CA2423782A1 - Lasers a points quantiques - Google Patents

Lasers a points quantiques Download PDF

Info

Publication number
CA2423782A1
CA2423782A1 CA002423782A CA2423782A CA2423782A1 CA 2423782 A1 CA2423782 A1 CA 2423782A1 CA 002423782 A CA002423782 A CA 002423782A CA 2423782 A CA2423782 A CA 2423782A CA 2423782 A1 CA2423782 A1 CA 2423782A1
Authority
CA
Canada
Prior art keywords
quantum
laser
optical
inas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002423782A
Other languages
English (en)
Inventor
Andreas Stintz
Petros N. Varangis
Kevin J. Malloy
Luke F. Lester
Timothy C. Newell
Hua Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNM Rainforest Innovations
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/961,560 external-priority patent/US6600169B2/en
Application filed by Individual filed Critical Individual
Publication of CA2423782A1 publication Critical patent/CA2423782A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

L'invention concerne une région active à points quantiques dans laquelle des couches de points quantiques sont formées par grossissement par auto-assemblage. Dans un mode de réalisation, des paramètres de grossissement sont sélectionnés afin de réguler la répartition de la densité et de la grosseur des points de manière à obtenir des caractéristiques de courbe spectrale à gain optique souhaitées. Dans un mode de réalisation, la répartition de la grosseur des points et la séquence des valeurs d'énergie de transition optique associées aux états confinés quantiques des points sont sélectionnés afin de faciliter la formation d'une courbe spectrale à gain optique continue sur une gamme de longueurs d'ondes étendue. Dans un autre mode de réalisation, le gain optique est sélectionné de manière à augmenter le gain à l'état normal saturé pour des longueurs d'ondes égales ou supérieures à 1260 nanomètres. Dans d'autres modes de réalisation, les points quantiques sont utilisés en tant que région active dans des dispositifs laser, y compris des lasers accordables, et des réseaux laser monolithiques à longueurs d'ondes multiples.
CA002423782A 2000-10-06 2001-10-05 Lasers a points quantiques Abandoned CA2423782A1 (fr)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US23803000P 2000-10-06 2000-10-06
US60/238,030 2000-10-06
US25208400P 2000-11-21 2000-11-21
US60/252,084 2000-11-21
US27230701P 2001-03-02 2001-03-02
US60/272,307 2001-03-02
US27618601P 2001-03-16 2001-03-16
US60/276,186 2001-03-16
US31630501P 2001-08-31 2001-08-31
US60/316,305 2001-08-31
US09/961,560 2001-09-20
US09/961,560 US6600169B2 (en) 2000-09-22 2001-09-20 Quantum dash device
PCT/US2001/031256 WO2002058200A2 (fr) 2000-10-06 2001-10-05 Lasers a points quantiques

Publications (1)

Publication Number Publication Date
CA2423782A1 true CA2423782A1 (fr) 2002-07-25

Family

ID=27559279

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002423782A Abandoned CA2423782A1 (fr) 2000-10-06 2001-10-05 Lasers a points quantiques

Country Status (6)

Country Link
EP (1) EP1354380A2 (fr)
JP (3) JP2004528705A (fr)
AU (1) AU2002246489A1 (fr)
CA (1) CA2423782A1 (fr)
IL (2) IL155026A0 (fr)
WO (1) WO2002058200A2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692407B2 (ja) * 2003-08-28 2005-09-07 国立大学法人 東京大学 半導体量子ドット素子の製造方法
JP5248782B2 (ja) 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
US9018515B2 (en) 2004-01-20 2015-04-28 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
JP4873527B2 (ja) * 2004-08-26 2012-02-08 独立行政法人産業技術総合研究所 半導体発光素子の製造方法
JP4829508B2 (ja) * 2005-02-18 2011-12-07 富士通株式会社 光半導体装置の製造方法
JP2007123731A (ja) * 2005-10-31 2007-05-17 Toshiba Corp 半導体発光素子および半導体発光装置
TWI318815B (en) * 2006-12-20 2009-12-21 Ind Tech Res Inst Multiwavelength semiconductor laser array and method of manufacturing the same
US9437430B2 (en) * 2007-01-26 2016-09-06 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
JP4750728B2 (ja) * 2007-02-09 2011-08-17 富士通株式会社 半導体装置の製造方法
US8965208B2 (en) 2009-05-22 2015-02-24 Kotura, Inc. Multi-channel optical device
JP5672983B2 (ja) * 2010-11-04 2015-02-18 富士通株式会社 発光半導体素子及びその製造方法
JP2016523444A (ja) * 2013-07-03 2016-08-08 インフェニックス インコーポレイテッドInphenix, Inc. 掃引源光干渉断層撮影システム用の波長同調型垂直キャビティ面発光レーザー
JP6581419B2 (ja) * 2015-07-30 2019-09-25 浜松ホトニクス株式会社 分布帰還型横マルチモード半導体レーザ素子
JP7265258B2 (ja) * 2019-07-30 2023-04-26 国立大学法人 和歌山大学 波長掃引型光コヒーレンストモグラフィー装置
JP2022078795A (ja) * 2020-11-13 2022-05-25 株式会社デンソー 半導体レーザ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744292B1 (fr) * 1996-01-29 1998-04-30 Menigaux Louis Composant d'emission laser multi-longueur d'onde

Also Published As

Publication number Publication date
IL155026A0 (en) 2003-10-31
JP2009117856A (ja) 2009-05-28
WO2002058200A2 (fr) 2002-07-25
EP1354380A2 (fr) 2003-10-22
JP2007318165A (ja) 2007-12-06
AU2002246489A1 (en) 2002-07-30
IL155026A (en) 2006-07-05
WO2002058200A9 (fr) 2003-05-30
WO2002058200A3 (fr) 2003-08-14
JP2004528705A (ja) 2004-09-16

Similar Documents

Publication Publication Date Title
US6816525B2 (en) Quantum dot lasers
EP1354338B1 (fr) Dispositifs à boîtes quantiques
US6426515B2 (en) Semiconductor light-emitting device
EP0546706B1 (fr) Article comprenant un laser DFB à semi-conducteur
JP2009117856A (ja) 量子ドットレーザ
Tsang et al. Semiconductor distributed feedback lasers with quantum well or superlattice gratings for index or gain‐coupled optical feedback
EP1480304B1 (fr) Laser a semi-conducteurs nanocomposite quantique et reseau nanocomposite quantique
EP0661783B1 (fr) Méthode pour la fabrication d'un circuit optique intégré à semi-conducteur
US20060227825A1 (en) Mode-locked quantum dot laser with controllable gain properties by multiple stacking
EP1227556A2 (fr) Dispositif laser à semi-conducteur à réaction distribuée à couplage complexe
Brinkman et al. The lasers behind the communications revolution
Aoki et al. Detuning adjustable multiwavelength MQW-DFB laser array grown by effective index/quantum energy control selective area MOVPE
EP1290765B1 (fr) Lasers haute puissance manufacturables a reflecteur bragg reparti et a reseau echantillonne
Kudo et al. Wide-wavelength range detuning-adjusted DFB-LDs of different wavelengths fabricated on a wafer
Geske et al. Long-wavelength two-dimensional WDM vertical cavity surface-emitting laser arrays fabricated by nonplanar wafer bonding
Numai Semiconductor wavelength tunable optical filters
Kudo et al. Over 75-nm-wide Wavelength Range Detuning-Adjusted DFB-LDs of Different Wavelengths Fabricated on a Wafer
Ledentsov et al. Recent advances in long-wavelength GaAs-based quantum dot lasers
Bimberg Quantum dots: Lasers and amplifiers
Joyner Advances in Semiconductor Laser Growth and Fabrication Technology
Koch Departments of Electrical and Computer Engineering, and Physics 205 Sinclair Laboratory, 7 Asa Drive Lehigh University, Bethlehem, Pennsylvania tlkochólehigh. edu
Hwang et al. 1.3/spl mu/m wavelength GaInAsP/InP distributed feedback lasers grown directly on grating substrates by solid source molecular beam epitaxy
Wang et al. High-speed DFB laser and EMLs
Nakamura et al. Wide-wavelength control by selective MOVPE and its applications to DFB-LD array for CWDM
Bouadma et al. Monolithic Integration of a Laser Diode with a Polymer-Based Waveguide for Photonic Integrated Circuits.

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued