CA2302867A1 - Attenuated respiratory syncytial viruses - Google Patents

Attenuated respiratory syncytial viruses Download PDF

Info

Publication number
CA2302867A1
CA2302867A1 CA002302867A CA2302867A CA2302867A1 CA 2302867 A1 CA2302867 A1 CA 2302867A1 CA 002302867 A CA002302867 A CA 002302867A CA 2302867 A CA2302867 A CA 2302867A CA 2302867 A1 CA2302867 A1 CA 2302867A1
Authority
CA
Canada
Prior art keywords
leu
ile
ser
asn
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002302867A
Other languages
French (fr)
Inventor
Stephen A. Udem
Mohinderjit S. Sidhu
Valerie B. Randolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2302867A1 publication Critical patent/CA2302867A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18522New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18561Methods of inactivation or attenuation
    • C12N2760/18564Methods of inactivation or attenuation by serial passage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Isolated, recombinantly-generated, attenuated, respiratory syncytial viruses of subgroup B having at least one attenuating mutation in the RNA polymerase gene are described. Vaccines are formulated comprising such viruses and a physiologically acceptable carrier. The vaccines are used for immunizing an individual to induce protection against respiratory syncytial virus.

Description

ATTENUATED RESPIRATORY SYNCYTIAL VIRUSES
Field Of The Invention This invention relates to respiratory syncytial viruses of subgroup B having at least one attenuating mutation in the RNA polymerise gene. This invention was made with Government support under a grant awarded by the Public Health Service. The Government has certain rights in the invention.
Background Of The Invention Respiratory syncytial virus (RSV) is a nonsegmented, negative-sense, single stranded enveloped RNA virus. RSV belongs to the Family Paramyxoviridae, the Subfamily Pneumovirinae and the genus Pneumovirus.
Pneumoviruses have 10 protein-encoding cistrons. These proteins in RSV are the nucleocapsid protein N, the phosphoprotein P, the nonglycosylated virion matrix protein M, the attachment protein G, the fusion protein F, the polymerise protein L, the nonstructural proteins NSl and NS2, the small hydrophobic protein SH, and the transcription elongation factor protein M2.
The genomic RNA of RSV serves two template functions in the context of a nucleocapsid: as a template for the synthesis of messenger RNAs (mRNAs) and as a template for the synthesis of the antigenome (+) strand. RSV encodes and packages its own RNA
dependent RNA Polymerise. Messenger RNAs are only synthesized once the virus has been uncoated in the infected cell. Viral replication occurs after synthesis of the mRNAs and requires the continuous synthesis of viral proteins. The newly synthesized antigenome (+) strand serves as the template for generating further copies of the (-) strand genomic RNA.
The polymerase complex actuates and achieves transcription and replication by engaging the cis-acting signals at the 3' end of the genome, in particular, the promoter region. Viral genes are then transcribed from the genome template unidirectionally from its 3' to its 5' end. There is always less mRNA
made from the downstream genes (e. g., the polymerase gene (L)) relative to their upstream neighbors (i.e., the nucleoprotein gene (N)). Therefore, there is always a gradient of mRNA abundance according to the position of the genes relative to the 3'-end of the genome.
RSV is the leading cause of viral pneumonia and bronchiolitis in infants and young children and is responsible for an estimated 95,000 hospitalizations and 4,500 deaths per year in the United States (Bibliography entries 1,2,3). Serious disease is most prevalent in infants 6 weeks to 6 months of age and in children with certain underlying illnesses (e. g.
immunodeficiencies, congenital heart disease and bronchopulmonary dysplasia).
Two major subgroups of RSV have been identified, A and B, as well as antigenic variants within each subgroup (4). Multiple variants of each subgroup have been found to cocirculate in epidemics which occur annually during late fall, winter, and spring months (5). Most children are infected by two years of age. Complete iaununity to RSV, however, does not develop and reinfections occur throughout life (6,7). These reinfections often are symptomatic, though generally confined to mild upper respiratory tract disease. A decrease in severity of disease is associated with two or more prior infections and, in some studies, with high levels of serum antibody, suggesting that protective immunity to RSV disease will accumulate following repeated infections (2,6,8,9,10,11). There is also evidence that children infected with one of the two major RSV subgroups may be somewhat protected against reinfection with the homologous subgroup (12). These observations suggest that it is both possible and worthwhile to develop an RSV vaccination regimen for infants and young children which would provide sufficient temporary immunity to protect against severe disease and death.
The identification of the two major subgroups of RSV has been based on reactivities of the F and G
surface glycoproteins with monoclonal antibodies (4,13) and further delineated by sequence analysis (14,15).
Both F and G proteins elicit neutralizing antibodies and immunization with these proteins provides protection against reinfection in mouse and cotton rat models (16,17,18). Most neutralizing antibodies are directed against the F protein. Beeler and Coelingh reported that out of 16 neutralization epitopes mapped to the F proteia, 8 epitopes were conserved in all or all but one of 23 virus isolates tasted (19). A high degree of sequence homology exists between the F
protein of subgroups A and H (approximately 90% amino acid and approximately 80% nucleotide) whereas a much lower degree of homology exists between the G proteins (approximately 50-60% amino acid and approximately 60-70% nucleotide) (14). Correspondingly, iamnuaity elicited by the F protein is more crossprotective between subgroups than is immunity elicited by the G
protein (16,17). In mice, humoral immunity induced by both the F and G proteins is thought to be responsible for protection against reinfection with virus (20) whereas the CTL response is thought to be more important in resolution of primary infections (21,22,23). The M2 (or 22R) protein has been shown to be a potent inducer of cytotoxic lymphocytes (CTL) in mice, with lesser CTL recognition of F, N, and P
proteins (24,25). Human CTL~s have been shown to recognize the F, M2, N, M, SH, and NS2 (or lb) proteins (26). These data suggest that the F protein of either virus subgroup is a crucial immunogen in any RSV
vaccine and that the G, M2, N, M, SH, and NS2 proteins should also be considered potential vaccine components.
For RSV, no vaccines of any kind are currently available. Thus, there is a need to develop vaccines against this human pathogen. Such vaccines would have to elicit an ia~une response in the recipient which will prevent serious RSV disease, i.e., LRD. The qualitative and quantitative features of such a favorable response are extrapolated from those seen in survivors of natural virus infection, who, though not protected from reinfection by the same or highly related viruses, are protected from serious or fatal disease.
A variety of approaches can be considered in seeking to develop such vaccines, including the use of:
(1) purified individual viral protein vaccines (subunit vaccines); (2) inactivated whole virus preparations:
and (3) live, attenuated viruses.
Subunit vaccines have the desirable feature of being pure, definable and relatively easily produced in abundance by various means, including recombinant DNA expression methods. To date, with the notable exception of hepatitis 8 surface antigen, viral subunit vaccines have generally only elicited short-lived and/or inadequate immunity, particularly in naive recipients.
Formalin inactivated whole virus preparations of polio (IPV) and hepatitis A have proven safe and efficacious. In contrast, iamnunization With similarly inactivated whole RSV elicited unfavorable immune responses and/or response profiles which predisposed vaccinees to exaggerated or aberrant disease when subsequently confronted with the natural or "wild-type"
virus.
Early attempts (1966) to vaccinate young children used a parenterally administered formalin-inactivated RSV vaccine. Unfortunately, several field trials of this vaccine revealed serious adverse reactions - the development of a severe illness with unusual features following subsequent natural infection with RSV (27,28). It has been suggested that this exposure to formalinized RSV antigen elicited an abnormal or unbalanced iuunune response profile, predisposing the vaccinee to RSV disease potentiation (29.30) .
Several different live, attenuated viruses have proven remarkably effective as a means of achieving iamnunoprophylaxis. Pursuit of such vaccine candidates for RSV has been intense and long-standing.
RSV temperature sensitive (ts) mutants derived by chemical mutagenesis (31) were shown to be attenuated in rodent and non-human primate models (32, 33) .
Cold adaptation, a process by which virus is adapted to growth at temperatures colder than those at which it normally optimally grows, has been used to develop attenuated is virus mutants for use as vaccines (for review see (34)). This method generally results in the accumulation of multiple genetic lesions which may help to confer phenotypic stability by reducing the probability that reversion of any one lesion will result in reversion of the relevant phenotype. Maassab has used stepwise cold adaptation to successfully develop several is influenza vaccine candidates currently in cliaical trials (35,36,37). These mutants, which bear attenuating mutations in at least four different genes, appear to be attenuated, iamnunogenic, and phenotypically stable.
Belshe and co-workers have used cold adaptation to develop attenuated, is strains of a paramyxovirus, parainfluenza virus type 3 (38,39). In this case, cold adaptation was carried out in primary African green monkey kidney cells by reducing temperatures to 20°C. Analysis of several virus variants cloned from this cold adapted population demonstrated that the level of attenuation and temperature sensitivity increased as the length of cold adaptation increased. These variants were shown to have reduced potential for virulence in humans, however the temperature sensitive phenotype was somewhat unstable in clinical trials (40).
RSV was successfully cold adapted to 25-26°C
in several laboratories in the mid 1960~s, but was found to be under-attenuated in vaccine trials (34,41,42). Maassab and DeBorde (34) have suggested this may be because cold adaptation was not carried out at low enough temperatures, or clones of adequately attenuated virus were not isolated from a genetically mixed population of cold-adapted virus.
Nevertheless, this means for generating attenuated live RSV vaccine candidates is lengthy and, at best, unpredictable, relying largely on the selective outgrowth of those randomly occurring genomic mutants with desirable attenuation characteristics.
The resulting viruses may have the desired phenotype in vitro, and even appear to be attenuated in animal models. However, all too often they remain either under- or overattenuated in the human or animal host for whom they are intended as vaccine candidates.
Thereafter, two live, attenuated RSV mutants were generated by cold passage or chemical mutagenesis.
These RSV strains were found to have reduced virulence in seropositive adults. Unfortunately, they proved either over- or underattenuated when given to seronegative infants; in some cases they were also found to lack genetic stability (43,44). Another vaccination approach using parenteral administration of live virus was found ineffective and efforts along this line were discontinued (45). Notably, these live RSV
vaccines were never associated with disease enhancement as observed with the formalin-inactivated RSV vaccine described above.
Currently, there are no RSV vaccines approved for administration to humans, although clinical trials are now in progress with cold-passaged, chemically mutagenized strains of RSV designated A2 and H-1.
Appropriately attenuated live derivatives of wild-type viruses offer a distinct advantage as vaccine candidates. As live, replicating agents. they initiate infection in recipients during which viral gene products are expressed, processed and presented in the context of the vaccinee~s specific I~iC class I and II
molecules, eliciting humoral and cell-mediated immune responses, as well as the coordinate cytokine patterns, which parallel the protective immune profile of survivors of natural infection.
This favorable immune response pattern is contrasted with the delimited responses elicited by inactivated or subunit vaccines, which typically are largely restricted to the humoral immune surveillance arm. Further, the immune response profile elicited by some formalin inactivated whole virus vaccines, e.g., measles and respiratory syncytial virus vaccines - g -developed in the 1960~s, have not only failed to provide sustained protection, but in fact have led to a predisposition to aberrant, exaggerated, and even fatal illness, when the vaccine recipient later confronted the wild-type virus.
While live, attenuated viruses have highly desirable characteristics as vaccine candidates, they have proven to be difficult to develop. The crux of the difficulty lies in the need to isolate a derivative o.f the wild-type virus which has lost its disease-producing potential (i.e., virulence), while retaining sufficient replication competence to infect the recipient and elicit the desired immune response profile in adequate abundance.
Historically, this delicate balance between virulence and attenuation has been achieved by serial passage of a wild-type viral isolate through different host tissues or cells under varying growth conditions (such as temperature). This process presumably favors the growth of viral variants (mutants), some of which have the favorable characteristic of attenuation.
Occasionally, further attenuation is achieved through chemical mutagenesis as well.
This propagation/passage scheme typically leads to the emergence of virus derivatives which are temperature sen8itive, cold-adapted and/or altered in their host range -- one or all of which are changes from the wild-type, disease-causing viruses -- i.e., changes that are associated with attenuation.
Rational vaccine design would be assisted by a better understanding of RSV, in particular, by the identification of the virally encoded determinants of virulence as well as those genomic changes which are responsible for attenuation.

_ g -Summary Of The Invention Accordingly, it is an object of this invention to identify those regions of the polymerise gene of RSV subgroup B where mutations result in attenuation of those viruses.
It is a further object of this invention to produce recombinantly-generated RSV subgroup B which incorporate such attenuating mutations in their genomes.
It is still a further object of this invention to formulate vaccines containing such attenuated viruses.
These and other objects of the invention as discussed below are achieved by the generation and isolation of recombinantly-generated, attenuated, RSV
subgroup B having at least one attenuating mutation in the RNA polymerise gene.
The at least one attenuating mutation in the RNA polymerise gene is selected from the group consisting of nucleotide changes which produce changes in an amino acid selected from the group consisting of residues 353 (arginine --~ lysine) , 451 (lysine ->
arginine), 1229 (aspartic acid ~ asparagine), 2029 (threonine ~ isoleucine) and 2050 (asparagine ~
aspartic acid).
In another embodiment of this invention, attenuated virus is used to prepare vaccines which elicit a protective immune response against the wild-type form of the virus.
In yet another embodiment of this invention, an isolated, positive strand, antigenomic message sense nucleic acid molecule (or an isolated, negative strand genomic sense nucleic acid molecule) having the complete viral nucleotide sequence (whether of wild-type virus or virus attenuated by non-recombinant means) is manipulated by introducing one or more of the attenuating mutations described in this application to generate an isolated, recombinantly-generated attenuated virus. This virus is then used to prepare vaccines which elicit a protective immune response against the wild-type form of the virus.
In still another embodiment of this invention, such a complete wild-type or vaccine viral nucleotide sequence (as well as a revertant sequence) is used: (1) to design PCR primers for use in a PCR
assay to detect the presence of the corresponding virus in a sample; or (2) to design and select peptides for use in an ELISA to detect the presence of the corresponding virus in a sample.
Brief Description Of The Figures Figure 1 shows a flow chart detailing the propagation of RSV 2B working seed MK7V14b and RSV 3A
working seed MK8V17b.
Figure 2 shows growth and cytopathic effect of RSV 2B at temperatures from 26oC to 36°C in Vero cells.
Figure 3 shows growth and cytopathic effect of RSV 3A at temperatures from 26°C to 36°C in Vero cells.
Figure 4 graphically shows titration results obtained at each passage of RSV 2B and RSV 3A.
Figure 5 shows the growth curves of RSV 2B, RSV 2Bp24G, RSV 2Bp20L, RSV 3A, RSV 3Ap20E and RSV
3Ap20F in Vero cells at temperatures from 20°C to 40°C.
Figure 6 compares graphically the growth of RSV 28 and RSV 2Bp20L in cotton rats from 3 to 7 days post-infection.
Figure 7 compares the relative growth and pathogenicity of RSV 2B and RSV 2Bp20L in four (4) year old seropositive chimps.
Figure 8 is a diagram showing virus titrations for monkeys infected with the RSV 2B is mutants and subsequently challenged with the parental strain.
Figure 9 is a diagram showing virus growth in African green monkey cells infected with the RSV 3A is mutants and challenged with the parental 3A strain.
Figure 10 is a diagram showing a growth study in African green monkeys comparing TS-1 with RSV 2Bp33F
and 3Ap28F.
Figure 11 depicts a genetic map of the RSV
subgroup 8 wild-type strains designated 2B and 18537 (top portion), the intergenic sequences of those strains (middle portion) and the 68 nucleotide overlap between the M2 and L genes (bottom portion). The RSV
2B stain has six fewer nucleotides in the G gene, encoding two fewer amino acid residues in the G
protein, as compared to the 18537 strain. The 2B
strain has 145 nucleotides in the 5' trailer region, as compared to 149 nucleotides in the 18537 strain. The 28 strain has one more nucleotide in each of the NS-1, NS-2 and N genes, and one fewer nucleotide in each of the M and F genes, as compared to the 18537 strain.
Detailed Description Of The Invention The first step in the identification of attenuating mutations in the L gene of RSV subgroup B
vaccine strains was the generation of those strains from wild-type strains. The original RSV subgroup B

vaccine strains (as well as subgroup A vaccine strains) were generated by cold adaptation of the wild-type virus. Cold adaptation comprises obtaining live virulent virus derived from clinical isolates that have S been isolated in primary rhesus monkey kidney cells.
These are then passed in Vero cells at 35-36°C and plaque purified. Preferably, the Vero cells are passage 133 to 148 of the Vero cell line CCL81, obtained from the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland, U.S.A. 20852. The maintenance medium is preferably MEM
with 2% F'BS, L-glutamine, non-essential amino acids and 20mM Hepes pH 7.5, and the freezing medium is MEM with 10% FBS and 20mM Hepes pH 7.5.
A confluent monolayer of Vero cells is inoculated with about 1.0 ml of virus inoculum, and virus is allowed to absorb for about one to two hours (preferably, 70 to 120 minutes, and most preferably 90 minutes) at ambient temperature (about 18°C to about 25°C) .
The virus flask is incubated at about 18°C to about 26°C, preferably about 20°C, for about two to fifteen days. Virus is harvested by removing the medium and replacing it with freezing medium. The flask is then frozen directly at -70°C, then thawed in a 32°C water bath.
A portion (about 1 ml) is removed from the freeze-thaw lysate and is used to inoculate Vero cells;
the process is then repeated. The remaining freeze-thaw lysate is stored at -70°C. It can be used to perform virus titrations and plaque purify virus.
To plaque purify virus, the freeze-thaw lysate is thawed in a 32°C water bath. About three to five serial dilutions of the lysate are made in the maintenance medium. Six-well, twenty-four wall, or ninety-six well plates containing confluent Vero cells are rinsed with a phosphate buffered saline solution.
Wells are inoculated with virus dilution, using only enough volume to cover the bottom of the well. Virus S inoculum is adsorbed for 90 minutes at ambient temperature. Wells are overlaid with 1%
methylcellulose in MEM-maintenance medium. Plates are incubated at 32°C for five days. Isolated plaques are identified microscopically by looking for typical syncytial plaques, and wells are marked. Plaques are picked at marked sites using small bore pipette or pipette tip and are emulsified in 0.5 ml maintenance medium for 1-3 hours at 4°C. Picked plaques are used to inoculate duplicates of 25 cmz flask or 96-well plates containing Vero cell monolayers as described above. Duplicate inoculated flasks or plates are overlaid with maintenance medium. One duplicate is incubated at 32°C and the other at 39°C for 5-10 days.
Flasks or plates incubated at 32°C are examined microscopically far virus cytopathic effect (CPE).
Flasks or plates incubated at 39°C are stained by immunoperoxidase assay for RSV specific antigen.
Flasks or plates which demonstrate easily detectable CPE at 32°C and little or no detectable RSV antigen by inmnunoperoxidase staining are selected as containing temperature sensitive (ts) mutants. Virus from the selected flask or plate described above are harvested by freeze-thaw technique. This virus represents a plaque purified mutant.
Cold adaptation as just described was used to develop attenuated strains of RSV from two parental strains derived from clinical isolates. Seven t8 mutants were isolated, four from a subgroup B virus (RSV 2B) and three from a subgroup A virus (RSV 3A).
All seven mutants displayed a temperature sensitive phenotype in Vero cell culture, each with unique characteristics. All mutants were attenuated in growth in cotton rats, but displayed different phenotypes.
Growth of one of the is mutants, RSV 2Bp20L, was shown to be attenuated in seropositive chimpanzees. All seven mutants retained two major neutralization epitopes.
Cold adaptation of RSV had previously been done in primary or diploid cell lines (bovine embryonic kidney, WI38, and cercopithecus monkey kidney) at temperatures beginning at 34°C-37°C and decreasing to 25°C-26°C. No attempt had been made to isolate multiple individual mutant phenotypes from the cold-adapted virus (37,46,47).
The approach described herein to cold-adapting RSV differed in several significant ways from these previous attempts. This procedure started with a subgroup A and subgroup B virus of different strains than those used previously. These strains bore distinct phenotypic differences from the reference strains and each other. These strains were passed several times to adapt virus to Vero cells and to plaque purify virus. Virus was passaged in a continuous cell line, Vero cells, rather than a diploid or primary cell line. Several strategies of temperature change were used, to provide a greater potential for isolation of a variety of mutant phenotypes.
Unlike previous RSV cold adaptation strategies where cold adaptation had started at 34-37°C
and gone down to 25-26°C, cold adaptation started at either 26°C (since it was found that the parental strains grew well at this temperature) or 22°C, and gradually reduced the growth temperature to 20°C.
Passage strategies attempted to cover both the recommendation of "slow" adaptation to very low temperatures as proposed by Massab and DeBorde (37), as well as efforts to try a faster and more aggressive approach. RNA viruses mutate at such a high frequency that any population of virus will contain a number of individual virus variants (48). Therefore, a variety of virus mutants were isolated from individual flasks at various virus passage levels and from different cold adaptation strategies.
The results were interesting and somewhat unexpected. The rate at which virus became adapted (i.e., grew to consistently high titers at the 20°C
temperature), was most affected by the strain of virus used, implying a significant host-related factor in adaptation. RSV 2B easily adapted to the cold temperatures, even using a rapid adaptation scheme. In contrast, RSV 3A grew poorly at the low temperatures.
RSV 3A was eventually cold-adapted using the slow passage scheme. but the more rapid adaptation approaches did not appear promising and were discontinued. Based on cold adaptation experiences reported by other researchers, it was expected is mutants would arise and eventually become the predominant virus variants in the cold-adapted populations. For example, Belshe and Fiissom (41) reported that with parainflueaza virus type 3 adapted to grow at 20°C, 80% of plaque purified virus closes were is by passage 18 and 100% were is by passage 45.
In this study; even after 38-40 low temperature passages, including up to 32 passages done at 20°C, RSV
is mutants remained a minor population. This would suggest that is and cold-adapted phenotypes may not be as strongly linked in RSV as they are in other viruses.
The level of attenuation is a critical factor in developing vaccines for any target population and is of particular importance for vaccines intended for infants and young children. Virus must be sufficiently attenuated to not cause disease, yet grow well enough in the vaccine to elicit protective immunity.
Widely accepted markers for attenuation are is phenotype and reduced growth in animal models.
However, these markers are only approximate and testing must eventually be done in the target population. The RSV 3A is mutants could be distinguished from the RSV
3A parental virus by reduced replication in both the nose and lungs. Also of note, although the RSV 3A
parental virus grew much better in the nose than the lungs of cotton rats, virus recovery was similar in both nose and lungs of BALH/c mice. These data suggest that the attenuation seen in cotton rats is due to more than one factor, and that this factor is not directly related to temperature sensitivity as measured in vitro. The cotton rat is relatively nonpermissive for growth of RSV and disease does not develop, suggesting that this model is an unreliable indicator of level of attenuation in humans.
In contrast, chimpanzees are highly susceptible to RSV infection and develop an upper and lower respiratory tract disease that is very similar to that seen in humans. In seropositive chimps, it was found that the RSV 2H parental strain caused mild upper respiratory tract disease similar to that caused by natural RSV infections in adult humans. The RSV 2Bp20L
mutant did not grow, clearly demonstrating that this is mutant was attenuated in a permissive host as well as the non-permissive cotton rat. The level of attenuation is best assessed in a seronegative chimp, as prior virus exposure will affect the host response to virus challenge. Unfortunately, testing in seronegative chimps is severely hampered by the limited availability of these animals.
The mutants described herein bear the desirable traits of an attenuated, phenotypically stable, and immunogenic RSV vaccine virus in the human target population.
The immunopotency of the recombinantly-generated RSV subgroup B vaccine is determined by monitoring the immune response of teat animals following immunization with the vaccine. Test animals include, but are not limited to, mice, rats (e. g., cotton rats), rabbits, primates, e.g., African green monkeys, chimps, and human subjects. Methods of introduction of the immunogen may include oral, parenteral, topical, intranasal or any other standard routes of immunizations. The immune response of the test subjects is analyzed by four approaches: (a) the reactivity of the resultant immune serum to authentic RSV antigens, as assayed by known techniques, e.g., enzyme linked immunosorbant assay (ELISA), iaununoblots, radioimmunoprecipitations, etc.; (b) the ability of the immune serum to neutralize RSV infectivity in vitro;
(c) the ability of the ia~nune serum to inhibit virus fusion in vitro; and (d) protection from RSV infection or significant disease.
The cold-adapted RSV mutants are capable of eliciting an immune response when administered to a subject without causing significant disease, such as respiratory distress or otitis media. As used herein, the term "cold-adapted mutant" means an attenuated virus that has been attenuated by propagation at lower than optimal temperatures. Examples of cold-adapted mutant viruses have been provided as described above.
The cold-adapted mutant RSV may be a mutant of subgroup A, such as the group consisting of 3Ap20E, 3Ap20F and 3Ap28F. The cold-adapted mutant RSV may also be a mutant of the subgroup B, such as the group consisting of 2Hp33F, 2Hp24G, 2Bp20L and 28p34L. The subgroup H
viruses are then sequenced and differences between wild-type and mutant strains are identified. Those mutations which contribute to the attenuated phenotype are then assessed.
Transcription and replication of negative-sense, single stranded RNA viral genomes such as RSV
subgroup B are achieved through the enzymatic activity of a multimeric protein acting on the ribonucleoprotein core (nucleocapsid). Naked genomic RNA cannot serve as a template. Instead, these genomic sequences are recognized only when they are entirely encapsidated by the N protein into the nucleocapsid structure. It is only in that context that the genomic and antigenomic terminal promoter sequences are recognized to initiate the transcriptional or replication pathways.
All paramyxoviruses require the two viral proteins, L and P, for these polymerase pathways to proceed. The pneumoviruses, including RSV, also require the transcription elongation factor M2 for the transcriptional pathway to proceed efficiently.
Additional cofactors may also play a role, including perhaps the virus-encoded NS1 and NS2 proteins, as well as perhaps host-cell encoded proteins.
However, considerable evidence indicates that it is the L protein which performs most if not all the enzymatic processes associated with transcription and replication, including initiation, and termination of ribonucleotide polymerization, capping and polyadenylation of mRNA transcripts, methylation and perhaps specific phosphorylation of P proteins. The L
protein s central role in genomic transcription and replication is supported by its large size, sensitivity to mutations, and its catalytic level of abundance in the transcriptionally active viral complex (49).
These considerations led to the proposal that L proteins consist of a linear array of domains whose concatenated structure integrates discrete functions (50). Indeed, three such delimited, discrete elements within the negative-sense virus L protein have been identified based on their relatedness to defined functional domains of other well-characterized proteins. These include: (1) a putative RNA template recognition and/or phosphodiester bond formation domain; (2) an RNA binding elements and (3) an ATP
binding domain. All prior studies of L proteins of nonsegmented negative-sense, single stranded RNA
viruses have revealed these putative functional elements (50) .
In su~cmnary, the invention comprises the identification of changes in the polymerise gene (L) which result in attenuation of the virus while retaining sufficient ability of the virus to replicate.
Attenuation is optimized by rational mutations of the polymerise gene, which provide the desired balance of replication efficiency: so that the virus vaccine is no longer able to produce disease, yet retains its capacity to infect the vaccinee's cells, to express sufficiently abundant gene products to elicit the full spectrum and profile of desirable immune responses, sad to reproduce and disseminate sufficiently to maximize the abundance of the imnnune response elicited.
Animal studies have demonstrated a decrease in viral replication sufficient to avoid illness but adequate to elicit the desired immune response. This likely represents a decrease in transcription, a decrease in gene expression of virally encoded proteins, a decrease in antisense templates and, therefore, the production of fewer new genomes. The resulting attenuated viruses are significantly less virulent than the wild-type.
The attenuating mutations described herein may be introduced into viral strains by two methods:
(1) Conventional means such as chemical mutagenesis during virus growth in cell cultures to which a chemical mutagen has been added, selection of virus that has been subjected to passage at suboptimal temperature in order to select temperature sensitive and/or cold-adapted mutations, identification of mutant virus that produce small plaques in cell culture, and passage through heterologous hosts to select for host range mutations. These viruses are then screened for attenuation of their biological activity in an animal model. Attenuated viruses are subjected to nucleotide sequencing of their polymerise genes to locate the sites of attenuating mutations. Once this has been done, method (2) is then carried out.
(2) A preferred means of introducing attenuating mutations comprises making predetermined mutations using site-directed mutagenesis. These mutations are identified either by method (1) or by reference to closely-related viruses whose attenuating mutations are already known. One or more mutations are introduced into the polymerise gene. Cumulative effects of different combinations of coding and non-coding changes can also be assessed.
The mutations to the polymerise gene are introduced by standard recombinant DNA methods into a DNA copy of the viral genome. This may be a wild-type or a modified viral genome background (such as viruses modified by method (1)), thereby generating a new virus. Infectious clones or particles containing these attenuating mutations ire generated using the cDNA
"rescue" system, which has been applied to a variety of viruses, including Sendai virus (51); measles virus (52); respiratory syncytial virus (53); rabies (54);
vesicular stomatitis virus (VSV) (55); and rinderpest virus (56); these references are hereby incorporated by reference. See, for RSV rescue, published International patent application WO 97/12032, designating the United States (57); this application is hereby incorporated by reference.
Briefly, all Mononegavirales rescue systems can be summarized as follows: Each requires a cloned DNA equivalent of the entire viral genome placed between a suitable DNA-dependent RNA polymerise promoter (e.g., the T7 RNA polymerise promoter) and a self-cleaving ribozyme sequence (e. g., the hepatitis delta ribozyme) which is inserted into a propagatable bacterial plasmid. This transcription vector provides the readily manipulable DNA template from which the RNA
polymerise (e. g., T7 RNA polymerise) can faithfully transcribe a single-stranded RNA copy of the viral antigenome (or geaome) with the precise, or nearly precise, 5' and 3' termini. The orientation of the viral genomic DNA copy and the flanking promoter and ribozyme sequences determine whether antigenome or genome RNA equivalents are transcribed. Also required for rescue of new virus progeny are the virus-specific traps-acting proteins needed to encapsidate the naked, single-stranded viral antigenome or genome RNA
transcripts into functional nucleocapsid templates:
the viral nucleocapsid (N or NP) protein, the polymerise-associated phosphoprotein (P) and the polymerise (L) protein. These proteins comprise the active viral RNA-dependent RNA polymerise which must engage this nucleocapsid template to achieve transcription and replication.
The traps-acting proteins required for RSV

rescue are the encapsidating protein N, the polymerise complex proteins, P and L, and an additional protein, M2, the RSV-encoded transcription elongation factor.
Typically, these viral traps-acting proteins are generated from one or more plasmid expression vectors encoding the required proteins, although some or all of the required traps-acting proteins may be produced within mammalian cells engineered to contain and express these virus-specific genes and gene products as stable transformants.
The typical (although not necessarily exclusive) circumstances for rescue include an appropriate manmnallian cell milieu in which T7 polymerise is present to drive transcription of the antigenomic (or genomic) single-stranded RNA from the viral genomic cDNA-containing transcription vector.
Either cotranscriptionally or shortly thereafter, this viral antigenome (or genome) RNA transcript is encapsidated into functional templates by the nucleocapsid protein and engaged by the required polymerise components produced concurrently from co-transfected expression plasmids encoding the required virus-specific traps-acting proteins. These events and processes lead to the prerequisite transcription of viral mRNAs, the replication and amplification of new genomes and, thereby, the production of novel viral progeny, i.e., rescue.
For the rescue of rabies, VSV and Sendai, T7 polymerise is provided by recombinant vaccinia virus VTF7-3. This system, however, requires that the rescued virus be separated from the vaccinia virus by physical or biochemical means or by repeated passaging in cells or tissues that are not a good host for poxvirus. For measles virus (MV) cDNA rescue, this requirement is avoided by creating a cell line that expresses T7 polymerase, as well as viral N and P
proteins. Rescue is achieved by transfectiag the genome expression vector and the L gene expression vector into the helper cell line. Advantages of the host-range mutant of the vaccinia virus, MVA-T7, which expresses the T7 RNA polymerase, but does not replicate in mammalian cells, are exploited to rescue RSV, Rinderpest virus and MV. After simultaneous expression of the necessary encapsidating proteins, synthetic full length antigenomic viral RNA are encapsidated, replicated and transcribed by viral polymerase proteins and replicated genomes are packaged into infectious virions. In addition to such antigenomes, genome analogs have now been successfully rescued for Sendai and PIV-3 (58,59).
The rescue system thus provides a composition which comprises a transcription vector comprising an isolated nucleic acid molecule encoding a genome or antigenome of RSV subgroup B having at least one attenuating mutation in the RNA polymerase gene, together with at least one expression vector which comprises at least one isolated nucleic acid molecule encoding the trans-acting N, P, L and M2 proteins necessary for encapsidation, transcription and replication. Host cells are then transformed or transfected with the at least two vectors just described. The host cells are cultured under conditions which permit the co-expression of these vectors so as to produce the infectious attenuated virus.
The rescued infectious RSV is then tested for its desired phenotype (temperature sensitivity, cold adaptation, plaque morphology, and transcription and replication attenuation), first by in vjtro means.
If the attenuated phenotype of the rescued virus is present, challenge experiments are conducted with an appropriate animal model. Non-human primates provide the preferred animal model for the pathogenesis of human disease. These primates are first immunized with the attenuated, recombinantly-generated virus, then challenged with the wild-type form of the virus.
Monkeys are infected by various routes, including but not limited to intranasal or intratracheal routes of inoculation (60). Protection in non-human primates is measured by such criteria as disease signs and symptoms, virus shedding and antibody titers. If the desired criteria are met, the attenuated, recombinantly-generated virus is considered a viable vaccine candidate for testing in humans. The "rescued"
virus is considered to be "recombinantly-generated", as are the progeny and later generations of the virus, which also incorporate the attenuating mutations.
Even if a "rescued" virus is underattenuated or overatteauated relative to optimum levels for vaccine use, this is information which is valuable for developing such optimum strains.
Optimally, a codon containing an attenuating point mutation may be stabilized by introducing a second or a second plus a third mutation in the codoa without changing the amino acid encoded by the codon bearing only the attenuating point mutation.
Infectious virus clones containing the attenuating and stabilizing mutations are also generated using the cDNA
"rescue" system described above.
Two major subgroups of human RSV, designated A and B, have been identified based on reactivities of the F and G surface glycoproteins with monoclonal antibodies (4). More recently, the A and B lineages of RSV strains have been confirmed by sequence analysis (14,15). Bovine, ovine, and caprine strains of this virus have also been isolated. The host specificity of the virus is most clearly associated with the G
attachment protein, which is highly divergent between the human and the bovine/ovine strains (61,62), and may be influenced, at least in part, by receptor binding.
RSV is the primary cause of serious viral pneumonia and bronchiolitis in infants and young children. Serious disease, i.e., lower respiratory tract disease (LRD), is most prevalent in infants less than six months of age. It most commonly occurs in the nonimmune infant's first exposure to RSV. RSV
additionally is associated with asthma and hyperreactive airways and it is a significant cause of mortality in nhigh risk" children with bronchopulmonary dysplasia and congenital heart disease (CI3D). It is also one of the common viral respiratory infections predisposing to otitis media in children. In adults, RSV generally presents as uncomplicated upper respiratory illness; however, in the elderly it rivals influenza as a predisposing factor in the development of serious LRD, particularly bacterial bronchitis and pneumonia. Disease is always confined to the respiratory tract, except in the severely immunocompromised, where dissemination to other organs can occur. Virus is spread to others by fomites contaminated with virus-containing respiratory secretions, and infection initiates through.the nasal, oral, or conjunctiva) mucosa.
RSV disease is seasonal and virus is usually isolated only in the winter months, e.g., from November to April in northern latitudes. The virus is ubiguitous, and over 90~ of children have been infected at least once by 2 years of age. Multiple strains cocirculate. There is no direct evidence of antigenic drift (such as that seen with influenza A viruses), but sequence studies demonstrating accumulation of amino acid changes in the hypervariable regions of the G
protein and SH proteins suggest that iamnune pressure may drive virus evolution.
In mouse and cotton rat models, both the F
and G proteins of RSV elicit neutralizing antibodies and iannunization with these proteins alone provides longterm protection against reinfection (16,17).
In humans, complete immunity to RSV does not develop and reinfections occur throughout life (6,7);
however, there is evidence that iannune factors will protect against severe disease. A decrease in severity of disease is associated with two or more prior infections and there is evidence that children infected with one of the two major RSV subgroups may be somewhat protected against reinfection with the homologous subgroup (13), observations which suggest that a live attenuated virus vaccine may provide protection sufficient to prevent serious morbidity and mortality.
Infection with RSV elicits both antibody and cell mediated immunity. Serum neutralizing antibody to the F and G proteins has been associated, in some studies, with protection from LRD, although reduction in upper respiratory disease (URD) has not been demonstrated.
High levels of serum antibody in infants is associated with protection against LRD. and adminstration of intravenous immunoglobulin with high RSV neutralizing antibody titers has been shown to protect against severe disease in high risk children (7,10,63). The role of local immunity, and nasal antibody in particular, is being investigated.
The RSV virion consists of a ribonucleoprotein core contained within a lipoprotein envelope. The virions of pneumoviruaes are similar in size and shape to those of all other paramyxoviruses.

When visualized by negative staining and electron microscopy, virions are irregular in shape and range in diameter from 150-300 nm (64). The nucleocapsid of this virus is a symmetrical helix similar to that of other paramyxoviruses, except that the helical diameter is 12-15 nm rather than l8nm. The envelope consists of a lipid bilayer that is derived from the host membrane and contains virally coded transmembrane surface glycoproteins. The viral glycoproteins mediate attachment and penetration and are organized separately into virion spikes. A11 members of paramyxovirus subfamily have hemagglutinating activity, but this function is not a defining feature for pneumoviruses, being absent in RSV but present in PVM (65).
Neuraminidase activity is present in members of the genera Paramyxovirus. Rubulavirus, and is absent in Morbillivirus and Pneumovirus of mice (PVM) (65).
RSV possesses two subgroups, designated A and B. The wild-type RSV (strain 2B) genome is a single strand of negative-sense RNA of 15,218 nucleotides (SEQ
ID NO:1) that are transcribed into ten major subgenomic mRNAs. Each of the ten mRNAs encodes a major polypeptide chain: Three are transmembrane surface proteins (C~, F and SH); three are the proteins associated with genomic RNA to form the viral nueleocapsid (N, P and L); two are nonstructural proteins (NS1 and NS2) which accumulate in the infected cells but are also present in the virion in trace amounts and may play a role in regulating transcription and replication; one is the nonglycosylated virioa matrix protein (M); and the last is M2, another nonglycosylated protein recently shown to be an RSV-specified transcription elongation factor (see Figure 11). These ten viral proteins account for nearly all of the viral coding capacity.

The viral genome is encapsidated with the major nucleocapsid protein (N), and is associated with the phosphoprotein (P), and the large (L) polymerase protein. These three proteins have been shown to be necessary and sufficient for directing RNA replication of cDNA encoded RSV minigenomes (66). Further studies have shown that for transcription to proceed with full processing, the M2 protein (ORF 1) is required (64).
When the M2 protein is missing, truncated transcripts predominate, and rescue of the full length genome does not occur (64).
Both the M (matrix protein) and the M2 proteins are interaal virion-associated proteins that are not present in the nucleocapeid structure. By analogy with other nonsegmented negative-stranded RNA
viruses, the M protein is thought to render the nucleocapsid transcriptionally inactive before packaging and to mediate its association with the viral envelope. The NS1 and NS2 proteins have only been detected in very small amounts in purified virions, and at this time are considered non-structural. Their functions are uncertain, though they may be regulators of transcription and replication. Three transmembrane surface glycoproteins are present in virions: G, F, and SH. G and F (fusion) are envelope glycoproteins that are known to mediate attachment and penetration of the virus into the host cell. In addition, these glycoproteins represent major independent iamnunogens (3). The function of the SH protein is unknown, although a recent report has implicated its involvement in the fusion function of the virus (67).
The genomes of two wild-type RSV subgroup B
strains (2B and 18537) have now been sequenced in their entirety (see SEQ ID NOS:1 and 3, discussed below).
Genomic RNA is neither capped nor polyadenylated (68).

In both the virion and intracellularly, genomic RNA is tightly associated with the N protein.
The 3' end of the genomic RNA consists of a 44-nucleotide extragenic leader region that is presumed to contain the major viral promoter (68: Fig. 11). The 3' genomic promoter region is followed by ten viral genes in the order 3'-NS1-NS2-N-P-M-SH-G-F-M2-L-5' (Fig. 11). The L gene is followed by a 145-149 nucleotide extragenic trailer region (see Figure 11).
Each gene begins with a conserved nine-nucleotide gene start signal 3'-GGGGCAAAU (except for the ten-nucleotide gene start signal of the L gene, which is 3'-GGGACAAAAU; differences underlined). For each gene, transcription begins at the first nucleotide of the signal. Each gene terminates with a semi-conserved 12-14 nucleotide gene end (3'-A G U/G U/A ANNN U/A A3_5) (where N can be any of the four bases) that directs transcription termination and polyadenylation (Fig.
11). The first nine genes are non-overlapping and are separated by intergenic regions that range in size from 3 to 56 nucleotides for RSV H strains (Fig. 11). The intergenic regions do not contain any conserved motifs or any obvious features of secondary structure and have been shown to have no influence on the preceding and succeeding gene expression in a minreplicon system (Fig. 11). The last two RSV genes overlap by 68 nucleotides (Fig. 11). The gene-start signal of the L
gene is located inside of, rather than after, the M2 gene. This 68 nucleotide overlap sequence encodes the last 68 nucleotides of the M2 mRNA (exclusive of the Poly-A tail), as well as the first 68 nucleotides of the L mRNA.
Ten different species of subgenomic polyadenylated mRNAs and a number of polycistronic polyadenylated read-through transcripts are the products of genomic transcription (64).
Transcriptional mapping studies using UV light mediated genomic inactivation showed that RSV genes are transcribed in their 3' to 5' order from a single promoter near the 3' end (69). Thus, RSV synthesis appears to follow the single entry, sequential transcription model proposed for all Moaonegavirales (70,71). According to this model, the polymerase (L) contacts genomic RNA in the nucleocapsid form at the 3' genomic promoter region and begins transcription at the first nucleotide. RSV mRNAs are co-linear copies of the genes, with no evidence of mRNA editing or splicing.
Sequence analysis of intracellular RSV mRNAs showed that synthesis of each transcript begins at the first nucleotide of the gene start signal (64). The 5' end of the mRNAs are capped with the structure m7G(5')ppp(5')Gp (where the underlined G is the first template nucleotide of the mRNA) and the mRNAs are polyadenylated at their 3' ends (72). Both of these modifications are thought to be made co-transcriptionally by the viral polymerase. Three regions of the RSV 3' genomic promoter have been found to be important as cis acting elements (73). These regions are the first ten nucleotides (presumably acting as a promoter), nucleotides 21-25, and the gene start signal located at nucleotides 45-53 (73). Unlike other Paramyxovirinae, such as measles, Sendai and PIV-3, the remainder of the leader and non-coding region of NS1 gene of RSV was found to be highly tolerant of insertions, deletions and substitutions (73).
Additionally, by saturation mutagenesis (wherein each base is replaced independently by each of the other three bases and compared for translation and replication efficiencies) within the first 12 nucleotides of the 3' genomic promoter region, a U-tract located at nucleotides 6-10 was shown to be highly inhibitory to substitutions (73). In contrast, the first five nucleotides were relatively tolerant of a number of substitutions and two of them at position four were up-regulatory mutations, resulting in a four-to 20-fold increase in RSV-CAT RNA replication and transcription. Using a bi-cistronic minireplicon system, gene-start and gene-end motifs were shown to be signals for mRNA synthesis and appear to be self contained and largely independent of the nature of adjoining sequence (74).
The L gene start signal lies 68 nucleotides upstream of the M2 gene-end signal, resulting in gene overlap (Fig. 11) (64). The presence of the M2 gene end signal within the L gene results in a high frequency of premature termination of L gene transcripts. Full length L mRNA is much less abundant and is made when the polymerase fails to recognize the M2 gene-end motif. This results in much lower transcription of L mRNA. The gene overlap seems incompatible with a model of linear sequential transcription. It is not known whether the polymerase that exits the M2 gene jumps backward to the L gene-start signal or whether there is a second. internal promoter for L gene transcription (64). It is also possible that the L gene is accessible by a small fraction of polymerises that fail to start transcription at the M2 gene-start signal and slide down the M2 gene to the L gene-start signal.
The relative abundance of each RSV mRNA
decreases with the distance of its gene from the promoter, presumably due to polymerise fall-off during sequential transcription (69). Gene overlap is a second mechanism that reduces the synthesis of full length L mRNA. Also, certain mRNAs have features that might reduce the efficiency of translation. The initiation codon for SH mRNA is in a suboptimal Rozak sequence context, while the G ORF begins at the second methionyl codon in the anRNA.
RSV RNA replication is thought (64) to follow the model proposed from studies with vesicular stomatitis virus and Sendai virus (70,71). This involves a switch from the stop-start mode of mRNA
synthesis to an antiterminator read-through mode. Thfs results in synthesis of positive sense replication-intermediate (RI) RNA that is an exact complementary copy of genomic RNA. This serves in turn as the template for the synthesis of progeny genomea. The mechanism involved in the switch to the antiterminator mode is proposed to involve cotranecriptional encapsidation of the nascent RNA by N protein (70,71).
RNA replication in RSV like other nonsegmented negative-strand RNA viruses is dependent on ongoing protein synthesis (75). Predicted RI RNA has been detected for the standard virus as well as RSV-CAT
minigenome (64,75). RI RNA was 10-20 fold less abundant intracellularly than was the progeny genome both for the standard and the minigenome system. The nucleotide sequences (in positive strand, antigenomic, message sense) of various wild-type, vaccine and revertant RSV strains, as well as the deduced amino acid sequences of the RNA polymerase (L protein) of these RSV viruses, are set forth as follows with reference to the appropriate SEQ ID NOS. contained herein:

Virus Nucleotide Sequence L Protein Sequence wild-Tme 2H SEQ ID NO:l SEQ ID N0:2 18537 SEQ ID N0:3 SEQ ID N0:4 Vaccine 2B33F SEQ ID N0:5 SEQ ID N0:6 2B20L SEQ ID N0:7 SEQ ID N0:8 Revertant 2B33F TS(+) SEQ ID N0:9 SEQ ID N0:10 2B20L TS(+) SEQ ID NO:11 SEQ ID N0:12 It is noted that equence Listings recite nDNA";
the S

this is necessary the antigenomic for message sense RNA

to be provided in full (reciting sequen ces as "RNA"

causes each ~T" to be deleted from the sequence).

Each RSV virus an L protein genome encodes that is 2,166 amino ids long. Genome length and ac other nucleotide ows:
information is as foll Virus Genome Wild-Type Length L Start Codon L Stot~ Codon Vaccine Revertant 2B33F TS(+) 15219 8503-8505 15001-15003 2H20L TS(+) . 15219 8503-8505 15001-15003 As detailed in Example 8 (especially Tables 21 and 22) below, the key potentially attenuating sites for the L protein of RSV subgroup B are as follows:
amino acid residues 353 (arginine -~ lysine), 451 (lysine -~ arginine), 1229 (aspartic acid asparagine), 2029 (threonine -~ isoleucine) and 2050 (asparagine -~ aspartic acid). It is understood that the nucleotide changes responsible for these amino acid changes are not limited to those set forth in Example 8 below; all changes in nucleotides which result in codons which are translated into these amino acids are within the scope of this invention.
The attenuated RSV subgroup B viruses of this invention exhibit a substantial reduction of virulence compared to wild-type viruses which infect human and ~ animal hosts. The extent of attenuation is such that symptoms of infection will not arise in most immunized individuals, but the virus will retain sufficient replication competence to be infectious in and elicit the desired ia~une response profile in the vaccinee.
The attenuated RSV subgroup H viruses of this invention may be used to formulate a vaccine. To do so, the attenuated virus is adjusted to an appropriate concentration and formulated with any suitable vaccine adjuvant, diluent or carrier. Physiologically acceptable media may be used as carriers. These include. but are not limited to: an appropriate isotonic medium, phosphate buffered saline and the like. Suitable adjuvants include, but are not limited to MPLT"" (3-O-deacylated monophosphoryl lipid A; RIBI
ImmunoChem Research, Inc., Hamilton, MT) and IL-12 (Genetics Institute, Cambridge, MA).
In one embodiment of this invention, the formulation including the attenuated virus is intended for use as a vaccine. The attenuated virus may be mixed with cryoprotective additives or stabilizers such as proteins (e. g., albumin, gelatin), sugars (e. g., sucrose, lactose. sorbitol), amino acids (e. g., sodium glutamate), saline, or other protective agents. This mixture is maintained in a liquid state, or is then dessicated or lyophilized for transport and storage and mixed with water immediately prior to administration.
Formulations comprising the attenuated viruses of this invention are useful to immunize a human or animal subject to induce protection against infection by the wild-type counterpart of the attenuated virus. Thus, this invention further provides a method of immunizing a subject to induce protection against infection by an RSV subgroup B virus by administering to the subject an effective immunizing amount of a vaccine formulation incorporating an attenuated version of that virus as described hereinabove.
A sufficient amount of the vaccine in an appropriate number of doses must be administered to the subject to elicit an immune response. Persons skilled in the art will readily be able to determine such amounts and dosages. Administration may be by any conventional effective form, such as intranasally, parenterally, orally, or topically applied to any mucosal surface such as iatranasal, oral, eye, vaginal or rectal surface, such as by an aerosol spray. The preferred means of administration is by iatranasal administration.
In another embodiment of this invention, an isolated nucleic acid molecule having the complete viral nucleotide sequence of the wild-type viruses, the vaccine viruses or the revertant viruses described herein is used to generate oligonucleotide probes (from either positive strand antigenomic message sense or negative strand complementary genomic sense) and to express peptides (from positive strand antigenomic message sense only), which are used to detect the presence of those wild-type viruses, vaccine strains and/or revertant strains in samples of body fluids and tissues. The nucleotide sequences are used to design highly specific and sensitive diagnostic tests to detect the presence of the virus in a sample.
Polymerase chain reaction (PCR) primers are synthesized with sequences based on the viral wild-type, vaccine or revertant sequences described herein.
The test sample is subjected to reverse transcription of RNA, followed by PCR amplification of selected cDNA
regions corresponding to the nucleotide sequence described herein which have nucleotides which are distinct for a defined strain of virus. Amplified PCR
products are identified on gels and their specificity confirmed by hybridization with specific nucleotide probes.
ELISA tests are used to detect the presence of antigens of the wild-type, vaccine or revertant viral strains. Peptides are designed and selected to contain one or more distinct residues based on the wild-type, vaccine or revertant sequences described herein. These peptides are then coupled to a hapten (e.g., keyhole limpet hemocyanin (KLH) and used to immunize animals (e.g., rabbits) for the production of monospecific polyclonal antibody. A selection of these polyclonal antibodies, or a combination of polyclonal and monoclonal antibodies can then be used in a "capture ELISA" to detect antigens produced by those viruses.
Samples of mutant RSV described herein have been deposited by Applicants' assignee on March 19, 1992 with the American Type Culture Collection (ATCC) 12301 Parklawn Drive, Rockville. Maryland, U.S.A.
20852, under the provisions of the Budapest Treaty for the Deposit of Microorganisms for the Purposes of Patent Procedures ("Budapest Treaty"). The viruses were accorded the following ATCC designation cumbers:
2Bp33F(VR 2364), 2Bp24G(VR 2370), 2Bp20L(VR 2368), 2Bp34L(VR 2365), 3Ap20E(VR 2369), 3Ap20F(VR 2367), and 3Ap28F(VR 2366). In addition, samples of the 2B wild-type RSV virus were deposited by Applicants on August 21, 1997 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., under the provisions of the Budapest Treaty and have been assigned ATCC accession number VR2586.
Given these deposited subgroup B strains and the sequence information for these and other strains provided herein, one can use site-directed mutagenesis and rescue techniques described above to introduce mutations (or restore a wild-type genotype) of all the subgroup B strains described herein, as well as taking these strains and making additional mutations from the panel of mutations set forth in Tables 21 and 22 below.
In order that this invention may be better understood, the following examples are set forth. The examples are for the purpose of illustration only and are not to be construed as limiting the scope of the invention.
Examples Standard molecular biology techniques are utilized according to the protocols described in Sambrook et al. (76).

Example 1 Passage and Characterization of RSV 2B
and RSV 3A Parental Strains RSV 2B and RSV 3A parental strains were isolated and passed in qualified cell lines and under conditions consistent with use as clinical study material.
Two RSV strains, 20648 and 23095, were isolated by Dr. Robert Belshe (St. Louis University Health Science Center, St. Louis, MO) from nasal swab samples taken from ill children. These viruses were later recovered from the original frozen nasal swab samples, passed two to three' times in primary rhesus monkey kidney (PRMR) cells, and then sent to applicants.
Isolate 20648 (subgroup B) was reaamed RSV
28. Virus was passed seven times in PRMK cells at 35°C, two times in Vero cells at 35°C and plaque purified and amplified three times (six passages) in Vero cells at 36°C. Virus was further amplified an additional two times in Vero (36°C), stocks were filtered with a 0.2 m filter and amplified another two times in Vero cells. This was followed by production of a Master Seed (RSV 28, MK7 Vl2b), Intermediate working seed (RSV 2B, MK7 Vl3b) and Working seed (RSV
2B, MK'7 Vl4b). See Figure 1.
Isolate 23095 (subgroup A) was renamed RSV
3A. RSV 3A was passed eight times in PRMK cells at 35°C. This was followed by two passages in Vero at 35°C and six passages in Vero cells at 36°C, including three plaque purification steps. Virus was further passaged six times in Vero cells at 36°C including a 0.2 m filtration step. This was followed by production of a Master seed (RSV 3A, MK8 VlSb), Intermediate working seed (RSV 3A, MR8 Vl6b), and Working seed (RSV
3A, MK8 Vl7b). See Figure 1.
Subgroup specificities of RSV 2H and RSV 3A
Master seeds were confiraned using subgroup specific monoclonal antibodies. Virus stocks were shown to be free of microbial contaminants and adventitious agents.
The F, N, and G proteins of RSY 28 and RSV 3A
stocks and reference RSV strains A2, Long, and 18537 were analyzed by radioimmunoprecipitation (RIP) and western blotting procedures using monoclonal antibodies. The Fl subunits of the RSV subgroup B
strains, 2B and 18537, migrated faster on SDS-polyacrylamide gels than did the Fl subunits of the RSV
subgroup A straias, 3A and Long. No difference in migration of the N proteins of the RSV 2B and 3A
strains and the reference strains was seen. In RIP
gels, the G protein was visible as two bands at approximately 80-90 kD and approximately 45 kD. The 80-90 kD bands of RSV 3A and Long comigrated; however, the 80-90 kD band of RSV 2B also appeared to comigrate with the subgroup A species rather than with the faster RSV 18537 (subgroup B1). This suggests that RSV 2B may be a member of the B2 subgroup as described by Akerlind (77). In western blots, the relative proportions of 80-90 kD and 45 kD bands were roughly equal for RSV
Long, A2, 2B, and 18537 grown in Vero cells, but staining of the 80-90 kD band of RSV 3A was significantly greater, suggesting a difference in processing of the G protein for this strain when grown in Vero cells. These data demonstrate that the apparent M= for the RSY 2B and RSV 3A strains are consistent with current subgroup classifications of RSV, but confirm that these strains are not identical to the prototype RSV reference strains.
Growth of RSV 2B, RSV 3A and RSV A2 in mice and in cotton rats was compared. Hoth RSV 2B and RSV
3A replicated poorly in Balb/c mice compared to the RSV
A2 reference strain. Consistent recovery of RSV 2B and RSV 3A could only be obtained at the highest inoculum dose used (106~o-s.z PFU) , and was similar in magnitude to recovery of RSV A2 at a 100-fold lower inoculum (1043 PFU). In contrast, growth of RSV 2B in cotton rat nose and lungs was similar to growth of RSV A2.
Growth of RSV 3A in the nose was similar to the other strains; however growth in lungs was significantly poorer. Both mouse and cotton rat growth data indicate that RSV 2B and RSV 3A have significantly different in vivo growth characteristics than the RSV A2 reference strain, as well as differing from each other.
Example 2 Cold Adaptation of RSV
In order to select an appropriate starting temperature for cold adaptation of RSV, growth of the RSV 2B and RSV 3A parental strains in Vero cells at temperatures ranging from 26°C to 36°C was compared.
Cells were infected at an MOI of 0.4 and virus yield and CPE was monitored for four days. The results, shown in Figures 2 and 3, demonstrated that for both virus strains, growth at 30°C, 32°C, and 36°C was similar in kinetics and yield. At 26°C, virus growth lagged behind growth at the higher temperatures by about 24 hours. The limiting factor in achieving optimum titers appeared to be the viral CPE, which occurred earlier at higher temperatures. For both RSV
2B and RSV 3A, optimum titers were achieved by maintaining cultures at 30°C. At this temperature, a lower level of CPE allowed growth and spread of virus to continue over a longer time period. The results suggested that these strains of RSV were already well adapted to growth at 30°C to 36°C. A maximum tem-perature of 26°C was selected as a starting temperature for cold adaptation, as virus growth at this tempera-s ture was suboptimal and therefore some selective pressure for cold adaptation would be exerted.
Cold adaptation was initiated on virus stocks RSV 2H (passage MK7 V14) and RSV 3A (passage MK8 V14).
To maximize the chance of recovering appropriately attenuated mutants from these cold-adapted populations, two flasks of virus were independently passed using each of three different cold adaptation strategies.
This provided a total of six cold-adapted populations for RSV 2B and six for RSV 3A. Virus was passaged in 25 cm~ flasks containing confluent Vero cell monolayers. At each passage, virus was harvested by replacing the maintenance medium (10 mls of MEM/2%FBS/20ml~iepes) in the infected flask with a reduced volume of freezing medium (3 mls of MEM/10%FBS/20ml~iepes) and performing a quick freeze at -70°C followed by a thaw at 32°C. To infect the next passage, one ml of the freeze-thaw lysate was transferred to a fresh flask of confluent Vero cells, virus was allowed to adsorb at room temperature (20°C-22°C), and then flasks were overlaid with maintenance medium (MEM/2%FBS/20ml~iepes) and incubated at the appropriate temperature in water baths (i.e., 26°C, 22°C, 20°C) .
Titrations were performed at 32°C on each freeze-thaw lysate and the remainder of the material was stored at -70°C for future isolation of virus variants. Three passaging strategies were used.
Flasks E and F were "slowly" adapted, beginning at 26°C
with four passages every two days, followed by passage once every week until titers appeared to be relatively stable or were increasing. Virus was then passaged weekly at 22°C until consistently high titers were achieved, and finally maintained by passage every 1-2 weeks at 20°C. Flasks G, H ,and I were adapted by a more moderate strategy. Virus was passaged two times at 26°C at three day intervals, then passaged weekly at 22°C five times, and finally maintained by passage every 1-2 weeks at 20°C. Flasks J and L ware "rapidly"
adapted, starting with five weekly passages at 22°C, followed by passage at 1-2 week intervals at 20°C.
Actual passage conditions and titration results are shown in Tables 1 and 2, and are summarized in Table 3.
Titration results obtained at each passage are graphically displayed in Figure 4. The titration IS results demonstrated an influence of strain on rate of adaptation. For RSV 2B, all three cold adaptation strategies eventually yielded high virus titers when flasks were maintained at 20°C. In contrast, RSV 3A
was adapted to growth at 20°C using a "slow" strategy (E, F), but efforts to force a more rapid adaptation resulted in a precipitous decline in virus growth.
Passage of these cultures (3A:H,I,J,L) was discontinued.
To screen the cold-adapted virus populations for accumulation of is variants, virus taken from each flask following 5 and 17 weeks of cold adaptation was tested for efficiency of plaguing (EOP) at 39°C vs.
32°C. As seen in Table 4, in most cases plaguing efficiency of the cold passage virus was relatively high at 39°C (>0.2) and was similar to values obtained with the parental virus control (>0.6). The results showed that the cold-adapted virus populations, with the possible exception of flask RSV 3A-F, had not become predominantly is over a period of up to 17 low temperature passages.

Following further cold passaging, attempts were made to isolate temperature sensitive mutants by plaque purifying virus from each cold-adapted flask.
Plaque purified mutants were initially identified by relatively poor growth (lower titers or smaller plaque size) at 39°C vs 32°C. In these assays, shown in Table 5, the percentage of plaque purified virus that could be clearly identified as temperature sensitive ranged from 0% to 40% of plaques picked. Several individual flasks (2B-H, 2B-L, 3A-E, 3A-F) appeared to contain a relatively higher percent of is phenotypes, and in some cases the percentage of is mutants increased over time.
However, is mutants did not appear to become a predominant variant over a period of up to 42 weeks of IS cold passaging.
To summarize, cold passaging of RSV 2B and RSV 3A resulted in cold adaptation of virus based on the ability of virus to grow stably at 20°C with consistently high yields. Analysis of EOP assays and the rate of isolation of is mutants indicated that although is mutants did arise in the cold-adapted virus populations, they did not become a predominant species.
Exams~le 3 Screening for Vaccine Candidates in In Y.itro Studies The to mutants were further screened and selected for vaccine candidates based on degree of temperature sensitivity in vitro, attenuation in animal models (including mice, cotton rats, and chimps), and retention of neutralizing epitopes.
Over a period of 39 weeks of cold adaptation, a total of 13 RSV 2B and six RSV 3A is mutants were plaque purified a second time and further characterized. Comparison of EOP~s at 37/32°C, 39/32°C, and/or 40/32°C confirmed that these mutants had reduced plaguing efficiency at the higher temperatures and represented a range of temperature sensitivity (see Table 6).
Prior to completing the isolation of all 19 mutants described above, a group of four mutants, RSV
28p24G, RSV 2Bp20L, RSV 3Ap20E, and RSV 3Ap20F, were selected from the first set of plaque purified viruses for preliminary characterization. To look at actual virus growth curves, Vero cells were infected with these four mutants at an MOI of 2, and incubated at 20°C, 32°C, 37°C, and 40°C for seven days. The results, shown in Figure 5, indicated that all four mutants were cold-adapted aad temperature sensitive, as evidenced by earlier and higher rises in titer in cultures incubated at 20°C, and reduced or absent growth of virus in cultures incubated at 37°C, 39°C, and 40°C. Based on the degree of temperature sensitivity seen in EOP and growth studies, one subgroup A and one subgroup H
mutant, RSV 28p20L and RSV 3Ap20E, ware selected to perform additional preliminary experiments oa phenotypic stability and growth in mice.
The infectivity and ia~unogenicity of RSV
2Bp20L and RSV 3Ap20E were evaluated in Balb/c mice.
Virus growth was measured in nasal wash and lung samples harvested four and five days post-infection and serum neutralizing antibody titers were determined 32 days poet-infection. Results are shown in Table 7.
Growth and ianaunogenicity of the parental virus was very low, but detectable. In contrast, no virus was recovered aad no neutralizing antibody was detected following inoculation of the is strains, indicating that these strains were highly attenuated in mice.
Of the 19 is mutants which were eventually isolated, four RSV 2B and three RSV 3A mutants were selected for further in vitro and in vivo characterization. Theae mutants included the original four mutants described above, as well as three mutants isolated at later time points. Selection criteria S included demonstration of definite is phenotype at both 37°C and 39°C and representation of both subgroups and varying passage strategies and passage numbers. These seven is mutants were plaque purified a third time and amplified to make small working stocks. Their passage histories are summarized in Table 8. The initial analysis of these mutant strains included comparison of plaguing efficiencies and plaque morphologies at 32°C, 37°C, and 39°C in Vero cells (Table 9), and growth at 32°C, 37°C, 39°C, and 40°C in Vero cells (Table 10) . At 37°C and 39°C, EOP was reduced and small and intermediate plaque sizes predominated, indicating that mutants were ts. Some breakthrough of "wt" plaque size revertants was seen with all variants except RSV 2Bp34L
and RSV 3Ap20F.
In growth studies, Vero cells were infected with the virus strains at an MOI of 0.2 and virus yield was determined four days post-infection. Comparison of virus yields in Vero cells at the various temperatures demonstrated that virus yield, expressed as PFU per cell, decreased significantly at the higher temperatures (37°C, 39°C, 40°C) . In some cases, virus yield was also somewhat reduced at 32°C relative to the parental strain, indicating attenuation in growth at 32°C. This is consistent with the smaller plaque sizes observed in the 32°C EOP assays (Table 9) . For all strains, at least one plaque was detected in cells incubated at 39°C or 40°C, suggesting that some revertants were present. Both EOP and virus yield studies demonstrate that these seven isolates possess varying levels of temperature sensitivity and may represent a range of levels of attenuation.
Retention of neutralizing epitopes was examined by comparing reactivities of the seven mutants and parental strains with two neutralizing monoclonal antibodies representing antigenic sites A and C on the F protein described by 19-Beeler and Coelingh (1989) (Table 11). Both antibodies were able to neutralize all the virus strains at similarly high dilutions, indicating that the neutralizing epitopes were intact:
Example 4 Growth of Mutant Strains in Animal Models Growth and immunogenicity of the seven is mutant strains was evaluated in cotton rats. Groups of rats were inoculated intranasally with each mutant and lungs and nasal turbinates were harvested four days post-infection for virus titrations. Sera were collected from an identical set of rats 20 days post-infection to test for neutralizing and EIA antibody responses. A summary of virus titration and immunogenicity results are shown in Table 12. RSV 2B
grew well in the nose and lungs, whereas growth of all four RSV 2B is mutants was very poor. Two of the mutants, RSV 2Bp33F and RSV 2Bp24G, displayed a less attenuated phenotype than did RSV 2Bp20L and RSV
2Bp34L, as indicated by a slightly higher level of replication, as well as a 100 infection rata. The RSV
3A parental and is mutant strains grew well in the nasal turbinates, but poorly in the lungs. Titers of the RSV 3A is mutants were lower than that of the parental strain, indicating that the is mutants were somewhat more attenuated than the parent virus. Neu-tralizing and EIA-F antibody titers on sera from rats infected with the RSV 2B and RSV 3A parental and is mutant strains were also measured. The level of neutralizing and EIA-F antibody titer was low for the RSV 2B is mutants, consistent with the low level of viral replication seen. Interestingly, titers from animals infected with RSV 2Bp33F were higher than would be expected in view of the low titration values, and may indicate an intermediate level of attenuation for this virus. Neutralizing and EIA-F antibody titratioas on all 3 RSV 3A is mutants demonstrated that these mutants were quite iamaunogenic, consistent with their high level of replication in nasal tissue.
Growth of RSV 2Bp20L was further evaluated in cotton rats from three to seven days post-infection to determine if failure to recover virus was due to a shift in timing of peak titers. RSV 28 was used as a positive control (see Figure 6). The growth kinetics of RSV 2B were typical of other strains of RSV; peak titers occurred on days 4 and 5 in nasal turbinates and on day 4 in lungs. These results substantiate the use of day 4 as the optimal harvest day for the parental strain. RSV 2Bp20L was not detected in lungs and rare plaques were seen in nasal turbinate titrations on days 3, 5, 6, and 7, demonstrating that attenuation of this virus was not simply due to an early or late growth peak.
Relative growth and immunogenicity of RSV 2B
and RSV 2Bp20L were also compared in four year old seropositive chimps. Two chimps were infected intranasally with 10''° and 105'° PFU of RSV 2B, and two chimps were similarly infected with RSV 2Bp20L. The results are shown is Figure 7 and Table 13. Both chimps infected with RSV 2B developed a mild upper respiratory infection, consisting of nasal discharge and cough. Both chimps shed virus from three through seven days post-infection. The amount of virus shed WO 99/i5672 PCT/US98/19145 was higher and shedding occurred earlier in the chimp infected with the higher dose of RSV 2B. Neither chimp inoculated with RSV 2Bp20L showed clinical signs of disease or shed virus. Chemistry and hematology workups on all four chimps revealed no significant findings. Serum neutralizing and EIA-F, Ga, and Gb antibody titers were substantially increased 14 and 21 days post-infection with RSV 2B. No rises in antibody titers were seen in chimps inoculated with RSV 2Bp20L.
The results indicated that, in seropositive chimps, the parental RSV 2B strain was infectious and immunogenic, whereas the RSV 2Bp20L mutant was highly attenuated.
Exaa~le 5 Challenae Experiments in Cotton Rat Model Additional experiments were done in cotton rats to evaluate the efficacy of the RSV 2B and 3A is mutants in preventing infection when challenged with a reference strain of the homologous subgroup (RSV
18537/subgroup B and RSV A2/subgroup A). Cotton rats (eight per group) were inoculated intranasally with each RSV is mutant. Nasal turbinates and lungs were harvested four days post-infection, from four rats per group, for virus titrations. Six weeks post-infection, the remaining rats were bled for neutralizing and EIA-F
titers, then challenged with the appropriate reference RSV strain. Four days post-challenge, nasal turbinates and lungs were removed for virus titration. Results are shown in Tables 14 and 15.
As discussed previously and shown in Table 12, growth of all four RSV 28 TS mutants was very poor compared to the parental RSV 2B strain. Neutralizing and EIA antibody titers elicited by RSV 2Bp33F and RSV
2Bp24G were relatively high despite poor virus recovery, possibly indicating an intermediate level of attenuation for both mutants. Level of protection S against virus challenge reflected the level of neutralizing antibody response and was high for RSV
2Bp33F and 2Bp24G, moderate for RSV 2Bp20L, and ineffective for RSV 2Bp34L. All RSV 3A strains grew in the nasal turbinates but demonstrated a high level of attenuation in growth in the lungs. Titers of neutralizing and EIA antibodies were high and all rats were completely protected against virus challenge.
The results demonstrate that growth of the attenuated strains elicited protective immunity against virus challenge, suggesting that these strains may be useful as vaccine. Failure of vaccination with the RSV
2Bp34L strain to protect was most likely due to failure of virus to grow due to its high level of attenuation.
Since cotton rats are a less susceptible host than humans, failure of this strain to protect does not imply that 2Bp34L would be an ineffective vaccine in humans.
Example 6 Challenge Experiments in African Green Monkey Model Growth, immunogenicity, and efficacy of is mutant strains RSV 2Bp33F, 2Bp24G, 2Bp20L, 3Ap20E, 3Ap20F, and 3Ap28F were evaluated in African green monkeys (AGMs). AGMs are more susceptible to infection with human RSV than are the cotton rats, and characteristics of infection may be more relevant to that seen in humans because of the closer phylogenetic relationship. Two AGMs each were inoculated with 106 PFU of each mutant virus by combined intranasal and intratracheal route. Virus growth was evaluated by nasal wash and bronchial lavage. Neutralizing and EIA
antibody responses were tested at approximately 0, 1, 2, 3, 4, 6, and 8 weeks post-infection. Eight weeks post-infection, animals were challenged with 106 PFU of the parental strain by intranasal and intratrachial route. Virus growth and antibody response was evaluated as described above.
Growth of the parental RSV 2B and 3A strains can be seen in Figures 8 and 9: vaccine controls. Both virus strains grew to high titers iwboth the nose and lung. Nasal discharge and radiographic evidence of viral pneumonia was seen in one control monkey (032B) infected with RSV 2B, demonstrating that RSV is capable of causing disease in AGMs. These results confirm differences in these characteristics of infection in AGMs vs the cotton rat model, in which disease was not observed and RSV 3A was unable to replicate in the lung. Failure of the parental strains of RSV to cause disease in three of four monkeys suggests that the AGMs are not as susceptible a host as are humans.
Virus titrations for each monkey infected with the RSV 2B is mutants and than challenged with the parental strain are shown in Figure 8. RSV 2Bp33F grew to low levels in the nasal wash in one of two monkeys, RSV 2Bp24G grew to low levels in nasal wash or in lungs in both monkeys. RSV 2Bp20L failed to grow. In those AGMs where the RSV 2B is mutants grew, monkeys were partially to fully protected against challenge with parental strain. Tables 16 and 17 give antibody titration results obtained for each monkey post-vaccination (Table 16) and post-virus challenge (Table 17). Results show that in monkeys where virus grew, low levels of neutralizing and EIA antibody titers were seen by 2.5 weeks post-infection. Following challenge with the parental strain, antibody titers boosted one full week earlier in vaccinated monkeys with antibody titers prior to challenge, than in vaccinated animals which failed to seroconvert or in unvaccinated controls. This demonstrated that vaccination with these is mutants was sufficient to both prime the immune system and to elicit protection against virus challenge. Because these monkeys are not as susceptible to infection as humans, failure of attenuated virus to grow and to effectively immunize does not imply that virus would not be effective in a fully susceptible host (i.e. seronegative human infant) .
Virus growth in AGMs infected with the RSV 3A
is mutants and challenged with the parental 3A strain are shown in Figure 9. All three RSV 3A is mutant strains were attenuated in growth, in the order of most to least attenuated: 3Ap28F>3Ap20E>3Ap20F. Vaccination with all three is mutants afforded excellent protection against virus challenge. Antibody response for monkeys vaccinated with RSV 3A is mutants is shown in Table 18, and response following virus challenge is shown in Table 19. In all vaccinated AGMs, with the exception of one monkey given RSV 3Ap28F, low levels of neutralizing and EIA antibody titers were detected beginning three weeks post-vaccination. Following challenge with the parental strain, all vaccinated monkeys boosted a full week earlier than the unvaccinated controls and were protected either fully or partially from infection, demonstrating that vaccination primed the immune response and was protective. This included the one AGM in which antibody response was not detected following vaccination, indicating that measure of serum antibody response may not be fully representative of level of protective immunity.
The results from the AGM studies again demonstrate that all six is mutants tested were attenuated. Vaccination with those mutants which were S able to replicate in these monkeys was efficacious in preventing infection with challenge virus.
Examvle 7 Dectree of Attenuation An RSV is mutant, TS-1, was obtained from Dr.
Brian Murphy, NIH. This is mutant was originally derived from the RSV A2 strain by chemical mutagenesis and was tested in clinical trials in seronegative human infants in the 1970~s. The outcome of these trials suggested that TS-1 was underattenuated and caused an unacceptable level of disease (rhinitis and otitis media) in infants. In addition, the is phenotype of TS-1 partially reverted following growth in humans.
Experiments have bean carried out which compare growth of the RSV 2B and 3A is mutants with that of the TS-1 mutant in an attempt to assess the relative in vfvo attenuation level of the RSV 2A and 3B mutants, and to demonstrate differences between these mutants and what had been used by others in previous clinical trials.
The results of the cotton rat study are shown in Table 20, and may be compared directly with the cotton rat data shown in Tables 14 and 15. The TS-1 mutant was less attenuated than the RSV 28 and 3A is mutants, as can most clearly be seen by comparing growth in the lung.
A growth study in African green monkeys (AGMs) comparing TS-1 with RSV 2Bp33F and 3Ap28F was carried out and the results are shows in Figure 10.
Monkeys were infected with virus either intranasally (TS-1 and 2Bp33F) or intranasally plus intratracheally (3Ap28F). Virus was recovered in one of four monkeys infected with 2Bp33F and two of four monkeys infected with 3Ap28F. Titers were relatively low in both cases, indicating that virus was attenuated. In contrast, relatively high titers of virus were recovered in all four monkeys inoculated with TS-1. In two of four monkeys, the levels of TS-1 titers were equivalent to those seen in monkeys infected with wild type virus.
TS-1 did not spread to the lungs, as would be expected for wild type virus, indicating that TS-1 was somewhat attenuated. The results clearly show that RSV 2Bp33F
and 3Ap28F have different phenotypic characteristics than TS-l and are significantly more attenuated. This higher level of attenuation is a property that is desirable for a vaccine to be administered to human infants.
Example 8 Seauence Analyses of RSV Subgroup B Strains The temperature-sensitive (ts) phenotype is strongly associated with attenuation ~n vivo; in addition, some non-is mutations may also be attenuating. Identification of is and non-is attenuating mutations was achieved by sequence analysis and evaluation of ts, cold-adapted (ca), and ~fn vfvo growth phenotypes of RSV mutants and revertants.
The genomes of the following five RSV 28 strains have now been completely sequenced: 28 parent, 2B33F, one revertant designated 2B33F TS(+), 2B20L and one revenant designated 2B20L TS(+). The 2B33F and 2B20L strains are is and ca and are described in U.S.
Serial No. 08/059,444 (78), which is hereby incorporated by reference. After identifying regions where mutations in 2B33F and 2B20L are located, nine additional isolates of 2B33F "revertants" obtained following in vitro passaging at 39°C and in vivo passaging in African Green Monkeys or chimpanzees, and nine additional isolates of 2B20L "revertants" obtained following in vitro passaging at 39°C have been sequenced in those regions. The ts, ca, and attenuation phenotypes of many of these revertants have now been characterized and assessed. Correlations between phenotype ts, vaccine attenuation and sequence changes have been identified.
A summary of results is presented in Tables 21-26.
Several significant observations can be drawn from these data:
a. As shown in Tables 21 (for 2B33F) and 22 (for 2B20L), there are relatively few sequence changes identified in the two mutant strains: RSV 2B33F
differs from parental RSV 2B by two changes at the 3' genomic promoter region, two changes at the non-coding 5'-end of the M gene, and four coding changes plus one non-coding (poly(A) motif) change in the RNA dependent RNA polymerase coding L gene. In addition. 14 changes mapped to the SH gene alone. RSV 2B20L differs from its RSV 2B parent only at seven nucleotide positions, of which three are common with 2B33F virus, including two changes at the 3' genomic promoter and one coding change in the L gene. Two additional unique changes of 2B20L virus mapped to the coding region of the L gene.
Potentially attenuating mutations at the RNA dependent RNA polymerase gene have been identified.
b. Two is mutations can be identified in the L
gene of the attenuated virus strains 2B33F and 2B20L:

(i) In 2B33F, a mutation at nucleotide position 9853 (A -~ G) leading to a coding change in L protein at amino acid 451 (Lys --~ Arg) is clearly associated with the is and attenuation phenotypes. Reversion at this site alone in the 2B33F TS(+) 5a strain is responsible for complete restoration of growth at 39°C
(Table 23) and partial reversion in attenuation in animals. This association of is was also supported by partial sequence analyses of six additional "full is revertants" (designated 4a, 3b, pp2, 3A, 5a, 5A) isolated from cell culture and from chimps, in which only the nucleotide 9853 mutation reverted (Tables 24-26) (note that one AGM (African Green Monkey) isolate which reverted at 9853 only partially reverted in is phenotype). This amino acid 451 mutation (Lys ~ Arg) is amenable to stabilization in cDNA infectious clone constructs, by inserting a second mutation to stabilize the codon, thereby lessening the likelihood that it will revert back to Lys.
(ii) In 2B20L, a mutation at base 14,649 (A ~ G) leading to a coding change in the L protein (amino acid position 2,050, Asn -~ Asp) appears to be associated with the is and attenuation phenotypes. This aspartic acid at the amino acid 2050 invariably reverts back (Asp ~ Asn) in TS(+) revertants or changes to a different amino acid (Asp -~ Val) by nucleotide substitution at position 14,650 (A ~ T) (Tables 22, 25). The above observation is based on complete sequence analysis on the TS(+) revertant R1 and partial sequence of several additional TS(+) revertants (R2, R4A, R7A, R8A) at selected regions (Table 25). An WO 99/15b72 PCT/US98/19145 additional mutation is seen in the R1 revertant at nucleotide postion 13,347 (amino acid 1616, Asn --~
Asp) associated with the above reversion. However, the effect of this mutation on the is phenotype is not known; the L gene of other revertants has not bean sequenced completely.
c. Three base changes are common to 2B33F and 2B20L strains of virus:
(i) A change at position 14,587 (C ~ T) with a corresponding change (Thr --~ Ile) at amino acid 2029 is present in both 2B33F and 2B20L (Tables 21,22). This nucleotide "T" substitution was found to be present in 10% of the population of the progenitor RSV2B strain and may have been preferred during the attenuation process. No wildtype base "C" was found in the 2B33F
arid 2B20L virus.
(ii) Two mutations are seen in the 2B33F and 2B20L
3' genomic promoter region: nucleotide 4 (C -~ G) and the insertion of an extra A in the stretch of A's at positions 6-11 (in antigenomic, message sense). When the sequences of selected TS(+) revertants were analyzed, these mutations were seen to have been retained in the 2B33F TS(+)5a (Table 21) and the 2B20L
TS(+)R1 (Table 22) revertants. These non-coding, cis-acting mutations remained associated with partial viral attenuation.
Expression using the minireplicon RSV-CAT
system for the analysis of these cis-acting changes has shown the 3' genomic promoter nucleotide 4 (C ~ G) change to be an upregulation of transcription/replicatioa in this in vitro system when the 2B progenitor virus or either of the 2B33F or 2B33F
TS(+) provided helper L gene functions (the N, P and M2 genes are identical in these viruses).
Complementation analysis of the 2B33F 3' genomic promoter and the helper functions provided by the progenitor RSV2B virus or the 2B33F and 2833F TS(+) viruses by this RSV-CAT minireplicon system has also been conducted. All three viruses supported both the 2B and 2B33F 3' genomic promoter mediated transcription/replication functions. However. the 2B33F and 2B33F TS(+) viruses preferred their 2B33F 3' genomic promoters. This analysis clearly shows co-evolution of 3' genomic promoter changes during the vaccine attenuation process, along with the RNA
dependent RNA polymerase gene. Reversion of is phenotype in the 2B33F mutant 5a by reversion of the single L protein amino acid 451 (Arg -~ Lys) by sequence analysis was clearly demonstrated by support of transcription/replication functions of RSV-CAT
minireplicon at 37°C. The 2B33F virus did not provide helper functions to the RSV-CAT minireplicon (with 2B
or 2B33F 3' genomic promoters) at 37°C.
d. A biased hypermutation of SH seen in 2833F is present in all 2B33F revertants, regardless of phenotype, and is not seen in 2B20L, which is ts, ca, and attenuated. Thus, there are no data at this time that associate this mutation with any biological phenotype.
Another wild-type RSV designated 18537 was also sequenced and compared to the sequence of the wild-type RSV 2B straia. With one exception, at all the critical residues described above, the two wild-type strains were identical. For 2B, the codon ACA at nucleotides 14586-14588 encodes a Thr at amino acid WO 99/15672 PCT/US9$/19145 2029 of the L protein, while for 18537, the codon ATT
at nucleotides 14593-14595 encodes an Ile at amino acid 2029 (the L gene start codon is at nucleotides 8509-8511 in 18537, compared to 8502-8504 in 2H).
S
Example 9 PCR Assav to Detect RSV
A PCR assay is used to detect the presence of RSV. PCR primers are designed and selected based on homologies to the RSV sequences described herein to be specific for all subgroup B strains, or for the individual wild-type, vaccine or revertant RSV subgroup B strains described herein. The assay is conducted by subjecting the sample to reverse transcription of RNA, followed by PCR amplification of selected cDNA regions corresponding to RSV nucleotide sequence. Amplified PCR products are identified on gels and their specificity confirmed by hybridization with specific RSV nucleotide probes.
Example 10 ELISA to Detect RSV
An BLISA test is used to detect the presence of RSV. Peptides are designed and selected based on homologies to the RSV sequences described herein to be specific for all subgroup 8 strains, or for individual wild-type, vaccine or revertant RSV subgroup B strains described herein. These peptides are then coupled to KLH and used to immunize rabbits for the production of monospecific polyclonal antibody. A selection of these polyclonal antibodies, or a combination of polyclonal and monoclonal antibodies is then used in a "capture ELISA" to detect the presence of an RSV antigen.

Table 1 RSV 2B Cold Adaptation E,F
Cumin. Time Incubation Virus Yield Passage Passage Temp Time lo~ loPFU

Weeks C Days E F

1 0.2 26 2 6.9 6.7 2 0.4 26 2 6.0 6.1 3 0.6 26 2 5.5 5.6 4 0.8 26 2 4.5 4.7 5 1.0 26 7 4.9 5.0 6 2.0 26 7 6.2 6.3 7 3.0 26 7 7.9* 7.6*
8 4.0 22 7 7.5 7.6 9 5.0 22 7 7.3 7.3 10 6.0 22 7 7.2* 7.2*
11 7.0 22 7 7.5* 7.7*
12 8.0 22 7 8.0* 7.9*
13 9.0 22 7 8.0* 7.9*
14 10.0 20 7 7.6 7.7 15 11.0 20 7 7.0 5.9 16 12.0 20 7 7.2 7.1 17 13.0 20 7 6.7 6.3 18 15.0 20 14 5.5 5.2 19 17.0 20 14 6.3 6.0 20 18.0 20 7 6.1 5.8 21 19.0 20 7 5.4 5.7 22 20.0 20 7 5.9 5.7 23 21.0 20 7 6.3 5.5 24 22.0 20 7 6.9 6.3 25 23.0 20 7 6.8 6.6 26 24.0 20 8 6.6 6.2 27 25.0 20 7 6.3 6.0 28 26.0 20 6 6.5 6.2 29 27.0 20 7 6.2 6.3 30 28.0 20 7 7.0 7.2 31 29.0 20 7 7.3 7.1 32 30.0 20 7 6.8 6.5 33 31.0 20 7 6.9 6.7 34 32.0 20 7 6.9 7.0 35 33.0 20 7 7.4 7.0 36 34.0 20 7 7.2 7.1 37 35.0 20 7 7.4 7.0 38 36.0 20 7 7.4 7.1 39 37.0 20 7 7.5 7.0 40 38.0 20 7 7.2 6.7 *Syacytial CPE seen at harvest SUBSTITUTE SHEET (RULE 26}

Table lb RSV 2B Cold Adaptation G, H

Cuac~a. TimeIncubation Virus Yield Passage Passage Temp Time locx loPFU

Weeks C Davs G H
-1 0.3 26 3 7.1 7.1 2 0.7 26 3 6.9 6.9 3 1.0 22 7 6.4 6.4 4 2.0 22 7 6.4 6.3 5 3.0 22 7 6.6 6.4 6 4.0 22 7 6.9 6.8 7 5.0 20 7 6.9 6.7 8 6.0 20 7 6.3 6.3 9 7.0 20 7 6.2 6.3 10 8.0 20 7 6.6 6.9 11 ~ 9.0 20 7 7.0 7.0 12 10.0' 20 7 7.0 7.4 13 11.0 20 7 6.3 7.3 14 12.0 20 7 7.7 7.9 15 13.0 20 7 7.2 7.4 16 15.0 20 14 6.4 6.3 17 16.0 20 8 6.8 6.9 18 17.0 20 6 6.9 7.0 19 18.0 20 7 6.9 7.1 20 19.0 20 7 6.7 7.0 21 20.0 20 7 6.4 6.8 22 21.0 20 7 6.5 7.0 23 22.0 20 7 6.9 7.1 24 23.0 20 7 6.8 6.7 25 24.0 20 8 6.4 6.2 26 25.0 20 7 6.0 5.5 27 26.0 20 6 6.3 5.5 28 27.0 20 7 6.5 5.9 29 28.0 20 7 7.1 6.4 30 29.0 20 7 6.1 7.1 31 30.0 20 7 6.4 5.5 32 31.0 20 7 6.2 5.9 33 32.0 20 7 6.4 6.2 34 33.0 20 7 6.4 6.9 35 34.0 20 7 6.9 6.5 36 35.0 20 7 7.0 6.7 38 37.0 20 7 7.1 7.2 SUBSTITUTE SHEET (RULE 2C~

Table 1c RSV 2B Cold Adaptation J, L

Cumin. Time Incubation Virus Yield Passage Passage Temp Time log loPFU

Weeks C Davs J L
-1 1.0 22 7 6.8 2 2.0 22 7 7.1 3 3.0 22 7 6.7 4 4.0 22 7 5.9 6.1 5 5.0 22 7 4.8 5.7 6 6.0 20 7 4.9 5.0 7 7.0 20 7 4.8 4.9 8 9.0 20 14 6.0 6.0 9 11.C 20 14 6.6 6.3 10 12.0 20 7 6.9 6.9 11 13.0 20 7 6.6 6.7 12 15.0 20 14 6.0 6.0 13 16.0 20 8 6.3 6.2 14 17.0 20 6 6.2 6.5 15 18.0 20 7 6.6 6.7 16 19.0 20 7 6.4 6.9 17 20.0 20 7 6.5 6.9 18 21.0 20 7 6.9 7.0 19 22.0 20 7 7.4 7.4 20 23.0 20 7 7.2 7.4 21 24.0 20 8 7.0 7.1 22 25.0 20 7 6.8 6.9 23 26.0 20 6 6.9 7.0 24 27.0 20 7 7.0 7.0 25 28.0 20 7 7.8 7.4 26 29.0 20 7 7.5 7.3 27 30.0 20 7 6.8 6.7 28 31.0 20 7 6.9 6.8 29 32.0 20 7 7.0 6.9 30 33.0 20 7 7.4 7.2 31 34.0 20 7 7.3 6.7 32 35.0 20 7 7.3 6.9 33 36.0 20 7 7.3 7.0 34 37.0 20 7 7.2 6.9 35 38.0 20 7 6.6 6.3 SUBSTITUTE SHEET (RULE 2C) Table 2a RSV 3A Cold Adaptation E

Cua~xn. Tame Incubation Virus Yield Passage Passage Temp Time loQIOPFU

Weeks C D. ay_s E

1 0.2 26 2 6.2 2 0.4 26 2 5.1 3 0.6 26 2 4.7 4 0.8 26 2 3.8 5 1.0 26 7 4.0 6 2.0 26 7 5.0 7 3.0 26 7 6.1 8 4.0 22 7 6.0 9 5.0 22 7 5.6 10 6.0 22 7 5.8 11 7.0 22 7 5.7 12 8.0 22 7 5.9 13 9.0 22 7 5.9 14 11.0 20 14 5.8 15 13.0 20 14 6.1 16 15.0 20 14 4.8 17 17.0 20 14 4.9 18 19.0 20 14 4.8 19 20.0 20 7 4.3 20 22.0 20 14 4.9 21 24.0 20 14 5.2 22 26.0 20 15 5.6 23 28.0 20 13 6.3 24 30.0 20 14 6.3 25 32.0 20 14 7.3 26 34.0 20 14 7.8 27 36.0 20 14 7.2 28 38.0 20 14 7.4 29 40.0 20 14 6.8 30 42.0 20 14 7.3 SUBSTITUTE SHEET (~UL~ 2~~

Table 2b RSV 3A Cold Adaptation F

Cumin. Time Incubation V rus Yield Passage Passage Temp Time logloPFU

Weeks C Davs F

1 0.2 26 2 6.1 2 0.4 26 2 5.1 3 0.6 26 2 4.7 4 0.8 26 2 3.6 5 1.0 26 7 4.3 6 2.0 26 7 5.3 7 3.0 26 7 6.4 8 4.0 22 7 6.3 9 5.0 22 7 5.2 10 6.0 22 7 5.8 11 7.0 22 7 5.7 12 8.0 22 7 6.0 13 9.0 22 7 5.6 14 11.0 20 14 5.5 15 13.0 20 14 5.4 16 15.0 20 14 3.9 17 17.0 20 14 3.7 18 19.0 20 14 3.5 19 21.0 20 14 3.8 20 23.0 20 14 4.2 21 25.0 20 15 3.2 22 27.0 20 13 3.9 23 29.0 20 14 4.5 24 31.0 20 14 4.7 25 33.0 20 14 4.8 26 35.0 20 14 5.3 27 37.0 20 14 5.5 28 39.0 20 14 5.8 SUBSTITUTE SHEET (RUSE ~~,~

Table 2c RSV 3A Cold Adaptation H,I

Cummn. T Incubation Virus Yield me Passage Passage Temp Time lo~l oPFU

Weeks C Days H I

1 0.3 26 3 6.9 7.0 2 0.7 26 3 6.1 6.4 3 1.0 22 7 5.8 5.8 4 2.0 22 7 5.8 5.9 3.0 22 7 5.9 5.7 6 4.0 22 7 5.6 5.5 7 5.0 22 7 5.1 5.1 8 6.0 20 7 4.0 3.8 9 7.0 20 7 3.3 2.8 9.0 20 14 3.9 3.2 11 11.0 20 14 3.9 3.1 12 13.0 20 14 4.0 3.0 J, L

Cumin. T Incubat on V rus Yield me Passage Passage Temp Time loa loPFU

Weeks C Days J L

1 1.0 22 7 6.7 2 2.0 22 7 6.7 3 3.0 22 7 6.0 4 4.0 22 7 5.7 5.6 5 5.0 22 7 4.2 4.9 6 6.0 20 7 3.7 3.7 7 7.0 20 7 3.1 3.0 8 9.0 20 14 2.8 3.2 9 11.0 20 14 2.3 3.3 10 13.0 20 14 3.0 2.8 SUBSTITUTE SHEET (RUSE 26) WO 99/15672 ~ PCT/US98/19145 Table 3 Sumoonary of Cold Adaptation Passage History #Parental # Cold Adaptation Passage Virus PassacLe PRl~ Vero Vero Virus 35C 35C 36C Total Flask 26C 22C 20C Total 2B 7 2 12 21 E,F 7 6 27 40 G,H 2 5 32 39 J,L 0 5 30 35 H, I 2 5 5 12 J,L 0 5 5 10 SUBSTITUTE SHEET (RULE 26~

Table 4 Efficiency of Plaguing of Cold Passaged Virus Virus Week 5 Week 17 2B 0.8 0.6 2B-E 0.6 0.6 2B-F 0.8 0.7 2B-G 0.6 0.8 2B-H 0.7 0.4 2B-J ND 0.9 2B-L 0.7 0.6 3A 0.6 0.6 3A-E 0.6 0.4 3A-F 0.8 0.2 3A-H 0:6 ND

3A-I 0.9 ND

3A-J 0.6 ND

3A-L 0.6 ND

suesrrru~ sHEEr ~RU~ 2s~

Table 5 TS Mutants Plaque Purified from Cold Adapted Virus #TS/#Total #TS/#Total Cumm./PassagePlaques Cumm./Passage Plaques Weeks # Isolated Weeks # Isolated E F E

wk23/p25 0/10 1/10 wk22/p20 2/10 wk31/p33 0/10 1/10 wk32/p25 1/10 wk38/p40 0/10 1/10 wk42/p30 3/9 G H F

wk23/p24 1/10 2/10 wk23/p20 1/9 wk31/p32 0/10 2/10 wk31/p24 0/10 wk38/p39 1/10 4/10 wk37/P27 1/10 wk39/p28 2/5 J L

wk23/p20 0/9 1/10 wk31/p28 0/10 0/10 wk37/p34 0/8 2/9 wk38/p35 1/20 3/8 SUBSTITUTE SHEET (RULE 26) Table 6 Summary of EOP Data on Twice Plaque Purified RSV TS Mutants EOP

RSV Isolate 37 32C 39 32C 40 32C

2B (parent) 0.7-1.0 0.6-0.8 0.4 2Bp33F (ppl0-1) 0.5 0.002 ND

2Bp40F (pp7-~. 0.0008 ND

2Bp24G (pp2-1) 0.2 0.00001 <0.00001 2Bp39G (pp7-3) 1.0 0.009 ND

28p24H (pp3-2) ND 0.003 0.001 2Bp32H (pp6-2) 0.9 0.03 ND

2Bp39H (pp6-5) 1.0 0.04 ND

2Bp35J (pp2-1) 0.4 0.2 ND

2Bp20L (pp5-1) 0.02 ND <0.00001 28p34L (pp2-2) 0.005 0.0005 ND

28p35L (ppl-1) 0.3 0.02 ND

2Bp35L (pp2-1) 0,5 0.1 ND

2Bp35L (pp8-3) 0.2 0.05 ND

EOP

RSV Isolate 37 32C 39 32C 40 32C

3H (parent) 1.0 0.5-0.9 0.6 3Ap20E (pp3-1) 0.6 0.006 0.000009 3Ap25E (pp7-5) 0.5 0.2 ND

3Ap30E (pp3-1) 0.4 0.08 3Ap20F (pp4-3) 0.8 >0.1 0.000004 3Ap27F (ppl-2) 0.3 0.003 ND

3Ap28F (ppl0-1) 0.2 0.002 ND

ND = Nat Done SUBSTITUTE SHEET (RULE ~6) ao ra ao a~

v ,~ v v v m ~.1 W

o a b -~ r ao ~ o oo oo O

N n v ~ ~ ~
w v b a o x w O

a ~b a p ~ rlU
~

. ~Q L~ o1 ap ~
~ OD OD

N ~ ~ v ~ a ~ v v ..

a ~ w ~ . t V
c H

W .
O ~ W m 0 .,.1 ~ Nx Nx x ~ .o>
O

O H
w .o w ay ~ c~ ~ ' a. a.

a Nz Nz z ' ~ ~
~ H

W

~sa ~

' ~ ~; ~, a.
a~ o~

~ o z ~ ' x z , a N

'~ .-~ o ~d-~

.r, ~ ~ ~ o a x ' ~ d~ o w W .~ m m ~
~ p, ~

V a H m ' m x x x ~ w d ~ a d oom o m O H rl O

~ a.~ ~
s a ~~ ~~o ~ ~
~

00 00 O i O O

d r~G) l 0 W ai a b ~ ~"~

~k H O

W
rlN 4141 a $ riehH ~
a H
3 a a as m l Nen oan ~ ~ ~ ~ ~ ~H

~

A o o m G~y a<dP
w ~ m y O ~

rt arm - a ~ 3 ~ ~ ~ v m .. .. 04 r-i~d~ ~ ar ~

isz ~ ar ~ o x ~
~

m a . a N H a a n a ~ ~ ~ * + I~
~

~ W W .
tn V V

o , i ~ H W

M
M

N ,~ x N

SUBSTITUTE SHEET (RULE 26) ..
M
..
'~ a U' ~, .°,~ a it Id Nyo wn IW nn u1 M
a' ~r1 G1 4a ~ri +
N
W
0 o t~ t~1 ~ C ~ ~~I
I

0 a O N e-1 e-I N

id 0 C
V

m y -rl i~ 11U

a1 ~ y o W u W vo vo m m d1 m b w m m o a ~ W V ~t D~L~ N I I !~ P L~

~i N
41~

~ ~1 -b M
m o N N N N N N N

~ D ri r W r~
M -i ~~
b v b U

b ~~ ~~N N N N N N N

M

N

U
r c~ t~ t~ oo ao ao (yl M
N

rl N
I
I
I

I I
r-i I M
~-I I O
N M
d~
p I
I
I
rl N
Il1 N

A1 al ~1 A1 al a1 w ~ o 0 0~
a N N N
a M
w o w M
N
N
M

N M M M
N
N
N

SUBSTITUTE
SN~EET
(RULE
26) m a~

a w ~

~ w ~ ~ v~
a ~

w z ~ H H

a ' ' ' ' N ' ' ' z H N H 'd ~ r-~I
A H H fly ' ~ ' m W 'Jr f~ P~ M N W m ~
W u~ cn ~J1 ~ N
cn n N '1P ff s o ~ ' M
~ ~ ' c ~
~

G , ' o i O o , w o o, x ~ r-1'~. e-i ~'t -~ e ~
~ r-1 -I
i~ r H

M

N

o ~ o N o a~ ~ o 0 0 o o an ~n o 0 0 0 0 0 0 0 0 . . . . . . .
. .

~ b o ~ o o ri o ~ o ~ o o ~ 0 ~ o o 0 ~

m ,~ov N

N

w O

O ~ ~ 0 0 0 0 0 0 0 N f 01 N f p.7 N f at N 0 N 0 f f 01 ~

N , ~ M M M M M M M M M M M M
~ M M M

O

N

~d N

+ M d~

~ +

' N ' ' ' ~ ~ N

C4 rl u' N ~1 a7 M i ~ ,~ O ~-1 d~ N
O

M O N t N t O M

~

N N ~ N O~ O N
N

SUBSTITUTE Sl+EET (RULE 26) = 72 _ m r~

o s~ *

a~ o ~ w ~ H
~ ~
x ~

C4 b H ~ ~a (~

~

..
~ H . H C4 W
V H
H
N

H H ~
H
H

r'~'Jr '~ '.~ .yr W r'~ 'Jr ~r W
i ~
-i ~l1 i l ~ ~ r~rl e-i rl r r tJ1 r r r " J.11,1iJ Jd .i.1 J.1 , ;.1 i.1 .~,7 ~ V1 dP~ tp fA 1G m 14 dP t9 O
OD dP

p4 0~O 0 O O in O O
O O
O O

W O a~~ ~ ~ ~ ~ ~ ~
~ ~
~ ~

~.M

'd Q1,'9 ~ 04 d~ ri - O O1tl1O 0D O O
O L~ d~
rl O

rlO O rl O H ~-1 O O O
O O

V

v (~

N

41 #

C1u1 *

H O
m a O

b * ~ O ~ ~ ~ O

O O O O O O O O
O 0 ~ t O O l~

O ~ N l'~~ N L"~ N N * ~ ,O,~a O
U 01 L~ l~
~ 01 ~

~i ~ M M M M M M M M
M M

~ a 3 A w ~

o * f-s H

canH ~ a c~x b a.

M

a + + > # ..

m N * O

W ~-i rl ~ * rl W 4 p4 * 1~
O ~ H

v-1 O CD * fd N1 ~

~",,y N ~ N N * rl ~ O

,'7 M M W M M * ~1 W W

SUBSTITUTE SHEET {RULE 26) m a o ,~ 0 0 0 0 0 a o 0 0 0 u1 0 0 0 o ~ 0 0 0 0 0 0 o c o 'd ~ 0 0 0 0 0 0 0 0 0 ~"~ V ~ V V V

b m a '~

N CO M O

O M O O O O O

a ''"~ O O O O O O O

b (> O O O O OD O O O

p4, ri o d~ O O O O O O O O

,~ M O O O O O O O O O

' I I

O

a o U o o u1 0 m ,.'1i V ~0 0 0 0 o M 0 o V e~~n o 0 0 0 0 0 0 0 0 r1 V

O

H

i m ~ a m U o o p~~,V ao u1 0 ~r1 o vo N ~c1 N

M O O ~ O O ~-I O O O

N

M M d~M ~, M M
t t t t t t t ' ~
? a s s wa ~, ~ a a o N

m M N d~ O ~ d~ O O
~ N ~

W M ~ N N e~IM A~, N N riN
~ !~ ~ ~ M ~ W
W W

N W rl W f~ rl~1 ~ ~ M
~ N ~
r~

N O N N ~ N M M ~ M O
~ ~"~

N

SUBSTITUTE SHEET (RULE 26) Table 11 Monoclonal Antibody Neutralization of RSV 2B and RSV 3A Parental and TS Mutants Neutralization Titers Challenge Strains 143-6C 133-1H

2B 15,091 46,775 2Bp33F 23,364 32,690 2Bp24G >25,600 32,571 2Bp20L 25,972 32,790 2Bp34L 16,757 77,172 3A 99.814 46,493 3Ap20E 76,203 >25,600 3Ap20F 69.513 13,743 3Ap28F 80,436 34,136 Neutralizations were done by a standard 60% plaque reduction neutralization assay on Vero cell monolayers in 96-well microtiter plates.
Challenge with a 1:400 dilution of non-neutralizing monoclonal antibody 131-2G showed no reduction in titer in any of the nine strains.
SUBSTITUTE SHEET (RULE 26) WO 99/15672 PCT/(JS9$/19145 _ E

M M O NO O M (UCONh ~ MN O
M O

Q V N - h - d; M ~ D
C r ~ M ~ r I~ C N
M 1~

c' M V O V V I CO O V
O C v O (V I
( N N O

w C~

O

r e~- O O O GO O t0 0 O ~ C C~~Cep r C 7M ~ ~Oh P NNCOtnOCM ~r 7 I

e -O~- rO r r NO ON O NO fl.
N ..i..r V V V V V ~ -I ( ~'' M U~ Nd' ~N O ~O~OOO~ NN ODCG
tC

Q:e-I~NC OM OMI' Clr~'r ~e-NM
~

MO NO NO O V MO MO MO MO
V

I
W

O E

Q _ O
'~ ~

M NOtntf _ ~~C00 - OCC N~ MCfl Mti'1 O Ne M

s ~ O M N O r ~ M I~ C
~' N N M O M r M

T ~ M N N r r 'M V M N
O C O O O O O O O
C ( W r ~r V V ~".wr v v yr I
~

N
LN ~ - M
G.

Q CO c0 Ln r O o0 e! 01 O ~ CEO
t~f0 tC N O C7 CO t * O~ NO 00'vTOO OO O NN h-O ~N ~~

0 , (~j~-%~O V O v NO r-O (VOrO
O v O~ I I

d' .~ N

ao . -. .~ ... .-..-. ,.,.. ' E

~ . . ~D M r Cn O N
O . GO 'ef(O M in r ~
CO ~' M
N

O GOMNN ~N NN OO Me-OO ~i;d;rCO
~ VO NO

N (!~ NO NO rO rO rO NO NO C
~

E ~ ....~. ~.. VI....VI~ '.'...
N

E
N

O ~ ~ ~ M r ' ~ ~ .~~ p N
~ ~ ' 7 ~ e~'~ 'e!'N d ~
' C ~ G.

O
U .a ~-..-.
' c ~ ON .-. .-. .-.~ ON ON OO') OtnV N
~ ON OOO ON MO

. O M M M M O '~ 1~ I; ,d .~ rn = tt r O e- r d; N N O c Q
J ~

C C~ tLjV O V V N V V V T O ~
a p C V O O O I~ I~ I~ l ' N ..
' , 7 f0 00 O M N M O 1~ ~ 00 ~C
O N M r' ~ M N M CO ~
G. N
N
N

pU ~r GpO I~M Or I~O hN ~N O~r 00 Ul ~

O r '- ~ r tn ~i' d' c~i O v o C o co o o C

c o ~

s o c c q~ o O '~ ~ ~ ~ d~ d ~ d d' ~ ~ U
~

~ ~' er et O r '~ ~ ~ b' t~ 'O
N

~N _ N c O
'.~.~.
IO

.C ~
N

N
a 3 ~ ~
N

O M Q~ O CO M tn h d:

CO i~ CC 1~ tn GU Cfl Cfl O

CGC~

o ~

(~

E C~
f ~

M ~' O '~ O O C ~ ~
M N N M N N O .
N O LL

m M M

N m M M ~ O
~
LU

SUSSTI'TUTE SHEET (RULE 26) . n O~NNM MtnI~MCOI~tOfDG~e-OOOh00 a_ NM~~IN MMd'~I~I VNNNIO MNNMIO

L U

t0 c ~ Cpet~M MMtnOOItnI'OO0~1'IOOO~OIO
h _ I ~'~f~tf~~MMCMMO d'MM~G
(IJ(' a MMtntne-O uJ

~

a w ~NCOMb' ~OO~d;00 NN~~~ 001~;C~~~-I

f- et~'CD(CIN~t'CCGt~~'~~~d'IQ MMC'~M
O

W

t E

~ O'~'OOIO GOO~OIe- e-O~'~IM MNO~IO
I O
N

U ~ NNtI)etN NM A'CfN e-N NN~N , "' N

N

C

_ .

N fC
p ~ o .~~r _ C' ~ele-OO ODN~-~'COI"~~o0e- tON~~'-e- p MI IN NN IO
f"' I IO

NNtn~7 NM~tt) N NNNN
N N , f/~ ~

OD

N ~ OI~;OOO d'OOOO~ ~NON~ COOON~I~Op~>
Z I I I ' C NI lllNtp~t O ~r-NNO ~~fn NNtn~t N NNNN ~C
N

~
O ~

O . _ >

* e- e- ~ fl..
. ~ U

_o _ I ~ ~ ~ ~ ~ fn a ~ ~ ~ I~ ~ ~ NI~
IA ~ ~ ~-1 ~

N - N e- p e N
e L1 N N N C1 ~
N ~ ~ ~ C

D p 'n .
~

~ N

O
= ~

u a ~ ~
. >

, a a ri a~ ~
, cn co 0 0 0 0 , Sri et ~ o ~ IL
o ~ II ~

O .C

N ~ ~ O ~

> ~ ~ ~ ~ c. E ~
.c o N ~ N

p C O

cp W U~
~
il SUB STITUTE T (RULE tl SHEE 26) ~ N

_ 77 _ m x U

m m 3 3 m m -~i ao ~ m m o a~ N
d~
.-I
mn m ~ V V V Wt1 u1 ~ ~ ~ b1 ~

m W

a y p, o aD t~ tc ao p ~ H 'd m o~

m ti~ vlv v vi ~ '~ ~" ~ ~ "
xl o m 'o ~ - ~'w G ~ " Li ri .41m m ~ o ~ N m H

V aWSW I>4 m ~-~I
~
o rs ~
~w m ~ r.~y d rlri N N L"~ i0! ~ N m ~i O

rld~ r1 0~ t~ p H t~l~ m ~1 VI v n ~ ,a m U 0 t171 u1 l~ ~l1 ' ~.~i O O
N n N

N p ~ u v v m . , ~ ~ ~

ld ~ N rl P4 0 ~j ~i d~ -rl - r-I m d r -') ~ N a ~ O
~ ~ O N
l m l c r ~ m ~ ~ H
H O v ,4 l ,-I N ,-.I
~n v v m 3 m o m ;;

m m x N tft N rl O ~ 1 H ~ ~ 0 N
'~ O i0 ~c~ ~ ~, ~r ~ ~ . W ~ > o .x ~ ~ a ~r1 N d r'O'11b 1 N GG
H 3 ~ x a m ~ ~ o o ,-I
~ ~ ~ ro ..I ,-i 'd .
~ ~ v vl v v ~ ~ u ~ 3 H c~ ro m v U tr1 r ~ ~ 3 ~
~

~ m rlf a ..~ m l 1 e o ~d o ~ m a sa N cn c ~ ' o ~,, > " m vl m v v x 3 b x w w w w w ~ ~oa . ~ o d~ N N O O m U ~ d, H m U

H a m CD d~ N N . a m .~ m ~
rl A vomo vc w 0 U
r-m ~ W U
l r~ c~ a a o ~ o ~ ~ ' o 0 L: m toVI
~

m cr1 ~ o d~ U -.'IW ~ 1 U

p II
a IIII

~

' nip ri N M
'rp N q D ~ P
p N N N N W

SUBSTITUTE SHEET (RULE 26) _ 78 _ m b S

-ri d~ M N d~ ~ ~reim E.,~. . . . . .
~

'' m ~1 V V V V ~ ~t m 0o b a We ~0 00~c ~o 0 A' o ~ ' ' di ~ v v v v ~' ~, ,~ m m o ~ ~ b .NU
V r-1" ~ 0 0 0 0 ~d N rl 1>' -~ ~ ~ a a a .~I

m N .~ m pi N to COCO O 41 ~ H ld H N b L~e-1V
a N r~ x W rl N ~1 4.1'd aq rl 'd ~ m U O N) M ~D tr1N e~-Im ~ a .
M ~~ - W -1 V ~ ~ i~ ',~, m !d i~ ~ N N b . a u~a a M ~ agoaro v a,~~ ~ ~ d, N al ~, H N N 'd ~ m O
r-1 i.l ~ ~i a1 ~ ~ y ,a ~
m N w r M o m m a a a ~ w x '~ ~ ~ N ~ ~ m a N
vi vl v > a ~,,c~~

b N ~ 3 ~ x ~ m ~
y -1 d~ M d~ ~ i.1~ ~ 3 N~ f~-1d '~'w ~ v vl v v ~ ~ -~m o N -c~
U H a' ~ m ~ 3 ii tr~~
~ X71N N N l~M ~ ~ 3 r~l~~., m ~ JU~
OI M M M N ~ b p m is 'd O W
" x m m .~I~ ~-I~ ~ ~' ~ ~ .~ ~ w ~ a' a ~ o w b o 04 w w w w 3 ~ . .~~ N ~
d~ d~ d~M U
m . ,N 'd~.," N N
N 1~ U O
AI to ~o tovc O W t71a ~d ~
0 .~ a a ~o U
U -'I~ m H W

m W ~ G4 0 a O ~ ~ ~ tov1 O o ao V ~i p, U r.7 ~

p IIII

,~! M M M M P~ rl N M

SUBSTITUTE SHEET (RULE 26) _ 79 _ Table 16 RSV Growth and Immunogenicity in African Green Monkeys:
RSV 2B is Mutantsl is Mutant Imznunogenicity Virus Growth Neutralization EIA

Peak Titers2 Titers3 Virus Titer (1og10 PFU/ml) (x10') Virus AGM Nasal Lung D~ 2B A2 3A anti-F

28p33F SR034 <p_7 <0.7 0 <10 <10 <10 <0.15 7 <10 <10 <10 <0.15 14 <10 <10 <10 088 24 <10 <10 <10 049 27 <10 <10 <10 0-92 41 <10 <10 <10 0.26 2Bp33F SK028 2.9 <0,7 0 <10 <10 <10 <0.15 7 <10 <10 <10 <0.15 14 <10 <10 <10 <0.15 24 28 <10 <10 2.92 27 33 <10 <10 3.56 41 19 <10 11 1.74 2Bp24G SK012 <0,7 1.9 0 <10 <10 <10 <0.15 7 <10 <10 <10 <0.15 14 <10 <10 <10 <0.15 24 12 <10 <10 14.91 27 10 <10 <10 13.18 41 <10 <10 <10 11.05 1 = All monkeys were inoculated with 106 PFU of RSV 28 is virus, IN+IT.
2 = 60~ plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

Table 16 (continued) RSV Growth and Iacanunogenicity in African Greece Monkeys:
RSV 28 is Mutantsl is Mutant ImmunoQenicitv Virus Growth Neutralization EIA

Peak Virus Titers2 Titers3 Titer (1og10 PFU/ml) (x103) Virus AGM Nasal L~ DaY 2B A2 3A anti-F

2Bp24G SR030 3.2 <0,7 0 <10 <10 <10 <0.15 7 <10 <10 <10 <0.15 14 <10 <10 <10 <0.15 24 440 10 204 34.13 27 404 21 190 37.64 41 256 <l0 98 17.74 2Bp20L SR033 <0.7 <0.7 0 <10 <10 <10 0.24 7 <10 <10 <10 0.30 14 <10 <10 <10 1.48 24 <10 <10 <10 1.64 27 <10 <10 <10 1.24 41 <10 <10 <10 0.34 2Bp20L SR042 <0,7 <0.7 0 <10 <10 <10 <0.15 7 <10 <10 <10 <0.15 14 <10 <10 <10 <0.15 24 <10 <10 <10 1.64 <10 <10 <10 0.20 41 <10 <10 <10 0.15 1 = All monkeys were inoculated with 106 PFU of RSV 28 is virus, IN+IT.
2 - 60~ plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

Table 17 RSV Growth and Immunogenicity in African Green Monkeys:
RSV 2B Challenge of Monkeys 8 Weeks Post-Vaccinated with RSV 2B is Mutants'' Chal Iamnunog ~enic l enge i tv Virus Growth Neutralization EIA

Peak Titers2 Titers' Virus Titer Vaccine (1og10 PFU/ml) (x10') Virus AGM Nasal Lung Day 2B A2 3A anti-F

2Bp33F SR034 5.7 5.0 0 <10 <10 <10 0.52 7 <10 <10 <10 0.91 14 451 10 472 303.84 21 6797 33 829 592.61 28 4353 50 815 135.85 42 1978 44 . 264 52.76 2Bp33F SK028 <0,8 3.8 0 13 <10 <10 2.50 7 208 65 576 43.64 14 2868 443 2051 131.70 21 1883 404 2344 144.39 28 1127 227 2797 53.22 42 941 79 729 43.30 2Bp24G SK012 3.9 3.2 0 <10 <10 <10 21.58 7 281 111 323 258.89 14 604 431 731 551.49 21 698 298 692 668.50 28 357 325 985 189.81 42 272 82 895 104.16 1 = AGMs were previously vaccinated with RSV 2B is strains.
All monkeys were challenged 8 weeks post-vaccination with 106 PFU of RSV 2B, IN+IT.
2 - 60~ plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

WO 99/15672 ~ PCT/US98/19145 Table 17 (continued) RSV Growth and Immunogenicity in African Green Monkeys:
RSV 2B Challenge of Monkeys 8 Weeks Post-Vaccinated with RSV 2B is Mutantsl Challenge Immunocrenicity Virus Growth Neutralization EIA

Peak Titers Titers3 Virus Titer Vaccine (1og10 PFU/ml) (x10') Virus AGM Nasal L~ Day 2B A2 3A anti-F

2Bp24G SR030 <O,g <0.7 0 91 <10 69 34.55 7 628 322 1120 174.07 14 1617 397 1953 203.58 21 1184 256 968 145.71 28 851 276 1313 49.28 42 637 48 329 27.36 2Bp20L SR033 5.3 4.5 0 <10 <10 <10 178 7 <10 <10 <10 188 14 516 <10 325 289.94 21 500 22 550 418.91 28 783 56 525 148.25 42 518 48 442 91.39 2Bp20L SR042 5.4 3.3 0 <10 <10 <10 0.21 7 <10 <10 <10 0.32 14 36 <10 116 135.80 21 213 21 284 116.99 28 256 30 300 30.06 42 516 40 289 19.30 1 = AGMs were previously vaccinated with RSV 2B is strains.
All monkeys were challenged 8 weeks post-vaccination with 106 PFU of RSV 2H, IN+IT.
2 = 60% plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

Table 17 (continued) RSV Growth and Ia~anunogenicity in African Green Monkeys:
RSV 2B Challenge of Monkeys 8 Weeks Post-Vaccinated with RSV 2B is Mutaatsl Challenge Immunogenicity Virus Growth Neutralization EIA

Peak Virus Titers Titers' Titer Vaccine (1og10 PFU/ml) (x103) Virus AGM Nasal Lung D~ 2H A2 3A anti-F

Control SR046 5.9 4.7 0 <10 <10 <10 0.10 7 <10 <10 <10 0.13 14 272 50 594 275.33 21 488 98 1140 587.93 28 1377 75 1393 190.49 42 1659 47 573 183.97 Control 032B 5.5 3.9 0 <10 <10 <10 0.25 7 <10 <10 <10 0.24 14 2462 201 3458 626.57 21 1546 303 1279 482.31 28 1162 104 1729 164.53 42 1044 83 689 75.1 1 = AGMs ware previously vaccinated with RSV 28 is strains.
All monkeys were challenged 8 weeks post-vaccination with 106 PFU of RSV 2H, IN+IT.
2 = 60% plaque reduction neutralization test.
3 - Source of coating protein is RSV A2 F protein.

Table 18 RSV Growth and Immunogenicity in African Green Monkeys:
RSV 3A is Mutantsl is Mutant Iuununogenicity Virus Growth Neutralization EIA

Peak Titers Titers3 Virus Titer (1og10 PFU/ml) (x103) Virus AGM Nasal Lung Day 2B A2 3A anti-F

3Ap20E01128 1.7 1.3 0 <10 <10 <10 <0.05 7 <10 <10 <10 <0.05 14 <10 <10 <10 3.72 21 38 <10 39 23.12 28 21 <l0 13 27.42 40 14 <10 <10 31.11 3Ap20EOL1161 2.3 2.-9 0 <10 <10 <10 <0.05 7 <10 <10 <10 <0.05 14 <10 <10 30 5.84 21 14 12 57 19.51 28 56 18 126 27.53 40 44 31 108 38.90 3Ap20F90H037 3.2 <l,p 0 <10 <10 <10 <0.05 7 <10 <10 <10 <0.05 14 <10 <10 11 1.17 21 12 <10 47 34.32 28 20 17 86 31.58 40 49 26 123 35.05 1 = All monkeys were inoculated with 106 PFU of RSV 3A is virus, IN+IT.
2 = 60~ plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

Table 18 (continued) RSV Growth and Ia:munogenicity in African Green Monkeys:
RSV 3A is Mutantsl to Mutant Immunogenicity Virus Growth Neutralization EIA

Peak Titersz Titers3 Virus Titer (1og10 PFU/ml) (x103) Virus. AGM Nasal Lung DS~r 2H A2 3A anti-F

3Ap20F 908045 3.9 1.0 0 <10 <10 <10 0.35 7 <10 <10 <10 0.30 14 <10 <10 19 3.16 21 11 11 22 12.61 28 12 13 24 16.82 40 24 <10 3g 14.92 3Ap28F 918027 2.0 <O,g 0 <10 <10 <10 <0.05 7 <10 <10 <10 <0.05 14 <10 <10 <10 0.18 21 <10 <10 <10 1.29 28 <10 <10 <10 2.63 40 <10 11 27 3.83 3Ap28F 918043' 2.9 <O,g 0 <10 <10 <10 <0.05 7 <10 <10 <10 <0.05 14 <10 11 27 3.83 1 = All monkeys were inoculated with 106 PFU of RSV 3A is virus, IN+IT.
2 - 60% plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.
4 = Monkey died on day 15. Cause of death unrelated to RSV
infection.

Table 19 RSV Growth and Ixtmnunogenicity in African Green Monkeys:
RSV 3A Challenge of Monkeys 8 Weeks Post-Vaccinated with RSV 3A is Mutantsl Challenge Immunoaenicity Virus Growth Neutralization 8IA

Peak Titers' Titers3 Virus Titer Vaccine (1og10 PFU/ml) (x103) Virus AGM Nasal Luna Dav 2B A2 3A anti-F

3Ap20E 01128 1.4 0.7 0 14 12 <10 3575 7 216 281 602 699.10 14 417 265 784 611.24 21 289 307 573 247.16 28 263 289 731 463.57 42 145 141 426 285.47 3Ap20E OL1161 2.2 <0.8 0 21 <10 56 25.37 7 526 412 2735 535.05 14 516 521 2382 252.93 21 581 473 1840 275.32 28 478 437 1651 244.01 42 250 239 753 141.33 3Ap20F 90B03 <1.1 <0.8 0 84 56 221 41.17 7 2374 2093 6051 435.25 14 3701 2916 8652 450.55 21 2933 2224 6561 481.99 28 1849 1588 4031 287.28 42 3086 967 3950 207.98 1 = AGMs were previously vaccinated with RSV 3A to strains. All monkeys were challenged 8 weeks post-vaccination with 106 PFU of RSV 3A, IN+IT.
2 = 60% plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

_ 87 Table 19 (continued) RSV Growth and Ia~unogenicity in African Green Monkeys:
RSV 3A Challenge of Monkeys 8 Weeks Post-Vaccinated with RSV 3A is Mutantsl Challenge Ia~nnunog~eaicitv -Virus Growth Neutralization EIA

Peak Titersz Titers3 Virus Titer Vaccine (1og10 PFU/m1) (x10') Virus AGM Nasal Lung D8y 2B A2 3A anti-F

3Ap20F 90B045 <1.0 <0.8 0 24 12 56 13.44 7 644 627 1381 182.99 14 1024 549 2174 223.70 21 1835 699 2130 273.87 28 831 318 1499 177.21 42 534 258 1073 127.80 3Ap28F 91B027 <1.0 0.8 0 <10 <10 <10 5.50 7 408 229 521 150.97 14 585 560 2016 234.25 21 449 311 1161 359.53 28 316 400 714 184.91 42 242 217 436 142.67 Control91K041 5.0 4.7 0 <10 <10 <10 <0.05 7 <10 <10 <10 0.13 14 19 <10 205 213.29 21 106 33 423 602.54 28 123 99 278 562.05 42 107 80 277 252.99 1 = AGMs were previously vaccinated with RSV 3A is strains. All monkeys were challenged 8 weeks post-vaccination with 106 PFU of RSV 3A, IN+IT.
2 = 60% plaque reduction neutralization test.
3 = Source of coating protein is RSV A2 F protein.

- $8 _ Table 19 (continued) RSV Growth and Immunogenicity in African Green Monkeys:
RSV 3A Challenge of Monkeys 8 Weeks Post-Vaccinated with RSV 3A is Mutantsl Challenge Immunogenicitv Virus Growth Neutralization ETA

Peak Virus Titers Titers3 Titer Vaccine (1og10 PFU/ml) (x10') Virus AGM Nasal Luna DB~r 2B A2 3A anti-F

Control 91K059 5.1 4.6 0 <10 <10 <10 <0.05 7 <10 <10 <10 0.09 14 97 34 384 166.59 21 288 158 1259 268.47 28 <160 <160 575 286.52 42 290 178 1448 218.74 1 = AGMs were previously vaccinated with RSV 3A is strains. All monkeys were challenged 8 weeks post-vaccination with 106 PFU of RSV 3A, IN+IT.
2 = 60% plaque reduction neutralization test.
3 - Source of coating protein is RSV A2 F protein.

_ 89 _ m x d r~ ' . ~ N

a v v ~ ~
~' _o b m tn a~~o o, In b zlv v '" ro b H
0 ~
r-i ~ o o ~ H -ri1~1 a a~'' ~

U U

H ~ r l il ~ ii rte.In a >I w x v~ N N O V O O U
H W ~-IN N w b ~ m ~ O
O U C! c~V~ao ~-1O ~ ~ ~ W
I~ ~ rl r01V ~ . a v Q1 ~ ~ N b 1J
o N MI~ tl1O 'J ~1 4) N ri '~ ~ ~ ~
~ 1'I M M V ,Q GI 1J~ 4) -rlm ~1 ~ ~~ g ~ w ,a~ a~ f~
w ' N ~-Iv ~ m a o a ~ ~ v4 x H a ~

N

-rl H N ri N 11 0i Ci ~ 'd,''? d " ~1 on N d ri b ~ ~ O
'J ~,~o ro ~ 3 ii b~ ~ o o ~ ~ ~ b ~ -~ ~ a H m . W
'~ ''~a~M V~ t:'' CS O t9 i.l ''dO
ri 10 riQf ".~ Gl -rl 41 DO ~ b ~ 11 U Gi canw w ~ ~ o a ~ d ~ ro I s~

u' 1~ U 'd d1 Gl CiCi ~ Id ~ O
AI,n u~ O V ~ ~ m H W V
1~ N t~ri d1 d i~1 G1V ~ .~u~ r~n riN Cl~a) H W ,-~ N M

SUBSTITUTE SHEET (RULE 26) Table 21 Sequence comparison between RSV 2B and 2B33F strains Nucl. ~ Nucleotide changes pos t Gene/ 3' end RSV 2B RSV RSV 2B33F Amino acid region of vRNA 2B33F TS(+), 5a changes revertant aenomic 4 C G G non-coding promoter6 - extra extra A non-coding A

M 4175 T C C non-coding 4199 T C C non-coding SH 4329 T C C Phe-Leu (10) 4409 T C C none Ile (36) 4420 T C C Ile-Thr (40) 4442 T C C none His (47) 4454 T C C none Cys (51) 4484 T C C none Tyr (61) 4497 T C C Stop-Gln (66) 4505 T C C none Ser (68) 4525 T C C Ile-Thr (75) 4526 T C C Ile-Thr (75) 4542 T C C Stop-Gln (81) 4561 T C C Leu-Pro (87) 4575 T C C Trp-Arg (92) 4598 T C C none Thr (99) L 9559 G A A Arg-Lys (353) 9853* A G A Lys-Arg (451)*

12186 G A A Asp-Asn (1229) 14587 C T T Thr-Ile (2029) 15071 A G G non-coding t For 2B33F and 2B33F TS(+), nucl. pos, numbers are one larger than for 2H for M, SH & L genes * At pos. 9853, the Lys-Arg change has reverted back to Lys in the 2833F TS(+) strain Table 22 Sequence comparison between RSV 2B and 2B20L strains Nucl. ~ Nucleotide changes pos t Gene/ 3' end RSV 28 RSV RSV 2B20L Amino acid region of vRNA 2B20L TS(+), R1 changes revertant 4enomic 4 C G G non-coding*

promoter6 - extra extra A non-coding*
A

L 8963 C T T none Thr (154) 13347 A A G Asn-Asp (1616) 14587 C T T Thr-Ile(2029)*

14649 A G G Asn-Asp (2050) 14650 A A T Asn-Asp-Val (2050) **

t For 2B20L and 2820L TS(+), nucl. pos. numbers are one larger than for 2B for L gene * Mutation is common in 2H33F and 2B20L strains ** At pos. 14650, the mutation suppresses the is phenotype in 2820L TS(+) revertant am .'~
Cn ~a a a b . ~ .
~ w o ~\ \ o\
a D ~: -o 0 w x .. ,. ., m CD\ O\ N\
~
a xx m ~ N

a " 1(1 r r . a a V~ d~ V V~ d~
V~

'i ,~ 0D \ 1l1 0D 01 1p Ai N \ \ \ \
\

d~ rW d V~ V~ V~
a -1 O

a mn v v ~ rn N ,.~
-- ~- ,- ~- ~- --N~

m m U r1 m ~

_ _ 0 ~ e h V

J.1 x ~ ~ eh ~ ff O
N a 1 d~ ~ ~ V~
V~

ulof\\ \ \ \ \

~- v~ V V V V
V v ~ ~ ~

W nr~ I I I I I

V

M o N 0 0 H ~ ~

a c ~

p ~ 0 0 0 0 0 0 U

~

,..~ m o o o 0 0 0 p;

~

W ...
N ~

Z

J~ \ ..

V
ca a .u ~ o ..~ tr o\
N ~ ~ u1 ~

t O ~ tm n cn ~ ~

p O ... O O O O
.. .~ .. .. ..

b a a a n o o a a, ~ , ~ ~ M M

O m m m m m ~

a a we w~ w~

~ m $

U 1~ 1.1 fa N 't!
'd 'd 'd ~ m o m ,'! W r x .k J! V
l aa!

W W ~W ~
a d JJ O N 41 d) 41 ~
fS a4 t~ k. ~
d) ~
b ~ O M ~
H

. e n M c M n al b nN
a a ~rl b ~.1 p0 f~ P4 00 +~ -1 rl r1 ~' ~

$ O W N N N N
tl~ ~, W W C1i ~Ic CL

a a M

m p4 P4 M M

N N... N.. CL
w + t t .. ' v i H ai aH

SUBSTITUTE SHEET (RULE 26) am a v oa v ~ ~ ~ ~ ~

a Z
o a m o a~
sa x ~ ~ ~ ~ ~Z

O m ~ p p o ~
i~ ~ ~ ~

' a ri O C a a V~ V~ V' d~ V
'rl N \ \ \ O
p; \ \

a ~ ~ ~ ~ VI M
~ ''' i~ rl V V

H~
m y m U ,..~
b a m~

_ _ _ _ _ O p i~ xa D If1 V~ v M
y' V~ V~ V~ d~ V~
,~

'\ '\ '\ ar \
\

'd " v V VI ~ ~ VI
~ ~ v N I H
a~

U
i 0 n t a M a~ c t~
m O p c ~
~ v pH c O
~p~ ~ V

, ~ O I o M W W
.~

w 3 ~

e~ ~ o 0 ~ -rn H ~ r.i o o ~
a W i~ W

M ~ $ ~
~

~ ~ ~ 0 p 0 v v r U U U U U ~U

~

~3 ~ f~ ' a '~b ~' mM m .0 ~ ~ +i m y m +~~
~ a a - a~
m +a y a a $ o a v '~~
p a a m b b ,o a ar mo b o rb ar b o b a b a a ab H 11 i~ 4t11am H W Lt 41~', ri a m m p O O .ICU k O .kU d!U
a m m J~ J~ .k' .k o mmo oa u ara o ar a o v roou m w w -aw ..~w - wo ..~.-i a a a .~
..~

a a w a w ab w ab w ab a w w .~ m ~ m ~
.~ .m C4 P4 t 14 N ~ O e'~1 b 'C b GI t71 ~ ~

fvl M ~'~1 1l1 a 1~1 a If1 n1 tr V~ '~ ~J a a a a Ib PD 00 e-i rlr-1 rarl AI ~' ~ a a r-1 r1 ra .-i N M N ~k ~ ~C
~k ~ ~k rl rl W
W G4 W t1~ W

M

A' LL W

V U

SUBSTITUTE SHEET (RULE 26) m d b tn ~b p ~;~ a b a o ': m ~ ;:

m ~ om o b ~
a~ ~ N

,1 R N1 a a d~ v a V' ' d d~ '~ V~
' ',i \ if1 t~ O f'1 W
W ~ \ \ \ \ ~ W
~' J r1 V' y V. d. ri R 1.1 O ,r~ N ~ M \ .w ~/ v o ...

o ~ ba U y m n n W ~d ~
w m d'~ a .. a .. a ... ''~
.. ... n ~H ~ M v v i ~ A
v v v a ~. o m ~ ~ V ~ ~ m a ~ V ..

1,1 v N I I v ~
c~

m H

V '1 +
~ ~

i~ m <V N H
II , N
~

M

U o V N H
~ 9~ m fsi m O ,~ W
~

~
i1 Y1 d V

~ a~ ~ ~ a ~ ' 3 ~ a U

m ~ cr ~ m m ym iJ p,~ O ~ m m H H ~ \ ~ A
b aj ~ o vo o m n E R G1 d G y ~ S ~

. ~ . .~ rl a . . a . O . O O 3 O

It O

N N
~

~p m I
' m m m m Ei -1 m N ~o~ a ~ V
k ~o~ ~o~

i~ H H H H ~
~ ' 'd Q m m d m o~ m O d o~ d m m o~ o~

Id ri rl ri ri a H M e1 f'~f M R mn l71 W OO w lw O l W A, CL
d m r1 -rl rl rl H N
i~ i~ i~ J~ b a ~

/~ W W d W W bl ri 'Cl 10 d d O
m O

m m m m m m m r~ m d m m ~
,~

m dl'd l71'd d 1'dd1'd O
i~ O
Q~

a a a a m a a S m d m d m R a m a .-rb o o mx o x o mx H
mx m ~ ~
a m m O ~o N m cw N m d ~ m R m o m .e p w d O ca m m w .~ oa d o d d .~, a ..i U cV N W N N W H w ri W W W W ~ a U W Gi a m ~ .d a~
.~

+ + + +

H H H H

SUBSTITUTE SHEET (RULE 26) Table 24 2B33F Revertants to In vitro AGM Chimp (+) 5a 4a 3b pp2 pp4 pp6pp7 lA 3A 5A

base no.
t.

M

4176,4200 S S S S S S S S S S

sx 14 bases* s s s s s s s s s s L

Phenotype to 2B 2B 2B r r S S 2B 2B 28 ca S S S 2B S 2B S ND ND ND

Attenuatedr r r (r) (r) S S ND r r t These 2833F revertant base nos. are one larger than for 28 for M, S8 and L genes * bases 4330,4410,4421,4443,4455,4485,4498,4506,4526,4527,4543, 4562,4576,4599 S = same base as 2B33g 28 = reversion to 28 base or complete reversion in phenotype r = moderate reversion in phenotype (r) = slight reversion in phenotype ND = not done Table 25 2B20L Revertants TS(+)In vitro Isolates base no.t R1 R2 R3A R4A R5A R6A R7A R8A R9A R10A

L

13348 C* S ND S S ND S S S S

14651 A* A* S A* S S A* A* S S

Phenotype is ZB ZB ND ND ND ND ND ND ZB 2B

Attenuatedr r ND ND ND ND ND ND r r t These ZBZOL revertant base nos. are one larger than for 2B for L
genes S = same base as ZBZOL
ZB = reversion to Z8 base r = moderate reversion in phenotype * = base change, different from ZB or 2BZOL
ND = not done _ 97 Table 26 RSV 2B, is and Revertant Strains: Phenotype Suamaary virus IsolateSource In In Vi,vo vitro Phenotype Attenuation is Cotton ca AGM

Rat ~Pild-type Parent - - - -Strain RSV 2B33F ca, is mutant isolated++++ ++ ++++ +++

from 2B, cold-passaged x 33 RSV 2B33F 2B33F spinner passage- ++ ++ +
- 5a TS (+) plaque picked at 39C

xav ~rsssr~ 2B33F spinner passage- ++ ++ ND
- ga TS(+) plaque picked at 39C

ac.~v ~o.r 2$33F 8 iIlIler g - p passa a - ++ ++ ND
TS(+) plaque picked at 39C

AGM pp2 2B33F-infected AGM + - +++ ND
A2, d7 nasal wash plaque picked at 32C

AGM pp4 2833F-infected AGM + ++ +++ ND
A2, d7 nasal wash plaque picked at 32C

AGM pp6 2B33F-infected AGM ++++ - ++++ ND
A4.

d12 nasal wash plaque picked at 32C

AGM pp7 2B33F-infected AGM ++++ ++ ++++ ND
A4.

d12 nasal wash plaque picked at 32C

s8ssg-in=eccea cnsmp _ Chimp pplA

#1552, d4 tracheal lavage, plaque picked at 32C

s$ss~-in=ecLea chimp Chimp pp3A - ~ ++ ND

#1560, d6 tracheal lavage. plaque picked at 32C

s$ssx-intactea chimp Chimp ppSA #1563, d10 tracheal - ~ ++ ND

lavage. plaque picked at 32C

_ 98 _ Table 26 (continued) RSV 2B, is and Revertant Strains: Phenotype Summary Virus IsolateSource In In Vfvo Vitro Phenotype Attenuation to Cotton ca AGM

Rat RSV 2820L ca, is mutant isolated++++ ++ ++++ ++++

from 2B, cold-passaged x ao RSV 2B20L 2B20L spinner passage- ND ++ ND

TS(+) plaque picked at 39C

RSV 2B20L 2B20L spinner passage- ND ++ ND

TS(+) plaque picked at 39C

RSV 2B20L 2B20L spinner passage- ND ++ ND

TS(+) plaque picked at 39C

RSV 2B20L 2B20L spinner passage- ND ++ ND

TS(+) plaque picked at 39C

ND = not dose - = wild-type phenotype, i.e., not temperature sensitive, not cold-adapted, not attenuated + to ++++ = increasing levels of temperature sensitivity. cold-adaptation or attenuation _ 99 -Bibliography 1. Institute of Medicine, Coa~aittee on Issues and Priorities for New Vaccine Development, pages 397-409 of Volume 1, Diseases of importance in the United States (National Academy Press, Washington, D.C. (1985)).
2. Hall, C.B., and McBride, J.T., New Ena.
J. Med., 325, 57-58 (1991).
3. McIntosh, R., and Chanock, R.M., pages 1045-1,072 of Viroloay, B.N. Fields, et al., Eds. (2nd ed., Raven Press, 1990).
4. Anderson, L.J., et al., J. Inf. Dis., 151; 626-633 (1985).
5. Anderson, L.J., et al., J. Inf. Dis., 163, 687-692 (1991).
6. Henderson, F.W., et al., N. Bngl. J.
Med., 300, 530-534 (1979).
7. Hall, S.L., et al., J. Infect. Dis., 163, 693-698 (1991).
8. Lamprecht, C.L., et al., J. Infect.
Dis., 134, 211-217 (1976).
9. Glezea, W.P., et al., J. Ped., 98, 706-715 (1981) .
10. Glezen, W.P., et al., Am. J. Dis.
Child., 140, 543-546 (1986).
11. Kasel, J.A., et al., Viral Immunoloav, 1, 199-205 (1987/1988).
12. Mufson, M.A., et al., J. Clin.
Microbiol., 25, 1535-1539 (1987).
13. Mufson, M.A., et al., J. Gen. Virol., 66, 2111-2124 (1985).
14. Collins, P.L., pages 103-162 of The Paramyxoviruses, D.W. Kingsbury, Ed. (Pleaum Press, NY
and London, 1991).

15. Sullender, W.M., J. Viroloav, 65, 5425-5434 (1991) .
16. Johnson, P.R., et al., J. Virolocrv, 61, 3163-3166 (1987).
17. Stott, E.J., et al., J. Viroloay, 61, 3855-3861 (1987).
18. Walsh, E.E., et al., J. Inf. Dis., 155, 1198-1204 (1987).
19. Beeler, J.A., and Coelingh, K.W., J.
Viroloav, 63, 2941-2950 (1989).
20. Connors, M., et al., J. Viroloay, 65, 1634-1637 (1991).
21. Sun, C.S., et al., Am. Rev. Resx~. Dis., 128, 668-672 (1983).
22. Anderson, J.J., et al., J. Gen.
Viroloav, 71, 1561-1570 (1990).
23. Graham, H.S., et al., J. Clin. Invest., 88, 1026-1033 (1991).
24. Oppenshaw, P:J.M., et al., J. Virolocty, 64, 1683-1689 (1990).
25. Nicholas, J.A., et al., J. Viroloav, 64, 4232-4241 (1990).
26. Cherrie, A.Ii., et al., J. Viroloav. 66, 2102-2110 {1992).
27. Rapikian, A.Z., et al., Am. J.
Epidemioloav, 89, 405-421 (1969).
28. Chin, J., et al., Am. J. Epidemioloav, 89, 449-463 (1969).
29. Fulginiti, V.A., et al., Am. J.
Epidemiology. 89, 435-448 (1969).
30. Prince, G.A., et al., J. Viroloav. 57, 721-728 (1986) .
31. Gharpure, M.A., et al., J. Virolocty, 3_, 414-421 (1969).
32. Wright, P.F., et al., J. Inf. Die., 122, 501-512 (1970) .
33. Richardson, L.S., et al., J. Med.
Viroloav. 3, 91-100 (1978).
34. Maassab, H.F., and DeBorde, D.C., Vaccine, 3_, 355-369 (1985).
35. Maaseab, H.F., et al., "Cold-adapted influenza viruses for use as live vaccines for man", in Viral Vaccines (Wiley-Liss, Inc. (1990)).
36. Obrosova-Serova, N.P., et al., Vaccine, 8, 57-60 (1990) .
37. Edwards, R.M., et al., J. Inf. Dis., 163, 740-745 (1991).
38. Belshe, R.B., and Hissom, F.R., J. Med.
Viroloav, 10, 235-242 (1982).
39. Murphy, B.R., et al., pages 91-95 of Vaccines 90 (Cold Spring Harbor Laboratory Press (1990) ) .
40. Clements, M.L., et al., J. Clin.
Microbiol., 29, 1175-1182 (1991).
41. Rim, H.W., et al., Pediatrics, _4~, 745-755 (1971).
42. Forsyth, B.R., and Phillips. C.A., "Laboratory and antigenic studies of respiratory syncytial virus evaluation of respiratory syncytial, meningococcal, and pneumococcal polysaccharide vaccines", NIH contract report number IDB-VDP-07-067 (1973) .
43. Rim, H.W., et al., Pediatrics, 52, 56-63 (1973) 44. Nodes, D.S., et al., roc. Soc. 8xp,.
Biol. Med., 145, 1158-1164 (1974).
45. Belshe, R.B., et al., J. Inf. D3s., 145, 311-319 (1982).
46. Friedewald, W.T., et al., J. Amer. Med.
Assn., 204, 690-694 (1968).
47. Frickey. P.H., nMarkers differentiating a 'cold' variant of respiratory syncytial virus from its parent line" (Internal report - Lederle Laboratories, Pearl River, NY (1969)).
48. Holland, J., et al., Science, 215, 1577-1585 (1982).
49. Lamb, R.A., and Kolakosky, D., pages 1177-1204 of Volume 1, Fields Viroloc;y, B.N. Fields, et al., Eds. (3rd ed., Raven Press. 1996).
50. Sidhu, M.S., et al., Viroloav, 193, 50-65 (1993).
51. Garcin, D., et al., EMHO J., 14, 6087-6094 {1995) .
52. Radecke, F., et al., EMBO J., 14, 5773-5783 (1995).
53. Collins, P.L., et al., Proc. Natl. Acad.
Sci., USA, 92, 11563-11567 (1995).
54. Published European Patent Application No. 702,085.
55. Rots, J.S., et.al., Virus Res., 31, 317-330 (1994).
56. Baron, M.D., and Barrett, T., J.
Viroloav, 71, 1265-1271 (1997).
57. Published International Application No.
WO 97/12032.
58. Rato, A., et al., Genes to Cells, 1_, 569-579 (1996) .
59. U.S. Proviaioaal Patent Application No.
60/047575.
60. Shaffer, M.F., et al., J. Immunol., 41, 241-256 (1941) .
61. Larch, R.A., et al., J. Viroloav. 64, 5559-5569 (1990).
62. Mallipeddi, S.R., and Samal, S.K., J.
Gen Virol., 74, 2787-2791 (1993).

WO 99!15672 PCT/US98/19145 63. Hemming, V.G., et al., Clin. Microbiol.
Res., 8, 22-33 (1995).
64. Collins, P. L. et. al., pages 1313-1351 of volume 1, Fields Viroloav. B. N. Fields, et al., Eds. (3rd ed., Raven Press, 1996).
65. Ling, R., and Pringle, C.R., J. Gen.
Virol., 70, 1427-1440 (1989).
66. Yu, Q., et al., J. Virolomr, 69, 2412-2419 (1995).
67. Heminway, B.R., et al., page 167 of Abstracts of the IX International Congress of Virology,.
P17-2, (1993).
68. Mink, M.A., et al., Viroloay, 185. 615-624 (1991) .
69. Dickens, L.E., et al., J. Virology., 52, 364-369 (1990).
70. Lamb, R.A., and Kolakofsky. D., pages 1177-1204 of volume 1, Fields Viroloav, B.N. Fields, et al., Eds. (3rd ed., Raven Press, 1996).
71. Wagner, R.R., and Rose, J.K., pages 1121-1135 of volume 1, Fields Viroloav, B.N. Fields, et al., Eds. (3rd ed., Raven Press, 1996).
72. Barik, S., J. Gen. Virol., 74, 485-490 (1993) .
73. Collins, P.L., et al., pages 259-264 of Vaccines 93: modern approaches to new vaccines including prevention of AIDS, F. Brown et al., Eds.
(Cold Spring Harbor Laboratory Press, NY, 1993).
74. Ruo, L., et al., J. Viroloc"pr., 70, 6892-6901 (1996).
75. Huang, Y.T., and lnlertz, G.W., J.
Virolooav, 43, 150-157 (1982).
76. Sambrook, J., et al., Molecular Cloning:
A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y. (1989).
77. Akerlind, B., et al., J. Gen. Viroloav, 69, 2145-2154 (1988).
78. U.S. Patent Application No. 08/059,444.

SEQUENCE LISTING
<110> American Cyanamid Company <120> Attenuated Respiratory Syncytial Viruses <130> 33359-OOPCT
<140>
<141>
<150> US60/059552 <151> 1997-09-19 <160> 12 <170> PatentIn Ver. 2.0 <210> 1 <211> 15218 <212> DNA
<213> respiratory syncytial virus <400> 1 acgcgaaaaa atgcgtacta caaacttgca cattcgaaaa aaatggggca aataagaact 60 tgataagtgc tatttaagtc taaccttttc aatcagaaat ggggtgcaat tcactgagca 120 tgataaaggt tagattacaa aatttatttg acaatgacga agtagcattg ttaaaaataa 180 catgttatac tgataaatta attcttctga ccaatgcatt agccaaagca gcaatacata 240 caattaaatt aaacggcata gtttttatac atgttataac aagcagtgaa gtgtgccctg 300 ataacaatat tgtagtgaaa tctaacttta caacaatgcc aatactacaa aatggaggat 360 acatatggga attgattgag ttgacacact gctctcaatt aaacggttta atggatgata 420 attgtgaaat caaattttct aaaagactaa gtgactcagt aatgactaat tatatgaatc 480 aaatatctga cttacttggg cttgatctca attcatgaat tatgtttagt ctaattcaat 540 agacatgtgt ttattaccat tttagttaat ataaaaactc atcaaaggga aatggggcaa 600 ataaactcac ctaatcaatc aaaccatgag cactacaaat gacaacacta ctatgcaaag 660 attgatgatc acagacatga gacccctgtc aatggattca ataataacat ctcttaccaa 720 agaaatcatc acacacaaat tcatatactt gataaacaat gaatgtattg taagaaaact 780 tgatgaaaga caagctacat ttacattctt agtcaattat gagatgaagc tactgcacaa 840 agtagggagt accaaataca aaaaatacac tgaatataat acaaaatatg gcactttccc 900 catgcctata tttatcaatc acggcgggtt tctagaatgt attggcatta agcctacaaa 960 acacactcct ataatataca aatatgacct caacccgtga attccaacaa aaaaaccaac 1020 ccaaccaaac caaactattc ctcaaacaac agtgctcaat agttaagaag gagctaatcc 1080 attttagtaa ttaaaaataa aagtaaagcc aataacataa attggggcaa atacaaagat 1140 ggctcttagc aaagtcaagt tgaatgatac attaaataag gatcagctgc tgtcatccag 1200 caaatacact attcaacgta gtacaggaga taatattgac actcccaatt atgatgtgca 1260 aaaacaccta aacaaactat gtggtatgct attaatcact gaagatgcaa atcataaatt 132,0 cacaggatta ataggtatgt tatatgctat gtccaggtta ggaagggaag acactataaa 1380 gatacttaaa gatgctggat atcatgttaa agctaatgga gtagatataa caacatatcg 1440 SUBSTITUTE SHEET (RULE 26) WO 99/15672 v.Pe'TNS98/19145 tcaagatata aatggaaagg aaatgaaatt cgaagtatta acattatcaa gcttgacatc 1500 agaaatacaa gtcaatattg agatagaatc tagaaagtcc tacaaaaaaa tgctaaaaga 1560 gatgggagaa gtggctccag aatataggca tgattctcca gactgtggga tgataatact 1620 gtgtatagct gcacttgtga taaccaaatt agcagcagga gacagatcag gtcttacagc 1680 agtaattagg agggcaaaca atgtcttaaa aaacgaaata aaacgataca agggcctcat 1740 accaaaggat atagctaaca gtttttatga agtgtttgaa aaacaccctc atcttataga 1800 tgttttcgtg cactttggca ttgcacaatc atccacaaga gggggtagta gagttgaagg 1860 aatctttgca ggattgttta tgaatgccta tggttcaggg caagtaatgc taagatgggg 1920 agttttagcc aaatctgtaa aaaatatcat gctaggacat gctagtgtcc aggcagaaat 1980 ggagcaagtt gtggaagtct atgagtatgc acagaagttg ggaggagaag ctggattcta 2040 ccatatattg aacaatccaa aagcatcatt gctgtcatta actcaatttc ccaacttctc 2100 aagtgtggtc ctaggcaatg cagcaggtct aggcataatg ggagagtata gaggtacacc 2160 aagaaaccag gatctttatg atgcagctaa agcatatgca gagcaactca aagaaaatgg 2220 agtaataaac tacagtgtat tagacttaac agcagaagaa ttggaagcca taaagcatca 2280 actcaacccc aaagaagatg atgtagagct ttaagttaac aaaaaatacg gggcaaataa 2340 gtcaacatgg agaagtttgc acctgaattt catggagaag atgcaaataa caaagctacc 2400 aaattcctag aatcaataaa gggcaagttc gcatcatcca aagatcctaa gaagaaagat 2460 agcataatat ctgttaactc aatagatata gaagtaacta aagagagccc gataacatct 2520 ggcaccaaca tcatcaatcc aacaagtgaa gccgacagta ccccagaaac aaaagccaac 2580 tacccaagaa aacccctagt aagcttcaaa gaagatctca ccccaagtga caaccctttt 2640 tctaagttgt acaaggaaac aatagaaaca tttgataaca atgaagaaga atctagctac 2700 tcatatgaag agataaatga tcaaacaaat gacaacatta cagcaagact agatagaatt 2760 gatgaaaaat taagtgaaat attaggaatg ctccatacat tagtagttgc aagtgcagga 2820 cccacttcag ctcgcgatgg aataagagat gctatggttg gtctaagaga agagatgata 2880 gaaaaaataa gagcggaagc attaatgacc aatgataggt tagaggctat ggcaagactt 2940 aggaatgagg aaagcgaaaa aatggcaaaa gacacctcag atgaagtgtc tcttaatcca 3000 acttccaaaa aattgagtga cttgttggaa gacaacgata gtgacaatga tctatcactt 3060 gatgattttt gatcagcgat caactcactc agcaatcaac aacatcaata aaacagacat 3120 caatccattg aatcaactgc cagaccgaac aaacaaacgt ccatcagtag aaccaccaac 3180 caatcaatca accaattgat caatcagcaa cccgacaaaa ttaacaatat agtaacaaaa 3240 aaagaacaag atggggcaaa tatggaaaca tacgtgaaca agcttcacga aggctccaca 3300 tacacagcag ctgttcagta caatgttcta gaaaaagatg atgatcctgc atcactaaca 3360 atatgggtgc ctatgttcca gtcatctgtg ccagcagact tgctcataaa agaacttgca 3420 agcatcaata tactagtgaa gcagatctct acgcccaaag gaccttcact acgagtcacg 3480 attaactcaa gaagtgctgt gctggctcaa atgcctagta atttcatcat aagcgcaaat 3540 gtatcattag atgaaagaag caaattagca tatgatgtaa ctacaccttg tgaaatcaaa 3600 gcatgcagtc taacatgctt aaaagtaaaa agtatgttaa ctacagtcaa agatcttacc 3660 atgaagacat tcaaccccac tcatgagatc attgctctat gtgaatttga aaatattatg 3720 acatcaaaaa gagtaataat accaacctat ctaagatcaa ttagtgtcaa gaacaaggat 3780 ctgaactcac tagaaaatat agcaaccacc gaattcaaaa atgctatcac caatgcaaaa 3840 attattcctt atgcaggatt agtgttagtt atcacagtta ctgacaataa aggagcattc 3900 aaatatatca aaccacagag tcaatttata gtagatcttg gtgcctacct agaaaaagag 3960 agcatatatt atgtgactac taattggaag catacagcta cacgtttttc aatcaaacca 4020 ctagaggatt aaacttaatt atcaacactg aatgacaggt ccacatatat cctcaaacta 4080 cacactatat ccaaacatca taaacatcta cactacacac ttcatcacac aaaccaatcc 4140 cactcaaaat ccaaaatcac taccagccac tatctgctag acctagagtg cgaataggta 42Q0 aataaaacca aaatatgggg taaatagaca ttagttagag ttcaatcaat cttaacaacc 4260 atttataccg ccaattcaac acatatacta taaatcttaa aatgggaaat acatccatca 4320 SUBSTITUTE SHEET (RULE 2B) caatagaatt cacaagcaaa ttttggccct attttacact aatacatatg atcttaactc 4380 taatcttttt actaattata atcactatta tgattgcaat actaaataag ctaagtgaac 4440 ataaagcatt ctgtaacaaa actcttgaac taggacagat gtatcaaatc aacacataga 4500 gttctaccat tatgctgtgt caaattataa tcctgtatat ataaacaaac aaatccaatc 4560 ttctcacaga gtcatggtgt cgcaaaacca cgctaactat catggtagca tagagtagtt 4620 atttaaaaat taacataatg atgaattgtt agtatgagat caaaaacaac attggggcaa 4680 atgcaaccat gtccaaacac aagaatcaac gcactgccag gactctagaa aagacctggg 4740 atactcttaa tcatctaatt gtaatatcct cttgtttata cagattaaat ttaaaatcta 4800 tagcacaaat agcactatca gttttggcaa tgataatctc aacctctctc ataattgcag 4860 ccataatatt catcatctct gccaatcaca aagttacact aacaacggtc acagttcaaa 9920 caataaaaaa ccacactgaa aaaaacatca ccacctaccc tactcaagtc tcaccagaaa 4980 gggttagttc atccaagcaa cccacaacca catcaccaat ccacacaagt tcagctacaa 5040 catcacccaa tacaaaatca gaaacacacc atacaacagc acaaaccaaa ggcagaacca 5100 ccacttcaac acagaccaac aagccaagca caaaaccacg tccaaaaaat ccaccaaaaa 5160 aagatgatta ccattttgaa gtgttcaact tcgttccctg cagtatatgt ggcaacaatc 5220 aactttgcaa atccatctgc aaaacaatac caagcaacaa accaaagaag aaaccaacca 5280 tcaaacccac aaacaaacca accaccaaaa ccacaaacaa aagagaccca aaaacaccag 5340 ccaaaacgac gaaaaaagaa actaccacca acccaacaaa aaaactaacc ctcaagacca 5400 cagaaagaga caccagcacc tcacaatcca ctgcactcga cacaaccaca ttaaaacaca 5460 cagtccaaca gcaatccctc ctctcaacca cccccgaaaa cacacccaac tccacacaaa 5520 cacccacagc atccgagccc tccacaccaa actccaccca aaaaacccag ccacatgctt 5580 agttattcaa aaactacatc ttagcagaga accgtgatct atcaagcaag aacgaaatta 5640 aacctggggc aaataaccat ggagttgatg atccacaagt caagtgcaat cttcctaact 5700 cttgctatta atgcattgta cctcacctca agtcagaaca taactgagga gttttaccaa 5760 tcgacatgta gtgcagttag cagaggttat tttagtgctt taagaacagg ttggtatact 5820 agtgtcataa caatagaatt aagtaatata aaagaaacca aatgcaatgg aactgacact 5880 aaagtaaaac ttatgaaaca agaattagat aagtataaga atgcagtaac agaattacag 5940 ctacttatgc aaaacacacc agctgtcaac aaccgggcca gaagagaagc accacagtat 6000 atgaactaca caatcaatac cactaaaaac ctaaatgtat caataagcaa gaagaggaaa 6060 cgaagatttc taggcttctt gttaggtgtg ggatctgcaa tagcaagtgg tatagctgta 6120 tcaaaagttc tacaccttga aggagaagtg aacaagatca aaaatgcttt gttgtctaca 6180 aacaaagctg tagtcagttt atcaaatggg gtcagtgttt taaccagcaa agtgttagat 6240 ctcaagaatt acataaataa ccaattatta cccatagtaa atcaacagag ctgtcgcatc 6300 tccaacattg aaacagttat agaattccag cagaagaaca gcagattgtt ggaaatcacc 6360 agagaattta gtgtcaatgc aggtgtaaca acacctttaa gcacttacat gttgacaaac 6420 agtgagttac tatcattaat caatgatatg cctataacaa atgatcagaa aaaattaatg 6480 tcaagcaatg ttcagatagt aaggcaacaa agttattcca tcatgtctat aataaaggaa 6540 gaagtccttg catatgttgt acagctgcct atctatggtg taatagatac accttgctgg 6600 aaattgcaca catcgcctct atgcactacc aacatcaaag aaggatcaaa tatttgttta 6660 acaaggactg atagaggatg gtattgtgat aatgcaggat cagtatcctt ctttccacag 6720 gctgacactt gtaaagtaca gtccaatcga gtattttgtg acactatgaa cagtttgaca 6780 ttaccaagtg aagtcagcct ttgtaacact gacatattca attccaagta tgactgcaaa 6840 attatgacat caaaaacaga cataagcagc tcagtaatta cttctcttgg agctatagtg 6900 tcatgctatg gtaaaactaa atgcactgca tccaacaaaa atcgtgggat tataaagaca 6960 ttttctaatg gttgtgacta tgtgtcaaac aaaggagtag atactgtgtc agtgggcaac 7020 actttatact atgtaaacaa gctggaaggc aagaaccttt atgtaaaagg ggaacctata 7080 ataaattact atgaccctct agtgtttcct tctgatgagt ttgatgcatc aatatctcaa 7140 gtcaatgaaa aaatcaatca aagtttagct tttattcgta gatctgatga attactacat 720C

SUBSTITUTE SHEET (RULE 26) aatgtaaata ctggcaaatc taCtacaaat attatgataa ctacaattat tatagtaatc 7260 attgtagtat tgttatcatt aatagctatt ggtttactgt tgtattgtaa agccaaaaac 7320 acaccagtta cactaagcaa agaccaacta agtggaatca ataatattgc attcagcaaa 7380 tagacaaaaa accacctgat catgtttcaa caacaatctg ctgaccacca atcccaaatc 7440 aacttacaac aaatatttca acatcacagt acaggctgaa tcatttcctc acatcatgct 7500 acccacataa ctaagctaga tccttaactt atagttacat aaaaacctca agtatcacaa 7560 tcaaccacta aatcaacaca tcattcacaa aattaacagc tggggcaaat atgtcgcgaa 7620 gaaatccttg taaatttgag attagaggtc attgcttgaa tggtagaaga tgtcactaca 7680 gtcataatta ctttgaatgg cctcctcatg cattactagt gaggcaaaac ttcatgttaa 7740 acaagatact caagtcaatg gacaaaagca tagacacttt gtctgaaata agtggagctg 7800 ctgaactgga tagaacagaa gaatatgctc ttggtatagt tggagtgcta gagagttaca 7860 taggatctat aaacaacata acaaaacaat cagcatgtgt tgctatgagt aaacttctta 7920 ttgagatcaa tagtgatgac attaaaaagc ttagagataa tgaagaaccc aattcaccta 7980 agataagagt gtacaatact gttatatcat acattgagag caatagaaaa aacaacaagc 8040 aaaccatcca tctgctcaag agactaccag cagacgtgct gaagaagaca ataaagaaca 8100 cattagatat ccacaaaagc ataaccataa gcaatccaaa agagtcaact gtgaatgatc 8160 aaaatgacca aaccaaaaat aatgatatta ccggataaat atccttgtag tatatcatcc 8220 atattgatct caagtgaaag catggttgct acattcaatc ataaaaacat attacaattt 8280 aaccataact atttggataa ccaccagcgt ttattaaatc atatatttga tgaaattcat 8340 tggacaccta aaaacttatt agatgccact caacaatttc tccaacatct taacatccct 8400 gaagatatat atacagtata tatattagtg tcataatgct tgaccataac gactctatgt 8460 catccaacca taaaactatt ttgataaggt tatgggacaa aatggatccc attattaatg 8520 gaaactctgc taatgtgtat ctaactgata gttatttaaa aggtgttatc tctttttcag 8580 agtgtaatgc tttagggagt tatcttttta acggccctta tcttaaaaat gattacacca 8640 acttaattag tagacaaagc ccactactag agcatatgaa tcttaaaaaa ctaactataa 8700 cacagtcatt aatatctaga tatcataaag gtgaactgaa attagaagaa ccaacttatt 8760 tccagtcatt acttatgaca tataaaagta tgtcctcgtc tgaacaaatt gctacaacta 8820 acttacttaa aaaaataata cgaagagcca tagaaataag tgatgtaaag gtgtacgcca 8880 tcttgaataa actaggatta aaggaaaagg acagagttaa gcccaacaat aattcaggtg 8940 atgaaaactc agtacttaca accataatta aagatgatat actttcggct gtggaaaaca 9000 atcaatcata tacaaattca gacaaaagtc actcagtaaa tcaaaatatc actatcaaaa 9060 caacactctt gaaaaaattg atgtgttcaa tgcaacatcc tccatcatgg ttaatacact 9120 ggttcaattt atatacaaaa ttaaataaca tattaacaca atatcgatca aatgaggtaa 9180 aaagtcatgg gtttatatta atagataatc aaactttaag tggttttcag tttattttaa 9240 atcaatatgg ttgtatcgtt tatcataaag gactcaaaaa aatcacaact actacttaca 9300 atcaattttt gacatggaaa gacatcagcc ttagcagatt aaatgtttgc ttaattactt 9360 ggataagtaa ttgtttaaat acattaaaca aaagcttagg gctgagatgt ggattcaata 9420 atgttgtgtt atcacaatta tttctttatg gagattgtat actgaaatta tttcataatg 9480 aaggcttcta cataataaaa gaagtagagg gatttattat gtctttaatt ctaaacataa 9540 cagaagaaga tcaatttagg aaacgatttt ataatagcat gctaaataac atcacagatg 9600 cagctattaa ggctcaaaag gacctactat caagagtatg tcacacttta ttagacaaga 9660 cagtgtctga taatatcata aatggtaaat ggataatcct attaagtaaa tttcttaaat 9720 tgattaagct tgcaggtgat aataatctca ataacttgag tgagctatat tttctcttca 9780 gaatctttgg acatccaatg gtcgatgaaa gacaagcaat ggattctgta agaattaact 9840 gtaatgaaac taagttctac ttattaagta gtctaagtac attaagaggt gctttcattt 9900 atagaatcat aaaagggttt gtaaatacct acaacagatg gcccacctta aggaatgcta 9950 ttgtcctacc tctaagatgg ttaaactact ataaacttaa tacttatcca tctctacttg 10020 aaatcacaga aaatgatttg attattttat caggattgcg gttctatcgt gagtttcatc 10080 SUBSTITUTE SHEET (RULE 26) tgcctaaaaa agtggatctt gaaatgataa taaatgacaa agccatttca cctccaaaag 10140 atctaatatg gactagtttt cctagaaatt acatgccatc acatatacaa aattatatag 10200 aacatgaaaa gttgaagttc tctgaaagcg acagatcgag aagagtacta gagtattact 10260 tgagagataa taaattcaat gaatgcgatc tatacaattg tgtagtcaat caaagctatc 10320 tcaacaactc taatcacgtg gtatcactaa ctggtaaaga aagagagctc agtgtaggta 10380 gaatgtttgc tatgcaacca ggtatgttta ggcaaatcca aatcttagca gagaaaatga 10440 tagctgaaaa tattttacaa ttcttccctg agagtttgac aagatatggt gatctagagc 10500 ttcaaaagat attagaatta aaagcaggaa taagcaacaa gtcaaatcgt tataatgata 10560 actacaacaa ttatatcagt aaatgttcta tcattacaga tcttagcaaa ttcaatcagg 10620 catttagata tgaaacatca tgtatctgca gtgatgtatt agatgaactg catggagtac 10680 aatctctgtt ctcttggttg catttaacaa tacctcttgt cacaataata tgtacatata 10740 gacatgcacc tcctttcata aaggatcatg ttgttaatct taatgaggtt gatgaacaaa 10800 gtggattata cagatatcat atgggtggta ttgagggctg gtgtcaaaaa ctgtggacca 10860 ttgaagctat atcattatta gatctaatat ctctcaaagg gaaattctct atcacagctc 10920 tgataaatgg tgataatcag tcaattgata taagcaaacc agttagactt atagagggtc 10980 agacccatgc acaagcagat tatttgttag cattaaatag ccttaaattg ttatataaag 11040 agtatgcagg tataggccat aagcttaagg gaacagagac ctatatatcc cgagatatgc 11100 agttcatgag caaaacaatc cagcacaatg gagtgtacta tccagccagt atcaaaaaag 11160 tcctgagagt aggtccatgg ataaacacga tacttgatga ttttaaagtt agtttagaat 11220 ctataggcag cttaacacag gagttagaat acagaggaga aagcttatta tgcagtttaa 11280 tatttaggaa catttggtta tacaatcaaa ttgctttgca actccgaaat catgcattat 11340 gtaacaataa gctatattta gatatattga aagtattaaa acacttaaaa acttttttta 11400 atcttgatag cattgatatg gctttatcat tgtatatgaa tttgcctatg ctgtttggtg 11460 gtggtgatcc taatttgtta tatcgaagct tttataggag aactccagac ttccttacag 11520 aagctatagt acattcagtg tttgtgttga gctattatac tggtcacgat ttacaagata 11580 agctccagga tcttccagat gatagactga acaaattctt gacatgtgtc atcacatttg 11640 ataaaaatcc caatgccgag tttgtaacat tgatgaggga tccacaggct ttagggtctg 11700 aaaggcaagc taaaattact agtgagatta atagattagc agtaacagaa gtcttaagta 11760 tagccccaaa caaaatattt tctaaaagtg cacaacatta tactaccact gagattgatc 11820 taaatgacat tatgcaaaat atagaaccaa cttaccctca tggattaaga gttgtttatg 11880 aaagtttacc tttttataaa gcagaaaaaa tagttaatct tatatcagga acaaaatcca 11940 taactaatat acttgaaaaa acatcagcaa tagatacaac tgatattaat agggctactg 12000 atatgatgag gaaaaatata actttactta taaggatact tccactagat tgtaacaaag 12060 acaaaagaga gttattaagt ttagaaaatc ttagtataac tgaattaagc aagtatgtaa 12120 gagaaagatc ttggtcatta tccaatatag taggagtaac atcgccaagt attatgttca 12180 caatggacat taaatataca actagcacta tagccagtgg tataataata gaaaaatata 12240 atgttaatag tttaactcgt ggtgaaagag gacccaccaa gccatgggta ggctcatcca 12300 cgcaggagaa aaaaacaatg ccagtgtaca acagacaagt tttaaccaaa aagcaaagag 12360 accaaataga tttattagca aaattagact gggtatatgc atccatagac aacaaagatg 12420 aattcatgga agaactgagt actggaacac ttggactgtc atatgaaaaa gccaaaaagt 12480 tgtttccaca atatctaagt gtcaattatt tacaccgttt aacagtcagt agtagaccat 12540 gtgaattccc tgcatcaata ccagcttata gaacaacaaa ttatcatttt gatactagtc 12600 ctatcaatca tgtattaaca gaaaagtatg gagatgaaga tatcgacatt gtgtttcaaa 12660 attgcataag ttttggtctt agcctgatgt cggttgtgga acaattcaca aacatatgtc 12720 ctaatagaat tattctcata ccgaagctga atgagataca tttgatgaaa cctcctatat 12780 ttacaggaga tgttgatatc atcaagttga agcaagtgat acaaaagcag cacatgttcc 12640 taccagataa aataagttta acccaatatg tagaattatt cttaagtaac aaagcactta 12900 aatctggatc tcacatcaac tctaatttaa tattagtaca taaaatgtct gattattttc 12960 SUBSTITUTE SHEET (RULE 2B) ataatgctta tattttaagt actaatttag ctggacattg gattctgatt attcaactta 13020 tgaaagattc aaaaggtatt tttgaaaaag attggggaga ggggtacata actgatcata 13080 tgttcattaa tttgaatgtt ttctttaatg cttataagac ttatttgcta tgttttcata 13140 aaggttatgg taaagcaaaa ttagaatgtg atatgaacac ttcagatctt ctttgtgttt 13200 tggagttaat agacagtagc tactggaaat ctatgtctaa agttttccta gaacaaaaag 13260 tcataaaata catagtcaat caagacacaa gtttgcgtag aataaaaggc tgtcacagtt 13320 ttaagttgtg gtttttaaaa cgccttaata atgctaaatt taccgtatgc ccttgggttg 13380 ttaacataga ttatcaccca acacacatga aagctatatt atcttacata gatttagtta 13440 gaatggggtt aataaatgta gataaattaa ccattaaaaa taaaaacaaa ttcaatgatg 13500 aattttacac atcaaatctc ttttacatta gttataactt ttcagacaac actcatttgc 13560 taacaaaaca aataagaatt gctaattcag aattagaaga taattataac aaactatatc 13620 acccaacccc agaaacttta gaaaatatgt cattaattcc tgttaaaagt aataatagta 13680 acaaacctaa attttgtata agtggaaata ccgaatctat gatgatgtca acattctcta 13740 gtaaaatgca tattaaatct tccactgtta ccacaagatt caattatagc aaacaagact 13800 tgtacaattt atttccaatt gttgtgatag acaagattat agatcattca ggtaatacag 13860 caaaatctaa ccaactttac accaccactt cacatcagac atctttagta aggaatagtg 13920 catcacttta ttgcatgctt ccttggcatc atgtcaatag atttaacttt gtatttagtt 13980 ccacaggatg caagatcagt atagagtata ttttaaaaga tcttaagatt aaggacccca 14040 gttgtatagc attcataggt gaaggagctg gtaacttatt attacgtacg gtagtagaac 14100 ttcatccaga cataagatac atttacagaa gtttaaaaga ttgcaatgat catagtttac 14160 ctattgaatt tctaaggtta tacaacgggc atataaacat agattatggt gagaatttaa 14220 ccattcctgc tacagatgca actaataaca ttcattggtc ttatttacat ataaaatttg 14280 cagaacctat tagcatcttt gtctgcgatg ctgaattacc tgttacagcc aattggagta 14340 aaattataat tgaatggagt aagcatgtaa gaaagtgcaa gtactgttct tctgtaaata 14400 gatgcatttt aattgcaaaa tatcatgctc aagatgacat tgatttcaaa ttagataaca 14460 ttactatatt aaaaacttac gtgtgcctag gtagcaagtt aaaaggatct gaagtttact 14520 taatccttac aataggccct gcaaatatac ttcctgtttt tgatgttgta caaaatgcta 14580 aattgacact ttcaagaact aaaaatttca ttatgcctaa aaaaactgac aaggaatcta 14640 tcgatgcaaa tattaaaagc ttaatacctt tcctttgtta ccctataaca aaaaaaggaa 14700 ttaagacttc attgtcaaaa ttgaagagtg tagttaatgg agatatatta tcatattcta 14760 tagctggacg taatgaagta ttcagcaaca agcttataaa ccacaagcat atgaatatcc 14820 taaaatggct agatcatgtt ttaaatttta gatcagctga acttaattac aatcatttat 14880 acatgataga gtccacatat ccttacttaa gtgaattgtt aaatagttta acaaccaatg 14940 agctcaagaa gctgattaaa ataacaggta gtgtgctata caaccttccc aacgaacagt 15000 agtttaaaat atcattaaca agtttggtca aatttagatg ctaacacatc attatattat 15060 agttattaaa aaatatacaa acttttcaat aatttagcat attgattcca aaattatcat 15120 tttagtctta aggggttaaa taaaagtcta aaactaacaa ttatacatgt gcattcacaa 15180 cacaacgaga cattagtttt tgacactttt tttctcgt 15218 <210> 2 <211> 2166 <212> PRT
<213> respiratory syncytial virus <400> 2 Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp SUBSTITUTE SHEET (RULE 26) Ser Tyr Leu Lys Gly Val Ile Ser Phe Se-r Glu Cys Asn Ala Leu Gly Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Ile Lys Asp Asp IIe Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp , SUBSTITUTE SHEET (RULE 26) Lys Asp Ile Ser Leu Ser Arg Leu Rsn Val Cys Leu Ile Thr Trp Ile Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro SUBSTITUTE SHEET (RULE 26) Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly 755 .760 765 Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu SUBSTITUTE SHEET (RULE 26) Trp Thr Ile Glu Ala Ile Ser Leu~.Leu Asp Leu Ile Ser Leu Lys Gly Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys 945 950 955 ~ 960 His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu SUBSTITUTE SHEET (RULE 26) Thr Cys VaI Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val.Gly Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp SUBSTITUTE SHEET (RULE 26) Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala SUBSTITUTE SHEET (RULE 2B) Lys Leu Glu Cys Asp Met Asn Thr Ser-Asp Leu Leu Cys Val Leu Glu Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser SUBSTITUTE SHEET (RULE 26) Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Ile Glu Trp Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu lgg5 1990 1995 2000 Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Thr Leu Ser Arg Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys SUBSTITUTE SHEET (RULE 26) Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr Asn Leu Pro Asn Glu Gln <210> 3 <211> 15229 <212> DNA
<213> respiratory syncytial virus <400> 3 acgcgaaaaa atgcgtacta caaacttgca cattcggaaa aaatggggca aataagaatt 60 tgataagtgc tatttaaatc taaccttttc aatcagaaat ggggtgcaat tcactgagca 120 tgataaaggt tagattacaa aatttatttg acaatgacga agtagcattg ttaaaaataa 180 catgttatac tgacaaatta attcttctga ccaatgcatt agccaaagca gtaatacata 240 caattaaatt aaacggcata gtttttatac atgttataac aagcagtgaa gtgtgccctg 300 acaacaatat tgtagtgaaa tctaacttta caacaatgcc aatattacaa aacggaggat 360 acatatggga attgattgag ttgacacact gctctcaatc aaatggtcta atggatgata 420 attgtgaaat caaattttct aaaagactaa gtgactcagt aatgactaat tatatgaatc 480 aaatatctga tttacttggg cttgatctca attcatgaat tatgtttagt ctaatttaat 540 agacatgtgt ttatcaccat tttagttaat ataaaacctc atcaaaggga aatggggcaa 600 ataaactcac ctaatcagtc aaaccatgag cactacaaat gacaacacta ctatgcaaag 660 attgatgatc acagacatga gacccctgtc gatggaatca ataataacat ctctcaccaa 720 agaaatcata acacacaaat tcatatactt gataaacaat gaatgtattg taagaaaact 780 tgatgaaaga caagctacat ttacattctt agtcaattat gagatgaagc tattgcacaa 840 agtagggagt accaaataca agaaatacac tgaatataat acaaaatatg gcactttccc 900 catgcctata tttatcaatc atgacgggtt tctagaatgt attggcatta agcctacaaa 960 acacactcct ataatataca aatatgacct caacccgtaa attccaacaa aaaactaacc 1020 catccaaact aagctattcc tcaaacaaca gtgctcaaca gttaagaagg agctaatcca 100 ttttagtaat taaaaataaa ggcagagcca ataacataaa ttggggcaaa tacaaagatg 1140 gctcttagca aagtcaagtt aaatgataca ttaaataagg atcagctgct gtcatccagc 1200 SUBSTITUTE SHEET (RULE 26) aaatacacta ttcaacgtag tacaggagat aatattgaca ctcccaatta tgatgtgcaa 1260 aaacacctaa acaaactatg tggtatgcta ttaatcactg aagatgcaaa tcataaattc 1320 acaggattaa taggtatgtt atatgctatg tccaggttag gaagggaaga cactataaag 1380 atacttaaag atgctggata tcatgttaaa gctaatggag tagatataac aacatatcgt 1440 caagatataa acggaaagga aatgaaattc gaagtattaa cattatcaag cttgacatca 1500 gaaatacaag tcaatattga gatagaatct agaaagtcct acaaaaaaat gctaaaagag 1560 atgggagaag tggctccaga atataggcat gattctccag actgtgggat gataatactg 1620 tgtatagctg cacttgtaat aaccaagtta gcagcaggag atagatcagg tcttacagca 1680 gtaattagga gggcaaacaa tgtcttaaaa aacgaaataa aacgctacaa gggcctcata 1740 ccaaaggata tagctaacag tttttatgaa gtgtttgaaa aacaccctca tcttatagat 1800 gtttttgtgc actttggcat tgcacaatca tccacaagag ggggtagtag agttgaagga 1860 atctttgcag gattatttat gaatgcctat ggttcagggc aagtaatgct aagatgggga 1920 gttctagcca aatctgtaaa aaatatcatg ctaggacatg ctagtgtcca ggcagaaatg 1980 gaacaagttg tggaagttta tgagtatgca cagaagttgg gaggagaagc tggattctac 2040 catatattga acaatccaaa agcatcattg ctgtcattaa ctcaatttcc taacttctca 2100 agtgtggtcc taggcaatgc agcaggtcta ggcataatgg gagagtatag aggtacacca 2160 agaaaccaag atctatatga tgcagccaaa gcatatgcag agcaactcaa agaaaatgga 2220 gtaataaact acagtgtatt agacttaaca gcagaagaat tggaagccat aaagcatcaa 2280 ctcaacccca aagaagatga tgtagagctt taagttaaca aaaaatacgg ggcaaataag 2340 tcaacatgga gaagtttgca cctgaatttc atggagaaga tgcaaacaac aaagctacca 2400 aattcctaga atcaataaag ggcaagtttg catcatccaa agatcctaag aagaaagata 2460 gcataatatc tgttaactca atagatatag aagtaactaa agagagcccg ataacatctg 2520 gcaccaacat catcaatcca ataagtgaag ctgatagtac cccagaagct aaagccaact 2580 acccaagaaa acccctagta agcttcaaag aagatctcac cccaagtgac aacccctttt 2640 ctaagttgta caaagaaaca atagaaacat ttgataacaa tgaagaagaa tctagctact 2700 catatgaaga aataaatgat caaacaaatg acaacattac agcaagacta gatagaattg 2760 atgaaaaatt aagtgaaata ttaggaatgc tccatacatt agtagttgca agtgcaggac 2820 ccacctcagc tcgcgatgga ataagagatg ctatggttgg tctaagagaa gaaatgatag 2880 aaaaaataag agcggaagca ttaatgacca atgataggtt agaggctatg gcaagactta 2940 ggaatgagga aagcgaaaaa atggcaaaag acacctcaga tgaagtgtct cttaatccaa 3000 cttccaaaaa attgagtaat ttgttggaag acaacgatag tgacaatgat ctatcacttg 3060 atgatttttg atcagtgatc aactcactca gcaatcaaca acatcaatga aacagacatc 3120 aatccattga atcaactgcc agactgaaca cacaaacgtc catcagcaga actaccaacc 3180 aatcaatcaa ccaattgatc aatcagcgac ctaacaaaat taacaatata gtaacaaaaa 3240 aagaacaaga tggggcaaat atggaaacat acgtgaacaa gcttcacgag ggctccacat 3300 acacagcagc tgttcagtac aatgttctag aaaaagatga tgatcctgca tcactaacaa 3360 tatgggtgcc tatgttccag tcatctgtgc cagcagactt gctcataaaa gaacttgcaa 3420 gcatcaacat actagtgaag cagatctcca cgcccaaagg accttcacta cgagtcacga 3480 ttaactcaag aagtgctgtg ctggcacaaa tgcctagtag ttttatcata agtgcaaatg 3540 tatcattaga tgaaagaagc aaattagcat atgatgtaac tacaccttgt gaaatcaaag 3600 catgcagtct aacatgctta aaagtaaaaa gtatgttaac tacagtcaaa gatcttacca 3660 tgaaaacatt caatcccact catgagatta ttgctctatg tgaatttgaa aatattatga 3720 catcaaaaag agtaataata ccaacctatc taagatcaat tagtgtcaaa aacaaggacc 3780 tgaactcact agaaaatata gcaaccaccg aattcaaaaa tgctatcacc aatgcgaaaa 3840 ttattcccta tgcaggatta gtattagtta tcacagttac tgacaataaa ggagcattca 3900 aatatatcaa gccacagagt caatttatag tagatcttgg ggcctaccta gaaaaagaga 3960 gcatatatta tgtgactaca aattggaagc atacagctac acgtttttca atcaaaccac 4020 tagaggatta aacttaatta tcaacactaa atgacaggtc cacatatatc ttcaaactat 4080 SUBSTITUTE SHEET (RULE 26) acattatatc caaacatcat gagcatttac actacacact tttaccatat aaatcaatct 4140 catttaaaat ccaaaattac ttccagctat catctgttag acctagagtg cgaataggta 4200 aataaaacca aaatatgggg taaatagaca ttagttagag ttcaatcaat ctcaacaacc 4260 atttataccg ccaattcagt acatatacta taaatctcaa aatgggaaat acatccatca 4320 caatagaatt cacaagcaaa ttttggcctt attttacact aatacatatg atcttaactc 4380 taatctcttt actaattata atcactatta tgattgcaat actaaataag ctaagtgaac 4440 ataaaacatt ctgcaacaaa actcttgaac taggacagat gtatcaaatc aacacatagt 4500 gttctaccat tatgctgtgt caaattataa tcttgtatat ataaacaaac aaatccaatc 4560 ttctcacaga gtcatggtgg cgcaaaacca cgccaaccat catgatagca tagagtagtt 4620 atttaaaaat taacataatg atgaattatt ggtatgagat caggaacaac attggggcaa 4680 atgcagccat gtccaagcac aagaatcggc gcactgccgg gactctagaa aggacctggg 4740 atactcttaa tcatctaatt gtaatatcct cttgtttata cagattaaat ttaaaatcta 4800 tagcacaaat agcactgtca gttttggcaa tgataatctc aacctctctc ataattgcag 4860 ccataatatt catcatctct gccaatcaca aagttacact aacaacggtt acagttcaaa 4920 caataaaaaa ccacactgaa aaaaacatct ccacctacct tactcaagtc ccaccagaaa 4980 gggtcaactc atccaaacaa cccacaacca catcaccaat ccacacaaat tcagccacaa 5040 tatcaccaaa tacaaaatca gaaacacacc atacaacagc acaaaccaaa ggcagaatca 5100 ccacttcaac acagaccaac aagccaagca caaaatcacg ttcaaaaaat ccaccaaaaa 5160 aaccaaaaga tgattaccat tttgaagtgt tcaattttgt tccctgtagt atatgtggta 5220 ataatcaact ctgcaaatcc atctgcaaaa caataccaag caacaaacca aagaaaaaac 5280 caaccatcaa acccacaaac aaaccaacca ccaaaaccac aaacaaaaga gaccccaaaa 5340 caccagccaa aatgccaaaa aaagaaatca tcaccaaccc agcaaaaaaa ccaaccctca 5400 agaccacaga aagagacacc agcatttcac aatccaccgt gctcgacaca atcactccaa 5460 aatacacaat ccaacagcaa tccctccact caaccacctc cgaaaacaca cccagctcca 5520 cacaaatacc cacagcatcc gagccctcca cattaaatcc taattaaaaa acctagtcac 5580 atgcttagtt attcaaaaac tacatcttag cagagaaccg tgatctatca agcaagaaca 5640 aaattaaacc tggggcaaat aaccatggag ttgctgatcc acaggtcaag tgcaatcttc 5700 ctaactcttg ctgttaatgc attgtacctc acctcaagtc agaacataac tgaggagttt 5760 taccaatcga catgtagtgc agttagcaga ggttatttta gtgctttaag aacaggttgg 5820 tataccagtg tcataacaat agaattaagt aatataaaag aaaccaaatg caatggaact 5880 gacactaaag taaaacttat aaaacaagaa ttagataagt ataagaatgc agtaacagaa 5940 ttacagctac ttatgcaaaa cacgccagct gccaacaacc gggccagaag agaagcacca 6000 cagtacatga actacacaat caataccaca aaaaacctaa atgtatcaat aagcaagaaa 6060 aggaaacgaa gatttctggg cttcttgtta ggtgtaggat ctgcaatagc aagtggtata 6120 gctgtatcca aagttttaca ccttgaagga gaagtgaaca aaatcaaaaa tgctttgttg 6180 tctacaaaca aagctgtagt cagtctatca aatggggtca gtgttttaac cagcaaagtg 6240 ttagatctca agaattacat aaataaccga atattaccca tagtaaatca acagagctgt 6300 cgcatctcca acattgaaac agttatagaa ttccagcaga agaatagcag attgttggaa 6360 atcaccagag aatttagtgt taatgcaggt gtaacaacac ctttaagcac ttacatgtta 6420 acaaacagtg agttactatc attgatcaat gatatgccta taacaaatga ccagaaaaaa 6480 ttaatgtcaa gcaatgttca gatagtaagg caacaaagtt attctatcat gtctataata 6540 aaggaagaag tccttgcata tgttgtacag ctacctatct atggtgtaat agatacacct 6600 tgctggaaat tacacacatc acctctatgc accaccaaca tcaaagaagg atcaaatatt 6660 tgtttaacaa ggactgatag aggatggtat tgtgataatg caggatcagt atccttcttc 6720 ccacaggctg atacttgcaa agtacagtcc aatcgagtat tttgtgacac tatgaacagt 6780 ttaacattac caagtgaagt cagcctttgt aacactgaca tattcaattc caagtatgac 6840 tgcaaaatta tgacatcaaa aacagacata agcagctcag taattacttc tcttggagct 6900 atagtgtcat gctatggaaa aactaaatgc actgcatcca ataaaaatcg tgggattata 6960 SUBSTITUTE SHEET (RULE 26) WO 99/15672 P~'.T/US9$/19145 aagacatttt ctaatggttg tgactatgtg tcaaacaaag gagtagatac tgtgtcagtg 7020 ggcaacactt tatactatgt aaacaagctg gaaggcaaaa acctttatgt aaaaggggaa 7080 cctataataa attactatga tcctctagtg tttccttctg atgagtttga tgcatcaata 7140 tctcaagtca atgaaaaaat caatcaaagt ttagctttta ttcgtagatc tgatgaatta 7200 ctacataatg taaatactgg caaatctact acaaatatta tgataactac aattattata 7260 gtaatcattg tagtattgtt atcattaata gctattggtt tactgttgta ttgcaaagcc 7320 aaaaacacac cagttacact aagcaaagac caactaagtg gaatcaataa tattgcattc 7380 agcaaataga caaaaaacta cttaatcatg tttcaacaac aatctgctga ccaccaatcc 7440 caaatcaact taacaacaaa tatttcaaca tcatagcaca ggctgaatca tttcctcata 7500 tcatgctacc tacacaacta agctagatct tcaactcata gttacataaa aaccccaagt 7560 atcacaatca aacactaaat cgacacatca ttcacaaaat taacaactgg ggcaaatatg 7620 tcgcgaagaa atccttgtaa atttgagatt agaggtcatt gcttgaatgg tagaagatgt 7680 cactacagtc ataattattt tgaatggcct cctcatgcat tactagtgag gcaaaacttc 7740 atgttaaaca agatacttaa gtcaatggac aaaagcatag acactttgtc ggaaataagt 7800 ggagctgctg aactggatag aacagaagaa tatgctcttg gtatagttgg agtgctagag 7860 agttacatag gatcaataaa caacataaca aaacaatcag catgtgttgc tatgagtaaa 7920 cttcttattg agatcaacag tgatgacatt aaaaaactga gagataacga agaacccaat 7980 tcgcctaaga taagagtgta caatactgtt atatcataca ttgagagcaa tagaaaaaac 8040 aacaagcaaa ccatccatct gctcaaaaga ctaccagcag acgtgctgaa gaagacaata 8100 aagaacacat tagatatcca caaaagcata accataagca actc~acaaga gtcaaccgtg 8160 aatgatcaaa atgaccaaac caaaaataat gatattaccg gataaatatc cttgtagtat 8220 atcatccata ttgatttcaa gtgaaagcat gattgctaca ttcaatcata aaaacatatt 8280 acaatttaac cataaccatt tggataacca ccagtgttta ttaaatcata tatttgatga 8340 aattcattgg acacctaaaa acttattaga tgccactcaa caatttctcc aacatcttaa 8400 catccctgaa gatatatata cagtatatat attagtgtca taatgcttga ccataacaat 8460 tttatatcat tcaaccataa aacaacctta ataaggttat gggacaaaat ggatcccatt 8520 attaatggaa actctgccaa tgtgtatcta actgatagtt atctaaaagg tgttatctct 8580 ttttcagaat gtaatgcttt agggagttac ctttttaacg gcccctatct taaaaatgat 8640 tacaccaact taattagtag acaaagccca ctactagagc atatgaatct aaaaaaacta 8700 actataacac agtcattaat atctagatat cataaaggtg aactgaagtt agaagaacca 8760 acttatttcc agtcattact tatgacatat aaaagtatgt cctcgtctga acaaattgct 8820 acaactaatt tacttaaaaa aataatacga agagctatag aaataagtga tgtaaaggtg 8880 tacgccatct tgaataaact gggactaaag gaaaaggaca gagttaagcc caacaataat 8940 tcaggtgatg aaaactcagt tcttacaacc ataatcaaag atgatatact ttcagctgtg 9000 gaaaacaatc aatcatatac aaattcagac aaaaatcatt cagtaaatca aaatatcact 9060 atcaaaacaa cactcttgaa aaaattgatg tgttcaatgc aacatcctcc atcatggtta 9120 atacactggt tcaatttata tacaaaatta aataacatat taacacaata tcgatcaaat 9180 gaggtaaaaa gtcatgggtt tatattaata gataatcaaa ctttaagtga ttttcagttt 9240 attttaaatc aatatggttg tatcgtttat cataaaggac tcaaaaaaat cacaactact 9300 acttacaatc aatttttgac atggaaagac atcagcctta gcagattaaa tgtttgctta 9360 attacttgga taagtaattg tttaaataca ttaaataaaa gcttagggct gagatgtgga 9420 ttcaataatg ttgtgttatc acaactattt ctttatggag attgtatact gaaattattc 9480 cataatgaag gcttctacat aataaaagaa gtagagggat ttattatgtc tttaattcta 9540 aacataacag aagaagatca atttaggaaa cgattttata atagcatgct aaataacatc 9600 acagatgcag ctattaaggc tcaaaaaaac ctactatcaa gagtatgtca cactttatta 9660 gacaagacag tgtctgataa tatcataaat ggtaaatgga taatcctatt aagtaaattt 970 cttaaattga ttaagcttgc aggtgataat aatctcaata acttgagtga gctttatttt 9780 ctcttcagaa tctttggaca tccaatggtc gatgaaagac aagcaatgga tgctgtaaga 9840 SUBSTITUTE SHEET (RULE 26) attaactgta atgaaaccaa gttctactta ttaagtaatc taagtacgtt aagaggtgct 9900 ttcatttata gaatcataaa ggggtttgta aatacctaca acagatggcc cactttaagg 9960 aatgctattg ttctacctct aagatggttg aactattata aacttaatac ttatccatct 10020 ctacttgaaa tcacagagaa agatttgatt attttatcag gattgcggtt ctatcgtgag 10080 tttcatctgc ctaaaaaagt ggatcttgaa atgataataa atgacaaagc catttcacct 10140 ccaaaagatt taatatggac tagttttcct agaaattaca tgccatcaca tatacaaaat 10200 tatatagaac atgaaaagtt gaagttctct gaaagtgaca gatcaagaag agtactagag 10260 tattacttga gagataataa attcaatgaa tgcgatctat acaattgtgt ggtcaatcaa 10320 agctatctca acaactctaa ccatgtggta tcactaactg gtaaagaaag agagctcagt 10380 gtaggtagaa tgtttgctat gcaaccaggt atgtttaggc aaattcaaat cttagcagag 10440 aaaatgatag ccgaaaatat tttacaattc ttccctgaga gtttgacaag atatggtgat 10500 ctagagcttc aaaagatatt agaattaaaa gcaggaataa gcaacaagtc aaatcgttat 10560 aatgataact acaacaatta tatcagtaaa tgttctatca ttacagacct tagcaaattc 10620 aatcaagcat ttagatatga aacatcatgt atctgcagtg atgtattaga tgaactgcat 10680 ggagtacaat ctctgttctc ttggttgcat ttaacaatac ctcttgtcac aataatatgt 10740 acatatagac atgcacctcc ttttataaag gatcatgttg ttaatcttaa taaagttgat 10800 gaacaaagtg gattatacag atatcatatg ggtggtattg aaggctggtg tcaaaaactg 10860 tggaccattg aagctatatc attattagat ctaatatctc tcaaagggaa attctctatc 10920 acagctctaa taaatggtga taatcagtca attgatataa gtaaaccagt tagacttata 10980 gagggtcaga cccatgctca agcagattat ttgttagcat taaatagcct taaattgcta 11040 tataaagagt atgcgggcat aggccacaag ctcaagggaa cagagaccta tatatcccga 11100 gatatgcaat tcatgagcaa aacaatccag cacaatggag tgtactatcc agccagtatc 11160 aaaaaagtcc tgagagtagg tccatggata aatacaatac ttgatgattt taaagttagt 11220 ttagaatcta taggtagctt aacacaggag ttagaatata gaggagagag cttattatgc 11280 agtttaatat ttaggaacat ttggttatac aatcaaattg ctttgcaact ccgaaatcat 11340 gcattatgtc acaataagct atatttagat atattgaaag tattaaaaca cttaaaaact 11400 ttttttaatc ttgatagtat tgatatggct ttaacattgt atatgaattt gcctatgctg 11460 tttggtggtg gtgatcctaa tttgttatat cgaagctttt ataggagaac tccagacttc 11520 cttacagaag ctatagtaca ttcagtgttt gtgttgagct attatactgg tcacgattta 11580 caagataagc tccaggatct tccagatgat agactgaaca aattcttgac atgtatcatc 11640 acgtttgata aaaatcccaa tgccgagttt gtaacattga tgagagatcc acaggcttta 11700 gggtctgaaa ggcaagcaaa aattactagt gagattaata gattagcagt gacagaagtc 11?60 ttaagtatag ctccaaacaa aatattttct aaaagtgcac aacattatac taccactgag 11820 attgatctaa atgatattat gcaaaatata gaaccaactt accctcatgg attaagagtt 11880 gtttatgaaa gtttaccttt ttataaagca gaaaaaatag ttaatcttat atcaggaaca 11940 aaatccataa ctaatatact tgaaaaaaca tcagcaatag attcaactga tattaatagg 12000 gctactgata tgatgaggaa aaatataact ttacttataa ggatacttcc actagattgt 12060 aacaaagaca aaagagagtt attaagttta gaaaatctta gtataactga attaagcaag 12120 tatgtaagag aaagatcttg gtcgttatcc aatatagtag gagtaacatc gccaagtatt 12180 atgttcacaa tggacattaa atatacaact agcactatag ccagtggtat aattatagaa 12240 aaatataatg ttaatagttt aactcgtggt gaaagaggac ctactaagcc atgggtaggt 12300 tcatctacgc aggagaaaaa aacaatgcca gtgtacaata gacaagtttt aaccaaaaag 12360 caaagagacc aaatagattt attagcaaaa ttagactggg tatatgcatc catagacaac 12420 aaagatgaat tcatggaaga actgagtact ggaacacttg gactgtcata tgagaaagcc 12480 aaaaaattgt ttccacaata tctaagtgtc aattatttac accgcttaac agtcagtagt 12540 agaccatgtg aattccctgc atcaatacca gcttatagaa caacaaatta tcatttcgat 12600 actagtccta tcaaccatgt attaacagaa aagtatggag atgaagatat cgacattgtg 12660 tttcaaaatt gcataagttt tggtcttagc ttaatgtcgg ttgtggaaca attcacaaac 12720 SUBSTITUTE SHEET (RULE 26) WO 99/15672 PCTNS9$/19145 atatgtccta atagaattat tctcataccg aagctgaatg agatacattt gatgaaacct 12780 cctatattta caggagatgt tgatatcatc aagttgaagc aagtgataca aaaacagcac 12840 atgttcctac cagataaaat aagtttaacc caatatgtag aattattcct aagtaacaaa 12900 gcacttaaat ctggatctca catcaactct aatttaatat tagtacataa aatgtctgat 12960 tattttcata atgcttatat tttaagtact aatttagctg gacattggat tctgattatt 13020 caacttatga aggattcaaa aggtattttt gaaaaagatt ggggagaggg gtatataact 13080 gatcatatgt tcattaattt gaatgttttc tttaatgctt ataagactta tttgctatgt 13140 tttcataaag gttatggtaa agcaaaatta gaatgtgata tgaacacttc agatcttctt 13200 tgtgttttgg agctaataga cagtagctac tggaaatcta tgtctaaagt tttcctagaa 13260 caaaaagtca taaaatacat aatcaatcaa gacacaagtt tgcatagaat aaaaggttgt 13320 catagtttta agttatggtt tttaaaacgc cttaataatg ctaaatttac cgtatgccct 13380 tgggttgtta acatagatta tcacccaaca cacatgaaag ctatattatc ttacatagat 13440 ttagttagaa tggggttaat aaatgtagat aaattaacca ttaaaaataa aaataaattc 13500 aatgatgaat tttacacatc aaatctcttt tacattagtt ataacttttc agataacact 13560 catttgctaa caaaacaaat aagaattgct aattcagaat tagaaaataa ttataacaaa 13620 ctatatcacc caaccccaga aactttagaa aatatgtcat taattcctgt caaaagtaat 13680 aatagtaata aacctaaatt tggtataagt ggaaataccg aatctatgat gacgtcaaca 13740 ttctccaata aaacgcatat taaatcttcc gctgttatta caagattcaa ttatagtaaa 13800 caagacttgt acaatttatt tccaattgtc gtgatagaca ggattataga tcattcaggt 13860 aatacagcaa aatctaacca actctacact accacttcac atcagacatc tttagtaagg 13920 aatagtgcat cactttattg catgcttcct tggcatcatg tcaatagatt taactttgta 13980 tttagttcca caggatgcaa gatcagtata gagtatattt taaaagatct taagattaaa 14040 gaccccagtt gtatagcatt cataggtgaa ggagctggta acttattatt acgtacagta 14100 gtagaacttc atccagacat aagatacatt tacagaagtt taaaagattg caatgatcat 14160 agtttaccta ttgaatttct aaggttatac aacgggcata taaacataga ttatggtgag 14220 aatttaacca ttcctgctac agatgcaact aataacattc attggtctta tttacatata 14280 aaatttgcag aacctattag catttttgtc tgcgatgctg aattacctgt tacagccaat 14340 tggagtaaaa ttataattga atggagtaag catgtaagaa agtgcaagta ctgttcctct 14400 gtaaatagat gcattttaat tgcaaaatat catgcccaag atgatattga tttcaaatta 14460 gataacatta ctatattaaa aacttacgtg tgcctaggta gcaagttaaa aggatctgaa 14520 gtttacttag tccttacaat aggccctgca aatatacttc ctgtttttaa tgttgtgcaa 14580 aatgctaaat tgattctttc aaggactaaa aatttcatta tgcctaaaaa aactgacaaa 14640 gaatctatcg atgcaaatat taaaagctta atacctttcc tttgttaccc tataacaaaa 14700 aaaggaatta agacttcatt gtcaaaattg aagagtgtag ttagtggaga tatattatca 14760 tattctatag ctggacgtaa tgaagtattc agcaacaagc ttataaacca caagcatatg 14820 aatatcctaa aatggctaga tcatgtttta aactttagat cagctgaact taattacaat 14880 catttatata tgatagagtc cacatatcct tacttaagtg aattgttaaa cagtttaaca 14940 accaatgagc tcaagaagct gattaaaata acaggtagtg tactatacaa ccttcccaac 15000 gaacagtaac ttaaaacatc attaacaagt ttgatcaaat ttagatgcta acacatcata 15060 atattatagt tattaaaaaa tatatatgca aacttttcaa taatttagca tattgattcc 15120 aaagttatca ttttggtctt aaggggttga ataaaaatct aaaactaaca attatacatg 15180 tgcatttaca acacaacgag acattagttt ttgacacttt ttttctcgt 15229 <210> 4 <211> 2166 <212> PRT
<213> respiratory syncytial virus SUBSTITUTE SHEET (RULE 26~

<400> 4 Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Ile Lys Asp Asp Ile Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Asn His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser Asp Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys SUBSTITUTE SHEET (RULE 26) Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly Phe Asn Asn Val Val Leu Ser Glri Leu Phe Leu Tyr Gly Asp Cys Ile Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala Ile Lys Ala Gln Lys Asn Leu Leu Ser Arg Val Cys His Thr Leu Leu Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro Met Val Asp Glu Arg Gln Ala Met Asp Ala Val Arg Ile Asn Cys Asn Glu Thr Lys Phe Tyr Leu Leu Ser Asn Leu Ser Thr Leu Arg Gly Ala Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Lys Asp SUBSTITUTE SHEET (RULE 26) Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu Leu Lys Ala Gly Ile 5er Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr Asn Asn Tyr Ile Ser Lys Cys Sex Ile Ile Thr Asp Leu Ser Lys Phe Rsn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe Ile Lys Asp His Val Val Asn Leu Asn Lys Val Asp Glu Gln Ser Gly SUBSTITUTE SHEET (RULE 26) Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu.Ile Ser Leu Lys Gly Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp Ile Ser Lys Pro Val Arg Leu IIe Glu Gly Gln Thr His Ala Gln Ala Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His Ala Leu Cys His Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Thr Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu SUBSTITUTE SHEET (RULE 26~

Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu Thr Cys Ile ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys Ile VaI Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu Lys Thr Ser Ala Ile Asp Ser Thr Asp Ile Asn Arg Ala Thr Asp Met Met Arg Lys Asn Ile Thr Leu Leu Ile Arg IIe Leu Pro Leu Asp Cys Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Sex Ile Thr Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val SUBSTITUTE SHEET (RULE 26) WO 99/15672 P'CT/US98/19145 Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn SUBSTITUTE SHEET (RULE 28) Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu Gln Lys Val Ile Lys Tyr Ile Ile Asn Gln Asp Thr Ser Leu His Arg Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser Glu Leu Glu Asn Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys Pro Lys Phe Gly Ile Ser Gly Asn Thr Glu Ser Met Met Thr Ser Thr Phe Ser Asn Lys Thr His Ile Lys Ser Ser Ala Val Ile Thr Arg Phe Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile Asp Arg Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu SUBSTITUTE SHEET (RULE 26) Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp 'Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg Tyr ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser 1905 1910 1915 ~ 1920 Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Ile Glu Trp Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu Asp Asn Ile Thr Ile Leu Lys Thr Tyr val Cys Leu Gly Ser Lys Leu Lys Gly Ser Glu Val Tyr Leu Val Leu Thr Ile Gly Pro Ala Asn Ile Leu Pro Val Phe Asn Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp SUBSTITUTE SHEET (RULE 28) atgcttagt~

Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Ser Gly Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr Asn Leu Pro Asn Glu Gln <210> 5 <211> 15219 <212> DNA
<213> respiratory syncytial virus <400> 5 acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60 ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120 atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180 acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240 acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300 gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360 tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420 aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480 caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540 tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600 aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660 gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720 aagaaatcat cacacacaaa ttcatatact tgataaacaa.tgaatgtatt gtaagaaaac 780 ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 844 aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900 ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960 SUBSTITUTE SHEET (RULE 26) aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020 cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080 cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140 tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200 gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260 aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320 tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380 agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440 gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500 cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560 agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620 tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680 cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740 taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800 atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860 gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920 gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980 tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040 accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100 caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160 caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220 gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280 aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340 agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400 caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460 tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520 tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580 ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640 ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700 ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2'760 tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820 acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880 agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940 taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000 aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060 tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120 tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180 ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240 aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300 atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360 aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420 aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480 gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540 tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600 agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660 catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720 gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780 tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840 SUBSTITUTE SHEET (RULE 28) aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900 caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960 gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020 actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080 acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140 ccactcaaaa tccaaaatca ctaccagcca ctatccgcta gacctagagt gcgaataggc 4200 aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260 catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320 acaatagaac tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380 ctaatctttt tactaattat aatcactatc atgattgcaa cactaaataa gctaagtgaa 4440 cacaaagcat tctgcaacaa aactcttgaa ctaggacaga tgtaccaaat caacacacag 4500 agttccacca ttatgctgtg tcaaaccata atcctgtata tacaaacaaa caaatccaat 4560 cctctcacag agtcacggtg tcgcaaaacc acgctaacca tcatggtagc atagagtagt 4620 tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680 aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740 gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800 atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860 gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920 acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980 agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040 acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100 accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160 aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220 caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280 atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340 gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400 acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460 acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520 acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580 tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640 aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700 tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760 atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820 tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880 taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940 gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000 tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060 acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120 atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180 aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtc~ttaga 6240 tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300 ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360 cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420 cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480 gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540 agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600 gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660 aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720 SUBSTITUTE SHEET (RULE 26) ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780 attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840 aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900 gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960 attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020 cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080 aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140 agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200 taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260 cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320 cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380 atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440 caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500 tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560 atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620 agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680 agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740 aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800 gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860 ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920 attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980 aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040 caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100 acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160 caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220 catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280 taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340 ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400 tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460 tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520 ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580 gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640 aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700 acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760 ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820 aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880 atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940 gatgaaaact cagtacttac aaccataatt aaagatgata tactttcggc tgtggaaaac 9000 aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060 acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120 tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180 aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240 aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300 aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360 tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420 aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 94$0 gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540 acagaagaag atcaatttaa gaaacgattt tataatagca tgctaaataa catcacagat 9600 SUBSTITUTE SHEET (RULE 26) gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660 acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720 ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780 agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac-9840 tgtaatgaaa ctaggttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900 tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960 attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020 gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080 ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140 gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200 gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260 ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320 ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380 agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440 atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500 cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560 aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620 gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680 caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740 agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800 agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860 attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920 ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 109so cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040 gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100 cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160 gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220 tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280 atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340 tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400 aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460 ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520 gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580 aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640 gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700 gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760 atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820 ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880 gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940 ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000 gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060 gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120 agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180 acaatgaaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240 aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300 acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360 gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420 gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480 SUBSTITUTE SHEET (RULE 26) ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540 tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600 cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660 aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720 cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780 tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840 ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900 aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960 cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020 atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080 atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140 aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200 ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260 gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320 tttaagttgt ggtttttaaa acgccttaat aatgctaaat ttaccgtatg cccttgggtt 13380 gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440 agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500 gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560 ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620 cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680 aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740 agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800 ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860 gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920 gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980 tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040 agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100 cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160 cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220 accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280 gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340 aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400 agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460 attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520 ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580 aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640 atcgatgcaa atattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700 attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760 atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820 ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880 tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940 gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000 tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060 tagttattaa agaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120 ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180 acacaacgag acattagttt ttgacacttt ttttctcgt 15219 <210> 6 SUBSTITUTE SHEET (RULE 2B) <211> 2166 <212> PRT
<213> respiratory syncytial virus <400> 6 Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Ile Lys Asp Asp Ile Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser SUBSTITUTE SHEET (RULE 26) WO 99/15672 P~1'/US98/19145 Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe Lys Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn Glu Thr Arg Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr SUBSTITUTE SHEET (RULE 26) Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser Val Gly Arg Met Phe Ala Met G1n Pro Gly Met Phe Arg Gln Ile Gln Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe SUBSTITUTE SHEET (RULE 28) Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys GIy Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser Leu Tyr Met Asn Leu Pro Met Leu Phe Gly GIy Gly Asp Pro Asn Leu Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala SUBSTITUTE SHEET (RULE 2E) Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu 1010 ~ 1015 1020 Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asn Ile Lys Tyr Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly SUBSTITUTE SHEET (RULE 28) Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu SUBSTITUTE SHEET (RULE 2B) WO 99/15b72 PCTNS98/19145 Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr IIe Ser Tyr Asn Phe Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile SUBSTITUTE SHEET (RULE 28) WO 99/15672 . PCT/US98/19145 Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Ile Glu Trp Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg SUBSTITUTE SHEET (RULE 26) Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr Asn Leu Pro Asn Glu Gln <210> 7 <211> 15219 <212> DNA
<213> respiratory syncytial virus <400> 7 acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60 ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120 atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180 acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240 acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300 gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360 tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420 aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480 caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540 tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 60Q
aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660 gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720 SUBSTITUTE SHEET (RULE 2B) aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780 ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840 aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900 ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960 aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020 cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080 cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140 tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200 gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260 aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320 tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380 agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440 gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500 cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560 agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620 tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680 cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740 taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800 atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860 gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920 gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980 tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040 accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100 caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160 caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220 gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280 aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340 agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400 caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460 tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520 tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580 ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640 ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700 ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760 tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820 acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880 agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940 taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000 aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060 tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120 tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180 ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240 aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300 atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360 aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420 aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3450 gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540 tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600 SUBSTITUTE SHEET (RULE 2t3) agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660 catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720 gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3'780 tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840 aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900 caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960 gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020 actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080 acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140 ccactcaaaa tccaaaatca ctaccagcca ctatctgcta gacctagagt gcgaataggt 4200 aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260 catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320 acaatagaat tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380 ctaatctttt tactaattat aatcactatt atgattgcaa tactaaataa gctaagtgaa 4440 cataaagcat tctgtaacaa aactcttgaa ctaggacaga tgtatcaaat caacacatag 4500 agttctacca ttatgctgtg tcaaattata atcctgtata tataaacaaa caaatccaat 4560 cttctcacag agtcatggtg tcgcaaaacc acgctaacta tcatggtagc atagagtagt 4620 tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680 aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740 gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800 atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860 gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920 acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980 agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040 acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100 accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160 aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220 caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280 atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340 gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400 acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460 acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520 acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580 tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640 aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700 tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760 atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820 tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880 taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940 gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000 tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060 acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120 atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180 aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240 tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300 ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 636.0 cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420 cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480 5U9STITUTE SHEET (RULE 26) gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540 agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600 gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660 aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720 ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780 attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840 aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900 gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960 attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020 cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080 aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140 agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200 taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260 cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320 cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380 atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440 caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500 tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560 atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620 agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680 agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740 aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800 gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860 ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920 attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980 aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040 caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100 acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160 caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220 catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280 taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340 ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400 tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460 tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520 ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580 gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640 aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700 acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760 ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820 aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880 atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940 gatgaaaact cagtacttac aactataatt aaagatgata tactttcggc tgtggaaaac 9000 aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060 acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120 tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180 aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240 aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300 aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360 SUBSTITUTE SHEET (RULE 2B) tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420 aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480 gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540 acagaagaag atcaatttag gaaacgattt tataatagca tgctaaataa catcacagat 9600 gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660 acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720 ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780 agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840 tgtaatgaaa ctaagttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900 tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960 attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020 gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080 ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140 gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200 gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260 ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320 ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380 agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440 atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500 cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560 aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620 gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680 caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740 agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800 agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860 attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920 ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980 cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040 gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100 cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160 gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220 tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280 atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340 tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400 aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460 ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520 gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580 aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640 gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700 gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760 atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820 ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880 gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940 ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggct~ct 12000 gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060 gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120 agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180 acaatggaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240 SUBSTITUTE SHEET (RULE 26) aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300 acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360 gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420 gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480 ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540 tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600 cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660 aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720 cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780 tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840 ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900 aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960 cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020 atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080 atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140 aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200 ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260 gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320 tttaagttgt ggtttttaaa acgccttaat aatgctaaat ttaccgtatg cccttgggtt 13380 gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440 agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500 gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560 ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620 cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680 aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740 agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800 ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860 gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920 gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980 tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040 agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100 cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160 cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220 accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280 gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340 aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400 agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460 attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520 ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580 aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640 atcgatgcag atattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700 attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760 atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820 ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880 tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940 gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15Q00 tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060 tagttattaa aaaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120 SUBSTITUTE SHEET (RULE 26) ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180 acacaacgag acattagttt ttgacacttt ttttctcgt 15219 <210> 8 <211> 2166 <212> PRT
<213> respiratory syncytial virus <400> B
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Ile Lys Asp Asp Ile Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe SUBSTITUTE SHEET (RULE 28) Asn Leu Tyr Thr Lys Leu Asn Asn Ile Le_u Thr Gln Tyr Arg Ser Asn Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Tle Asn Cys Asn Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala SUBSTITUTE SHEET (RULE 2$) Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Sex Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu SUBSTITUTE SHEET (RULE 26) Asp Glu Leu His Gly Val Gln.Ser Leu Phe Ser Trp Leu His Leu Thr Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser SUBSTITUTE SHEET (RULE 26) Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala Ile VaI His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His 1105 ~ 1110 1115 1120 Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu G1u Asn Leu Ser Ile Thr Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr SUBSTITUTE SHEET (RULE 26) WO 99/15672 . . PCT/US98/19145 Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Aia Lys Lys Leu Phe Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln,Tyr Val Glu Leu Phe Leu,Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn SUBSTITUTE SHEET (RULE 26) Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu 1505 1510 1515 ~ 1520 Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr SUBSTITUTE SHEET (RULE 28) Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Ile Glu Trp Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg.Cys Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu SUBSTITUTE SHEET (RULE 26) ~~ü

Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp Ala Asp Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr Asn Leu Pro Asn Glu Gln <210> 9 <211> 15219 <212> DNA
<213> respiratory syncytial virus <400> 9 acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60 ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120 atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180 acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240 acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300 gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360.
tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420 aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480 SUBSTITUTE SHEET (RULE 26) caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540 tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600 aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660 gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720 aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780 ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840 aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900 ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960 aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020 cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080 cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140 tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200 gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260 aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320 tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380 agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440 gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500 cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560 agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620 tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680 cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740 taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800 atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860 gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920 gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980 tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040 accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100 Caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160 caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220 gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280 aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340 agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400 caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460 tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520 tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580 ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640 ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700 ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760 tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820 acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880 agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940 taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000 aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060 tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120 tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180 ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240 aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300 atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360 SUBSTITUTE SHEET (RULE 28) aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420 aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480 gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540 tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600 agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660 catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720 gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780 tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840 aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900 caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960 gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020 actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080 acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140 ccactcaaaa tccaaaatca ctaccagcca ctatccgcta gacctagagt gcgaataggc 4200 aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260 catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320 acaatagaac tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380 ctaatctttt tactaattat aatcactatc atgattgcaa cactaaataa gctaagtgaa 4440 cacaaagcat tctgcaacaa aactcttgaa ctaggacaga tgtaccaaat caacacacag 4500 agttccacca ttatgctgtg tcaaaccata atcctgtata tacaaacaaa caaatccaat 4560 cctctcacag agtcacggtg tcgcaaaacc acgctaacca tcatggtagc atagagtagt 4620 tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680 aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740 gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800 atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860 gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920 acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980 agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040 acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100 accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160 aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220 caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280 atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340 gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400 acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460 acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520 acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580 tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640 aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700 tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760 atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820 tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880 taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940 gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000 tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060 acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120 atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180 aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240 SUBS?'ITUTE SHEET (RULE 26) tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300 ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360 cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420 cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480 gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540 agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600 gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660 aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720 ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780 attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840 aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900 gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960 attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020 cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080 aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140 agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200 taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260 cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320 cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380 atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440 caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500 tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560 atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620 agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680 agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740 aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800 gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860 ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920 attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980 aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040 caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100 acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160 caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220 catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280 taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340 ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400 tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460 tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520 ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580 gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640 aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700 acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760 ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820 aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880 atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940 gatgaaaact cagtacttac aaccataatt aaagatgata tactttcggc tgtggaaaac 9000 aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060 acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120 SUBSTITUTE SHEET (RULE 26) tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180 aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240 aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300 aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360 tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420 aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480 gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540 acagaagaag atcaatttaa gaaacgattt tataatagca tgctaaataa catcacagat 9600 gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660 acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720 ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780 agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840 tgtaatgaaa ctaagttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900 tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960 attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020 gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080 ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140 gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200 gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260 ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320 ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380 agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440 atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500 cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560 aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620 gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680 caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740 agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800 agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860 attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920 ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980 cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040 gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100 cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160 gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220 tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280 atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340 tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400 aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460 ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520 gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580 aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640 gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700 gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760 atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820 ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 1180 gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940 ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000 SUBSTITUTE SHEET (RULE 2B) gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060 gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120 agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180 acaatgaaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240 aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300 acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360 gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420 gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480 ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540 tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600 cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660 aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720 cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780 tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840 ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900 aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960 cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020 atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080 atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140 aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200 ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260 gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320 tttaagttgt ggtttttaaa acgccttaat aatgctaaat ttaccgtatg cccttgggtt 13380 gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440 agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500 gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560 ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620 cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680 aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740 agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800 ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860 gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920 gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980 tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040 agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100 cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160 cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220 accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280 gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340 aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400 agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460 attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520 ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt.acaaaatgct 14580 aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640 atcgatgcaa atattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700 attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 147.60 atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820 ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880 SUBSTITUTE SHEET (RULE 2B) tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940 gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000 tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060 tagttattaa agaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120 ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180 acacaacgag acattagttt ttgacacttt ttttctcgt 15219 <210> 10 <211> 2166 <212> PRT
<213> respiratory syncytial virus <400> 10 Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Ile Lys Asp Asp/Ile Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys SUBSTITUTE SHEET (RULE 26j Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe Lys Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr wsp Ala Ala Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn SUBSTITUTE SHEET (RULE 26) Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg G1u Phe His Leu Pro Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe SUBSTITUTE SHEET (RULE 26) Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Sex Ile Asp Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys SUBSTITUTE SHEET (RULE 26) His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile SUBSTITUTE SHEET (RULE 26) WO 99/15672 PCT/US9$/19145 Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asn Ile Lys Tyr Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile SUBSTITUTE SHEET (RULE 26) Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys SUBSTITUTE SHEET (RULE 2B) Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Ile Glu Trp Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu SUBSTITUTE SHEET (RULE 28) WO 99/15672 ~ PCT/US98/19145 Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp AIa Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr Asn Leu Pro Asn Glu Gln <210> 11 <211> 15219 <212> DNA
<213> respiratory syncytial virus <400> 11 acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60 ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 12U
atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180 acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240 SUBSTITUTE SHEET (RULE 26) acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300 gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360 tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420 aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480 caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540 tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600 aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660 gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720 aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780 ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840 aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900 ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960 aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020 cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080 cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140 tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200 gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260 aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320 tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380 agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440 gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500 cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560 agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620 tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680 cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740 taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800 atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860 gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920 gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980 tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040 accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100 caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160 caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220 gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280 aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340 agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400 caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460 tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520 tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580 ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640 ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700 ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760 tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820 acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880 agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940 taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 300.0 aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060 tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120 SUBSTITUTE SHEET (RULE 2B) tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180 ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240 aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300 atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360 aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420 aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480 gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540 tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600 agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660 catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720 gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780 tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840 aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900.
caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960 gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020 actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080 acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140 ccactcaaaa tccaaaatca ctaccagcca ctatctgcta gacctagagt gcgaataggt 4200 aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260 catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320 acaatagaat tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380 ctaatctttt tactaattat aatcactatt atgattgcaa tactaaataa gctaagtgaa 4440 cataaagcat tctgtaacaa aactcttgaa ctaggacaga tgtatcaaat caacacatag 4500 agttctacca ttatgctgtg tcaaattata atcctgtata tataaacaaa caaatccaat 4560 cttctcacag agtcatggtg tcgcaaaacc acgctaacta tcatggtagc atagagtagt 4620 tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaascaa cattggggca 4680 aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740 gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800 atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860 gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920 acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980 agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040 acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100 accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160 aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220 caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280 atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340 gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400 acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460 acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520 acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580 tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa.gaacgaaatt 5640 aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700 tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760 atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820 tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880 taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940 gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000 SUBSTITUTE SHEET (RULE 2B) tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060 acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120 atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180 aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240 tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300 ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360 cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420 cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480 gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540 agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600 gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660 aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720 ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780 attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840 aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900 gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960 attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020 cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080 aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140 agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200 taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260 cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320 cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380 atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440 caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500 tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560 atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620 agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680 agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740 aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800 gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860 ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920 attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980 aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040 caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100 acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160 caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220 catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280 taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340 ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400 tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460 tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520 ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580 gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640 aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700 acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760 ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820 aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880 SUBSTITUTE SHEET (RULE 26) WO 99/15672 PC'T/US98/19145 atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940 gatgaaaact cagtacttac aactataatt aaagatgata tactttcggc tgtggaaaac 9000 aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060 acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120 tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180 aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240 aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300 aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360 tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420 aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480 gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540 acagaagaag atcaatttag gaaacgattt tataatagca tgctaaataa catcacagat 9600 gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660 acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720 ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780 agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840 tgtaatgaaa ctaagttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900 tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960 attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020 gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080 ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140 gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200 gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260 ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320 ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380 agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440 atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500 cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560 aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620 gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680 caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740 agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800 agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860 attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920 ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980 cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040 gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100 cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160 gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220 tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280 atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340 tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400 aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460 ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520 gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580 aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640 gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700 gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760 SUBSTITUTE SHEET (RULE 28) atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820 ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880 gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940 ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000 gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060 gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120 agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180 acaatggaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240 aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300 acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360 gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420 gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480 ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540 tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600 cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660 aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720 cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780 tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840 ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900 aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960 cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020 atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080 atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140 aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200 ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260 gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320 tttaagttgt ggtttttaaa acgccttgat aatgctaaat ttaccgtatg cccttgggtt 13380 gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440 agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500 gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560 ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620 cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680 aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740 agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800 ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860 gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920 gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980 tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040 agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100 cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160 cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220 accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280 gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340 aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400 agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460 attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520 ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580 aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640 SUBSTITUTE SHEET (RULE 26) atcgatgcag ttattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700 attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760 atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820 ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880 tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940 gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000 tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060 tagttattaa aaaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120 ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180 acacaacgag acattagttt ttgacacttt ttttctcgt 15219 <210> 12 <211> 2166 <212> PRT
<213> respiratory syncytial virus <400> 12 Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Ile Lys Asp Asp Ile Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser SUBSTITUTE SHEET (RULE 26) His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cya Ile Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu 3?0 375 380 Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro suBSnnrrs sHE~r ~RU~E 2s~

Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn 435 ~ 440 445 Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr SUSSTIME SHEET (RULE 2B) Asn Asn Tyr Ile Sex Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala Asp Tyr Leu Leu AIa Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr 865 870 875 $80 Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His SUBSTITUTE SHEET (RULE 28) Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala Pro Asn Lys Ile Phe Sex Lys Ser Ala Gln His Tyr Thr Thr Thr Glu Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr SUBSTITUTE SHEET (RULE 26) Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Sex Asn Ile Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr Thr Thr Sex Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn Tyr His Phe Asp Thr Ser Fro Ile Asn His Val Leu Thr Glu Lys Tyr Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr SUBSTIME SHEET (RULE 2B) Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile Gln Leu Met Lys Asp 5er Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu GIu Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asp Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr SUBSTITUTE SHEET (RULE 26) Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe 1745 1750 1?55 1760 Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala Gly Asn Leu Leu Leu Arg Thr Val Val GIu Leu His Pro Asp Ile Arg Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Ile Glu Trp Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys SUBSTITUTE SHEET (RULE 26) Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp Ala Val Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr Asn Leu Pro Asn Glu Gln SUBSTITUTE SHEET (RULE 26)

Claims (11)

What is claimed is:
1. An isolated, recombinantly-generated, attenuated, human respiratory syncytial virus (RSV) subgroup 8 having at least one attenuating mutation in the RNA polymerise gene.
2. The virus of Claim 1 wherein the at least one attenuating mutation in the RNA polymerise gene is selected from the group consisting of nucleotide changes which produce changes in an amino acid selected from the group consisting of residues 353 (arginine ~ lysine), 451 (lysine ~ arginine), 1229 (aspartic acid ~ asparagine), 2029 (threonine ~
isoleucine) and 2050 (asparagine ~ aspartic acid).
3. A vaccine comprising an isolated, recombinantly-generated, attenuated RSV subgroup B
according to Claim 1 and a physiologically acceptable carrier.
4. A vaccine comprising an isolated, recombinantly-generated, attenuated RSV subgroup B
according to Claim 2 and a physiologically acceptable carrier.
5. A method for immunizing an individual to induce protection against RSV subgroup B which comprises administering to the individual the vaccine of Claim 3.
6. A method for immunizing an individual to induce protection against RSV subgroup B which comprises administering to the individual the vaccine of Claim 4.
7. A composition which comprises a trancription vector comprising an isolated nucleic acid molecule encoding a genome or antigenome of an RSV
subgroup B having at least one attenuating mutation in the RNA polymerase gene, together with at least one expression vector which comprises at least one isolated nucleic acid molecule encoding the trans-acting N, P, L
and M2 proteins of the virus necessary for encapsidation, transcription and replication, whereby upon expression an infectious attenuated virus is produced.
8. The composition of Claim 7 wherein the transcription vector comprises an isolated nucleic acid molecule which encodes an RSV subgroup B according to Claim 2.
9. A method for producing infectious attenuated RSV subgoup B which comprises transforming or transfecting host cells with the at least two vectors of Claim 7 and culturing the host cells under conditions which permit the co-expression of these vectors so as to produce the infectious attenuated virus.
10. The method of Claim 9 wherein the virus is the RSV subgroup B of Claim 2.
11. An isolated nucleic acid molecule comprising a RSV subgroup B sequence in positive strand, antigenomic message sense selected from the group consisting of 2B wild-type strain (SEQ ID NO:1), 18537 wild-type strain (SEQ ID NO:3), 2B33F vaccine strain (SEQ ID NO:5), 2B20L vaccine strain (SEQ ID
NO:7), 2B33F TS(+) revertant strain (SEQ ID NO:9), and 2820L TS(+) revertant strain (SEQ ID NO:11), and the complementary genomic sequences thereof.
CA002302867A 1997-09-19 1998-09-15 Attenuated respiratory syncytial viruses Abandoned CA2302867A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5955297P 1997-09-19 1997-09-19
US60/059,552 1997-09-19
PCT/US1998/019145 WO1999015672A1 (en) 1997-09-19 1998-09-15 Attenuated respiratory syncytial viruses

Publications (1)

Publication Number Publication Date
CA2302867A1 true CA2302867A1 (en) 1999-04-01

Family

ID=22023716

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002302867A Abandoned CA2302867A1 (en) 1997-09-19 1998-09-15 Attenuated respiratory syncytial viruses

Country Status (8)

Country Link
EP (1) EP1015594A1 (en)
JP (1) JP2001517448A (en)
KR (1) KR20010030630A (en)
CN (1) CN1273603A (en)
AU (1) AU9389998A (en)
BR (1) BR9812232A (en)
CA (1) CA2302867A1 (en)
WO (1) WO1999015672A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL140264A0 (en) 1998-06-12 2002-02-10 Sinai School Medicine Attenuated negative strand viruses with altered interferon antagonist activity for use as vaccines and pharmaceuticals
EP1098961B1 (en) 1998-06-12 2008-01-16 Mount Sinai School Of Medicine Of The City University Of New York Interferon inducing genetically engineered attenuated viruses
US6544785B1 (en) 1998-09-14 2003-04-08 Mount Sinai School Of Medicine Of New York University Helper-free rescue of recombinant negative strand RNA viruses
US6146642A (en) 1998-09-14 2000-11-14 Mount Sinai School Of Medicine, Of The City University Of New York Recombinant new castle disease virus RNA expression systems and vaccines
US6764685B1 (en) 2000-03-21 2004-07-20 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression systems and vaccines
WO2001077394A1 (en) 2000-04-10 2001-10-18 Mount Sinai School Of Medicine Of New York University Screening methods for identifying viral proteins with interferon antagonizing functions and potential antiviral agents
US8715922B2 (en) 2001-01-19 2014-05-06 ViroNovative Virus causing respiratory tract illness in susceptible mammals
DK1351981T3 (en) 2001-01-19 2012-11-26 Vironovative Bv A virus that causes respiratory disease in susceptible mammals
KR101151822B1 (en) 2002-02-21 2012-06-01 메디뮨 엘엘씨 Recombinant parainfluenza virus expression systems and vaccines comprising heterologous antigens derived from metapneumovirus
JP2005523698A (en) 2002-04-26 2005-08-11 メディミューン・ヴァクシンズ・インコーポレーテッド Multiple plasmid system for the production of influenza virus
US7465456B2 (en) 2002-04-26 2008-12-16 Medimmune, Llc Multi plasmid system for the production of influenza virus
JP2007525178A (en) 2003-04-25 2007-09-06 メッドイミューン バクシーンズ,インコーポレイティド Metapneumovirus strain, its use in vaccine formulations, use as a vector for expression of antigenic sequences, and virus propagation method
EP1633312A4 (en) 2003-06-16 2012-09-26 Medimmune Llc Influenza hemagglutinin and neuraminidase variants
ATE469972T1 (en) 2003-12-23 2010-06-15 Medimmune Llc MULTIPLASMID SYSTEM FOR GENERATING THE FLU VIRUS
EP1771552B1 (en) 2004-05-25 2012-08-01 MedImmune Vaccines, Inc. Influenza hemagglutinin and neuraminidase variants
WO2006083286A2 (en) 2004-06-01 2006-08-10 Mount Sinai School Of Medicine Of New York University Genetically engineered swine influenza virus and uses thereof
WO2006088481A2 (en) 2005-02-15 2006-08-24 Mount Sinai School Of Medicine Of New York University Genetically engineered equine influenza virus and uses thereof
EP1856271A4 (en) 2005-03-08 2009-11-18 Medimmune Vaccines Inc Influenza hemagglutinin and neuraminidase variants
PL2251034T3 (en) 2005-12-02 2018-07-31 Icahn School Of Medicine At Mount Sinai Chimeric newcastle disease viruses presenting non-native surface proteins and uses thereof
MX2008013388A (en) 2006-04-19 2009-03-02 Medimmune Llc Methods and compositions for expressing negative-sense viral rna in canine cells.
WO2008133701A1 (en) 2006-07-21 2008-11-06 Medimmune, Llc. Methods and compositions for increasing replication capacity of an influenza virus
CN104278014A (en) 2006-08-09 2015-01-14 米迪缪尼有限公司 Influenza hemagglutinin and neuraminidase variants
EP2674486A1 (en) 2007-06-18 2013-12-18 MedImmune, LLC Influenza B viruses having alterations in the hemaglutinin polypeptide
JP2011527581A (en) 2008-07-11 2011-11-04 メディミューン,エルエルシー Influenza hemagglutinin and neuraminidase variants
WO2010091262A1 (en) 2009-02-05 2010-08-12 Mount Sinai School Of Medicine Of New York University Chimeric newcastle disease viruses and uses thereof
BRPI1008549A2 (en) 2009-02-12 2016-03-15 Medimmune Llc influenza neuraminidase and hemagglutinin variants
EP3009145A1 (en) 2009-03-30 2016-04-20 Mount Sinai School of Medicine of New York University Influenza virus vaccines and uses thereof
WO2011014504A1 (en) 2009-07-27 2011-02-03 Mount Sinai School Of Medicine Of New York University Recombinant influenza virus vectors and uses thereof
CA2805505C (en) 2009-07-30 2021-08-03 Mount Sinai School Of Medecine Chimeric influenza viruses having reduced ability to reassort with other influenza viruses and uses thereof
AU2011235220B2 (en) 2010-03-30 2016-03-10 Mount Sinai School Of Medicine Influenza virus vaccines and uses thereof
CN108164602A (en) 2011-09-20 2018-06-15 西奈山医学院 Influenza virus vaccine and its application
SG11201504728RA (en) 2012-12-18 2015-07-30 Icahn School Med Mount Sinai Influenza virus vaccines and uses thereof
CA2905272A1 (en) 2013-03-14 2014-10-02 Icahn School Of Medicine At Mount Sinai Newcastle disease viruses and uses thereof
WO2014159960A1 (en) 2013-03-14 2014-10-02 Icahn School Of Medicine At Mount Sinai Antibodies against influenza virus hemagglutinin and uses thereof
CN107073099B (en) 2014-02-27 2022-09-27 默沙东公司 Combination methods for treating cancer
JP2018504412A (en) 2015-01-23 2018-02-15 アイカーン スクール オブ メディシン アット マウント サイナイ Influenza virus vaccination regimen
BR112017015789A2 (en) 2015-02-26 2018-03-27 Boehringer Ingelheim Vetmedica Gmbh bivalent swine influenza virus vaccine
CA2995382A1 (en) 2015-08-20 2017-02-23 University Of Rochester Live-attenuated vaccine having mutations in viral polymerase for the treatment and prevention of canine influenza virus
US10973903B2 (en) 2015-08-20 2021-04-13 University Of Rochester NS1 truncated virus for the development of canine influenza vaccines
US10548966B2 (en) 2015-08-20 2020-02-04 University Of Rochester Single-cycle virus for the development of canine influenza vaccines
JP2019520338A (en) 2016-06-03 2019-07-18 ユニバーシティ オブ ロチェスター Equine influenza virus attenuated live vaccine
BR112018075032A2 (en) 2016-06-15 2019-03-26 Icahn School Of Medicine At Mount Sinai influenza virus hemagglutinin proteins and their use
US11254733B2 (en) 2017-04-07 2022-02-22 Icahn School Of Medicine At Mount Sinai Anti-influenza B virus neuraminidase antibodies and uses thereof
JOP20190256A1 (en) 2017-05-12 2019-10-28 Icahn School Med Mount Sinai Newcastle disease viruses and uses thereof
MX2020008927A (en) 2018-02-27 2021-01-08 Univ Rochester Multivalent live-attenuated influenza vaccine for prevention and control of equine influenza virus (eiv) in horses.
CN111073861B (en) * 2018-10-19 2023-04-14 兰州生物制品研究所有限责任公司 Human respiratory syncytial virus strain, application, antibody or hybridoma cell or antiserum
US11166996B2 (en) 2018-12-12 2021-11-09 Flagship Pioneering Innovations V, Inc. Anellovirus compositions and methods of use
MX2021010343A (en) 2019-02-27 2022-01-18 Univ Rochester Multivalent live-attenuated influenza vaccine for prevention and control of equine influenza virus (eiv) in horses.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW275632B (en) * 1992-04-21 1996-05-11 American Cyanamid Co
WO1997038138A1 (en) * 1996-04-04 1997-10-16 The Regents Of The University Of Michigan Attenuated respiratory syncytial virus
JP4413999B2 (en) * 1996-07-15 2010-02-10 アメリカ合衆国 Production of attenuated respiratory syncytium virus vaccines from cloned nucleotide sequences.
CN1232504A (en) * 1996-09-27 1999-10-20 美国氰胺公司 3' genomic promoter region and polymerase gene mutations responsible for attenuation in viruses of order designated mononegavirales

Also Published As

Publication number Publication date
KR20010030630A (en) 2001-04-16
EP1015594A1 (en) 2000-07-05
BR9812232A (en) 2000-07-18
WO1999015672A1 (en) 1999-04-01
JP2001517448A (en) 2001-10-09
AU9389998A (en) 1999-04-12
CN1273603A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
CA2302867A1 (en) Attenuated respiratory syncytial viruses
US5993824A (en) Production of attenuated respiratory syncytial virus vaccines from cloned nucleotide sequences
US6790449B2 (en) Methods for producing self-replicating infectious RSV particles comprising recombinant RSV genomes or antigenomes and the N, P, L, and M2 proteins
Wertz et al. Expression of the fusion protein of human respiratory syncytial virus from recombinant vaccinia virus vectors and protection of vaccinated mice
AU2020203460B2 (en) Attenuation of human respiratory syncytial virus by genome scale codon-pair deoptimization
AU4427897A (en) 3&#39; genomic promoter region and polymerase gene mutations responsible for att enuation in viruses of the order designated mononegavirales
CA2304932C (en) Recombinant rsv virus expression systems and vaccines
US6689367B1 (en) Production of attenuated chimeric respiratory syncytial virus vaccines from cloned nucleotide sequences
KR20110063863A (en) Live, attenuated respiratory syncytial virus
KR100746979B1 (en) Production of attenuated chimeric respiratory syncytial virus vaccines from cloned nucleotide sequences
US5932222A (en) Mutant respiratory syncytial virus (RSV), vaccines containing same and methods of use
CA2380108C (en) Recombinant rsv virus expression systems and vaccines
EP1613345A2 (en) Compositions and methods involving respiratory syncytial virus subgroup b strain 9320
EP1920783A1 (en) Recombinant RSV virus expression systems and vaccines
AU767193B2 (en) Mutations responsible for attenuation in measles virus or human respiratory syncytial virus subgroup B
KR20180085803A (en) Recombinant respiratory syncytial virus fusion strains with M2-2 ORF mutations providing a range of attenuated phenotypes
MXPA00009256A (en) Mutations responsible for attenuation in measles virus or human respiratory syncytial virus subgroup b
AU8933001A (en) 3&#39; genomic promoter region and polymerase gene mutations responsible for attenuation in viruses of the order designated mononegavirales
AU5592201A (en) Production of attenuated respiratory syncytial virus vaccines from cloned nucleotide sequences
AU5591601A (en) Production of attenuated respiratory syncytial virus vaccines from cloned nucleotide sequences
EP0859831A1 (en) Production of infectious respiratory syncytial virus from cloned nucleotide sequences

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued