 operatively linked to a reporter gene, and the effect of the compound is determined.
12. A transducing peptide comprising an NLS or transducing sequence of hDUB7 or mDUB7 linked to a cargo molecule.
13. The transducing peptide of claim 12, wherein the NLS or transducing sequence is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, and SEQ
ID NO:4.
14. The transducing peptide of claim 12, wherein the cargo molecule is a biologically active protein, therapeutically effective compound, antisense nucleotide, or test compound.
15. A method of delivering a biologically active protein, therapeutically effective compound, antisense nucleotide, or test compound to a cell wherein a transducing peptide of claim 12 is added exogenously to a cell.
CA002479647A 2002-03-22 2003-03-21 Human deubiquitinating protease gene on chromosome 7 and its murine ortholog Abandoned CA2479647A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36660102P 2002-03-22 2002-03-22
US60/366,601 2002-03-22
GB0218518.9 2002-08-09
GBGB0218518.9A GB0218518D0 (en) 2002-03-22 2002-08-09 Human deubiquitinating protease gene on chromosome 7 and its murine ortholog
PCT/US2003/008590 WO2003083050A2 (en) 2002-03-22 2003-03-21 Human deubiquitinating protease gene on chromosome 7 and its murine ortholog

Publications (1)

Publication Number Publication Date
CA2479647A1 true CA2479647A1 (en) 2003-10-09

Family

ID=28676509

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002479647A Abandoned CA2479647A1 (en) 2002-03-22 2003-03-21 Human deubiquitinating protease gene on chromosome 7 and its murine ortholog

Country Status (8)

Country Link
EP (1) EP1495117A4 (en)
JP (1) JP2005520567A (en)
AU (1) AU2003230701C1 (en)
BR (1) BR0307759A (en)
CA (1) CA2479647A1 (en)
IL (1) IL164088A0 (en)
MX (1) MXPA04006975A (en)
WO (1) WO2003083050A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006247A2 (en) * 1995-08-09 1997-02-20 Dana Farber Cancer Institute Deubiquitinating enzymes that regulate cell growth
JP2003510024A (en) * 1999-08-09 2003-03-18 インサイト・ゲノミックス・インコーポレイテッド Proteases and protease inhibitors
AU1071901A (en) * 1999-09-29 2001-04-30 Millennium Pharmaceuticals, Inc. 23431, a novel human ubiquitin protease

Also Published As

Publication number Publication date
JP2005520567A (en) 2005-07-14
WO2003083050A2 (en) 2003-10-09
AU2003230701B2 (en) 2008-06-05
AU2003230701A1 (en) 2003-10-13
WO2003083050A3 (en) 2004-02-26
MXPA04006975A (en) 2004-11-10
EP1495117A4 (en) 2005-06-08
BR0307759A (en) 2004-12-21
IL164088A0 (en) 2005-12-18
EP1495117A2 (en) 2005-01-12
AU2003230701C1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
D'Andrea et al. Deubiquitinating enzymes: a new class of biological regulators
Ciechanover The ubiquitin-proteasome proteolytic pathway
Vincenz et al. Fas-associated death domain protein interleukin-1β-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95-and p55-mediated death signaling
Baker et al. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases
Baek et al. DUB-2A, a new member of the DUB subfamily of hematopoietic deubiquitinating enzymes
Fujiwara et al. Identification and chromosomal assignment of USP1, a novel gene encoding a human ubiquitin-specific protease
US6287858B1 (en) DeUBiquitinating enzymes that regulate cell growth
US7179631B2 (en) Human deubiquitinating protease gene on chromosome 7 and its murine ortholog
Chen et al. Proteasome-dependent down-regulation of activated Stat5A in the nucleus
AU2003230701C1 (en) Human deubiquitinating protease gene on chromosome 7 and its murine ortholog
AU2003215370B2 (en) Human analogs of murine deubiquitinating protease genes
US7202073B2 (en) Human analogs of murine deubiquitinating proteases
Tanaka et al. NUB1‐mediated targeting of the ubiquitin precursor UbC1 for its C‐terminal hydrolysis
Baker et al. Cloning, expression, purification, and activity of dog (Canis familiaris) and monkey (Saimiri boliviensis) cathepsin S
Baek et al. Molecular cloning of chick UCH-6 which shares high similarity with human UCH-L3: its unusual substrate specificity and tissue distribution
AU2008203478A1 (en) Human analogs of murine deubiquitinating protease genes
KR100532234B1 (en) New Ubiquitin-Protease and Its Genes in Chicken Muscle
Baek et al. Essential regions of deubiquitinating enzyme activity and enhancer function for DUB-2A expressed in T-lymphocytes
US20050158802A1 (en) UbcH8 Ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an interferon alpha/beta induced Ubiquitin-like protein
JP2002300880A (en) New ubiquitin-specific protease
WO1998048020A2 (en) Mammalian ubiquitin-isopeptidases that control cell proliferation
Lin Structure-function relationships of enzymes involved in ubiquitination
JP2001292800A (en) Method for screening apoptosis regulator
WO2004011636A2 (en) Method of enzymatic deubiquitination
KR20050077663A (en) Encoded cdna and amino acid sequence of mhausp regulating as a deubiquitinating enzyme in mouse protein

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued