CA2234061A1 - Multi-functional hematopoietic receptor agonists - Google Patents
Multi-functional hematopoietic receptor agonists Download PDFInfo
- Publication number
- CA2234061A1 CA2234061A1 CA002234061A CA2234061A CA2234061A1 CA 2234061 A1 CA2234061 A1 CA 2234061A1 CA 002234061 A CA002234061 A CA 002234061A CA 2234061 A CA2234061 A CA 2234061A CA 2234061 A1 CA2234061 A1 CA 2234061A1
- Authority
- CA
- Canada
- Prior art keywords
- leu
- xaa
- ala
- ser
- pro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/524—Thrombopoietin, i.e. C-MPL ligand
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5403—IL-3
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
- C07K2319/75—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Diabetes (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Disclosed are novel multi-functional hematopoietic receptor agonist proteins, DNAs which encode the multi-functional hematopoietic receptor agonists proteins, methods of making the multi-functional hematopoietic receptor agonists proteins and methods of using the multi-functional hematopoietic receptor agonists proteins.
Description
.. . . -. .: - .= -..CA 02234061 1998-04-06 .' .
.
DEMANDES OU BR~V{~TS VOLUM~N~JX
~A PRÉSBYTE PARTIE~ DE CEl~E D13VIANDE OU CE ~REVET
COMPRE~ ) PLUS D'UN TOME.
CECI EST LE TOME / --DE ~Z_ NOTE: Pour les tomes additicnels, veuillez c~ntacte~ le Bureau canadien ~es brevets z~3Y~k/ - -JUNIBO APPLICATIONS/PA~ENTS - .
l~HIS SECTION ~3F ~HE APPLICATION/PATENT CONTAINS MORE
THAN ONE VOLUME
T~IS IS VOI UME ¦ OF ~ -.
NO~: F~r additi~na1 ~rDiUmes please cs:~ntact~~e Canad~an Patent C)ff~ce . .
.
W O 9711~985 1 PCT~US96/15774 MULTI-FUNCTIONA~ HEMATOPOIETIC RECEPTOR AGONISTS
The present application claims priority under 35 USC
119(e) of United States provisional application Serial No.
5 60/004,834 ~iled October 05, 1995.
.
Field of the Invention The present invention relates to multi-functional hematopoietic receptor agonists.
Backaround of the Invention Colony stimulating factors (CSFs) which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells. CS~s in both human and murine systems have been identified and distinguished according to their activities. For example, granulocyte-CSF (G-CSF) and macrophage-CSF (M-CSF) stimulate the in vitro formation of neutrophilic granulocyte and macrophage colonies, respectively, while GM-CSF and interleukin-3 (IL-3) have broader activities and stimulate the ~ormation of both macrophage, neutrophilic and eosinophilic granulocyte colonies. IL-3 also stimulates the formation of mast, megakaryocyte and pure and mixed erythroid colonies.
U.S. 4,877,729 and U.S. 4,959,455 disclose human IL-3 and gibbon IL-3 cDNAs and the protein sequences for which they code. The hIL-3 disclosed has serine rather than proline at position 8 in the protein sequence.
International Patent Application (PCT~ WO 88/00598 discloses gibbon- and human-like IL-3. The hIL-3 contains a Ser8 -> Pro8 replacement. Suggestions are made to replace Cys by Ser, thereby breaking the disulfide bridge, and to replace one or more amino acids at the glycosylation sites.
U.S. 4,810,643 discloses the DNA sea!uence encoding human G-CSF.
WO 91/02754 discloses a fusion protein comprised of GM-CSF and IL-3 which has increased biological activity compared to GM-CSF or IL-3 alone. Also disclosed are nonglycosylated IL-3 and GM-CSF analog proteins as components of the multi-functional hematopoietic receptor agonist.
WO 92/04455 discloses fusion proteins composed of IL-3 fused to a lymphokine selected from the group consisting of IL-3, IL-6, I~-7, IL-9, IL-ll, EPO and G-CSF.
WO 95/21197 and WO 95/21254 disclose fusion proteins capable of broad multi-functional hematopoietic properties.
GB 2,285,446 relates to the c-mpl ligand (thrombopoietin) and various forms of thrombopoietin which are shown to influence the replication, dif~erentiation and maturation of megakaryocytes and megakaryocytes progenitors which may be used for the treatment of thrombocytopenia.
EP 675,201 Al relates to the c-mpl ligand ~Megakaryocyte growth and development factor (MGDF), allelic variations of c-mpl ligand and c-mpl ligand attached to water soluble polymers such as polyethylene glycol.
WO 95/21920 provides the murine and human c-mpl ligand and polypeptide fragments thereof. The proteins are useful for in vivo and ex vivo therapy for stimulating platelet production.
~e~rr~naement of Protein Seauences In evolution, rearranyements of DMA sequences serve an important role in generating a diversity of protein structure and function. Gene duplication and exon shuffling provide an important mechanism to rapidly generate diversity and thereby provide organisms with a competitive advantage, especially since the basal mutation rate is low (Doolittle, .
CA 0223406l l998-04-06 W O 97/12985 3 PCTrUS96/15774 Protein Science 1:191-200, 1992).
The development of recombinant DNA methods has made it possible to study the effects o~ sequence transposition on protein folding, structure and function. The approach used in creating new sequences resembles that of naturally occurring pairs of proteins that are related by linear reorganization of their amino acid sequences (Cunningham, et al., Proc. Natl . Acad . Sci . U. S.A. 76:3218-3222, 1979;
Teather & Erfle, J. Bacteriol. 172: 3837-3841, 1990;
St-~lmm;ng et al., Eur. J. Bioc~em. 204: 13-19, 1992i Yamiuchi and Minamikawa, FEBS Lett . 260: 127-130, 1991;
MacGregor et al., FEBS Lett. 378:263-266~. The ~irst in vitro application of this type o~ rearrangement to proteins was described by Goldenberg and Creighton (~. Mol . Biol .
15 165:407-413, 1983). A new N-terminus is selected at an internal site (breakpoint) of the original sequence, the new sequence having the same order o~ amino acids as the original from the breakpoint until it reaches an amino acid that is at or near the original C-terminus. At this point 20 the new sequence is joined, either directly or through an additional portion of sequence (linker), to an amino acid that is at or near the original N-terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid 25 that was N-terminal to the breakpoint site o~ the original sequence, this residue forming the new C-terminus o~ the chaln .
This approach has been applied to proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton, 30 J. Mol. Biol. 1~;5:407-413, 1983; Li & Coffino, Mol. Cell.
Biol. 13:2377-2383, 1993). The proteins examined have represented a broad range of structural classes, including proteins that contain predominantly a-helix (interleukin-4;
Kreitman et al., cytokine 7:311-318, lg95), ,B-sheet 35 (interleukin-l; Horlick et al., Protein Eng. 5:427-431, .
W O 97/12985 PCTrUS96/1~774 1992), or mixtures of the two (yeast phosphoribosyl anthranilate isomerase; Luger et al., Science ~43:206-210, 1989). Broad categories o~ protein function are represented in these sequence reorganization studies:
Enzymes T4 lysozyme Zhang et al., Biochemistry 32:12311-12318, 1993; Zhang et al., Nature Struct. Biol. 1:434-438 ~1995) dihydro~olate Buchwalder et al., Biochemistry reductase 31:1621-1630, 1994; Protasova et al., Prot. Eng. 7:1373-1377, 1995) ribonuclease Tl Mullins et al., ~. Am. Chem. Soc.
116:5529-5533, 1994; Garrett et al., Protein Science 5:204-211, 1996) Bacillus ~-glucanse Hahn et al., Proc. Natl. Acad. Sci.
U.S.A. 91:10417-10421, 1994) aspartate Yang & Schachman, Proc. Matl. Acad.
transcarbamoylase sci. U.S.A. 90:11980-11984, 1993) phosphoribosyl Luger et al., Science 243:206-210 anthranilate (1989; Luger et al., Prot. Eng.
isomerase 3:249-258, 1990) pepsin/pepsinogen Lin et al., Protein Science 4:159-166, 1995) glyceraldehyde-3- Vignais et al., Protein Science phosphate dehydro- 4:994-1000, 1995) W O 97/12985 PCTrUS96/lS774 genase ornithine Li & Co~ino, Mol. Cell. Biol.
decarboxylase 13:2377-2383, 1993) yeast Ritco-Vonsovici et al., Biochemistry phosphoglycerate 34:165g3-16551, 1995) dehydrogenase Enzyme Inhibitor basic pancreatic Goldenberg & Creighton, J. Mol.
trypsin inhibitor Biol. 165: 407-413, 1983) Cytokines interleukin-l~ Horlick et al., Protein Eng. 5:427-431, 1992) interleukin-4 Kreitman et al., Cytokine 7: 311-318, 1995) Tyrosine ginase Recognition Domain a-spectrin SH3 Viguera, et al., J.
domain Mol. Biol. 247: 670-681, 1995) Transmembrane Protein omp A Koebnik & Kramer, ~. Mol. Biol.
250:617-626, 1995) .~
3 5 Chimeric Protein W O 97/1298~ PCT~US96/~5774 interleukin-4- Kreitman et al., Proc. Matl. Acad.
Pseudomonas sci . u. S.A. 91:6889-6893, 1994).
exotoxin The results of these studies have been highly variable.
In many cases substantially lower activity, solubility or thermodynamic stability were observed tE. coli dihydrofolate reductase, aspartate transcarbamoylase, phosphoribosyl anthranilate isomerase, glyceraldehyde-3-phosphate dehydrogenase, ornithine decarboxylase, omp A, yeast phosphoglycerate dehydrogenase). In other cases, the sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease Tl, Bacillus ~-glucanase, interleukin-l~, a-spectrin SH3 domain, pepsinogen, interleukin-4). In exceptional cases, an unexpected improvement over some properties of the natural sequence w~s observed, e.g., the solubility and refolding rate for rearranged a-spectrin SH3 domain sequences, and the receptor affinity and anti-tumor activity of transposed interleukin-4-Pseudomonas exotoxin fusion molecule (Kreitman et al., Proc. Matl. Acad. Sci. U.S.~. 91:6889-6893, 1994;
Kreitman et al., Cancer Res. 55:3357-3363, 1995) .
The primary motivation for these types of studies has been to study the role of short-range and long-range interactions in protein folding and stability. Sequence rearrangements of this type convert a subset of interactions that are long-range in the original sequence into short-range interactions in the new sequence, and vice versa. The fact that many of these sequence rearrangements are able to attain a conformation with at least some activity is persuasive evidence that protein folding occurs by multiple folding pathways tViguera, et al., J. Mol. Biol. 247:670-681, 1995). In the case of the SH3 domain of a-spectrin, choosing new termini at locations that corresponded to ~-CA 0223406l l998-04-06 W O 97/12985 7 PCT~US96/15774 hairpin turns resulted in proteins with slightly less stability, but which were nevertheless able to fold.
The positions o~ the internal breakpoints used in the ~ studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N-terminus to the breakpoint is ca. 10 to 80% of the total se~uence length). The linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. In one case (Yang & Schachman, Proc. Natl.
Acad . Sci . U. S.A. 90:11980-11984, 1993), a portion of sequence has been deleted from the original C-terminal segment, and the connection made from the truncated C-terminus to the original M-terminus. Flexible hydrophilic residues such as Gly and Ser are frequently used in the linkers. Viguera, et al.(~. Mol . Biol . 247: 670-681, 1995) compared joining the original N- and C- termini with 3- or 4-residue linkers; the 3-residue linker was less thermodynamically stable. Protasova et al. (Protein Eng.
7:1373-1377, 1994) used 3- or 5-residue linkers in connecting the original N-termini of E. coli dihydrofolate reductase; only the 3-residue linker produced protein in good yield.
W O 97/12985 8 PCT~US96/15774 Sllmm~rv of the Invention Novel hematopoietic proteins o~ this invention are represented by the formulas:
R1-L1-R2, R2-Ll-Rll Rl-R2~ or R2-R1 wherein R1 and R2 are independently selected from the group consisting o~;
(I) A polypeptide comprising; a modified human G-CSF
amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa W O 97/1298~ 9 PCT~US96/15774 Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:l) ein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
~ Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 16~ is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids ~rom the N-terminus and 1-5 ~rom the C-terminus can be deleted; and W O 97/12985 PCT~US96115774 wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
38-3g 62-63 123-124 or 142-143;
(II) A polypeptide comprising; a modi~ied hIL-3 amino acid sequence of the ~ormula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa -CA 0223406l l998-04-06 W O 97/12985 11 PCTAUS96/l5774 Xaa Xaa Xaa Xaa X~a Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa -Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 ~SEQ ID NO:2);
wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at positlon 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
i W O 97/12985 12 PCT~US96/f5774 Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;~O Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, Hi~, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 4~ is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 5l is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 i8 Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
CA 0223406l l998-04-06 W O 97/12985 13 PCT~US96/15774 Xaa at position 53 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at poslt~on 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
0 Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 i5 Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
CA 0223406l l998-04-06 W O 97/12985 14 PCT~US96/15774 Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Argi Xaa at position 94 i8 Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
0 Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Ly~, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 i5 Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, CA 0223406l l998-04-06 W O 97/12985 15 PCT~US96/15774 Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, T~p, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cy~, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Glni Xaa at po~ition 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein optionally from 1 to 14 amino acids can be deleted from the M-terminus and/or f-om 1 to 15 amino acids can be deleted from the C-ter~inus; and wherein from 0 to 44 of the amino acids designated by Xaa are di~~erent from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the M-terminus to the C-terminus and having new C- and N-termini at amino acids;
33-3~ 65-66 90-91 or 103-104;
CA 0223406l 1998-04-06 WO 97112985 16 PCTnJS96/15774 or (III) A polypeptide comprising; a modified human c-mpl ligand amino aci~ sequence o~ the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer 10 HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGln~XaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal ArgArgAlaProProThrThrAlaValProSerArgThrSerLeuValLeuThrLeu AsnGluLeuProAsnArgThrSerGlyLeuLeUGluThrAsnPheThrAlaSerAla CA 0223406l l998-04-06 W O 97/12985 17 PCT~US96/15774 ArgThrThrGlyserGlyLeuLeuLysTrpGlnGlnGlypheArgAlaLysIlepro ; GlyLeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyTyrLeuAsnArg 210 215 220 225 IleHisGlu~euLeuAsnGlyThrArgGlyLeuPheProGlyProSerArgArgThr LeuGlyAlaProAspIleSerSerGlyThrSerAspThrGlySerLeuProProAsn LeuGlnProGlyTyrSerProSerProThrHisProProThrGlyGlnTyrThrLeu PheProLeuProProThrLeuProThrProValValGlnLeuHisProLeuLeuPro AspProSerAlaProThrProThrProThrSerProLeuLeuAsnThrSerTyrThr HisSerGlnAsnLeuSerGlnGluGly (SEQ ID NO: 3) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
30- Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 iS deleted or Gln, Gly, Ser, Thr, Tyr, 3 5 or Asn; and CA 0223406l l998-04-06 W O 97112985 PCTfUS96/15774 wherein the N-terminus is joined to the C-terminus directly or through a linker tL2) capable o~ joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128;
or 10(IV) A polypeptide comprising; a modified hIL-3 amino acid sequence o~ the ~ormula:
Ala Pro ~et Thr Gln Thr Thr Ser Leu Lys Thr ~er Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa W O 97112985 PCTfUS96/15774 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 0 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xa~ Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position l9 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;~5 Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 2~ is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
3Q Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
3~ Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
CA 0223406l l998-04-06 Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at posit~on 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
0 Xaa at position a~o is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 4:2 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
20 Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, 'ryr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
25 Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
30 Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
_ W O 97/12985 21 PCTnJS96/15774 Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
~ Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, hys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
W O 97/12985 22 PCT~US96/15774 Xaa at position 89 is Thr, A~p, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at positlon 9l is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 i5 Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position lO0 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at posit:cn lQl is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position lO9 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position llO is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position lll is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
CA 0223406l l998-04-06 Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 i8 Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at po~ition 117 is Thr, Ser, A-~n, Ile, Trp, Lys, or Pro;
Xaa at position 118 is heu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at po~it on 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
0 Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leui wherein optionally from 1 to 14 amino acids can be deleted from the N-terminus and/or from 1 to 15 amino acids can be deleted ~rom the C-terminus; and wherein from 1 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-1333 human interleukin-3 or (V) a colony stimulating factor;
and wherein Ll is a linker capable of linking Rl to R2;
with the proviso that at least Rl or R2 is selected from the polypeptide of formula (I) , (II), or (III); and~0 said hematopoietic protein can optionally be immediately preceded by (methionine-l), (alanine~l) or (methionine~2, alanine-l).
The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (I) W O 97112985 24 PCT~US96/15774 above are; 38-39, 39-40, 40-41, 41-42, 48-49, 53-54, 54-55, 55-56, 56-57, 57-58, 58-59, 59-60, 60-61, 61-62, 62-63, 64-65, 65-66, 66-67, 67-68, 68-69, 69-70, 96-97, 125-126, 126-127, 127-128, 128-129, 129-130, 130-131, 131-132, 132-133, 133-134, 134-13~, 135-136, 136-137, 137-138, 138-139, 13g-140, 140-141 and 141-142.
The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (I) above are;
38-39, 48-49, 96-97, 125-126, 132-133 and 141-142.
The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (II) above are; 28-29, 29-30, 30-31, 31-32, 32-33, 33-34, 34-35, 35-36, 36-37, 37-3&, 38-39, 39-40, 66-67, 67-68, 68-69, 69-70, 70-71, 84-85, 85-86, 86-87, 87-88, 88-89, 89-90, 90-91, 98-99, 99-100, 100-101 and 101-102.
The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (II) above are; 34-35, 69-70 and 90-91.
The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (III) above or the amino acid sequence of (SEQ ID NO:256) are; 80-81, 81-82, 82-83, 83-84, 84-85, 85-86, 86-87, 108-109, 109-110, 110-111, 111-112, 112-113, 113-114, 114-115, 115-116, 116-117, 117-118, 118-119, 119-120, 120-121, 121-122, 122-123, 123-124, 124-125, 125-126 and 126-127.
The most preferred breakpoints at which new C-terminu~
and N-terminus can be made in the polypeptide (III) above or the amino acid sequen~e o~ (SEQ ID Mo:256) are; 81-82, 108-109, 115-116, 119-120, 122-123 and 125-126.
The multi~unctional receptor agonist o~ the present invention can also be represented by the following formula:
(Tl)a-(Ll)b-Xl-~L)C-X2-(L2)d-(T2)e xl-(L)c-x2-(L)_yl_(L)c-y2 in which:
Xl i5 a peptide comprising an amino acid sequence corresponding to the sequence of residues n~l through J of the original protein having amino acids residues numbered sequentially 1 through J with an amino terminus at residue l;
L is an optional linker;
x2 is a peptide comprising an amino acid sequence of residues 1 through n of the original protein;
yl is a peptide comprising an amino acid sequence corresponding to the sequence of residues n=l through K of the original protein having amino acids residues numbered sequentially 1 through K with an amino terminus at residue l;
y2 is a peptide comprising an amino acid sequence o~
residues 1 through n of the original protein;
Ll and L2 are optional peptide spacers:
n is an integer ranging from 1 to J-l;
b, c, and d are each independently 0 or 1;
a and e are either 0 or 1, provided that both a and e cannot both be 0; and Tl and T2 are proteins.
Additionally, the present invention relates to recombinant expression vectors comprising nucleotide sequences encoding the multi-functional hematopoietic receptor agonists, related microbial expression systems, and processes for making the multi-functional hematopoietic W O 97/12985 26 PCT~US96/15774 receptor agonists. The invention also relates to pharmaceutical compositions containing the multi-functional hematopoietic receptor agonists, and methods ~or using the multi-functional hematopoietic receptor agonists.
In addition to the use of the multi-~unctional hematopoietic receptor agonists of the present invention in vivo, it is envisioned that in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth be~ore infusion into patients.
_ W O 97/1298~ 27 PCTrUS96/15774 Br-ef Descri~tion of the Fiall~es Figure 1 schematically illustrates the se~uence rearrangement of a protein. The N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly. The protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence. A rearranged molecule may be synthesized de novo as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint.
Figure 2 shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different M-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the amino acid 11 (a.a. 1- 10 are deleted) through a linker region and a new C-terminus created at amino acid 96 of the original sequence.
Figure 3 shows a schematic of Method II, for creating new proteins in which the original M-terminus and C-terminus of the native protein are joined without a linker and different N-terminus and C-terminus of the protein are created. In the example shown the se~uence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the original N-terminus and a new C-terminus created at amino acid 96 of the original se~uence.
W O 97/12985 28 PCT~US96/15774 Figure 4 shows a schematic of Method III, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the se~uence rearrangement results in a new gene encoding a protein with a new M-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence.
Detailed Descri~tion of the Invention The present invention encompasses multi-functional hematopoietic receptor agonists formed from covalently linked polypeptides, each of which may act through a different and specific cell receptor to initiate complementary biological activities. Hematopoiesis re~uires a complex series of cellular events in which stem cells generate continuously into large populations of maturing cells in all major lineages. There are currently at least 20 known regulators with hematopoietic proliferative activity.
Most of these proliferative regulators can ~nly stimulate one or another type of colony formation in vitro, the precise pattern of colony formation stimulated by each regulator is quite distinctive. No two regulators stimulate exactly the same pattern of colony formation, as evaluated by colony numbers or, more importantly, by the lineage and maturation pattern of the cells making up the developing colonies. Proliferative responses can most readily be analyzed in simplified in vitro culture systems. Three quite different parameters can be distinguished: alteration in colony size, alteration in colony numbers and cell lineage.
Two or more factors may act on the progenitor cell, inducing the formation of larger number of progeny thereby increasing the colony size. Two or more factors may allow increased number of progenitor cells to proliferate either because distinct subsets of progenitors cells exist that respond exclusively to one factor or because some progenitors require stimulation by two or more factors before being able to respond. Activation of additional receptors on a cell by the use of two or more factors is likely to enhance the mitotic signal because of coalescence of initially differing signal pathways into a common final pathway reaching the nucleus ~Metcalf, Nature 339:27, 1989). Other mechanisms .
W O 97/12985 PCT~US96/15774 could explain synergy. For example, if one signaling pathway is limited by an intermediate activation of an additional signaling pathway which is caused by a second factor, then this may result in a super additi~e response. In some cases, 5 activation of one receptor type can induce an enhanced expression of other receptors tMetcalf, Blood 82:3515-3523, ~
1993). Two or more factors may result in a di~ferent pattern of cell lineages than from a single factor. The use of multi-functional hematopoietic receptor agonists may have a 10 potential clinical advantage resulting from a proliferative response that is not possible by any single factor.
The receptors of hematopoietic and other growth factors can be grouped into two distinct families of related proteins: (1) tyrosine kinase receptors, including those for epidermal growth factor, M-CSF (Sherr, Bloo~ 75:1, 1990) and SCF (Yarden et al., EMBO J, 6:3341, 1987): and (2) hematopoietic receptors, not containing a tyrosine kinase domain, but exhibiting obvious homology in their extracellular domain (Bazan, PNAS U~A 87:6934-6938, 1990).
Included in this latter group are erythropoietin tEPo) (D~Andrea et al., Cell ~7:277, 1989), GM-CSF (Gearing et al., EMBO ~. 8:3667, 1989), IL-3 (Kitamura et al., Cell 66:1165, 1991), G-CSF (Fukunaga et al., J. Bio. Chem.
265:14008-15, 1990), I~-4 (~arada et al., PNAS USA 87:857, 1990), IL-5 (Takaki et al., EMBO ~. 9.4367, 1990), IL-6 (Yamasaki et al., Science 241:825, 1988), IL-7 (Goodwin et al., Cell 60:941-51, l99G), LIF (Gearing et al., EMBO ~.
10:2839, 1991) and IL-2 (Cosman et al., Mol-Immunol. 23:
935-94, 1986). Most of the latter group of receptors exists in a high-affinity form as heterodimers. After ligand binding, the specific ~-~h~ing become associated with at least one other receptor chain (~-chain, ~-chain). Many of these factors share a common receptor subunit. The ~-ch~- n~
for GM-CS~, IL-3 and IL-5 share the same ~-chain (Kitamura et al., Cell 66:1165, 1991), Takaki et al., EMBO ~.
W O 97/12985 31 PCTrUS96/15774 10:2833-8, 1991) and receptor complexes for IL-6, LIF and L-11 share a common ~-chain ~gpl30) (Taga et al., Cell ~8:573-81, 1989; Gearing et al., Science 255:1434-7, 1992).
The receptor complexes o~ IL-2, IL-4, IL-7, IL-9 and IL-15 share a common ~-chain (Kondo et al., Science 262:1874, 1993; Russell et al., Science 266: 10~2-1045, 1993;
Noguchi et al., Science 262:1877, 1993; Giri et al., ~MBO
. 13:2822-2830, 1994).
The use of a multiply acting hematopoietic ~actor may also have a potential advantage by reducing the demands placed on factor-producing cells and their induction systems. If there are limitations in the ability o~ a cell to produce a ~actor, then by lowering the re~uired concentrations of each of the factors, and using them in combination may use~ully reduce demands on the ~actor-producing cells. The use of a multiply acting hematopoietic factor may lower the amount of the ~actors that would be needed, probably reducing the likelihood o~ adverse side-e~fects.
Movel compounds of this invention are represented by a ~ormula selected ~rom the group consisting o~:
R1-L1-R2, R2-L1-R1, Rl-R2/ and R2-R1 Where R1 and R2 are as defined above.
R2 is preferably a colony stimulating ~actor with a di~ferent but complementary activity than R1. By complementary activity is meant activity which enhances or changes the response to another cell modulator. The R1 polypeptide is joined either directly or through a linker segment to the R2 polypeptide. The term "directly~ defines multi-functional hematopoietic receptor agonists in which the polypeptides are joined without a peptide linker. Thus L1 represents a chemical bond or polypeptide segment to which both R1 and R2 are joined in ~rame, most commonly W O 97/12985 32 PCT~US96/15774 is a linear peptide to which Rl and R2 are joined by amide bonds linking the carboxy terminus of Rl to the amino terminus o~- Ll and carboxy terminus of Ll to the amino terminus of R2. By "joined in frame" is meant that there is no translation termination or disruption between the reading frames of the DNA encoding Rl and R2.
A non-exclusive list of other growth factors, i.e.
colony stimulating factors (CSFs), are cytokines, lymphokines, interleukins, hematopoietic growth factors which can be joined to (I), (II) or (III) include GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (EPO), IL-l, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-ll, IL-12, IL-13, IL-15, LIF, flt3/flk2 ligand, human growth hormone, s-cell growth factor, B-cell di~ferentiation factor, eosinophil differentiation factor and stem cell ~actor (SCF) also known as steel factor or c-kit ligand. Additionally, this invention encompasses the use of modified Rl or R2 molecules or mutated or modified DNA se~uences encoding these Rl or R2 molecules. The present invention also includes multi-functional hematopoietic receptor agonists in which Rl or R2 is an hIL-3 variant, c-mpl ligand variant, or G-CSF variant.
A /~hIL-3 variantN is de~ined as a hIL-3 molecule which has amino acid substitutions and/or portions of hIL-3 deleted as disclosed in WO 94/12638, WO 94/12639 and WO 95/00646, as well as other variants known in the art. A "c-mpl ligand variant" is defined an c-mpl ligand molecule which has amino acid substitutions and/or portions of c-mpl ligand deleted, disclosed in United States Application Serial Number 08/383,035 as well as other variants known in the art. A ~G-CSF variant~ is de~ined an G-CSF molecule which has amino acid substitutions and/or portions of G-CSF deleted, as disclosed herein, as well as other variants known in the art.
W O 97/12985 PCT~US96/15774 The linking group ~Ll) is generally a polypeptide of between 1 and 500 amino acids in length. The linkers ~oining the two molecules are preferably designed to (1) allow the two molecules to fold and act independently of each other, (2) not have a propensity for developing an ordered secondary structure which could interfere with the functional domains of the two proteins, (3) have m;nim~l hydrophobic characteristics which could interact with the functional protein domains and (4) provide steric separation of Rl and R2 such that Rl and R2 could interact simultaneously with their corresponding receptors on a single cell. Typically surface amino acids in flexible protein regions include Gly, Asn and Ser. Virtually any permutation of amino acid sequences containing Gly, Asn and Ser would be expected to satisfy the above criteria for a linker sequence. Other neutral amino acids, such as Thr and Ala, may also be used in the linker sequence. Additional amino acids may also be included in the linkers due to the addition of unique restriction sites in the linker se~uence to facilitate construction of the multi-functional hematopoietic receptor agonists.
Preferred Ll linkers of the present invention include sequences selected from the group of ~ormulas:
(Gly3Ser)n (SEQ ID NO:4), (Gly4Ser)n (SEQ ID MO:5), (Gly5Ser)n (SEQ ID NO:6), (GlynSer)n (SEQ ID NO:7) or (AlaGlySer)n (SEQ ID NO:8).
One example of a highly-flexible linker is the glycine and serine-rich spacer region present within the pIII
protein o~ the filamentous bacteriophages, e.g.
bacteriophages M13 or fd (Schaller et al., P~AS USA 72: 737-741, 1975). This region provides a long, flexible spacer region between two domains of the pIII surface protein. The spacer region consists of the amino acid sequence:
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGluGlyGlyGlySerGlu .~
GlyGlyGlySerGluGlyGlyGlySerGluGlyGlyGlySerGlyGlyGlySer (SEQ ID NO:9).
The present invention also includes linkers in which an endopeptidase recognition sequence is included. Such a cleavage site may be valuable to separate the individual components of the multi-functional hematopoietic receptor agonist to determine if they are properly folded and actlve in vitro. Examples of various endopeptidases include, but are not limited to, plasmin, enterokinase, kallikrein, urokinase, tissue plasminogen activator, clostripain, chymosin, collagenase, Russell's viper venom protease, postproline cleavage enzyme, V8 protease, Thrombin and factor Xa.
Peptide linker segments from the hinge region of heavy chain immunoglobulins IgG, IgA, IgM, IgD or IgE provide an angular relationship between the attached polypeptides.
Especially useful are those hinge regions where the cysteines are replaced with serines. Preferred linkers of the present invention include sequences derived from murine IgG gamma 2b hinge region in which the cysteines have been changed to serines These linkers may also include an endopeptidase cleavage site. Examples of such linkers include the following sequences:
IleSerGluProSerGlyProIleSerThrIleAsnProSerProProSerLys GluSerHisLysSerPro (SEQ ID NO:10) and IleGluGlyArgIleserGluproserGlyproIleserThrIleAsnproser ProProSerLysGluSerHisLysSerPro (SEQ ID NO:ll).
The present invention is, however, not limited by the form, size or number of linker sequences employed and the only requirement of the linker is that functionally it does not interfere with the folding and function of the individual molecules of the multi-functional hematopoietic W O 97112985 PCTrUS96/15774 receptor agonist.
Determinat~ on of the T.; ~ker L~.
The length of the amino acid sequence of the linker L2 to be used in R1 and/or R2 can be selected empirically or with guidance ~rom structural information, or by using a combination of the two approaches.
When no structural information is available, a small 10 series o~ linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 A and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp & Woods, Mol.
Immunol. 20: 483-489, 1983), Kyte & Doolittle, LJ. Mol. Biol.
157:105-132; solvent exposed surface area, Lee & Richards, ~J. Mol. Biol. 55:379-4~0, 1971) and the ability to adopt the necessary conformation with out derangirlg the conformation of R1 or R2 (conformationally ~lexible; Karplus & Schulz, Naturwissenschaften 72:212-213, 1985). Assuming an average of translation of 2.0 to 3.8 A per residue, this would mean the length to test would be between 0 to 30 residues, with 0 to 15 residues being the preferred range.
Exemplary oE such an empirical series would be to construct linkers using a cassette sequence such as Gly-Gly-Gly-Ser (SEQ ID NO:12) repeated n times, where n is 1, 2, 3 or 4.
Those skilled in the art will recognize that there are many such sequences that vary in length or composition that can serve as linkers with the primary consideration being that they be neither excessively long nor short (cf., Sandhu, Critical Rev. Biotech. 12: 437-462, 1992); if they are too long, entropy effects will likely destabilize the three-dimensional ~old, and may also make folding kinetically impractical, and if they are too short, they will likely destabilize the molecule because of torsional or steric strain.
W O 9711298~ 36 PCT~US96/15774 Those skilled in the analysis of protein structural information will recognize that using the distance between the chain ends, defined as the distance between the c-alpha ,~
carbons, can be used to define the length of the sequence to be used, or at least to limit the number of possibilities that must be tested in an empirical selection of linkers.
They will also recognize that it is sometimes the case that the positions of the ends of the polypeptide chain are ill-defined in structural models derived from x-ray di~raction or nuclear magnetic resonance spectroscopy data, and that when true, this situation will therefore need to be taken into account in order to properly estimate the length of the linker required From those residues whose positions are well defined are selected two residues that are close in sequence to the chain ends, and the distance between their c-alpha carbons is used to calculate an approximate length for a linker between them. Using the calculated length as a guide, linkers with a range of number of residues (calculated using 2 to 3.8A per residue) are then selected.
These linkers may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series of linkers, one example being the Gly-Gly-Gly-Ser (SEQ ID NO:12) cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the appropriate total length may be used.
Determination of the Amino and Carbox~1 Termini of Rl and R~
Sequences of R1 and R2 capable of folding to biologically active states can be prepared by appropriate W O 97112985 PCT~US96/15774 selection ci the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original A polypeptide chain while using the linker sequence L2 as described above. Amino and carboxyl termini are selected 5 from within a common stretch of se~uence, referred to as a breakpoint region, using the guidelines described below. A
novel amino acid sequence is thus generated by selecting amino and carboxyl termini from within the same breakpoint region. In many cases the selection o~ the new termini will 10 be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus. However, those skilled in the art will recognize that selections of termini anywhere within the region may func'ion, and that these will effectively lead to either deletions or additions 15 to the amino or carboxyl portions of the new sequence.
It is a central tenet o~ molecular biology that the primary amino acid sequence of a protein dictates folding to the three-dimensional structure necessary for expression of its biological function. Methods are known to those skilled 20 in the art to obtain and interpret three-~;mPnsional structural information using x-ray diffraction of single protein crystals or nuclear magnetic resonance spectroscopy of protein solutions. Examples of structural information that are relevant to the identification of breakpoint 25 regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops;
Kabsch & Sander, Biopolymers 22: 2577-2637, 1983), the degree of solvent exposure of amino acid residues, the 30 extent and type of interactions o~ residues with one another (Chothia, Ann. Rev. Biochem. 53: 537-572, 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews, ~ethods Enzymol. 154:
511 533, 1987). In some cases additional information is 35 known about solvent exposure of residues; one example is a W O 97/lZ985 3 PCT~US96/15774 site of post-translational attachment of carbohydrate which is necessarily on the surface of the protein. When experimental structural information is not a~ailable, or is not feasible to obtain, methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility and the occurrence o~ turns and loops.
Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile Salvatore, Eur. J. Biochem. 218:603-621, 1993) Thus using either the experimentally derived struc~ural information or predictive methods te.g., Srinivisan & Rose Proteins: ~truct., Funct. & Genetics, 22: 81-99, 1995) the parental amino acid sequence is inspected to classify regions according to whether or not they are integral to the maintenance of secondary and tertiary structure. The occurrence of sequences within regions that are known to be involved in periodic secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets) are regions that should be avoided. Similarly, regions of amino acid sequence that are observed or predicted to have a low degree of solvent exposure are more likely to be part of the so-called hydrophobic core of the protein and should also be avoided for selection o~ amino and carboxyl termini. In contrast, those regions that are known or predicted to be in surface turns or loops, and especially those regions that are known not to be required for biological activity, are the preferred sites for location of the extremes of the polypeptide chain. Continuous stretches of amino acid sequence that are preferred based on the above criteria are referred to as a breakpoint region.
, W O 97112985 39 P~nJss6ns774 Non-covalent Multifunctional hemato~oietic qrowth f~ctors L An alternative method for connecting two hematopoietic growth factors is by means of a non-covalent interaction.
5 ~uch complexed proteins can be described by one of the formulae:
R1-C1 + R2-c2; or Cl-Rl + C2-R2; Cl-R1 + R2-C2; or Cl-R1 +
R1 and R2 are as is defined above. Domains C1 and C2 are either identical or non-identical chemical structures, typically ~roteinaceous, which can form a non-covalent, specific association. Complexes between C1 and C2 result in 15 a one-to-one stoichiometric relationship between ~1 and R2 for each complex. Examples of domains which associate are ~leucine zipperN domains of transcription factors, dimerization dom~i n~ of bacterial transcription repressors and immunoglobulin constant domains. Covalent bonds link R
20 and C1, and R2 and C2, respectively. As indicated in the formulae, the domains C1 and C2 can be present either at the N-terminus or C-terminus of their corresponding hematopoietic growth factor (R). These multimeri~ation domains (C1 and C2) include those derived from the bZIP
25 family of proteins (Abel et al., Nature 3~1:24-25, 1989;
Landshulz et al., ~cience 240:1759-1764, 1988; Pu et al., Nuc. Acid Res. 21:4348-4355, 1993; Kozarides et al., Nature 336:646-651, 1988), as well as multimerization dom~;n~ of the helix-loop-helix family of proteins (Abel et al., Nature 30 341:24-25, 1989; Murre et al., Cell 56:777-783, 1989;
Tapscott et al., Science 242: 405-411, 1988; Fisher et al., Genes & Dev. 5:2342-2352, 1991). Preferred multi-functional hematopoietic receptor agonists of the present invention include colony stimulating factors dimerized by virtue of their incorporation as translational multi-functional W O 97/12985 PCT~US96/15774 hematopoietic receptor agonists with the leucine zipper dimerization do~i n~ of the bZIP family proteins Fos and Jun. The leucine zipper domain of Jun is capable of interactin~ with identical domains. On the other hand, the leucine zipper ~m~ i n of Fos interacts with the Jun leucine zipper domain, but does not interact with other Fos leucine zipper domains. Mixtures of Fos and Jun predominantly result in formation of Fos-Jun heterodimers. Consequently, when joined to colony stimulating factors, the Jun domain can be used to direct the formation of either homo- or heterodimers. Preferential formation of heterodimers can be achieved if one of the colony stimulating factor partners is engineered to possess the Jun leucine zipper domain while the other is engineered to possess the Fos zipper.
Additional peptide sequences may also be added to facilitate purification or identification of multi-functional hematopoietic receptor agonist proteins (e.g., poly-His). A hi~hly antigenic peptide may also be added that would enabJ- rapid assay and facile purification of the multi-functional hematopoietic receptor agonist protein by a specific monoclonal antibody.
"Mutant amino acid sequence," ~mutant protein~, "variant protein~, "mutein", or ~mutant polypeptide" refers to a polypeptide having an amino acid sequence which varies from a native se~uence due to amino acid deletions, substitutions, or both, or is encoded by a nucleotide sequence intentionally made variant from a native sequence..
"Native sequence" refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a gene or protein.
Hematcpoietic growth factors can be characterized by their ability to stimulate colony formation by human W O 97112985 41 PCT~US96~15774 hematopoietic progenitor cells. The colonies ~ormed include erythroid, granulocyte, megakaryocyte, granulocytic macrophages and mixtures thereof. Many of the hematopoietic growth factors have demonstrated the ability to restore bone marrow ~unction and peripheral blood cell populations to therapeutically beneficial levels in studies performed initially in primates and subsequently in humans. Many or all of these biological activities of hematopoietic growth factors involve signal transduction and high affinity receptor b nding. Multi-functional hematopoietic receptor agonists of the present invention may exhibit useful properties such as having similar or greater biological activity when compared to a single factor or by having improved half-life or decreased adverse side effects, or a combination of these properties.
Multi-functional hematopoietic receptor agonists which have little or no agonist activity maybe useful as antagonists, as antigens for the production of antibodies for use in immunology or immunotherapy, as genetic probes or as intermediates used to construct other use~ul hI~-3 muteins.
Biological activity of the multi-functional hematopoietic receptor agonist proteins of the present invention can be determined by DNA synthesis in factor-dependent cell lines or by counting the colony ~orming units in an in vitro bone marrow assay.
The multi-functional hematopoietic receptor agonists of the present invention may have an improved therapeutic profile as compared to single acting hematopoietic agonists.
For example, some multi-functional hematopoietic receptor agonists of the present invention may have a si~ilar or more potent growth factor activity relative to other "
hematopoietic agonists without having a similar or corresponding increase in side-effects.
The present invention also includes the DNA
sequences which code for the multi-functional hematopoietic receptor agonist proteins, DNA sequences which are substantially similar and perform substantially the same function, and DNA sequences which differ from the DNAs encoding the multi-functional hematopoietic receptor agonists of the invention only due to the degeneracy of the genetic code. Also included in the present invention are the oligonucleotide intermediates used to construct the mutant DNAs and the polypeptides coded for by these oligonucleotides.
Genetic engineering techniques now standard in the art (united States Patent 4,935,233 and Sambrook et al., UMolecular 'loning A Laboratory Manual", Cold Spring Harbor Laboratory, 1989) may be used in the construction of the DNA
sequences of the present invention. One such method is cassette mutagenesis (Wells et al., Gene 34:315-323, 1985) in which a portion of the coding sequence in a plasmid is replaced with synthetic oligonucleotides that encode the desired amino acid substitutions in a portion of the gene between two restriction sites.
Pairs of complementary synthetic oligonucleotides encoding the desired gene can be made and annealed to each other. The DNA sequence of the oligonucleotide would encode sequence for amino acids of desired ~ene with the exception of those substituted and/or deleted from the sequence.
Plasmid DNA can be treated with the chosen restriction endonucleases then ligated to the annealed oligonucleotides.
The ligated mixtures can be used to trans~orm competent JM101 cells to resistance to an appropriate antibiotic.
Single colonies can be picked and the plasmid DMA examined by restriction analysis and/or DNA sequencing to identify CA 0223406l l998-04-06 W O9~/12985 PCTnUS96/I57~4 plasmids with the desired genes.
Cloning of the DNA se~uences of the novel multifunctional hematopoietic agonists wherein at least one o~ the with the DNA sequence of the other colony stimulating ~actor may be accomplished by the use of intermediate vectors. Alternatively one gene can be cloned directly into a vector cont~;ning the other gene. Linkers and adapters can be used for }oining the DNA se~uences, as well as replacing lost sequences, where a restriction site was internal to the region of interest. Thus genetic material (DNA) encoding one polypeptide, peptide linker, and the other polypeptide is inserted into a suitable expression vector which is used to transform bacteria, yeast, insect cells or mammalian cells. The transformed organism is grown and the protein isolated by standard techniques. The resulting product is therefore a new protein which has a colony stimulating factor joined by a linker region to a second colony stimulating factor.
Another aspect of the present invention provides plasmid DNA vectors ~or use in the expression o~ these novel multi-~unctional hematopoietic receptor agonists. These vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention.
Appropriate vectors which can transform microorganisms capable of expressing the multi-functional hematopoietic receptor agonists include expression vectors comprising nucleotide sequences coding for the multi-functional hematopoietic receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.
Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the multi-functional hematopoietic receptor agonist polypeptides. The vector employed in the method also contains selected regulatory sequences in W O 97/12985 P~T~US96/15774 operative association with the DNA coding sequences of the invention and which are capable of directing the replication and expression thereof in selected host cells.
As another aspect of the present invention, there is provided a method for producing the novel multi-functional hematopoietic receptor agonists. The method of the present invention involves culturing suitable cells or cell line, which has been transformed with a vector containing a DNA
sequence coding for expression of a novel multi-functional hematopoietic receptor agonist. Suitable cells or cell lines may be bacterial cells. For example, the various strains of E. coli are well-known as host cells in the field of biotechnolo~y. Examples of such strains include E. coli strains JM-Q1 (Yanish-Perron et al. Gene 33: 103-119, 1985) and MON105 (Obukowicz et al., Applied Envlronmental Microbiology 58: 1511-1523, 1992). Also included in the present invention is the expression of the multi-functional hematopoietic receptor agonist protein utilizing a chromosomal expression vector for E. coli based on the bacteriophage Mu (Weinberg et al., Gene 126: 25-33, 1993).
Various strains of B. subtilis may also be employed in this method. Many strains of yeast cells known to those skilled in the art are also available as host cells for expression of the polypeptides of the present invention. When expressed in the E. coli cytoplasm, the gene encoding the multi-functional hematopoietic receptor agonists of the present invention may also be constructed such that at the 5~ end of the gene codons are added to encode Met -~la - or Met at the N-terminus of the protein. The N termini o~
proteins made in the cytoplasm of E. coli are affected by post-translational processing by methionine aminopeptidase (Ben Bassat et al., ~. Bac. 169:751-757, 1987) and possibly by other peptidases so that upon expression the methionine is cleaved off the N-terminus. The multi-functional hematopoietic receptor agonists of the present invention may W O 97/12985 PCT~US96/15774 include multi-functionai hematopoietic receptor agonist polypeptides having Met , Ala or Met -Ala at the N-terminus. These mutant multi-~unctional hematopoietic receptor agonists may also be expressed in E. coli by fusing a secretion signal peptide to the N-terminus. This signal peptide is cleaved from the polypeptide as part of the secretion process.
Also suitable ~or use in the present invention are mammalian cells, such as Chinese hams~er ovary cells (CHO).
General methods for expression of foreign genes in m~mm~lian cells are reviewed in Kaufman, R. J., 1987) Genetic Engineering, Principles and Methods, Vol. 9, J. K. Setlow, editor, Plenum Press, New York. An expression vector is constructed in which a strong promoter capable of functioning in m~mm~l ian cells drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-~unctional hematopoietic receptor agonist. For example, plasmids such as pcDNA I/Neo, pRc/RSV, and pRc/CMV (obtained from Invitr~gen Corp., San Diego, California) can be used.
The eukaryotic secretion signal peptide coding region can be from the gene itself or it can be from another secreted mammalian protein (Bayne, M. L. et al., P~oc. Natl. Acad.
Sci. USA 84: 2638-2642, 1987). After construction o~ the vector containing the gene, the vector DNA is transfected into mammalian cells. Such cells can be, for example, the COS7, HeLa, BHK, CHO, or mouse L lines. The cells can be cultured, for example, in DMEM media (JRH Scientific). The polypeptide secreted into the media can be recovered by standard biochemical approaches following transient expression for 24 - 72 hours after transfection of the cells or after establishment of stable cell lines following selection for antibiotic resistance. The selection of suitable m~mm~l ian host cells and methods for transformation, culture, amplification, screening and W O 97/12985 46 PCTnUS96/15774 product production and puri~ication are known in the art.
See, e.g., Gething and Sambrook, Na~ure, 293:620-625, 1981), or alternatively, Kaufman et al, Mol. Cell. Biol., 5(7):1750-1759, 1985) or Howley et al., U.S. Pat. No.
4,419,446. Another suitable m~mm~l ian cell line is the monkey COS-1 cell line. A similarly useful mammalian cell line is the CV-1 cell line.
Where desired, insect cells may be utilized as host cells in the method of the present invention. See, e.g., Miller et al., Genetic Engineering, 8:277-298 (Plenum Press 1986) and ~eferences cited therein. In addition, general methods for expression of foreign genes in insect cells using Baculovirus vectors are described in: Summers, M. D.
and Smith, G. E., 1987) - A manual of methods for Baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station Bulletin No. 1555. An expression vector is constructed comprising a Baculovirus transfer vector, in which a strong saculovirus promoter (such as the polyhedron promoter) drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-functional hematopoietic receptor agonist polypeptide. For example, the plasmid pVL1392 (obtained from Invitrogen Corp., San Diego, California) can be used. After construction of the vector carrying the gene encoding the multi-functional hematopoietic receptor a~onist polypeptide, two micrograms of this DNA is co-transfected with one microgram of Baculovirus DNA (see Summers & Smith, 1987) into insect cells, strain SF9. Pure recombinant Baculovirus carrying the multi-functional hematopoietic receptor agonist is used to infect cells cultured, for example, in Excell 401 serum-free medium (JRH Biosciences, Lenexa, Kansas). The multi-functional hematopoietic receptor agonist secreted into the medium can be recovered by standard biochemical approaches. Supernatants from mammalian or insect cells W O 97/lZ985 PCT~US96/15774 expressing the multi-functional hematopoietic receptor agonist protein can be first concentrated using any of a number of commercial concentration units.
r The multi-functional hematopoietic receptor agonists of the present invention may be use~ul in the treatment of diseases characterized by decreased levels of either myeloid, erythroid, lymphoid, or megakaryocyte cells of the hematopoietic system or combinations thereof. In addition, they may be used to activate mature myeloid and/or lymphoid cells. Among conditions susceptible to treatment with the polypeptides of the present invention is leukopenia, a reduction in the number of circulating leukocytes ~white cells) in the peripheral blood. Leukopenia may be induced by exposure to certain viruses or to radiation. It is often a side effect of various forms of cancer therapy, e.g., exposure to chemotherapeutic drugs, radiation and of infection or hemorrhage. Therapeutic treatment of leukopenia with these multi-functional hematopoietic receptor agonists of the present invention may avoid undesirable side effects caused by treatment with presently available drugs.
The multi-functional hematopoietic receptor agonists of the present invention may be useful in the treatment of neutropenia and, for example, in the treatment of such - conditions as aplastic anemia, cyclic neutropenia, idiopathic neutropenia, Chediak-Higashi syndrome, systemic lupus erythematosus (SLE), leukemia, myelodysplastic syndrome and myelofibrosis.
The multi-functional hematopoietic receptor agonist of the present invention may be useful in the treatment or prevention of thrombocytopenia. Currently the only therapy for thrombocytopenia is platelet transfusion which are costly and carry the significant risks of infection (HIV, ~ 35 HBV) and alloimunization. The multi-functional hematopoietic , W O 97112985 48 PCT~US96/lS774 receptor agonist may alleviate or diminish the need for platelet transfusion. Severe thrombocytopenia may result from genetic defects such as Fanconi's Anemia, Wiscott-Aldrich, or May Hegglin syndromes. Acquired thrombocytopenia may result from auto- or allo-antibodies as in Immune Thrombocytopenia Purpura, Systemic Lupus Erythromatosis, hemolytic anemia, or fetal maternal incompatibility. In addition, splenomegaly, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, infection or prosthetic heart valves may result in thrombocytopenia.
Severe thrombocytopenia may also result from chemotherapy and/or radiation therapy or cancer. Thrombocytopenia may also result from marrow invasion by carcinoma, lymphoma, leukemia or fibrosis.
The multi-functional hematopoietic receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood. Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation. Hematopoietic growth factors including ~-CSF and GM-CSF have been shown to enhance tl~e number of circulating progenitors and stem cells in the peripheral blood. This has simplified the procedure for peripheral stem cell collection and dramatically decreased the cost of the procedure by decreasing the number of pheresis required. The multi-functional hematopoietic receptor agonist may be useful in mobilization of stem cells and further enhance the efficacy of peripheral s~em cell transplantation.
The multi-functional hematopoietic receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors and stem cells.
Colony stimulating factors ~CSFs), such as hIL-3, have been W O 97112985 P ~ nJS96/15774 administered alone, co-administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the neutropenia and thrombocytopenia which are often the result of such treatment. However the period of severe neutropenia and thrombocytopenia may not be totally eliminated. The myeloid lineage, which is comprised of monocytes (macrophages), granulocytes (including neutrophils) and megakaryocytes, is critical in preventiny in~ections and bleeding which can be life-threatening. Neutropenia and thrombocytopenia may also be the result of disease, genetic disorders, drugs, toxins, radiation and many therapeutic treatments such as conventional oncology therapy.
Bone marrow transplants have been used to treat this patient population. However, several problems are associated with the use of bone marrow to reconstitute a compromised hematopoietic system including: 1) the number o~ stem cells in bone marrow, spleen, or peripheral blood is limited, 2) Graft Versus Host Disease, 3) graft rejection and 4) possible contamination with tumor cells. Stem cells make up a very small percentage of the nucleated cells in the bone marrow, spleen and peripheral blood. It is clear that a dose response exists such that a greater number of stem cells will enhance hematopoietic recovery. Therefore, the in vitro expansion of stem cells should enhance hematopoietic recovery and patient survival. Bone marrow from an allogeneic donor has been used to provide bone marrow for transplant. However, Graft Versus Host Disease and graft rejection limit bone marrow transplantation even in recipients with HLA-matched sibling donors. An alternative to allogeneic bone marrow transplants is autologous bone marrow transplants. In autologous bone marrow transplants, some of the patient~s own marrow is harvested prior to myeloablative therapy, e.g. high dose chemotherapy, and is transplanted back into the patient afterwards. Autologous W O 97/12985 5 PCT~US96/15774 transp}ants eliminate the risk of Graft Versus Host Disease and graft rejection. However, autologous bone marrow transplants still present problems in terms of the limited number of stems cells in the marrow and possible contamination with tumor cells. The limited number of stem cells may be overcome by ex-vivo expansion of the stem cells. In addition, stem cells can be specifically isolated, based on the presence of speci~ic surface antigens such as CD34+ in order to decrease tumor cell contamination of the marrow graft.
The ~ollowing patents contain further details on separating stem cells, CD34+ cells, culturing the cells with hematopoietic factors, the use of ~he cells for the treatment of patients with hematopoietic disorders and the use of hematopoietic factors for cell expansion and gene therapy.
5,061,620 relates to compositions comprising human hematopoietic stem cells provided by separating the stem cells from dedicated cells.
5,199,942 describes a method for autologous hematopoietic cell transplantation comprising: (1) obt~i n ' ng hematopoietic progenitor cells from a patient; (2) ex-vivo expansion of cells with a growth factor selected from the group consisting of IL-3, flt3 ligand, c-kit ligand, GM-CSF, IL-1, GM-CSF~IL-3 fusion protein and combinations thereof; (3) administering cellular preparation to a patient.
5,240,856 relates to a cell separator that includes an apparatus for automatically controlling the cell separation process.
WO 91/16116 describes devices and methods for selectively W O 97/12985 51 PCTfUS96/15774 isolating and separating target cells ~rom a mixture of cells.
.
WO 91/18972 describes methods for in vitro culturing o~ bone marrow, by incubating suspension of bone marrow cells, using a hollow ~iber bioreactor.
WO 92/18615 relates to a process for maintaining and expanding bone marrow cells, in a culture medium containing speci~ic mixtures o~ cytokines, for use in transplants.
WO 93/08268 describes a method for selectively expanding stem cells, comprising the steps o~ ~a) separating CD34+
stem cells ~rom other cells and (b) incubating the separated cells in a selective medium, such that the stem cells are selectively expanded.
WO 93/18136 describes a process ~or in vitro support of mammalian cells derived ~rom peripheral blood.
WO 93/18648 relates to a composi~ion comprising human neutrophil precursor cells with a high content o~
myeloblasts and promyelocytes for treating genetic or acquired neutropenia.
WO 94/08039 describes a method o~ enrichment ~or human hematopoietic stem cells by selection ~or cells which express c-kit protein.
w~ 94/11493 describes a stem cell population that are CD34+
and small in size, which are isolated using a counter~low elutriation method.
Wo 94/27698 relates to a method combining immunoaf~inity separation and continuous ~low centri~ugal separation ~or .
W O 97/12985 S2 PCT~US96/15774 the selective separation of a nucleated heterogeneous cell population from a heterogeneous cell mixture.
WO 94/25848 describes a cell separation apparatus for collection and manipulation of target cells.
The long term culturing of highly enriched CD34+ precursors of hematopoietic progenitor cells from human bone marrow in cultures containing IL-la, IL-3, IL-6 or GM-CSF is discussed in Brandt et al J. Clin, Invest. 86:932-941, 1990).
One aspect of the present invention provides a method for selective ex-vivo expansion of stem cells. The term "stem cell" refers to the totipotent hematopoietic stem cells as well as early precursors and progenitor cells which can be isolated from bone marrow, spleen or peripheral blood. The term "expansion" re~ers to the differentiation and proliferation of the cells The present invention provides a method for selective ex-vivo expansion of stem cells, comprising the steps of: (a) separating stem cells from other cells, (b) culturing said separated stem cells with a selective media which contains multi-functional hematopoietic receptor agonist protein(s) and (c) harvesting said stems cells. Stem cells, as well as committed progenitor cells destined to become neutrophils, erythrocytes, platelets, etc. may be distinguished from most other cells by the presence or absence of particular progenitor marker antigens, such as CD34, that are present on the surface of these cells and/or by morphological characteristics. The phenotype for a highly enriched human stem cell fraction is reported as CD34+, Thy-1+ and lin-, but it is to be understood that the present invention is not limited to the expansion of this stem cell population. The CD34+ enriched human stem cell fraction can be separated by a number of reported methods, including affinity columns or W O 97/12985 PCTnUS96/lS774 beads, magnetic beads or ~low cytometry using antibodies directed to surface antigens such as the CD34+. Further, physical separation methods such as counterflow elutriation may be used to enrich hematopoietic progenitors. The CD34+
progenitors are heterogeneous, and may be divided into several sub-populations characterized by the presence or absence of co-expression o~ different lineage associated cell sur~ace associated molecules. The most immature progenitor cells do not express any known lineage associated markers, s~c~h as HLA-DR or CD38, but they may express CD90(thy-1). Other sur~ace antigens such as CD33, CD38, CD41, CD71, HLA-DR or c-kit can also be used to selectively isolate hematopoietic progenitors. The separated cells can be incubated in selected medium in a culture flask, sterile bag or in hollow fibers. Various colony stimulating ~actors may be utilized in order to selectively expand cells.
Representative factors that have been utilized ~or ex-vivo expansion o~ bone marrow include, c-kit ligand, IL-3, G-CSF, GM-CSF, IL-1, IL-6, IL-ll, flt-3 ligand or combinations thereo~. The proli~eration of the stem cells can be monitored by enumerating the number of stem cells and other cells, by standard techniques (e.g. hemacytometer, CFU, LTCIC) or by flow cytometry prior and subsequent to incubation.
Several methods ~or ex-vivo expansion of stem cells have been reported utilizing a number o~ selection methods and expansion using various colony stimulating ~actors including c-kit ligand (Brandt et al., Blood 83:1507-1514 [1994], McKenna et al., Blood 86:3413-3420 [1995]), IL-3 (Brandt et al., Blood 83:1507-1514 [1994~, Sato et al., Blood 82:3600-3609 [1993]), G-CSF ~Sato et al., Blood 82:3600-3609 [1993]), GM-CSF (Sato et al., Blood 82:3600-3609 [1993]), IL-l (Muench et al., Blood 81:3463-3473 [1993]), IL-6 (Sato et al., Blood 82:3600-3609 [1993]), IL-W O 97/12985 PCT~US96/1~774 11 (Lemoli et al., Exp. Hem. 21:1668-1672 [1993~, Sato et al., Blood 82:3600-3609 [lg93~), flt-3 ligand (McKenna et al., Blood 86:3413 3420 [1995]) and/or combinations thereof (Brandt et al., Blood 83:1507 1514 [1994], Haylock et al., Blood 80:1405-1412 [1992], Koller et al., Biotechnology 11:358-363 [1993], (Lemoli et al., Exp. Hem. 21:1668-1672 [1993]), McKenna et al., Blood 86:3413-3420 [1995], Muench et al., Blood 81:3463-3473 rl993~, Patchen et al., Biotherapy 7:13-26 [1994], Sato et al., Blood 82:3600-3609 [1993], Smith et al., Exp. Hem. 21:870-877 [1993], Steen et al., Stem Cells 12:214-224 [1994], Tsujino et al., Exp. Hem.
21:137g-1386 [1993]). Among the individual colony stimulating factors, hIL-3 has been shown to be one of the most potent in expanding peripheral blood CD34+ cells (Sato et al., Blood 82:3600-3609 ~1993], Kobayashi et al., Blood 73:1836-1841 [1989]). However, no single factor has been shown to be as effective as the combination of multiple factors. The present invention p~ovides methods for ex vivo expansion that utilize multi-functional hematopoietic receptor agonists that are more effective than a single factor alone.
Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, Blood 85:997-1105, 1995) that has been supplemented with a multi-functional hematopoietic receptor agonist of the present invention.
Another projected clinical use of growth factors has been in the in vitro activation of hematopoietic progenitors and stem cells for gene therapy. Due to the long life-span of hematopoietic progenitor cells and the distribution of W O 97/1298~ PCTAUS96/15774 their dau~hter cells throughout the entire body, hematopoietic progenitor cells are good candidates for ex vivo gene transfection. In order to have the gene o~
interest incorporated into the genome of the hematopoietic progenitor or stem cell one needs to stimulate cell divlsion and DNA rer'ication. Hematopoietic stem cells cycle at a very low fre~uency which means that growth factors may be useful to promote gene transduction and thereby enhance the clinical prospects for gene therapy. Potential applications of gene therapy (review Crystal, Science 270: 404-410 [1995]) include; 1) the treatment o~ many congenital metabolic disorders and immunode~iciencies (Kay and Woo, Trends Genet. 1~ :253-257 [1994]), 2) neurological disorders (Friedmann, Trends Genet. 10:210-214 [1994]), 3) cancer (Culver and Blaese, Trends Genet. 10:174-178 [1994]) and 4) infectious diseases (Gilboa and Smith, Trends Genet. 10:139-144 [1994]).
There are a variety of methods, known to those with skill in the art, ~or introducing genetic material into a host cell. A number of vectors, both viral and non-viral have been developed ~or transferring therapeutic genes into primary cells. Viral based vectors include; 1) replication de~icient recombinant retrovirus (Boris-Lawrie and Temin, Curr. Opin. Genet. Dev. 3:102-109 [1993], Boris-Lawrie and Temin, Annal. New York Acad. Sci. 716:59-71 [1994], Miller, Current Top. Microbiol. Tmm17nol~ 158:1-24 [1992]) and replication-de~icient recombinant adenovirus (Berkner, BioTechniques 6:616-629 [1988], Berkner, Current Top.
Microbiol. Immunol. 158:39-66 [1992~, Brody and Crystal, Annal. New York Acad. Sci. 716:90-103 [1994]). Non-viral based vectors include protein/DNA complexes (Cristiano et al., PNAS USA. 90:2122-2126 [1993], Curiel et al., PNAS USA
88:8850-8854 [1991], Curiel, Annal. New York Acad. Sci.
716:36-58 [1994]), electroporation and liposome mediated delivery such as cationic liposomes (Farhood et al., Annal.
W O 97/12985 56 PCT~US96/15774 New York Acad. Sci. 71~:23-35 [1994~).
The present invention provides an improvement to the existing methods of expanding hematopoietic cells, which new genetic material has been introduced, in that it provides methods utilizing multi-functional hematopoietic receptor agonist proteins that have improved biological activity, including an activity not seen by any single colony stimulation factor.
Many drugs may cause bone marrow suppression or hematopoietic deficiencies. Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherap~, antibiotics such as chloramphenicol, penicillin, gancyclovir, daunomycin and sulfa drugs, pheno~hiazones, tranquilizers such as meprobamate, analgesics such as aminopyrine and dipyrone, anti-convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics. The multi-functional hematopoietic receptor agonists of the present invention may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs.
Hematopoietic de~iciencies may also occur as a result of viral, microbial or parasitic infections and as a result of treatment for renal disease or renal failure, e.g., dialysis. The multi-functional hematopoietic receptor agonists of the present invention may be useful in treating such hematopoietic deficiencies.
The treatment of hematopoietic deficiency may include administration of a pharmaceutical composition containing the multi-functional hematopoietic receptor agonists to a patient. The multi-functional hematopoietic receptor agonists of the present invention may also be useful for the activation and amplification of hematopoietic precursor cells by treating these cells in vitro with the multi-functional hematopoietic receptor agonist proteins of the CA 0223406l l998-04-06 W O 97112985 PCT~US96/1~774 present invention prior to injecting the cells into a patient.
Various immunodeficiencies, e.g., in T and/or B
lymphocytes, or immune disorders, e.g., rheumatoid arthritis, may also be beneficially affec~ed by treatment with the multi-functional hematopoietic receptor agonists of the present invention. Immunodeficiencies may be the result of viral infections, e.g., HTLVI, HTLVII, HTLVIII, severe exposure to radiation, cancer therapy or the result of other medical treatment. The multi-functional hematopoietic receptor agonists of the present invention may also be employed, alone or in combination with other colony stimulating ~actors, in the treatment of other blood cell deficiencies, including thrombocytopenia (platelet deficiency), or anemia. Other uses for these novel polypeptides are the in vivo and ex vivo treatment of patients recovering from bone marrow transplants, and in the developmen~ of monoclonal and polyclonal antibodies generated by standard methods for diagnostic or therapeutic use.
Other aspects of the present invention are methods and therapeutic compositions for treating the conditions referred to above. Such compositions comprise a therapeutically effective amount of one or more of the multi-functional hematopoietic receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.
The dosage regimen involved in a method for treating W O 97/12985 58 PCT~US96/15774 the above-described conditions will be determined by the attending physician considering various factors which modify the action of drugs, e.g., the condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, a daily regimen may be in the range of 0.2 - 150 ~g/kg of multi-functional hematopoietic receptor agonist protein per kilogram of body weight. Dosages would be adjusted relative to the activity of a given multi-functional hematopoietic receptor agonist protein and it would not be unreasonable to note that dosage regimens may include doses as low as 0.1 microgram and as high as 1 milligram per kilogram of body weight per day. In addition, there may exist specific circumstances where dosages of multi-functional hematopoietic receptor agonist would be adjusted higher or lower than the range of 0 .2 - 15Q micrograms per kilogram o~
body weight. These include co-administration with other colony stimulating factors or IL-3 variants or growth factors; co-administration with chemotherapeutic drugs and/or radiation; the use of glycosylated multi-functional hematopoietic receptor agonist protein; and various patient-related issues mentioned earlier in this section. As indicated above, the therapeutic method and compositions may also include co-administration with other human factors. A
non-exclusive list of other appropriate colony stimulating factors (CSFs), cytokines, lymphokines, hematopoietic growth factors and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention includes GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-ll, IL-12, IL-13, IL-15, IL-16, LIF, flt3/flk2 ligand, B-cell growth factor, B-cell differentiation factor and eosinophil differentiation factor, stem cell factor (SCF) also known as steel factor or c-kit ligand, or combinations thereof. The W O 97112985 5 PCTnUS96/15774 dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition.
Progress of the treated patient can be monitored by periodic assessment of the hematological profile, e.g., differential cell count and the like.
MATE~IA~S ~D METHODS
Unless noted otherwise, all specialty chemicals were obtained ~rom Sigma, Co. (St. Louis, MO). Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs (Beverly, MA) or Boehringer Mannheim (Indianapolis, IN).
~r~n~formation of E. coli strains E. coli strains, such as DH5~ (Life Technologies, Gaithersburg, MD) and TGl (Amersham Corp., Arlington Heights, IL) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells. E. coli strains, such as JM101 (Yanisch-Perron, et al., Gene, 33: 103-119, 1985) and MOM105 (Obukowicz, et al., Appl. and Envir. Micr., 58: 1511-1523, 1992) can be used for expressing the multi-functional hematopoietic receptor agonist of the present invention in the cytoplasm or periplasmic space.
MON105 ATCC~55204: F-, lambda-,IN(rrnD, rrE)l, rpoD+, rpoH358 DH5~: F-, phi80dlacZdeltaM15, delta(lacZYA-argF)U169, deoR, recAl, endAl, hsdR17(rk-,mk+), phoA, supE441amda-, thi-1, gyrA96, relAl W O 97/12985 PCTfUS96/15774 TG1: delta(lac-pro), supE, thi-1, hsdD5/F' (traD36, proA+B+, lacI~, lacZdeltaM15) JM101 ATcc#33876: delta (pro lac), supE, thi, F~(traD36, proA+B+, lacIq, lacZdeltaM15) DH50~TM Subcloning efficiency cells are purchased as competent cells and are ready for transformation using the manufacturer's protocol, while both F~. col i strains T(~1 and MOM105 are rendered competent to take up DNA using a CaCl2 method. Typically, 20 to 50 mL of cells are grown in LB
medium (1% bacto-tryptone, 0.5% bacto-yeast extract, 150 mM
NaCl) to a density o~ approximately 1.0 optical density unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, NY). The cells are collected by centrifugation and resuspended in one-fifth culture volume of CaCl2 solution (50 rnM CaCl2, 10 mM Tris-Cl, pH7.4) and are held at 4-C ~or 30 mirLutes. The cells are again collected by centri~ugation and resuspended in one-tenth culture volume of CaC12 solution. Ligated DNA is added to 0.2 mL of these cells, and the samples are held at 4 C for 30-60 minutes. The samples are shifted to 42'C for two minutes and 1.0 mL of LB is added prior to sha3~ing the samples at 37 C for one hour. Cells from these samples are spread on plates (LB medium plus 1.5% bacto-agar) containing either ampicillin (100 micrograms/mL, ug/mL) when selecting for ampicillin-resistant transformants, or spectinomycin (75 ug/mL) when selecting for spectinomycin-resistant transformants. The plates are incubated overnight at 37 C.
Colonies are picked and inoculated into Ls plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL
spectinomycin) and are grown at 37~C while shaking.
Methods ~or creation of ~enes with new N-terminus/C-terminus ~-CA 0223406l l998-04-06 W O 97/12985 61 PCTAUS96/1~774 Method I. Creation of genes with new N-terminus/C-terminus which contain a linker region (L2).
Genes with new N-terminus/C-terminus which contain a linker region (L2) separating the original C-terminus and N-terminus can be made essentially following the method described in L. S. Mullins, et al J. Am. Chem. Soc. 116, 5529-5533, 1994). Multiple steps of polymerase chain reaction (PCR) amplifications are used to rearrange the DMA
sequence encoding the primary amino acid sequence of the protein. The steps are illustrated in Figure 2.
In th~ first step, the first primer set ("new start"
and "linker start") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Start ) that contains the sequence encoding the new N-terminal portion of the new protein followed by the linker (L2) that connects the C-terminal and N-terminal ends of the original protein. In the second step, the second primer set (~new stop" and 'llinker stop") is used to create and amplify, from the original gene sequence, the DNA fragment (~Fragment Stop") that encodes the same linker as used above, followed by the new C-terminal portion of the new protein. The "new start" and ~new stop~ primers are designed to include the appropriate restriction sites which allow cloning of the new gene into expression plasmids. Typical PCR conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C
denaturatio~ for one minute, 50~C annealing for one minute and 72~C extension for one minute; plus one cycle 72~C
extension for seven minutes. A Perkin Elmer GeneAmp PCR
Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and lx PCR
buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl2. PCR
reactions are performed in a Model 480 ~NA thermal cycler (Perkin Elmer Corporation, Norwalk, CT).
W O 97/12985 62 PCT~US96/15774 "Fragment Start" and "Fragment Stop", which have complementary sequence in the linker region and the coding sequence for the two amino acids on both sides of the 5 linker, are joined together in a third PCR step to make the full-length gene encoding the new protein. The DNA
fragments "Fragment Start" and "Fragment Stop" are resolved on a 19~ TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments 10 are combined in equimolar quantities, heated at 70~C for ten minutes and slow cooled to allow annealing through their shared sequence in '~linker start" and "linker stop". In the third PCR step, primers "new start" and "new stop" are added to the annealed fragments to create and amplify the full-15 length new N-terminus/C-terminus gene. Typical PCR
conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C denaturation for one minute, 60~C annealing for one minute and 72~C extension for one minute; plus one cycle 72~C extension for seven minutes. A Perkin Elmer GeneAmp 20 PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole o~ each primer and approximately 0.5 ug of DNA;
and lx PCR buffer, 200 UM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM
MgCl2. PCR reactions are purified using a Wizard PCR Preps 25 kit (Promega).
Method II. Creation of genes with new N-terminus/C-terminus without a linker region.
New N-terminus/C-terminus genes without a linker joining the original M-terminus and C-terminus can be made using two steps of PCR amplification and a blunt end ligation. rrhe steps are illustrated in Figure 3. In the first step, the primer set ("new start" and "P-bl start") is used to create and amplify, from the original gene sequence, W O 97/12985 63 P ~ nUS96~S774 the DNA fragment ("Fragment Start") that contains the sequence encodin~ the new M-terminal portion of the new protein. In the second step, the primer set (~new stop~ and ~P-bl stop") is used to create and amplify, from gene se~uence, the DNA fragment ("Fragment Stop") that contains the sequence encoding the new C-terminal portion of the new protein. The "new start" and "new stop" primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors. Typical PCR
conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C denaturation for one minute, 50~C annealing for 45 seconds and 72~C extension ~or 45 seconds. Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manu~acturer. The "P-bl start" and "P-bl stop" primers are phosphorylated at the 5' end to aid in the subsequent blunt end ligation of "Fragment Start~ and "Fragment Stop~ to each other. A 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and lx Vent buffer (New England siolabs)~ 300 UM dGTP, 300 uM dATP, 300 uM dTTP, 300 uM
dCTP, and 1 unit Deep Vent polymerase. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reaction products are puri~ied using a Wizard PCR Preps kit (Promega).
The primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typically "Fragment Start~ is designed to create NcoI restriction site , and "Fragment Stop" is designed to create a HindIII restriction site.
Restriction digest reactions are puri~ied using a Magic DNA
Clean-up System kit (Promega). Fragments Start and Stop are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined with and annealed to the ends of the W O 97/12985 64 PCT~US96/15774 ~ 3800 base pair NcoI/HindIII vector fragment of pMON3934 by heating at 50~C for ten minutes and allowed to slow cool.
The three fragments are ligated together using Tg DNA ligase (Boehringer Mannheim). The result is a plasmid containing the full-length new N-terminus/C-terminus gene. A portion of the ligation reaction is used to transform E. coli strain DH5(X cells ~Life Technologies, Gaithersburg, MD). Plasmid DNA is purified and sequence confirmed as below.
Method III. Creation of new N-terminus/C-terminus genes by tandem-duplication method New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al Protein Eng.
5:427-431, 1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps are illustrated in Figure 3.
The tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA
se~uence encoding a linker connecting the original C- and N-terminal ends of the two copies of the gene. Specific primer sets are used to create and amplify a full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C
denaturation for one minute, 50~C anneallng for one minute and 72~C extension for one minute; plus one cycle 72~C
extension for seven minutes. A Perkin Elmer GeneAmp PCR
Core Reagents kit (Perkin Elmer Corporation, Norwalk, CT) is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and lx PCR buffer, 200 uM dGTP, W O 97/12985 65 PCT~US96/15774 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl2. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reactions are purified using a Wizard PCR
Preps kit (Promega).
Clo~; n~ of new N-terminus/C-terminus qenes into mulci-functional receptor aaonist ex~ression vectors.
The new N-terminus/C-terminus gene is digested with restriction endonucleases to create ends that are compatible to insertion into an expression vector containing another colony stimulating factor gene. This expression vector is likewise digested with restriction endonucleases to form compatible ends. A~ter purification, the gene and the vector DMAs are combined and ligated using T4 DNA ligase. A
portion of the ligation reaction is used to trans~orm E.
coli. Plasmid DNA is purified and se~uenced to confirm the correct insert. The correct clones are grown for protein expression.
DNA ;~olation and characterization Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein.
Plasmid DNA is isolated using the Promega Wizard~ Miniprep kit (Madison, WI), the Qiagen QIAwell Plasmid isolation kits (Chatsworth, CA) or Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation.
Brie~ly, cells are pelleted by centrifugation (5000 x g), plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000 x g). The supernatant (containing the plasmid DNA) is loaded onto a column containing a DMA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the E. coli cells are inoculated into 50-100 mls of LB plus appropriate antibiotic for overnight growth at 37~C in an air incubator while shaking. The purified plasmid DNA is used for DNA
sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian, E. coli or other cells.
Se~uence confirmation.
Purified plasmid DNA is resuspended in dH2o and quantitated by measuring the absorbance at 260/280 nm in a Bausch and Lomb Spectronic 601 W spectrometer. DNA samples are sequenced using ABI PRISM~ DyeDeoxy~ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the manu~acturers suggested protocol usually modifled by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) following the recommended amplification conditions. Samples are purified to remove excess dye terminators with Centri-Sep~ spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized ~ormamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA
3C sequencer. Overlapping DNA sequence ~ragments are analyzed and assembled into master DNA contigs using Sequencher v2.1 DNA analysis software (Gene Codes Corporation, Ann Arbor, MI).
~ression of multi-~unctional rece~tor a~onists in m~mm~ n cells W O 97/1298~ 67 PCT~US96/15774 Mammalian Cell Transfection/Production of Conditioned Media The B~K-21 cell line can be obtained from the ATCC
(~ockville, MD). The cells are cultured in Dulbecco~s modified Eagle media (DMEM/high-glucose), supplemented to 2 mM (mM) L-glutamine and 10% fetal bovine serum ~FB~). This formulation is designated BHK growth media. Selective media is BHK growth media supplemented with 453 units/mL
hygromycin B (Calbiochem, San Diego, CA). The BHK-21 cell line was previously stably trans~ected with the HSV
transactivating protein VP16, which transactivates the IE110 promoter ~ound on the plasmid pMoN3359 (See Hippenmeyer et al., Bio/Technolo~y, pp.1037-1041, 1993). The VP16 protein drives expression of genes inserted behind the IE110 promoter. BHK-21 cells expressing the transactivating protein VP16 are designated sHK-VP16. The plasmid pMON1118 (See Highkin et al., Pou l t ry Sci ., 7 0: 970-981, 1991) expresses ~he hygromycin resistance gene from the SV40 promoter. A similar plasmid is available from ATCC, pSV2-hph.
BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3 X 105 cells per dish 24 hours prior to transfection. Cells are transfected for 16 hours in 3 mL
of NOPTIMEM"~ (Gibco-BRL, Gaithersburg, MD) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid, pMON1118, and 80 ug of Gibco-BRL /~LIPOFECT~MINE"~ per dish. The media is subsequently aspirated and replaced with 3 mL of growth media. At 48 hours post-transfection, media from each dish is collected and assayed for activity (transient conditioned media). The cells are removed from the dish by trypsin-EDTA, diluted ~ 1:10 and transferred to 100 mm tissue culture dishes containing 10 mL of selective media. After approximately 7 days in selective media, resistant cells grow into colonies W O 97112985 68 PCTrUS96/15774 several millimeters in diameter. The colonies are removed from the dish with filter paper (cut to approximately the same size as the colonies and soaked in trypsin/EDTA) and transferred to individual wells of a 24 well plate containing 1 mL of selective media. After the clones are grown to confluence, the conditioned media is re-assayed, and positive clones are expanded into growth media.
~x~ression of multi-functional rece~tor aqonists ;n E. coli E. coll strain MON105 or JM101 harboring the plasmid of interest are grown at 37~C in M9 plus casamino acids medium with shaking in a air incubator Model G25 from New Brunswick Scientific (Edison, New Jersey). Growth is monitored at OD600 until it reaches a value of 1.0 at which time Nalidixic acid (10 milligrams/mL) in 0.1 N NaOH is added to a final concentration of 50 ~g/mL. The cultures are then shaken at 37~C for three to four additional hours. A hi~h degree of aeration is maintained throughout culture period in order to achieve maximal production of the desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies (IB). One mL ali~uots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see ~aniatis et al.
Molecular Cloning: A Laboratory Manual, 1982). The culture is centrifuged (5000 x g) to pelle~ the cells.
~nclus;on Body pre~aration, Extraction, Refol~ina, Dialvsis, D~ Chromatoaraphv, and Characterization of the mlllti-funct;ona~ hemato~oietic ~ece~tor aaonists which accumulate ~s inclusion bodies in E. coli .
Isolation of Inclusion Bodies:
-W O 97/1298~ PCTAUS96/15774 The cell pellet ~rom a 330 mL E. coli culture is resuspended in 15 mL of sonication buffer (10 mM 2-amino-2-(hydroxymethyl) 1,3-propanediol hydrochloride (Tris-HCl), pH
8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA). These - resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-Ultrasonics, Inc., Farmingdale, New York). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion bodies (IB). The ~irst round of sonication is a 3 minute burst ~ollowed by a 1 minute burst, and the ~inal two rounds of sonication are ~or 1 minute each.
Extraction and refolding of proteins from inclusion body pellets:
Following the final centrifugation step, ~he IB pellet is resuspended in 10 mL o~ 50 IrM Tris-HC1, p~ 9.5, 8 M urea and 5 mM dithiothreitol (DTT) and stirred at room temperature for approximately 45 minutes to allow for denaturation o~ the expressed protein.
The extraction solution is transferred to a beaker containing 70 mL of 5 mM Tris-HCl, pH 9.5 and 2.3 M urea and 25 gently stirred while exposed to air at 4~C ~or 18 to 48 hours to allow the proteins to refold. Refolding is monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high pressure liquid chromatography (RP-HPLC) column (0.46x25 cm). A linear gradient of 40% to 65%
acetonitrile, containing 0.1% tri~luoroacetic acid (TFA), is employed to monitor the refold. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute.
~ Denatured proteins generally elute later in the gradient than the refolded proteins.
W O 97/12985 70 PCT~US96/15774 Purification:
Following the refold, contaminating ~. coli proteins are removed by acid precipitation. The pH of the refold solution is titrated to between pH 5.0 and pH 5.2 using 15%
(v/v) acetic acid (HOAc). This solution is stirred at 4~C
for 2 hours and then centrifuged for 20 minutes at 12,000 x g to pelle~ any insoluble protein.
The supernatant from the acid precipitation step is dialyzed using a Spectra/Por 3 membrane with a molecular weight cut off (MWCO) of 3,50Q daltons. The dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10 mM
Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE
chromatography. The sample is then centrifuged (20 minutes at 12,000 x g) to pellet any insoluble protein following dialysis.
A Bio-Rad Bio-Scale DEAE2 column (7 x 52 mm) is used for ion exchange chromatography. The column is equilibrated in a buffer containing 10 mM Tris-HCl, pH 8.0, and a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buf~er, over 45 column volumes is used to elute the protein.
A flow rate of 1.0 mL per minute is used throughout the run.
Column fractions (2.0 mL per fraction) are collected across the gradient and analyzed by RP HPLC on a Vydac (~Iesperia, Ca.) C18 column (0.46 x 25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Pooled fractions are then dialyzed against 2 changes of 4 liters (50-to-500-fold excess) of 10 mM ammonium acetate (NH4Ac), pH 4.0 for a total of 18 hours. Dialysis is performed using a Spectra/Por 3 membrane with a MWCO of 3,500 daltons.
Finally, the sample is sterile filtered using a 0.22~m syringe filter (~Star LB syringe filter, Costar, Cambridge, W O 97112985 71 P~T~US96115774 Ma.), and stored at 4~C.
In some cases the folded proteins can be a~finity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix. Alternatively, (or in addition) purification can be accomplished using any of a - variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.
These and other protein puri~ication methods are described in detail in Methods in Enzymology, Volume 182 'Guide to Protein Purification' edited by Murray Deutscher, Academic Press, San Diego, CA (1990).
15 Protein Characterization:
The purified protein is analyzed by RP-HPLC, electrospray mass spectrometry, and SDS-PAGE. The protein quantitation is done by amino acid composition, RP-~PLC, and 20 Bradford protein determination. In some cases tryptic peptide mapping is performed in conjunction with electrospray mass spectrometry to confirm the identity of the protein.
25 ~L Proliferation Assav for Bioactive Human Interleukin-3 The factor-dependent cell line AML 193 was obtained from the American Type Culture Collection (ATCC, Rockville, MD). This cell line, established from a patient with acute myelogenous leukemia, is a growth factor dependent cell line 30 which displayed enhanced growth in GM-CSF supplemented medium (Lan~e, B., et al., Blood 70: 192, 1987; Valtieri, M., et al., J. Immunol . 138:4042, 1987). The ability of AML 193 cells to proliferate in the presence of human IL-3 r has also been documented. (Santoli, D., et al., J. Immunol.
35 139: 348, 1987). A cell line variant was used, AML 193 W O 97/12985 72 PCT~US96/15774 1.3, which was adapted for long term growth in IL-3 ~y washing out the growth factors and starving the cytokine dependent AML 193 cells for growth factors for 24 hours.
The cells are then replated at lx105 cells/well in a 24 well ,~
plate in media containing 100 U/mL IL-3. It took approximately 2 months for the cells to grow rapidly in IL-3. These cells are maintained as AML 193 1.3 thereafter by supplementing tissue culture medium (see below) with human AML 193 1.3 cells are washed 6 times in cold ~anks balanced salt solution (HBSS, Gibco, Grand Island, NY) by centrifuging cell suspensions at 250 x g for 10 minutes ~ollowed by decantation of the supernatant. Pelleted cells are resuspended in HBSS and the procedure is repeated until six wash cycles are completed. Cells washed six times by this procedure are resuspended in tissue culture medium at a density ranging from 2 x 105 to 5 x 105 viable cells/mL.
This medium is prepared by supplementing Iscove's modified Dulbecco's Medium (IMDM, Hazelton, Lenexa, KS) with albumin, transferri~, lipids and 2-mercaptoethanol. Bovine albumin (Boehringer-Mannheim, Indianapolis, IN) is added at 500 ~g/mL; human transferrin (Boehringer-Mannheim, Indianapolis, IN) is added at 100 ~g/mL; soy~ean lipid (Boehringer-Mannheim, Indianapolis, IN) is added at 50 ~g/mL; and 2-mercaptoethanol (Sigma, St. Louis, MO) is added at 5 x 10-5 M.
Serial dilutions of human interleukin-3 or multi-functional hematopoietic receptor agonist proteins are made in triplicate series in tissue culture medium supplemented as stated above in 96 well Costar 3596 tissue culture plates. Each well contained 50 ~l of medium containing interleukin-3 or multi-functional hematopoietic receptor agonist proteins once serial dilutions are completed.
Control wells contained tissue culture medium alone ~negative ccntrol). AML 193 1.3 cell suspensions prepared WO 97/~2g85 PCTf'US96/lS774 as above are added to each well by pipetting 50 ~l (2.5 x 104 cells) into each well. Tissue culture plates are incubated at 37~C with 5% CO2 in humidified air for 3 days.
On day 3, 0.5 ~Ci 3H-thymidine (2 Ci/mM, New England Muclear, Boston, MA) is added in 50 ~l of tissue culture medium. Cultures are incubated at 37~C with 5% CO2 in humidified air for 18-24 hours. Cellular DNA is harvested onto glass filter mats (Pharmacia LKB, Gaithersburg, MD) using a TOMTEC cell harvester (TOMTEC, Orange, CT) which utilized a water wash cycle followed by a 70% ethanol wash cycle. Filter mats are allowed to air dry and then placed into sample bags to which scintillation fluid (Scintiverse II, Fisher Scientific, St. Louis, MO or BetaPlate Scintillation Fluid, Pharmacia LKB, Gaithersburg, MD) is added. Beta emissions of samples from individual tissue culture wells are counted in a LKB BetaPlate model 1205 scintillation counter (Pharmacia LKB, Gaithersburg, MD) and data is expressed as counts per minute of 3H-thymidine incorporated into cells from each tissue culture well.
Activity of each human interleukin-3 preparation or multi-functional hematopoietic receptor agonist protein preparation is quantitated by measuring cell proliferation (3H-thymidine incorporation~ induced by graded concentrations of interleukin-3 or multi-functional hematopoietic receptor agonist. Typically, concentration ranges from 0.05 pM - 105 pM are quantitated in these assays. Activity is determined by measuring the dose of interleukin-3 or multi-functional hematopoietic receptor agonist protein which provides 50% of maximal proliferation (ECso = 0.5 x (maximum average counts per minute of 3H-thymidine incorporated per well among triplicate cultures of all concentrations of interleukin-3 tested - background proliferation measured by 3H-thymidine incorporation observed in triplicate cultures lacking interleukin-3).
- 35 This ECso value is also equivalent to 1 unit of bioactivity.
W O 97/12985 PCTAJS~6/1~774 Every assay is performed with native interleukin-3 as a reference s~andard so that relative activity levels could be assigned.
Typically, the multi-functional hematopoietic receptor agonist proteins were tested in a concentration range of 2000 pM to 0.06 pM titrated in serial 2 fold dilutions.
Activity for each sample was determined by the concentration which gave 50% of the maximal response by fitting a four-parameter logistic model to the data. It was observed that the upper plateau (maximal response) for the sample and the standard with which it was compared did not differ. Therefore relative potency calculation for each sample was determined from EC50 estimations for the sample and the standard as indicated above. AML 193.1.3 cells proliferate in response to hIL-3, hGM-CSF and hG-CSF.
Therefore the following additional assays were performed for some samples to demonstrate that the G-CSF receptor agonist portion of the multi-functional hematopoietic receptor agonist proteins was active. The proliferation assay was performed with the multi-functional hematopoietic receptor agonist plus and minus neutralizing monoclonal antibodies to the hIL-3 receptor agonist portion. In addition, a fusion molecule with the factor Xa cleavage site was cleaved then purified and the halves of the molecule were assayed for proliferative activity. These experiments showed that both components of the multi-functional hematopoietic receptor agonist proteins were active.
TF1 c-m~l liaand de~endent ;orQliferation assay The c-mpl ligand proliferative activity can be assayed usin~ a subclone of the pluripotential human cell line TF1 (Kitamura et al., J. Cell Physiol 140:323-334. [1989]). TFl cells are maintained in h-IL3 (100 U/mL). To establish a sub-clone responsive to c-mpl ligand, cells are maintained W O 971~2g85 PCTAJS96/15774 in passage media containing 10% supernatant ~rom BHK cells transfected with the gene expressing the 1-153 form of c-mpl ligand (pMOM26448). Most o~ the cells die, but a subset of cells survive. After dilution cloning, a c-mpl ligand responsive clone is selected, and these cells are split into passage media to a density of 0.3 x 106 cells/mL the day prior to a~say set-up. Passage media for these cells is ~he ~ollowing: RPMI 1640 (Gibco), 10% FBS (Harlan, Lot #91206), 10% c-mpl ligand supernatant ~rom transfected sHK cells, 1 mM sodium pyruvate (Gibco), 2 mM glutamine (Gibco), and 100 ug/mL penicillin-streptomycin (Gibco). The next day, cells are harvested and washed twice in RPMI or IMDM media with a final wash in the ATL, or assay media. ATL medium consists of the following:IMDM (Gibco), 500 ug/mL of bovine serum albumin, 100 ug/mL of human transferrin, 50 ug/mL soybean lipids, 4 x 10-8M beta-mercaptoethanol and 2 mL of A9909 (Sigma, antibiotic solution) per 1000 mL of ATL. Cells are diluted in assay media to a final density of 0.25 x 106 cells/mL in a 96-well low evaporation plate (Costar) to a final volume of 50 ul. Transient supernatants (conditioned media) from transfected clones are added at a volume of 50 ul as duplicate samples at a final concentration of 50% and diluted three-fold to a final dilution of 1.8%. Triplicate samples of a dose curve of IL-3 variant pMON13288 starting at 1 ng/mL and diluted using three-fold dilutions to 0.0014ng/mL is included as a positive control. Plates are incubated at 5% CO2 and 37~ C. At day six of culture, the plate is pulsed with 0.5 Ci of 3H/well (NEN) in a volume of 20 ul/well and allowed to incubate at 5% CO2 and 37~ C for four hours. The plate is harvested and counted on a Betaplate counter.
Other in vitro cell based ~roliferation assays ~ 35 Other in vitro cell based assays, known to those W O 97/12985 76 PCT~US96/15774 skilled in the art, may also be useful to determine the activity of the multi-functional hematopoietic receptor agonists depending on the factors that comprise the molecule in a similar manner as described in the AML 193.1.3 cell proliferation assay. The following are examples of other useful assays.
TF1 proliferation assay: TF1 is a pluripotential human cell line (Kitamura et al., J. Cell Physiol 140:323-334. [1989]) that responds to hIL-3.
32D proliferation assay: 32D is a murine IL-3 dependent cell line which does not respond to human IL-3 but does respond to human G-CSF which is not species restricted.
Baf/3 proliferation assay: Baf/3 is a murine IL-3 dependent cell line which does not respond to human IL-3 or human c-mpl ligand but does respond to human G-CSF which is not species restricted.
T1165 proliferation assay: T1165 cells are a IL-6 aependent murine cell line (Nordan et al., 1986) which respond to IL-6 and IL-11.
Human Plasma Clot meg-CSF Assay: Used to assay megakaryocyte colony formation activity (Mazur et al., 1981).
Tr~nqfected cçll lines:
Cell lines such as the murine Baf/3 cell line can be transfected with a colony stimulating factor receptor, such as the human G-CSF receptor or human c-mpl receptor, which the cell line does not have. These transfected cell lines can be used to determine the activity of the ligand for which the receptor has been transfected into the cell line.
One such transfected Baf/3 cell line was made by W O 97~2985 PCT~US96nS774 cloning the cDNA encoding c-mpl from a library made from a c-mpl responsive cell line and cloned into the multiple cloning site of the plasmid pcDNA3 (Invitrogen, San Diego Ca.). Baf/3 cells were transfected with the plasmid via electropora~ion. The cells were grown under G418 selection in the presence of mouse IL-3 in Wehi conditioned media.
Clones were established through limited dilution.
In a similar manner the human G-CS~ receptor can be transfected into the Baf/3 cell line and used to determine the bioactivity of the multi-functional hematopoietic receptor agoinsts.
Analysis cf c-mpl li~and proliferative activitv Methods 1. Bone marrow proliferation assay a. CD34~ Cell Purification:
Bone r.. arrow aspirates (15-20 mL) were obtained from normal allogeneic marrow donors after informed consent.
Cells were diluted 1:3 in phosphate buffered saline (PBS, Gibco-BRL), 30 mL were layered over 15 mL Histopaque-1077 (Sigma) and centrifuged for 30 minutes at 300 RCF. The mononuclear interface layer was collected and washed in PBS.
CD34+ cells were enriched from the mononuclear cell p~eparation using an affinity column per manufacturers instructions (CellPro, Inc, Bothell WA). After enrichment, the purity of CD34+ cells was 70% on average as determined by using flow cytometric analysis using anti-CD34 monoclonal antibody conjugated to fluorescein and anti-CD38 conjugated to phycoery~hrin (Becton Dickinson, San ~ose CA).
Cells were resuspended at 40,000 cells/mL in X-Vivo 10 media (Bio-whittaker~ Walkersville, MD) and 1 mL was plated ~ 35 in 12-well tissue culture plates (Costar). The growth _ W O 97/12985 78 PCTrUS9611~774 factor rhIL-3 was added at 100 ng/mL (pMON5873) was added to some wells. hIL3 variants were used at 10 ng/mL to 100 ng/mL. Conditioned media from BHK cells transfected with plasmid encoding c-mpl ligand or multi-~unctional 5 hematopoietic receptor agonists were tested by addition of 100 ~1 of supernatant added to 1 mL cultures (approximately a 10% dilution). Cells were incubated at 37~C ~or 8-14 days at 5% CO2 in a 37~C humidified incubator.
b. Cell Harvest and Analysis:
At the end of the culture period a total cell count was obtained ~or each condition. For ~luorescence analysis and ploidy determination cells were washed in megakaryocyte buffer (MK buffer, 13.6 mM sodium citrate, 1 mM
theophylline, 2.2 ~lm PGEl, 11 mM glucose, 3% w/v BSA, in PBS, pH 7.4,) (Tomer et al., Blood 70: 1735-1742, 19~7) resuspended in 500 ,ul of MK buffer containing anti-CD41a FITC antibody (1:200, AMAC, Westbrook, ME) and washed in MK
buffer. For DNA analysis cells were permeablized in MK
bu~er containing 0.5% Tween 20 ~Fisher, ~air Lawn MJ)for 20 min. on ice ~ollowed by fixation in 0.5% Tween-20 and 196 paraformaldehyde (Fisher Chemical) ~or 30 minutes followed by incubation in propidium iodide ~Calbiochem, La Jolla Ca) (50 ,Ug/mL) with RNA-ase (400 U/mL) in 55% v/v MK bu~fer (200mOsm) for 1-2 hours on ice. Cells were analyzed on a FACScan or Vantage flow cytometer ~Becton Dickinson, San Jose, CA~. Green ~luorescence (CD41a-FITC) was collected along with linear and log signals for red ~luorescence (PI) to determine DNA ploidy. All cells were collected to determine the percent of cells that were CD41+. Data analysis was performed using software by LYSIS (Becton Dickinson, San Jose, CA). Percent of cells expressing the CD41 antigen was obtained from ~low cytometry analysis(Percent). Absolute (Abs) number o~ CD41+ cells/mL
was calculated by: (Abs)=(Cell Count)*(Percent)/100.
_ CA 0223406l l998-04-06 W O 97/12985 PCT~US96/I5774 2. Megakaryocyte fibrin clot assay.
CD34+ enriched population were isolated as described above.
Cells were suspended at 25,000 cells/mL with or without cytokine(s) in a media consisting of a base Iscoves IMDM
media supplemented with 0.3% B~A, 0.4mg/mL apo-transferrin, 6.67~M FeC12, 25~g/mL CaC12, 25~g/mL L-asparagine, 500~g/mL
~-amino-n-caproic acid and penicillin/streptomycin. Prior to plating into 35mm plates, thrombin was added (0.25 Units/mL) to initiate clot formation. Cells were incubated at 37~C for 13 days at 5% CO2 in a 37~C humidified incubator.
At the end o~ the culture period plates were ~ixed with methanol:acetone (1:3), air dried and stored at -200C until staining. A peroxidase immunocytochemistry staining procedure ~s used (Zymed, Histostain-SP. San Francisco, CA) using a cocktail of primary monoclonal antibodies consisting o~ anti-CD41a, CD42 and CD61. Colonies were counted after staining and classified as negative, CFU-MK (small colonies, 1-2 foci and less that approx. 25 cells), BFU-MK (large, multi-foci colonies with > 25 cells) or mixed colonies (mixture of both posi~ive and negative cells.
Methvlcellulose Assa~
This assay reflects the ability o~ colony stimulating factors to stimulate normal bone marrow cells to produce different types of hematopoietic colonies in vitro (Bradley et al., Aust. Exp Biol. Sci. 44:287-300, 1966), Pluznik et al., J. Cell Comp. Physio 66:319-324, 1965).
Methods Approximately 30 mL o~ fresh, normal, healthy bone marrow W O 97112985 80 PCT~US96/15774 aspirate are obtained from individuals following informed consent. Under sterile conditions samples are diluted 1:5 with a lX PBS (#14040.059 Li~e Technologies, ~aithersburg, MD.) solution in a 50 mL conical tube (~25339-50 Corning, ,~
Corning MD). Ficoll (Histopaque 1077 Sigma H-8889) is layered under the diluted sample and centrifuged, 300 x g for 30 min. The mononuclear cell band is removed and washed two times in lX PBS and once with 1~ BSA PBS (CellPro Co., Bothel, WA!. Mononuclear cells are counted and CD34+ cells are selected using the Ceprate LC (CD34) Kit (CellPro Co., Bothel, WA) column. This fractionation is performed since all stem and progenitor cells within the bone marrow display CD34 surface antigen.
Cultures are set up in triplicate with a final volume of 1.0 mL in a 35 X 10 mm petri dish (Nunc#174926). Culture medium is purchased from ~erry Fox Labs. (HCC-4230 medium (Terry Fox Labs, Vancouver, s.C., Canada) and erythropoietin (Amgen, Thousand oaks, CA.) is added to the culture media.
3,000-10,000 CD34+ cells are added per dish. Recombinant IL-3, purified from mammalian cells or E. coli, and multi-functional hematopoietic receptor agonist proteins, in conditioned media from trans~ected mammalian cells or purified from conditioned media from transfected m~mm~l ian cells or ~. coli, are added to give final concentrations ranging from .001 nM to 10 nM. Recombinant hIL-3, GM-CSF, c-mpl ligand and multi-functional hematopoietic receptor agonist are supplied in house. G-CSF (Neupogen) is from Amgen (Thousand Oaks Calf.). Cultures are resuspended using a 3cc syringe and 1.0 mL is dispensed per dish. Control (baseline response) cultures received no colony stimulating factors. Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox ~ab. H2400).
Cultures are incubated at 37~C, 5% CO2 in humidified air.
Hematopoietic colonies which are defined as greater than 50 CA 0223406l l998-04-06 W O 97/12985 81 PCTnUS96~lS774 cells are counted on the day of peak response ~days 10-11) using a Nikon inverted phase microscope with a 40x objective combination. Groups of cells containing fewer than 50 cells are referred to as clusters. Alternatively colonies can be identified by spreading the colonies on a slide and stained or they can be picked, resuspended and spun onto cytospin slides for staining.
Hl~m~n Cord Blood Hemopoietic Growth Factor AssaYs Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity.
However, human bone marrow is not always available, and there is considerable variability between donors. Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al., PNAS USA 89:4109-113, 1992; Mayani et al., Blood 81:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily available on a regular basis. There is also a potential to reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of cryopreserved cells for this purpose. By modifying the culture conditions, and/or analyzing for lineage specific markers, it is be possible to assay specifically for granulocyte / macrophage colonies (CFU-GM), for megakaryocyte CSF activity, or for high proliferative potential colony forming cell (HPP-CFC) activity.
Methods Mononuclear cells (MNC) are isolated from cord blood within 24 hr. of collection, using a standard density gradient (1.077 g/mL Histopaque). Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14-, CD34+ cells; panning for SBA-, CD34+ fraction using coated flasks from Applied Immune Science (Santa Clara, CA); and CD34+ selection using a CellPro (Bothell, WA) avidin column.
Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) are prepared with lx104 cells in lml of 0.9%
methycellulose containing medium without additional growth factors (Methocult H4230 from Stem Cell Technologies, Vancouver, BC.). In some experiments, Methocult H4330 containing erythropoietin (EPO) was used instead of Methocult H4230, or Stem Cell Factor ~SCF), 50 ng/mL
(Biosource International, Camarillo, CA) was added. After culturing for 7-9 days, colonies containing >30 cells are counted. In order to rule out subjective bias in scoring, assays are scored blind.
Additional details about recombinant DMA methods which may be used to create the variants, express them in bacteria, m~mm~l ian cells or insect cells, purification and refold of the desired proteins and assays for determining the bioactvity of the proteins may be found in co-filed Applications WO 95/00646, WO 94/12639, WO 94/12638, WO
95/20976, WO 95/21197, WO 95/20977, WO 95/21254 and US
08/383,035 which are hereby incorporated by reference in their entirety.
Further details known to those skilled in the art may be found in T. Maniatis, et al., Molecular Clonin~, A
T~hor~torv Manual, Cold Spring Harbor Laboratory, 1982) and references cited therein, incorporated herein by referencei and in J. Sambrook, et al., Molecular CloPina, A Laboratorv Ma~~ , 2nd edition, Cold Spring Harbor Laboratory, 1989) and references cited therein, incorporated herein by reference.
W O 97/12985 83 PCTnUS96~5774 TART.~ 1 OTlTGoNucLEoTID~s c-mplNcoI
ACGTCCATGGCMTCNCCNGCNCCNCCTGCTTGTGCACTCCGAGTC
(SEQ ID NO:13) N=A,C,G or T
Ecompl ATGCACGAATTCCCTGACGCAGAGGGTGGA
(SEQ ID NO:14) c-mplHindIII TGACAAGCTTACCTGACGCAGAGGGTGGACCCT
(SEQ ID MO:15) 4L-5' AATTCGGCAA (SEQ ID NO:16) 4L-3' CATGTTGCCG (SEQ ID NO:17) 20 5L-5' AATTCGGCGGCAA ~SEQ ID NO:18) 5L-3' CATGTTGCCGCCG (SEQ ID NO:19) 8L-5' AATTCGGCGGCAACGGCGGCAA ~SEQ ID No:20) 8L-3' CATGTTGCCGCCGTTGCCGCCG (SEQ ID NO:21) 31-5' CGATCCATGGAGGTTCACCCTTTGCCT (SEQ ID No:22) 30 31-3' GATCAAGCTTATGGGCACTGGCTCAGTCT (SEQ ID No:23) 35-5' CGATACATGTTGCCTACACCTGTCCTG (SEQ ID NO:24) 35-3' GATCAAGCTTAAGGGTGAACCTCTGGGCA (SEQ ID NO:25) 39-5' CGATCCATGGTCCTGCTGCCTGCTGTG (SEQ ID NO:26) 39-3' GATCAAGCTTAAGGTGTAGGCAAAGGGTG (SEQ ID NO:27) 40 43-5' CGATCCATGGCTGTGGACTTTAGCTTGGGA
(SEQ ID NO:28) 43-3' GATCAAGCTTAAGGCAGCAGGACAGGTGT (SEQ ID No:29) 45 45-5' CGATCCATGGACTTTAGCTTGGGAGAA (SEQ ID NO:30) 45-3' GATCAAGCTTACACAGCAGGCAGCAGGAC (SEQ ID NO:31) 49-5' CGATCCATGGGAGAATGGAAAACCCAG (SEQ ID NO:32) 49-3' GATCAAGCTTACAAGCTAAAGTCCACAGC (SEQ ID NO:33) W O 97/1298~ 84 PCTfUS96/15774 82-5' CGATCCATGGGACCCACTTGCCTCTCA ~SEQ ID NO:34) 82-3' GATCAAGCTTACAGTTGTCCCCGTGCTGC (SEQ ID NO:35) 109-5/ CAGTCCATGGGAACCCAGCTTCCTCCA (SEQ ID NO:36) 109-3' GATCAAGCTTAAAGGAGGCTCTGCAGGGC (SEQ ID NO:37) 10 116-5' CGATCCATGGGCAGGACCACAGCTCAC (SEQ ID NO:38) 116-3' GATCAAGCTTACTGTGGAGGAAGCTGGGTT
(SEQ ID NO:39) 15 120-5' CGATCCATGGCTCACAAGGATCCCAATGCC
(SEQ ID NO:40) 120-3~ GATCAAGCTTATGTGGTCCTGCCCTGTGG (SEQ ID NO:41) 20 123-5' CGATCCATGGATCCCAATGCCATCTTCCTG
(SEQ ID NO:42) 123-3' GATCAAGCTTACTTGTGAGCTGTGGTCCT (SEQ ID MO:43) 25 126-5' CGATCCATGGCCATCTTCCTGAGCTTCCAA
(SEQ ID No:44) 126-3' GATCAAGCTTAATTGGGATCCTTGTGAGCTGT
(SEQ ID NO:45) SYNNOXAl.REQ AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA
GAACGCGCAG GCTCAACAGT ACGTAGAGGG CGGTGGAGGC
TCC (SEQ ID No:46) ~5 SYNNOXA2.REQ CCGGGGAGCC TCCACCGCCC TCTACGTACT GTTGAGCCTG
CGCGTTCTCC AAGGTTTTCA GATAGAAGGT CAGTTTACGA
CGG (SEQ ID No:47) Llsyn.~or GTTACCCTTG AGCAAGCGCA 'GGAACAACAG GGTGGTGGCT
CTAACTGCTC TATAATGAT (SEQ ID NO:48) Llsyn.rev CGATCATTAT AGAGCAGTTA GAGCCACCAC CCTGTTGTTC
CTGCGCTTGC TCAAGG (SEQ ID NO:49) 45 L3syn.for GTTACCCTTG AGCAAGCGCA GGAACAACAG GGTGGTGGCT
CTGGCGGTGG CAGCGGCGGC GGTTCTAACT GCTCTATAAT
GAT (SEQ ID NO:50) L3syn.rev CGATCATTAT AGAGCAGTTA GAACCGCCGC CGCTGCCACC
GCCAGAGCCA CCACCCTGTT GTTCCTGCGC TTGCTCAAGG
(SEQ ID NO:51) r W O 97/1298~ 85 PCT~US96/1~774 35start.seq GATCGACCAT GGCTCTGGAC CCGAACAACC TC
(SEQ ID MO:52) 34rev.seq CTCGATTACG TACAAAGGTG CAGGTGGT
(SEQ ID No:53) 70start.seq GATCGACCAT GGCTAATGCA TCAGGTATTG AG
(SEQ ID N3:54) 10 69rev.seq CTCGATTACG TATTCTAAGT TCTTGACA
(SEQ ID NO:55~
91start.seq GATCGACCAT GGCTGCACCC TCTCGACATC CA
(SEQ ID NO:56) 9Orev.seq CTCGATTACG TAGGCCGTGG CAGAGGGC
(SEQ ID No:57) lOlstart.seq GATCGACCAT GGCTGCAGGT GACTGGCAAG AA
(SEQ ID No:58) lOOrev.seq CTCGATTACG TACTTGATGA TGATTGGA
(SEQ ID No:59) L-llstart.seq GCTCTGAGAG CCGCCAGAGC CGCCAGAGGG
CTGCGCAAGG TGGCGTAGAA CGCG (SEQ ID NO:60) L-llstop.seq CAGCCCTCTG GCGGCTCTGG CGGCTCTCAG
AGCTTCCTGC TCAAGTCTTT AGAG (SEQ ID MO:61) P-blstart.seq GGGCTGCGCA AGGTGGCG (SEQ ID NO:62) P-blstop.seq ACACCATTGG GCCCTGCCAG C (SEQ ID NO:63) 35 39start.seq GATCGACCAT GGCTTACAAG CTGTGCCACC CC
(SEQ ID MO:64) 38stop.Se~ CGATCGAAGC TTATTAGGTG GCACACAGCT TCTCCT
(SEQ ID NO:65) g7start.se~ GATCGACCAT GGCTCCCGAG TTGGGTCCCA CC
(SEQ ID Mo:66) 96stop.Seq CGATCGAAGC TTATTAGGAT ATCCCTTCCA GGGCCT
(SEQ ID NO:67) 126start.seq GATCGACCAT GGCTATGGCC CCTGCCCTGC AG
(SEQ ID No:68) 125stop.Seq CGATCGAAGC TTATTATCCC AGTTCTTCCA TCTGCT
(SEQ ID NO:69) W O 97/12985 86 PCT~US96/15774 133start.seq GATCGACCAT GGCTACCCAG GGTGCCATGC CG
(SEQ ID NO:70~
132stop.seq CGATCGAAGC TTATTAGGGC TGCAGGGCAG GGGCCA
(SEQ ID MO:71) 142start.se~ GATCGACCAT GGCTTCTGCT TTCCAGCGCC GG
(SEQ ID No:72) 141stop.Seq CGATCGAAGC TTATTAGGCG AAGGCCGGCA TGGCAC
(SEQ ID MO:73) GLYXAl GTAGAGGGCG GTGGAGGCTC C (SEQ ID NO:74) 15 GLYXA2 CCGGGGAGCC TCCACCGCCC TCTAC (SEQ ID NO:75) lGGGSfor TTCTACGCCA CCTTGCGCAG CCCGGCGGCG GCTCTGACAT
GTCTACACCA TTG (SEQ ID NO:76) 20 lGGGSrev CAATGGTGTA GACATGTCAG AGCCGCCGCC GGGCTGCGCA
AGGTGGCGTA GAA (SEQ ID NO:77) Synnoxal.req AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA
GAACGCGCAG GCTCAACAGT ACGTAGAGGG CGGTGGAGGC
TCC (SEQ ID NO:240) Synnoxa2.req CCGGGGAGCC TCCACCGCCC TCTACGTACT GTTGAGCCTG
CGCGTTCTCC AAGGTTTTCA GATAGAAGGT CAGTTTACGA
CGG (SEQ ID NO:241) ~0 W O 97/12985 87 PCTfUS96/15774 TART.F. 2 GT~.NF. SEOUENCES
pMoN30304 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGT (SEQ ID NO:78) pMoN26458 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC (SEQ ID NO:79) pMON28548 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCG
TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCTCACAAGGATCCC
AATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:80) pMON28500 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
W O 97/12985 88 PCT~US96/15774 CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCT
CCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTC
CTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTG
CCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAG
GACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTG
GGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTT
GGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCAC
AAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTC
CTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:81) pMON28501 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTcTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCG
TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID MO:82) pMON28502 TCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGA~AGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGC
AACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGT
GACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACA
CCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAG
ACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG~GAGTGATGGCAGCA
CGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTC
CGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGG
ACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGA
AAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
(SEQ ID NO:83) W O 97112985 8g PCTAUS96/15774 Syntanl (SEQ ID NO:84) Syntan3 701 GAACAACAGT AC (SEQ ID NO:85) pMON31104 r401 CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
.
W O 97/1298S o PCTrUS96/15774 951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID No:86) pMON31105 951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:87) pMON31106 601 TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG .' W O 97/12985 91 PCTAUS9~15774 851 AAGGGATATC CCCCGAGTTG GGTCCCACCT TGGACACACT &CAGCTGGAC
951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:88) pMON31107 3Sl GTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
30951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:89) pMON31108 ~,801 CCTGCAGCTG GCAGGCTGCT TGAGCCAACT CCATAGCGGC CTTTTCCTCT
W O 97/12985 92 PCT~US96/15774 ~SEQ ID NO:90) f pMON31109 301 GTCTCTATCC TGATGGACCG AAACCTTCGA CTTCCA~ACC TGGAGAGCTT
451 AAAG~ATCTC ATAAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC
901 ACCTTGGACA CACTGCAGCT GGACGTCGCC GACTT~GCCA CCACCATCTG
(SEQ ID NO:91) pMOM31110 (SEQ ID NO:92) ~' pMON3 1111 t 151 CACTTAAAGA GACCACCTGC ACCTTTGCTG GACCCGAACA ACCTCAATGA
801 CCTG~AGCTG GCAGGCTGCT TGAGCCAACT CCATAGCGGC CTTTTCCTCT
(SEQ ID NO:93) pMON13 1 8 2 901 CTGTGTGCCA CCTAATAA (SEQ ID NO:94) pMON13 183 W O 97/12985 94 PCT~US96/15774 951 TGCCACCTAA TAA (SEQ ID NO:95) 20pMON13184 40901 GAAGGGATAT CCTAATAA (SEQ ID NO:96) pMOM13185 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG ,~
-W O 97/12985 95 PCT~US96/15774 951 GATATCCTAA TAA (SEQ ID NO:97) 15pMON13186 35901 GAAGAACTGG GATAATAA (SEQ ID NO:98) pMON13187 ~~551 TGGAGGTGTC GTACCGCGTT CTACGCCACC TTGCGCAGCC CTCTGGCGGC
.
651 GATCC'AGGGC GATGGCGCAG CGCTCCAGGA GAAGCTGTGT GCCACCTACA
951 ACTGGGATAA TAA (SEQ ID NO:99) 10pMON13188 551 GCTTCC'TGCT CAAGTCTTTA GAGCAAGTGA GAAAGATCCA GGGCGATGGC
30901 GCCCTGCAGC CCTAATAA (SEQ ID N~:100) pMON13189 W O 97/1298S PCTAJS96~5774 951 GCAGCCCTAA TAA (SEQ ID NO:101) 5pMON13190 10151 AGGGCmGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
25901 CCGGCCTTCG CCTAATAA ~SEQ ID NO:102) pMON13191 g51 CTTCGCCTAA TAA (SEQ ID NO:103 pMON13192 W O 97112985 PCTrUS96/15774 20901 CAGGAGAAGC TGTGTGCCAC CTAATAA (SEQ ID NO:104) pMON13193 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTG&A GAGCTTCGTA
951 GAAGCTGTGT GCCACCTAAT AA (SEQ ID NO:105) pMON25190 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG.=CAATTCTTCG
W O 97/1298S PCT~US96/1S774 15901 CAGGCCCTGG AAGGGATATC CTAATAA (SEQ ID NO:106) pMON25191 451 TTGGC~l'CCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
951 CCTGGAAGGG ATATCCTAAT AA (SEQ ID NO:107) pMON13194 801 CCAGGGGCTC CTGCAGGCCC TGGAAGGGAT ATCCCCCGAG TTGGGTCCCA r 10901 CAGCAGATGG AAGAACTGGG ATAATAA (SEQ ID NO:108) pMON13195 951 GATGGAAGAA CTGGGATAAT AA (SEQ ID NO:109) pMON13196 601 GGCGATGGCG CAGCGCTCCA GGAGAAGCTG TGTGCCACCT ACAAGCTGTG ,~
W O 971~2985 101 PCT~US96/1~77~
5901 ATGGCCCCTG CCCTGCAGCC CTAATAA (SEQ ID NO:110) pMON13197 301 TTCTATCTGG TTACCCTTGA GCAAGC&CAG GAACAACAGT ACGTAGAGGG
801 ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGA~G
951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:lll) pMON13198 901 GGTGCCATGC CGGCCTTCGC CTAATAA (SEQ ID NO:112) CA 0223406l l998-04-06 W O 97/12985 102 PCTrUS96/15774 pMON13199 951 CATGCCGGCC TTCGCCTAAT AA (SEQ ID NO:113) pMON3 1112 951 GCAGCCCTAA TAA ~SEQ ID NO:114) pMON31113 W O 97/12985 103 PCTnUS96/I5774 201 AAATCTCCTG CCATGTCTGC CCCT&GCCAC GGCCGCACCC ACGCGACATC
' 251 CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID MO:115) pMON31114 1 ATGGCl'AACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
951 GCAGCCCTAA TAA (SEQ ID NO:116) pMON31115 W O 97/12985 104 PCT~US96/15774 351 CGGT&GAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
601 CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA r 951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:117) pMoN28505 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGAcTTccAAAccTGGAGAGcTTcGTAAGGGcTGTcAAGAAcTTAGAAAATGcATcAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTG
GACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACT
TGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTG
CAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCC
AATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCG
CCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGC
AGACTGAGCCAGTGCCCA (SEQ ID NO:118) pMoN28506 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
GGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTT
GGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTC
CTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCC
ACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGAC
CTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAG
TGCCCAGAGGTTCACCCT (SEQ ID NO:~l9) W O 97/12985 105 PCTfUS96n~774 pMON28507 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAG
CTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTT
CCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAA
CACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTC
AGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTC
AGTAAACTGCTl'CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTT
CACCCTTTGCCTACACCT (SEQ ID NO:120) pMOM28508 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCT~C~GGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCT (SEQ ID NO:121) pMON2850~
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGT
CTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACC
CA 0223406l l998-04-06 W O 97/~2985 106 PCTrUS96/}577~
ACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAG
GTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAAC
ATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGAC
TCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCT
5 GTCCTGCTGCCTGCTGTG (SEQ ID NO:122) pMON28510 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCC
TAAACTCCAAACATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
CTGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCA
CTTGCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCT
GCAGGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCC
TAGGGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCA~CATGGCGTCTCCCGCTCCGCC
TGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGA
CTGACCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACT
TTAGTTG (SEQ ID NO:123) pMON28511 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTG
CCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATG
GAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATG
GCAGCACGGGGACAACTG (SEQ ID MO:124) 45 pMON28512 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
W O 97/12985 107 PCT~US96/15774 CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCC
GCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTT
CACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCT
GCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTT (SEQ ID NO:125) pMON28513 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGA
GAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTT
CTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTC
CTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGA
ACCCAGCTTCCTCCACAG (SEQ ID NO:126) pMON28514 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACAGGGCAGGACCACA (SEQ ID NO:127) pMON28515 W O 97/1~985 108 PCT~US96/15774 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTC~AAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAG (SEQ ID NO:128) pMON28516 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTAC;'CTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATG
GCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAG
GCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGA
CAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTC
CTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACA
GCTCACAAGGATCCCAAT (SEQ ID NO:129) pMON28519 GcTAAcTGcTcTATAATGATcGATGAAATTATAcATcAcTTAAAGAGAccAccTGcAccT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATA~ATCTCCAAACATGGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTG
GACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACT
TGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTG
CAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCC
AATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCT
W O 97112985 109 PCT~US96/I~774 GCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGA
CTGAGCCAGTGCCCA (SEQ ID NO:130) pMO~28520 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
GGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTT
GGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTC
CTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCC
ACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCT (SEQ ID NO:131) pMON28521 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAG
CTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTT
CCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAA
CACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTC
AGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCT (SEQ ID NO:132) pMON28522 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
AACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGT
GACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACA
CCTGTCCTGCTGCCT (SEQ ID NO:133) pMON28523 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGT
CTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACC
ACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAG
GTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATG
GCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAA~CTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTG (SEQ ID NO:134) pMON28524 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGA~ACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCT
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTA~ACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCT
GTGGACTTTAGCTTG (SEQ ID NO:135) pMON28525 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
_ W O 97112985 111 PCT~US9~15774 CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTG (SEQ ID NO:136) pMON28526 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC~ACATGGCGTCTCCCGCT
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCT
GTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
CTGGGAGCAG~GACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCC
ACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCC
CTGCAGAGCCTCCTT (SEQ ID NO:137) pMON28527 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGA
GTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCA
GAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAA
TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTG
CTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTG
GGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACC
CAGCTTCCTCCACAG (SEQ ID NO:138) pMON28528 CA 0223406l l998-04-06 W O 97/12985 112 PCTrUS96/15774 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAA
CTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCT
TTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAG
ATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTG
ATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCT
GGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCA
CAGGGCAGGACCACA ~SEQ ID NO:13g) pMOM28529 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
AACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGT
GACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACA
CCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAG
ACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCA
CGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTC
CGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGG
ACCACAGCTCACAAG (SEQ ID MO:140) pMON28530 GCTAACTGCTC'TATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCG
TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
W O 97112985 113 PCT~US96/I5774 CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAAT (~EQ ID NO:141) pMON28533 GCTAACTGCTCTATAATGATCGATGA~ATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
GACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTA
TGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCTCG
CATCCAATCATCATCAAGGCAGGTGACTG&CAAGAATTCCGGGAAAAACTGACGTTCTAT
TGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGG
TAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTA~AGAATCTCATAAA
TCTCCAAACATGGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTT
AGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCA
GTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTC
TCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGC
CTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCC
ATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGA
GGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCG
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCA (SEQ ID NO:142) pMON28534 GCTAACTGCI~ J ATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGA~AATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
GGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTT
GGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTC
CTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCC
ACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCT
GCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGA
CTGAGCCAGTGCCCAGAGGTTCACCCT (SEQ ID NO:143) pMoN28535 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
W O 97/12985 114 PCT~US96/15774 ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAG
CTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTT
CCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAA
CACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTC
AGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCTTTGCCTACACCT (SEQ ID NO:144) pMON28536 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCT (SEQ ID NO:145) pMON28537 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCA~GCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGT
CTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACC
ACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAG
GTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAAC
GGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTG
CTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTG
CCTACACCTGTCCTGCTGCCTGCTGTG (SEQ ID NO:146) pMON28538 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT ,~
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
CA 0223406l l998-04-06 ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATG
GCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTG (SEQ ID NO:147) pMoN28539 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTccGTcTccTccTTGGGGcccTGcAGAGccTccTTGGAAcccAGcTTccTccAcAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTC
AGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTT
CACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTG (SEQ ID NO:148) pMOM28540 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATG
GCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAG
GCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGA
CAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTC
CTCCTTGGGGCCCTGCAGAGCCTCCTT (SEQ ID NO:149) W O 97/12985 116 PCT~US96/15774 pMON28541 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACC'GTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCT
TGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTG
AGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTT
AGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCA
GTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTC
TCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGC
CTCCTTGGAACCCAGCTTCCTCCACAG (SEQ ID NO:150) 20 pMON2~3 54 2 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGA~AAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGA
GTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCA
GAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAA
TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTG
GGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACC
CAGCTTCCTCCACAGGGCAGGACCACA (SEQ ID NO:151) pMON28543 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC ~.
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CA 0223406l l998-04-06 W O 97/1298~ 117 PCT~US96/15774 CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACA&GGCAGGACCACAGCTCACAAG (SEQ ID NO:152) pMoN2 8544 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGAcATccAATcATcATcAAGGcAGGTGAcTGGcAAGAATTccGGGAAAAAcTGAcGTTc TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGC
GGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
AcAccTGTccTGcTGccTGcTGTGGAcTTTAGcTTGGGAGAATGGAAAAcccAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAAT (SEQ ID NO:153) pMON28545 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCT
CACAAG (SEQ ID NO:154) pMON15981 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA A~AACTGACG
CA 0223406l l998-04-06 W O 97/12985 118 PCT~US96/15774 951 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAA TAA;
(SEQ ID NO:155) p~ON15982 401 CGTCTCCTCC GTCTAAAGAA TCTCATA~AT CTCCAAACAT GTCTCCCGAG
951 CTACCAGGGG CTCCTGCAGG CCCTGGAAGG GATATCCTAA TAA;
(~EQ ID NO:156) pMON15965 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTTCTGCT ,~
-W O 97112985 ~CTAUS96/15774 (SEQ ID NO:157) pMON15966 35(SEQ ID NO:158 pMON15967 W O 97/12985 120 PCT~US96/15774 (SEQ ID NO:159) pMON15960 1051 CTACGCCACC TTGCGCAGCC CTGATAA (SEQ ID NO:160 TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACA~
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:249) PMON3Zl33 TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCTCACAAGGATCCC ,-CA 0223406l l998-04-06 AATGCCATCTTCCTGAGCTTCCAACACCTGCTCC&AGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:250) pMON32134 TCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG ~SEQ ID NO:251) 15 Pmonl3181 301 CGTTCTATCT GGTTACCCTT GAGCAAGCGC AGGAACAACA GTACGTAgag 351 ggcggtggag gctcCCCGGG TGAACCGTCT GGTCCAATCT CTACTATCAA
451 CCGCATGCAA GCTT (SEQ ID No:257) Pmonl3180.Seg 301 CGTTCTATCT GGTTACCCTT GAGCAAGCGC AGGAACAACA GTACGTAgag 351 ggcggtggag gctcCCCGGG TGGTGGTTCT GGCGGCGGCT CCAACATGTA
401 AGGTACCGCA TGCAAGCTT (SEQ ID NO:258) _ W O 97/12985 122 PCT~US96/15774 T~RT.F. 3 PROTEIN SEOUENC~S
pMON26458pep SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeukeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe (SEQ ID NO:161) pMOM28548pep SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAla SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArg (SEQ ID NO-162) pMON28500 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuGysValArgGluPheGlyAsnMetAlaSer ProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisVal LeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeu ProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGln AspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGlnLeu GlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeu ,-GlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHis CA 0223406l l998-04-06 W O 97112985 123 PCT~US96/15774 LysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPhe LeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:163) pMON28501 ; SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLySThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAla SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLySThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeUSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPrOProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:164) pMOM28502 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGly AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr ProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAla ArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnVal ArgLeuLeuLeuGlyAla~euGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArg ThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGly LysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:165) 13182.Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ilt~ Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro W O 97/12985 124 PCT~US96/15774 Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly 5 Leu Leu Gln Ala Leu Glu Gly Il e Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu 10 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SF~Q ID NO: 166) 13183 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 20 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 25 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala 3 0 Gly Cys Leu Ser &ln Leu ~Iis Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg 3 5 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:167) 1318a . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg 45 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp 50 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly W O 97/12985 125 PCT~US96/15774 Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His l eu Gln Ser Phe 5 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser - Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cy5 His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 10 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser ~SEQ ID NO:168) 15 13185 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu 2 0 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg H1s Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro 25 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln 3 0 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg E~is Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu 35 Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO: 169 ) 13186 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 45 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile I,eu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 50 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe W O 97/12985 126 PCT~US96/15774 Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Ar~ Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu 5 Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu 10 Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( SEQ ID NO: 17 0 ) 13187 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 2 0 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro 2 5 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Se~ HiS Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu 3 0 Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu 3 5 Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( SEQ ID NO: 171 ) 40 13188 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His HiS Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu 45 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro 50 Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg CA 0223406l l998-04-06 W O 97~12985 127 PCT~US96tlS774 Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr ~ys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly 5 Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu 10 Gln Pro (SEQ ID NO: 172 ) 13189 . Pept 15 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Il~_ Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 20 Ala Ala Pro Ser Arg Xis Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu I,ys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala 2 5 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys 3 0 Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr 3 5 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ( SEQ ID NO :173 ) 13190 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 45 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln 50 Arg Arg Ala Gly Gly Val Leu val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu W O 97/12985 128 PCT~US96/15774 Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly HiS Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS
5 Ser Gly Lell Phe :~eu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala ( SEQ ID NO: 17 4 ) 13191 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg 15 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp 2 0 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 2 5 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Al,. Thr Tyr Lys Leu Cys HiS Pro Glu Glu Leu Val Leu Leu Gly HiS Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 3 0 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala 3 5 Phe Ala ( SEQ ID NO: 17 5 ) 13192 . Pept 40 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 45 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly GIy Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu CyS
His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro 50 Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly I,eu Phe Leu Tyr Gln Gly ,~
Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr -W O 97/lZ985 129 PCT~US96/15774 Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser HiS Leu Gln Ser Phe Leu Glu 5 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr ( SEQ ID NO: 17 6 ) 13193 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 15 val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 2Q Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala 25 Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg 3 0 Ala Gly Gly Val Leu Val Ala - Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:177) 25190 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile HiS His Leu Lys Arg 4 0 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp 45 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr ~hr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu 50 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr W O 97tl2985 130 PCT~US96/1~774 Pro Leu Gl~ Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser ( SEQ ID NO: 17 8 ) pMON25191. Pep Asn Cys Ser Ile Me~ Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn M~t Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile TrE) Gln Gln Met Glu Glu Leu Gly Me~: Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser ~eu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 30 Leu Val Leu Leu Gly His Ser I eu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:179) 131g4 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Ilys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 40 Val Ser Ile Leu Met ASp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 45 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser ~is Leu ~ln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 50 Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala ,-Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu , CA 0223406l l998-04-06 5 131 PCTAUS9fi~1~774 Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr 5 Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( S13Q ID NO :180 ) 13195 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu ASp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 15 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro 20 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu 2 5 Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln 3 0 Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( SEQ ID NO: 181 ) 3 5 1319 6 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu 40 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro 45 Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg 50 Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln ..
W O 97/1298~ 132 PCT~JS96/15774 Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala 5 Pro Ala Leu Gln Pro ( SEQ ID NO :182 ) 13197 . Pept 10 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu ~et Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 15 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Glrl Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr GlrL Gly Ala 20 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala 25 Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 3 0 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ~SEQ ID NO: 183 ) 1319 8 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro I-eu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 40 Glu Ala Ile Leu Arg Asn Leu Gln Pro CyS Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Plle Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln 45 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 50 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser ,.
Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala W O 97/12985 PCTnUS96/1577~
Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala ( SEQ ID NO :184 ) 13199 . Pept 10 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 15 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln 2~ Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 25 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met 3 0 Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:185) 31104.Pep Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg 40 His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser W O 97/12985 13~ PCTrUS96/15774 Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 5 Ala Pro Ala Leu Gln Pro ~SEQ ID NO:186) 31105 . Pep 10 Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His ~is Leu Lys Arg 15 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala 20 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser Xis Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys 25 Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser l,eu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala 3 0 Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ( SEQ ID NO: 187 ) 31106 . Pep Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His HiS Leu Lys Ar~ Pro Pro Ala Pro Leu Leu 40 Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn 45 Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val 50 Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys Xis Pro Glu Glu Leu Val Leu Leu Gly ,~
His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser W O 97112985 135 PCTnUS96n5774 Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 5 Ala Pro Ala Leu Gln Pro ~SEQ ID N0:188) 31107 . Pep 10 Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser 15 Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala 20 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys 25 Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp val Ala 3 0 Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO :189 ) 31108 . Pep Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro 45 Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe 50 Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp W O 97/1298~ 13~ PCTAUS96/15774 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu G1n Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp 5 Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:l90) 31109 . Pep 10 Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp 15 Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val :I.ys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu 20 Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly 2 5 Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln ~la Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu 3 0 Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:l91) 31110 . Pep Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln &ln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu 40 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro 45 Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe 50 Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp W O 97/12985 137 PCT~US96/15774 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:192) 31111.Pep Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly.Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Ly~ Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID MO:193) pMON15981 MetAlaAsnCysSerIleMetIleAspGluIleIleHiSHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr pheTyrLeuvalThrLeuGluGlnAlaGlnGluGlnGlnTyrvalGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaTyrLysLeuCySHisproGluGluLeuvalLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeUASpThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGly ValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeUArgHis LeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeu ProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAla AlaLeuGlnGluLysLeuCysAlaThr (SEQ ID MO:194) W O 97/12985 138 PCTnJS96/1~774 pMON15982 MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGl.uProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu ArgHisLeuAlaGlnproGlyGlyGlyserAspMetAlaThrproLeuGlyproAlaser SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln AlaLeuGlnLeuAlaGlyCysLeuSerGln~euHisSerGlyLeuPhe~euTyrGlnGly LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:195) pMON15965 MetAlaAsnCysSerIleMetIleAspGluIleIleHiSHisLeuLysArgProProAla ProLeuLeuAspproAsnAsnLeuAsnAspGluAspvalserIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer PheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGly~laAlaLeuGln GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis SerLeuGlyIleProTrpAlaProLeuSerSerCySProSerGlnAlaLeuGlnLeuAla GlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196) pMON15966 MetAlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet ,~
ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu CA 0223406l l998-04-06 W O 97/~298S 139 PCT~US96/I5774 GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly SerAspMetAlaThrProLeuGlyProAlaSerSerLeUproGlnserpheLeuLeuLys SerLeuGluGlnvalArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeucys AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSer ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:197) pMON15967 MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerproGlyGluproserGlyproIleserThrIleAsnproserproproserLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeu GlyProAlaSerSerLeuProGlnSerPheLeuLeuLySSerLeuGluGlnValArgLys IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeucysAlaThrTyrLysLeucysHis ProGluGluLeuValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSer CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu LeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:198) pMON31112.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisproIleHisIleLysAspGlyAspTrpAsnGlupheArgArgLysLeuThr PheTyrLeuLysThrLeu&luAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe ~ AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro (SEQ I~ NO:l99) CA 0223406l 1998-04-06 W O 97/1~985 140 PCT~US96/15774 pMON31113.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyPro~leSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLySLeuCySHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID NO:200) pMON31114.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisPr IleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgVal~euArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:201) pMON31115.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAsplleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIle~isIleLysAspGlyASpTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe CA 0223406l l998-04-06 W O 97/1298~ 141 PCT~US96~5774 GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThr~euGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID No:202) pMON28505 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer 2~ ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal AsppheserLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaPro ProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSer ArgLeuSerGlnCysPro (SEQ ID No:203) pMON28506 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu GlyThrGlnLeuproproGlnGlyArgThrThrAlaHisLysAspproAsnAlaIlephe LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer ThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAsp LeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGln CysProGluValHisPro (SEQ ID MO:204) pMoN28507 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro .
CA 0223406l l998-04-06 W O 97tl298~ 1~2 PCT~US96/lS774 LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln LeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu ProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGln HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal ArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal HisProLeuProThrPro (SEQ ID No:205) pMON28508 AlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySAsn~euGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluP~oSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeULeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCySProGluValHisProLeuPro ThrProValLeuLeuPro (SEQ ID NC:206) pMON28509 AlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleI~eIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLyS
ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn MetAlaSerProAlaProProAlaCysAspLeuAr~ValLeuSerLysLeuLeuArgAsp SerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro W O 97/12985 143 PcTnJsg6ns774 ValLeuLeuProAlaVa~ (S~Q ID No:207) pMOM28510 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerPro AlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeu HisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuPro AlaValAspPheSerLeu (SEQ ID NO:208) pMON28511 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeu ProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMet GluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMet AlaAlaArgGlyGlnLeu (SEQ ID No:209) pMON28512 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerPro .
W O 97/12985 144 PCTrUS96/1~77~
AlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeu ~isSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuPro AlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeu (SEQ ID NO:210) pMON28513 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspAr~AsnLeu ArgLeuProAsnLeuGluSerPheValAryAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuvalThrLeuGluGlnAlaGlnGluGlnGlnTyrvalGluGlyGlyGlyGlyser ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysserproAsnMetGlyAr~ThrThrAlaHisLysAspproAsnAlaIlepheLeu SerPheGlnIIisLeuLeuArgGlyLysValArgPheLeu~etLeuValGlyGlySerThr LeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeu ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCys ProGluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGly GluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeu LeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCySLeuSerSerLeu LeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGly ThrGlnLeuProProGln (SEQ ID NO:211) pMON28514 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaG~nGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgvalLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro ProGlnGlyArgThrThr (SEQ ID NO:212) pMON28515 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe WO 9'71129'85 145 PCT~US96/15774 TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHlsValLeuHisSerArgLeuSerGlnCySPrOGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeUGlyGlUTrpLySThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLys (SEQ ID MO:213) pMON28516 AlaAsnCysSerIleMetIleAspGluIleIleHisHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaIlePheLeuSerPheG~ n~i sT~euLeuArgGlyLysval ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys AlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGly GlnLeuGly~_~ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu LeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThr AlaHisLysAspProAsn (SEQ ID NO:214) pMON28519 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLySValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAlaProPro AlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArg LeuSerGlnCysPro (SEQ ID NO:215) pMON28520 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuproAsnLeuGluserphevalArgAlavalLysAsnLeuGluAsnAlaserGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr 10 LeuLeuLeuGluGlyvalMe~tAlaAlaArgGlyGlnLeuGlyproThrcysLeuserser LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePhe LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer ThrLeuCysValArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeu ArgValLeuSerLysLeuLeuArgAspSerHisVal~euHisSerArgLeuSerGlnCys ProGluValHisPro (SEQ ID NO:216) pMON28521 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluproserGlyproIleserThrIleAsnproserproproserLysGluser HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln LeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyT~rGlnLeu ProproGlnGlyArgThrThrAlaHisLysAspproAsnAlaIlepheLeuserpheGln HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal ArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysASpLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrPro (SEQ ID NO:217) pMON28522 AlaAsnCysSerIleMetIleAspGluIleIleHis~isLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluproserGlyproIleserThrIleAsnproserproproserLysGluser HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTr~LysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg ~CA 02234061 1998-04-06 W O 97112985 147 PCT~US96/15774 AspSerHisV~lLeuHisSerArgLeuSerGlnCySProGluValHisProLeuProThr ProValLeuLeuPro (SEQ ID NO:218) pMON28523 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer 10 ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleASnProSerProProSerLysGluSer HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaVal (SEQ ID MO:219) pMOM28524 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuÇly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAla ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHis SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla ValAspPheSerLeu (SEQ ID No:220) pMON28525 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln W O 97/12985 lg8 PCT~US96/15774 GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnKisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeu (SEQ ID NO:221) pMON28526 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuA-rgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyASnMetAlaSerProAla ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHiSValLeuHis SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla ValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIle LeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyPro ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAla LeuGlnSerLeuLeu (SEQ ID NO:222) pMON28527 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr LeuCysValArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr GlnLeuProProGln (SEQ I~ NO:223) pMON28528 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly ,~
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer W O 97/12985 149 PCTnUS96/15774 ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLys LeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisPro LeuProThrProValLeuLeuProAlaValASpPheSerLeuGlyGluTrpLysThrGln MetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyVal MetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSer GlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProPro GlnGlyArgThrThr (SEQ ID NO:224) pMOM28529 AlaAsnCysSerIleMetIleAspGluIleIleXisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProI~eIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr ProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAla ArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnVal ArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArg ThrThrAlaHisLys (SEQ ID NO:225) pMON28530 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAla SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsn (SEQ ID NO:226) pMON28533 W O 97/12985 150 PCTAJS96/1~774 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSer ProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisVal LeuHisSerArgLeuSerGlnCysPro (SEQ ID NO:227) pMON28534 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu GlyThrGlnLeuproproGlnGlyArgThrThrAlaHisLysAspproAsnAlaIlephe LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer ThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProPro AlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArg LeuSerGlnCysProGluValHisPro (SEQ ID NO:228) pMoN28535 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln LeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu ProProGlnGlyArgThrThrAlaHisLySASpProAsnAlaIlePheLeuSerPheGln t~
HisLeuLeuArgGlyLysValArgPheLeUMetLeUValGlyGlySerThrLeuCysVal CA 0223406l l998-04-06 W O 97/12985 151 PCr~US96/15774 ArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysASpLeu ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCyS
ProGluValHisProLeuProThrPro (SEQ ID NO:229) pMON28536 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly 10 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuPro (SEQ ID NO:230) pMON28537 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn GlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeu ProThrProValLeuLeuProAlaVal (SEQ ID NO:231) pMON28538 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp W O 97/12985 152 PCTrUS96/15774 IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn&lyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProA'aValAspPheSerLeu (SEQ ID NO:232) pMON28539 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal HisProLeuProThrProValLeuLeuProAlaValASpPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeu (SEQ ID MO:233) pMON28540 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeu,ProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHiSLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys AlaGlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGly GlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu LeuLeuGlyAlaLeuGlnSerLeuLeu (SEQ ID No:234) pMON28541 AlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySASnLeuGluAsnAlaSerGly W O 97/12985 153 PCT~US96/15774 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr LeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAla CysAspLeuArgValLeuSerLysLeuLeuArgAspSer~IiSValLeuHisSerArgLeu SerGlnCysProGluValHisProLeuProThrProValLeuLeuProAlaValAspPhe SerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAla ValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeu SerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSer LeuLeuGlyThrGlnLeuProProGln (SEQ ID NO:235) pMON285~2 AlaAsnCysSerIleMetIleAspGluIleIleHlsHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr GlnLeuProProGlnGlyArgThrThr (SEQ ID NO:236) pMON28543 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro ProGlnGlyArgThrThrAlaHisLys (SEQ ID No:237) W O 97/12985 154 PCT~US96/15774 pMoN28544 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspP-oAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluproserGlyproIleserThrIleAsnproserproproserLysGluser 10 HisLysserproAsnMetAlaIlepheLeuserpheGlnHisLeuLeuArgGlyLysval ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsn (SEQ ID NO:238) pMoN28545 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproILeIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValT~.rLeuGluGlnAlaGlnGluGlnGlnTyrValGlUGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHiSLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCySProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAla HisLys ~SEQ ID NO:239) pMON32132 SerProAlaProProAlaCysAspLeuArgValLeuSerLySLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHiSProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeUSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPrOPrOGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCySValArg ~SEQ ID NO:2 52) W O 97112985 155 PCT~US96/15774 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLySThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArg (SEQ ID NO:253) SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCySProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHiSLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:254) W O 97/12985 PCT~US96/15774 lS6 The following examples will illustrate the invention in greater detail although it will be understood that the invention is not limited to these specific examples.
F~X~MPT.F~ 1 Construction of ~ar~ntal BH~ exoression vector A. Removal of AflIII site from m~mm~l ian expression plasmid.
A new ~mm~l ian expression vector was constructed to accept NcoI-HindIII or AflIII-HindIII gene fra~ments in-frame and 3' to the hIL-3 receptor agonist pMON13146 (WO
94/12638) gene and a mouse IgG2b linker fragment. First, the single AflIII site was removed from pMON3934, which is a derivative of pMON3359. pMON3359 is a pUC18-based vector containing a mammalian expression cassette. The cassette includes a herpes simplex viral promoter IEllO ~-800 to +120) followed by a modified human IL-3 signal peptide sequence and an SV40 late poly-adenylation (poly-A) signal which has been subcloned into the pUC18 polylinker (See Hippenmeyer et al., Bio/Technology, 1993, pp.1037-1041).
The modified human IL-3 signal sequence, which facilitates secretion of gene products outside of the cell, is flan~ed by a BamHI site on the 5' end and a unique NcoI site on the 3' end. A unique HindIII site is 3' to the NcoI site and 5 to the poly-A sequence. The DNA sequence encoding the signal peptide is shown below (res~riction enzyme sites are indicated above). ~he ATG (methionine) codon within ~he NcoI site is in-frame with the ini~iator ATG of the signal peptide (underlined);
W 0 97/1298~ PCTrUS96/~57~4 BamHI NcoI
5'GGATCCACC~T~AGCCGCC~GCCCGTCCTGCTCCTGCTCCAACTCCTGGTCCGCCCCGCCATGG
(SEQ ID NO:255) The single A~lIII site was removed ~rom pMoN3934 by digestion with AflIII followed by filling in the overhangs - by addition of a DNA polymerase and nucleotides. The digested DNA fragment was purified via Magic PCR Clean up kit (Promega) and ligated with T4 DNA ligase. The ligation reaction was transformed into DH5~ ~ and the cells were plated onto LB-agar plus ampicillin. Individual colonies were screened for the loss of the AflIII site by restriction analysis with A~lIII and HindIII which results in a single fragment i~ the AflIII site was removed. The resulting plasmid was designated pMoN30275.
B. Transfer o~ hIL-3 receptor agonist pMON13416/IgG2b cassette into pMON30275.
The McoI-HindIII ~ragment (ca. 425 bp) from pMoN30245 was ligated to the McoI-HindIII fragment (ca. 3800 bp) of the pMON30275. pMON30245 (WO 94/12638) contains the gene coding ~or hIL-3 receptor agonist pMON13416 joined to a mouse IgG2b hinge fragment. Immediately 3' to the IgG2b hinge and 5~ to the HindIII site is an A~lIII site. Genes can be cloned into the AflIII-HindIII sites as NcoI-HindIII
or AflIII-HindIII fragments in frame with the hIL-3 variant pMON13416/IgG2b hinge to create novel chimeras. The NcoI
site and the AflIII site have compatible overhangs and will ligate but both recognition sites are lost. The plasmid, pMON30304 containing the DNA se~uence of (SEQ ID NO:78), coding for hIL-3 variant pMON13416 joined with a mouse IgG2b hinge region, was a result of this cloning.
.
~ 35 F~MPT~F 2 W O 97/12985 PCT~US96/15774 Constructio~ of an intermediate plasmid cont~intna one co~v of the c-m~l liqand (1-153) aene of the dimer template In order to generate a plasmid DNA with the coding sequence of c-mpl (1-153) ligand ~ollowed by a unique EcoRI
restriction site, the gene is isolated via reverse transcriptase/polymerase chain reaction (RT/PCR). Human fetal (lot #38130) and adult liver (lot #46018) A~ RNA are obtained from Clontech (Palo Alto, CA) for source of c-mpl ligand messenger RNA (mRNA). The first strand cDNA
reactions are carried out using a cDNA Cycle~ Kit obtained from Invitrogen (San Diego, CA). In the RT reaction, random primers and oligo dT primer are used to generate cDNA from a combination of human and fetal liver mRNA. For amplification of c-mpl ligand gene fragment encoding amino acids 1-153, the RT product serves as the template for PCR
with a combination of the primers, Forward primer: c-mplNcoI
(SEQ ID NO:13) and Reverse primer: Ecompl. The c-mplNcoI
primer ann~als to the c-mpl ligand gene (bases #279-311 based on c-mpl ligand sequence from Gene bank accession #L33410 or de Sauvage et al., Nature 369: 533-538 (1994)) and encodes a NcoI restriction enzyme site immediately 5~ to the first codon (Ser~l) of c-mpl ligand. The NcoI
restriction enzyme site codes for methionine and alanine codons prior to Ser+l and includes codon degeneracy for the Ala codon and the first four codons (Ser, Pro, Ala, & Pro) of c-mpl ligand. The Ecompl primer anneals to bases #720-737 of c-mpl ligand and encodes an EcoRI site (GAATTC) in-frame with the c-mpl ligand gene immediately following Arg-153. The EcoRI site creates Glu and Phe codons following Arg-153. The ca. 480 bp PCR product was purified, digested with NcoI and EcoRI and ligated to the NcoI-EcoRI vector fragment of pMON3993 (ca. 4550 bp.). pMON3993 was a derivative of pMoM3359 (described in Example 1). The human W O 97/12985 PCT~US96/I5~74 IL-3 signal peptide sequence, which had been subcloned as a BamHI fragment into the unique BamHI site between the IE110 promoter and poly-A signal, contains an NcoI site at its 3' end and is followed by a unique EcoRI site. The plasmid, pMON26458 containing the DNA sequence of ~SEQ ID NO:79), coding for c-mpl ligand amino acids 1-153 (SEQ ID NO:161), was the result of this cloning.
~MPLE 3 Construction of the parental plasmids containing the second genes of the dimer templates For amplification of c-mpl ligand gene fragments starting at amino acid 1 (Ser) with a termination codon following amino acid 153 (Arg), the RT reaction from Example 2 serves as the template for PCR with a combination of the following primers; c-mplNcoI (SEQ ID NO:13) (forward primer) and c-mplHindIII ~SEQ ID NO:15) (reverse primer). The c-mplMcoI
(SEQ ID NO: 13) primer is described in Example 2. The c-mplHindIII (SEQ ID NO:15) primer, which anneals to bases #716-737 of c-mpl ligand, adds both a termination codon and a HindIII restriction enzyme site immediately following the final codon, Arg1 53.
Two types of PCR products are generated from the RT
cDNA samples, one with a deletion of the codons for amino acids 112-115 and one without the deletion of these codons.
The c-mpl ligand PCR products (ca. 480 bp) are digested with NcoI and HindIII restriction enzymes for transfer to a mammalian expression vector, pMoN3934~ pMON3934 is digested with McoI and HindIII (ca. 3800 bp) and will accept the PCR
products.
Plasmid, pMON32132 ~SEQ ID NO:249), coding for c-mpl ligand amino acids 1-153 (~EQ ID NO:252) was a result of W O 97/12985 PCT~US96/15774 this cloning. Plasmid, pMON32134 (SEQ ID NO:250), coding for c-mpl ligand amino acids 1-153 (SEQ ID NO:253) was a result of this cloning. Plasmid, pMON32133 (SEQ ID NO:251), coding for c-mpl ligand amino acids 1-153 with a deletion of codons 112-115 (~112-115) (SEQ ID NO:254) was also a result of this cloning.
~.XAMpT . ~. 4 Generat;on of PCR dimer t~mnlate 5T- with a ~112-115 deletion in the second c-m~l liaand ~ene A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
fragment of pMoN26458 to the 1 Kbp NcoI/BstXI fragment from pMON32133 (containing a deletion of amino acids 112-115) along with the EcoRI/AflIII 5L synthetic oligonucleotide linker 5L-5' (SEQ ID NO:18) and 5L-3' (SEQ ID NO:19).
The EcoRI end of the linker will ligate to the EcoRI
end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMON32133, and neither restriction site will be retained upon ligation. The BstXI sites of pMoN26458 and pMON32133 will ligate as well. Plasmid, pMON28548, is a result of the cloning and contains the DNA
se~uence of (SEQ ID No:80) which encodes amino acids 1-153 c-mpl ligand fused via a GluPheGlyGlyAsnMetAla (SEQ ID
NO:222) linker to amino acids 1-153 c-mpl ligand that contains a deletion of amino acids 112-115 (SEQ ID NO:162).
~.XAMPT.~. 5 Generation of PCR ~imer tem~late 4L
A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
W O 97tl2985 PCTAJS96115774 fragment of pMOM26458 to the 1 Kbp NcoI/BstXI fragment from pMON32132 along with the EcoRI/AflIII 4L synthetic oligonucleotide linker 4L-5' (SEQ ID NO:16) and 4L-3' (SEQ
ID NO:17).
The EcoRI end of the linker will ligate to the EcoRI
- end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMON32132, and neither restriction site will be retained upon ligation. The BstXI sites of pMON26458 ar~d pMON32132 will ligate as well. The plasmid, pMoN28500, is a result of the cloning and contains the DNA
sequence of (SEQ ID NO:82) which encodes amino acids 1-153 c-mpl ligand fused via a GluPheGlyAsnMetAla (SEQ ID NO:223) linker (4L) to amino acids 1-153 c-mpl ligand (SEQ ID
NO:163).
F~Mp~E 6 Generation of PCR dimer t~mr~late 5T.
A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
fragment of pMoN26458 to the 1 Kbp NcoI/BstXI fragment from pMON32132 along with the EcoRI/AflIII 5L synthetic oligonucleotide linker SL-5' (SEQ ID NO:18) and 5~-3' (SEQ
ID NO:l9).
The EcoRI end of the linker will ligate to the EcoRI
end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMOM32132, and neither restriction site will be retained upon ligation. The BstXI sites of pMON26458 and pMON32132 will ligate as well. Plasmid, pMON28501 is a result of the cloning and contains the DNA
sequence of (SEQ ID NO: 82) which encodes amino acids 1-153 c-mpl ligand fused via a GluPheGlyGlyAsnMetAla (SEQ ID
NO:222~ linker t5~) to amino acids 1-153 c-mpl ligand (SEQ
ID NO:164).
EX~MP~.F. 7 ~neration of PCR ~imer t~m~lates 8L
A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
fragment of pMON26458 to the 1 Kbp NcoI/BstXI fragment from pMON32134 along with the EcoRI/AflIII 8L synthetic oligonucleotide linker 8L-5' (SEQ ID NO:20~ and 8L-3' ~SEQ
ID NO:21).
The EcoRI end of the linker will ligate to the EcoRI
end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMON32134, and neither restriction site will be retained upon ligation. The BstXI sites o~
pMoN26458 and pMON32134 will ligate as well. Plasmid, pMON28502 is a result of the cloning which contains the DNA
sequence of (SEQ ID NO:83) and encodes amino acids 1-153 c-mpl ligand ~used via a GluPheGlyGlyAsnGlyGlyAsnMetAla (SEQ
ID No:224) linker ~8L) to amino acids 1-153 c-mpl ligand (SEQ ID NO:165).
F~MPLES 8-44 Generation of novel c-m~l liqand aenes with new N-terminus ~nd C-terminus A. PCR generation of genes encoding novel c-mpl ligand receptor agonists.
Genes encoding novel c-mpl ligand receptor agonists were generated using Method III (Horlick et al., Prot. Eng.
5:427-433, 1992 ). The PCR reactions were carried out using dimer templates, pMONs 28500, 28501, 28502 or 28548 and one of the sets of synthetic primer sets below (The first number -refers to the position of the ~irst amino acid in the original sequence. For example, the 31-5' and 31-3' refers to the 5~ and 3' oligo primers, receptively, for the sequence beginning at the codon corresponding to residue 31 of the original sequence.).
31-5' (SEQ ID NO:22) and 31-3~ (SEQ ID N~:23), 35-5' (SEQ ID
No:24) and 35-3' (SEQ ID NO:25), 39-5' (SEQ ID No:26) and 39-3' (SEQ lD NO:27), 43-5' (SEQ ID NO:28) and 43-3' (SEQ ID
No:29), 45-5' (SEQ ID NO:30) and 45-3' (SEQ ID NO:31), 49-5' (SEQ ID NO:32) and 49-3' (SEQ ID N5:33), 82-5' (SEQ ID
NO:34) and 82-3' (SEQ ID NO:35), 109-5' (SEQ ID NO:36) and 109-3' (SEQ ID No:37), 115-5' (SEQ ID NO:38) and 115-3' (SEQ
ID NO:39), 120-5~ (SEQ ID No:4o) and 120-3~ (SEQ ID NO:41), 123-5~ (SEQ ID NO:42) and 123-3~ (SEQ ID NO:43), 126-5' (SEQ
ID NO:44) and 126-3' (SEQ ID MO:45).
The templates and oligonucleotide sets used in the PCR
reactions are shown in Table 4. The products that were generated were about 480 bp and were purified via Magic PCR
Clean up kits (Promega).
B. Subcloning of novel c-mpl receptor agonist gene products into mammalian expression vector for generation of chimeras.
The c-mpl receptor agonist gene PCR products were digested with NcoI and HindIII or AflIII and HindIII
restriction enzymes (ca. 470 bp) for transfer to a m~mm~l ian expression vector. The expression vector, pMON30304, was digested with NcoI and HindIII (ca. 4200 bp) and accepts the PCR products as McoI-HindIII or AflIII-HindIII fragments.
The restriction digest of the PCR product and the resulting plasmids are shown in Table 4 W O 97/lZ985 PCTnUS96/15774 PCR Product PCR Product Resulting Breakpoint Example # PCR template Primer set Restriction Linker Plasmid in c-mpl Digest pMONligand Example 8 pMON28501 31 NcoI/HindIII 5L 28505 30-31 Example 9 pMON28501 35 AflIII/HindIII 5L 28506 34-35 Example 10 pMON28501 39 NcoI/HindIII 5L 28507 38-39 Example 11 pMON28501 43 NcoI/HindIII 5L 28508 42-43 Example 12 pMON28501 45 NcoI/HindIII 5L 28509 g4-45 Example 13 pMON28501 49 NcoI/HindIII 5L 28510 48-49 Example 14 pMON28501 82 NcoI/HindIII 5L 28511 81-82 Example 15 pMON28501 109 NcoI/HindIII 5L 28512 108-109 Example 16 p~ i28501 116 NcoI/HindIII 5L 28513 115-116 Example 171~MON28501 120 NcoI/HindIII 5L 28514 119-120 Example 18 pMON28501 123 NcoI/HindIII 5L 28515 122-123 Example 19 pMON28501 126 NcoI/HindIII 5L 28516 125-126 Example 20 pMCN28500 31 NcoI/HindIII 4L 28519 30-31 Example 21 pMON28500 35 AflIII/HindIII 4L 28520 34-35 Example 22 pMoN28500 39 NcoI/HindIII 4L 28521 38-39 Example 23 pMON28500 43 NcoI/HindIII 4L 28522 42-43 Example 24 pMON28500 45 NcoI/HindIII 4L 28523 44-45 Example 25 pMoN28500 49 NcoI/HindIII 4L 28524 48-49 Example 26 pMoN28500 82 NcoI/HindIII 4L 28525 81-82 Example 27 pMON28500 109 NcoI/HindIII 4L 28526 108-109 Example 28 pMON28500 116 NcoI/HindIII 4L 28527 115-116 Example 29 pMON28500 120 NcoI/HindIII 4L 28528 119-120 Example 30 pMON28500 123 NcoI/HindIII 4L 28529 122-123 Example 31 pMI~N28500 126 NcoI/HindIII 4L 28530~ 125-126 Example 32 pMoN28502 31 NcoI/HindIII 8L 28533 30-31 Example 33 pMON28502 35 AflIII/HindIII 8L 28534 34-35 Example 34 pMoN28502 39 NcoI/HindIII 8L 28535 38-39 Example 35 pMoN28502 43 NcoI/HindIII 8L 28536 42-43 W O 97J1~985 PCT~US96/15774 TABLE 4 cont.
PCR Pro~uct PCR Product Resulting Breakpoint Example H PCR templaLe Primer set Restrictio~ Linker Plasmid in c-mpl Digest pMONligand Example 36p~ 28502 45 NcoI/HindIII 8L 28537 44-45 Example 37pMON28502 49 NcoI/HindIII BL 28538 48-49 Example 38pMON28502 82 NcoI/HindIII 8L 28539 81-82 ~xa~ple 39pMON28502 109 NcoI/~indIII 8L 28540 108-109 Example 40pMON28502 116 NcoI/HlndIII 8L 285~1 115-116 EXAMPLE 41pMON28502 120 NcoI/HindIII 8L 28542 119-120 Example 42pMON28502 12~ NcoI/~indIII 8L 28543 122-123 Example 43pMON28502 126 NcoI/HindIII 8L 28544 125-126 Example 44pMoN28548 123 NcoI/HindIII 5L 28545 122-123 F'.~Z~MPT.F. 45 ~onstruction of pMONl5960 Construction of pMON15960, an intermediate plasmid used for constructing plasmids containing DNA sequences encoding G-CSF Serl7 with a new N-terminus and C-terminus. Plasmid pACYC177 (Chang, A.C.Y. and Cohen, S.N. ~. Bacteriol.
134:1141-1156, 1978) DNA was digested with restriction enzymes HindIII and BamHI, resulting in a 3092 base pair HindIII, BamHI fragment. Plasmid, pMON13037 (WO 95/21254), DNA was digested with BglII and FspI, resulting in a 616 base pair BglII, FspI fragment. A second sample of plasmid, pMON13037, DNA was digested with NcoI and HindIII, resulting in a 556 base pair McoI, HindIII fragment. The synthetic DNA oligonucleotides lGGGSfor (SEQ ID NO:76) and lGGGSrev (SEQ ID NO:77) were annealed to each other, and then digested with AflIII and FspI, resulting in a 21 base pair AflIII, FspI fragment. The restriction fragments were ligated, and the ligation reaction mixture was used to W O 97/12985 PCT~US96/15774 trans~orm E. coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA
was isolated and analyzed by restriction analysis to confirm the correct insert.
F.XAMPT,~. 46 Con~truction o~ ~MON15981 Construction o~ pMON15981, a plasmid cont~in~n~ DNA
sequences encoding a multi-~unctional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reac~ion using synthetic DNA oligonucleotides 38 stop (SEQ
ID NO:65) and 39 start (SEQ ID NO:64) as primers, resulting in the ampli~ication o~ a DNA ~ragment o~ 576 base pairs.
The amplified ~ragment was digested with restriction en~ymes HindIII and NcoI, resulting in a HindIII, NcoI ~ragment o~
558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and A~lIII, resulting in a HindIII, AflIII fragment of 4068 base pairs. The restriction ~ragments were ligated, and the ligation reaction mixture was used to trans~orm E.
coli K-12 strain JM101. Trans~ormant bacteria were selected on ampicillin-containing plates. Plasmid DMA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15981, contains the DNA sequence o~ (SEQ ID NO:155) which encodes the ~ollowing amlno acld se~uence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsn~euAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGlu~euGlyProThrLeuAspThrLeuGlnLeuAspVal CA 0223406l l998-04-06 W O 97/12985 PCTfUS96/15774 AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGly ValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHis LeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeu ProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAla AlaLeuGlnGluLysLeuCysAlaThr (SEQ ID NO:195) MPT.F. 47 constructiGn of DMON15982 Construction of pMON15982, a plasmid containing DNA
sequences encoding a multi-functional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 96 stop (SEQ
ID NO:67) and 97 start (SEQ ID NO: 66) as primers, resulting in the amplification of a DNA fragment of 576 base pairs.
The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII~ NcoI fragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, AflIII fragment of 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to transform E.
coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15982, contains the DNA sequence of (SEQ ID NO:157) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla i W O 97112985 PCTrUS96/1~77 GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu ArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSer SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln AlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGly LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:196) ~XAMPLE 48 Co~truct;on of ~MQN15965 Construction of pMON15965, a plasmid containing DNA
sequences encoding a multi-~unctional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 142 stop (SEQ
ID NO:73) and 141 start (SEQ ID NO:72) as primers, resulting in the amplification o~ a DNA ~ragment of 576 base pairs.
The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII, NcoI ~ragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, A~lIII ~ragment o~ 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to transform E.
coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15965, contains the DNA sequence of (SEQ ID NO:157) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHi~LysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal WO 97/lZ985 PCT/US96/15774 AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer PheLeuLeuLysserLeuGluGlnvalArgLysIleGlnGlyAspGlyAlaAlaLeuGln GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis SerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAla GlyCysLeuSe~GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196) F~AMPL~ 49 Construction of ~MON15966 ~onstruction of pMON15966, a plasmid containing DNA
sequences encoding a multi-functional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 126 stop (SEQ
ID NO:68) and 125 start (SEQ ID NO:69) as primers, resulting in the amplification of a DNA fragment o~ 576 base pairs. The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII, NcoI
fragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, AflIII fragment of 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to transform E. coli K-12 strain JM101.
Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15966, contains the DNA sequence of (SEQ ID
NO:158) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCySLeuProSerAlaThrAlaAlaPro : SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly W O 97tl2~85 PCTAUS96/15774 SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly SerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSerPheLeuLeuLys SerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCys AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer GlnLeuHisserGlyLeupheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleser ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:198 ~x~MpT~F~ 50 Construction of ~MON15967 Construc~ion of pMON15967, a plasmid containing DNA
sequences encoding a multi-functional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 132 stop (SEQ
ID NO:71) and 133 start (SEQ ID NO:70) as primers, resulting in the ampli~ication of a DNA ~ragment o~ 576 base pairs.
The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII, NcoI fragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, AflIII fragment o~ 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to trans~orm E.
coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15967, contains the DNA
sequence of (SEQ ID NO: ~59) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysAr~ProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro WO 97~12985 PC~S96~i77 SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeu GlyProAlaSerSerLeuProGlnSerPheLeu~euLysSerLeuGluGlnValArgLys IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeucysAlaThrTyrLysLeucysHis ProGluGluLeuValLeuLeuGly~isSerLeuGlyIleProTrpAlaProLeuSerSer CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu LeuGlyMetAlaProAlaLeuGlnPro ~X~MpLE 51 Con~truction of ~MON13180, an intermediate ~l~smid used for constructina ~lasmids that contain DNA sequence encodina multi-functional hemato~oietic rece~tor a~onists.
Plasmid, pMON13046 (WO 95/21254), DNA was digested with restriction endonucleases XmaI and SnaBI, resulting in a 4018 base pair vector fragment. The 4018 base pair XmaI-SnaBI fragment was puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI) in which the 25 base pair XmaI-SnaBI insert fragment is not retained. The complimentary pair of synthetic oligonucleotides, glyxal (SEQ ID MO:74) and glyxa2 (SEQ ID NO:75), were designed to remove sequence encoding a factor Xa cleavage site. When properly assembled these oligonucleotides also result in XmaI and ~naBI ends. The primers, Glyxal and glyxa2, were annealed in annealing buffer (20mM Tris-HCl pH7.5, 10 mM
MgCl2, 50 mM NaCl) by heating at 70~C for ten minutes and allowed to slow cool. The 4018 base pair XmaI-~naBI
fragment from pMON13046 was ligated with the assembled oligonucleotides using T4 DNA~ligase (Boehringer Mannheim, Indianapolist IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were W O 97/12985 PCTfUS96/15774 selected on ampicillin-containing plates. Plasmid DNA was isolated from the transformants and analyzed using a PCR
based assay. Plasmid DNA from selected transformants was sequenced to confirm the correct insertion of the oligonucleotides. The resulting plasmid was designated pMON13180 and contains the DNA sequence of (SEQ ID NO:**).
E:XAMPT,~. 52 Co~truction of pMON13181, an intermediate ~ m;d used for construct:~n~ };)lasmids that contain DNA se~uences encodina mult;-functional hemato~oietic rece~tor a~onists.
Plasmid, pMON13047 (WO 95/21254), DNA was digested with restriction endonucleases XmaI and SnaBI, resulting in a 4063 base pair vector fragment. The 4063 base pair XmaI-SnaBI fragment was purified using a Magic DNA Clean-up ~ystem kit (Promega, Madison, WI) in which the 25 base pair XmaI-SnaBI insert fragment is not retained. The complimentary pair of synthetic oligonucleotides, glyxal (SEQ ID NO:74) and glyxa2 (SEQ ID NO:75), were designed to remove se~uence encoding the factor Xa cleavage site. When properly assembled these oligonucleotides also result in XmaI and SnaBI ends. Glyxal and glyxa2 were annealed in annealing buffer by heating at 70~C for ten minutes and allowed to slow cool. The 4063 base pair XmaI-SnaBI
fragment ~rom pMOM13047 was ligated with the assembled oligonucleotides using T4 DN~ ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from the transformants and analyzed using a PCR
based assay. Plasmid DNA from selected transformants was sequenced to confirm the correct insertion of the W O 9711Z985 PCTnUS96~774 oligonucleotides. The resulting plasmid was designated pMON13181 and contains the DNA sequence of (SEQ ID NO:**).
E:x~MpT~F~ 53 Construction of pMON13182 The new N-terminus/C-terminus gene in pMON13182 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 39 start (SEQ ID NO:64) and L-ll start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Serl7 sequence i. pMON13037 using the primer set, 38 stop (SEQ ID
NO:65) and L-ll stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Serl7 gene was created and amplified from the annealed Fragments Start and Stop using primers 39 start and 38 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells ~Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13182.
W O 97/1298S PCTrUS96/15774 E. coli strain JM101 was transformed with pMON13182 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13182, contains the DNA sequence of (SEQ ID No:a4) which encodes the following amino acid ~equence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile ~is His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu &lu Ser Phe val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met ~la Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly ~Iis Ser Leu Gly Ile Pro Trp Ala Pro ~eu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:166) F~.~Al~qpr.~. 54 C~n~truction of pMON13183 The new N-terminus/C-terminus gene in pMON13183 was created using Method I as described in Materials and Methods. "Fragment Start" was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 39 start (SEQ ID NO:64) and L-ll start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 38 stop (SEQ ID
No:65) and L-ll stop (SEQ I~ NO:61). The full-length new N
W O 97/~2985 PCT~US96/1577 terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 39 start and 38 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and A~lIII, resulting in a 4068 base pair vector ~ragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to transform E. coli strain DH5OC cells (Li~e Technologies, Gaithersburg, MD). Trans~ormant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13183.
E. coli strain JM101 was trans~ormed with pMON13183 ~or protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13183, contains the DMA ses~uence of (SEQ ID NO:95) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile .
W O 97/12985 PCT~US96/15774 Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Me~ Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe I~eu Glu Val Ser l~rr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys ~eu Cys Ala Thr (SEQ ID No:167) F~MPLE 55 ~onstruction of ~MON~3184 The new N-terminus/C-terminus gene in pMON13184 was created using Method I as described in Materials and Methods. Fragment Start was crea~ed and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 97 start (SEQ ID NO:66) and L-11 start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMOM13û37 using the primer set, 96 stop (SEQ ID
No:67) and L-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified from the annealed Fragments Start and Stop using 97 start and 96 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMOM13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DMA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform ~. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was WO 97112985 PC'r~'US96~5774 isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13184.
E . col i strain JM101 was transformed with pMON13184 for S protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13184, contains the DNA sequence of (SEQ ID NO:96) which encodes the following amino acid se~uence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg ~is Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:168) EX~MPLE 56 cQnstruction of ~MON13185 The new N-terminus/C-terminus gene in pMON13185 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 97 start (SEQ ID No:66) and L-ll start (SEQ ID Mo:60).
Fragment Stop was created and ampli~ied from G-CSF Serl7 W O 97/12985 PCT~US96/15774 sequence in pMON13037 using the primer set, 96 stop (SEQ ID
NO:67 and L-~l stop (SEQ ID NO:61). The ~ull-length new N
terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 97 start and 96 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, ~I). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to con~irm the correct insert. The resulting plasmid was designated pMON13185.
E. col i strain JM101 was trans~ormed with pMON13185 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13185, contains the DNA se~uence o~
(SEQ ID Mo:67) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ald Pro Leu Leu Asp Pro Asn Asn Leu Asn As~ Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gl~ Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr WO 971129a5 PCT/US96/1~;774 Thr Ile Trp Gln Gln Met Glu Giu ~eu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln r Arg Arg Ala Gly Gly Val Leu ~al Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:169) EXAMPT.F. 57 Construction of ~MON13186 The new N-terminus/C-terminuS gene in pMON13186 was created using Method I as described in Materials and Methods. Fragment Start was created and ampli~ied from G-CSF Ser17 sequence in pMON13037 using the primer set, 126 start (SEQ ID NO:68) and L-11 start (SEQ ID No:60).
Fragment Stop was created and ampli~ied ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 125 stop (SEQ ID
NO:69) and k-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 126 start and 125 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector ~ragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life W O 97/12985 PCT~US96/15774 Technologies, Gaithersburg, MD). Trans~ormant ~acteria were selected on ampicillin-containing plates. Plasmid DMA was isolated and sequenced to confirm the correct insert. The resulting plasmid was desi~nated pMON13186.
E. coli strain JM101 was transformed with pMOM13186 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13186, contains the DNA sequence o~
(SEQ ID Mo:98) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Ty~ Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ~SEQ ID NO:170) E~MPTIF 58 Constructio~ of ~MON13187 The new N-terminus/C-terminus gene in pMON13187 was created using Method I as described in Materials and Methods. Fragment Start was created and ampli~ied from G-CSF Serl7 sequence in pMoNl3o37 using the primer set, 126 start (SEQ ID NO:68) and L-ll start (SEQ ID NO:60).
-W O 97112985 P ~ ~US96~5774 181 Fragment Stop was created and amplified ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 125 stop (SEQ ID
NO:69) and L-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified ~rom the annealed Fragments Start and Stop using 126 start and 125 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5a cells (Li~e Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and se~uenced to confirm the correct insert. The resulting plasmid was designated pMON13187.
E. coli strain JM101 was transformed with pMON13187 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13187, contains the DNA se~uence o~
(SEQ ID NO:99) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro W O 97/12g85 PCTrUS96/15774 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr ~eu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ~SEQ ID NO:171) ~.XAMP~E 59 Construction o~ ~MON13188 The new ~-terminus/C-terminus gene in pMON13188 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 133 start tSEQ ID MO:70) and L-11 start (SEQ ID NO:60).
Fragment Stop was created and amplified ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 132 stop (SEQ ID
NO:71) and L-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified from the annealed Fragments Start and Stop using 133 start and 132 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life W O 97/12985 PCT~US96/15774 Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to con~irm the correct insert. The resulting plasmid was designated pMON13188.
E. coli strain JM101 was transformed with pMON13188 ~or protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13188, contains the DNA sequence of (SEQ ID MO:100) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Glr- Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:172) ~ P~ 60 Con~truction o~ pMON13189 The new N-terminus/C-terminus gene in pMON13189 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified ~rom G-CSF Serl7 sequence in pMON13037 using the primer set, 133 start (SEQ ID NO:70) and L-ll start (SEQ ID No:60).
W O 97/12985 PCTrUS96/1~774 184 Fragment Stop was created and amplified ~rom G-CSF Ser17 sequence in pMOM13037 using the primer set, 132 stop (SEQ ID
~0:71) and L-11 stop (SEQ ID NO:61). The ~ull-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified ~rom the annealed Fragments Start and Stop using 133 start and 132 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and A~lIII, resulting in a 4068 base pair vector fragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to transform E. coli strain DH50~ cells ~Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DMA was isolated and se~uenced to confirm the correct insert. The resulting plasmid was designated pMON13189.
E. coli strain JM101 was transformed with pMON13189 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13189, contains the DNA sequence of (SEQ ID NO:101) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro W O 97/12985 PCT~US96/15774 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:173) F.~MPT.~ 61 Construction of pMON13190 The new N-terminus/C-terminus gene in pMON13190 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 142 start (SEQ ID NO:72) and L-ll start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Serl7 se~uence in pMON13037 using the primer set, 141 stop (SEQ ID
NO:73) and L-ll stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Serl7 gene was created and amplified from the annealed Fragments Start and Stop using 142 start and 141 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life W O 97/12985 PCT~US96/15774 ~86 Technologies, Gaithersburg, MD). Trans~ormant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and se~uenced to confirm the correct insert. The resulting plasmid was designated pMON13190.
E. coli strain JM101 was transformed with pMON13190 for protein exLression and protein isolation from inclusion bodies.
The plasmid, pMON13190~ contains the DNA sequence o~
(SEQ ID NO:102) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln G1~ Ala Met Pro Ala Phe Ala (SEQ ID NO:174) FX~MP~E 62 Construction of pMON13191 The new N-terminuS/C-terminus gene in pMON13191 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 142 W O 97112985 PCT~US96/15774 start (SEQ ID NO:72) and L-11 start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 141 stop (SEQ ID
NO:73) and L-11 stop ~SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 142 start and 141 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to trans~orm E. coli strain DH5Oc cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13191.
E. coli strain JM101 was transformed with pMON13191 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMOM131~1, contains the DNA sequence of (SEQ ID NO:103) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu - Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp '~ Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro W O 97/12985 PCT~US96/15774 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe ~eu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys Xis Pro Glu Glu I,eu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:175) l~XAl'qPLE 63 Construction of l?MQN131~2 20 The new N-terminus/C-terminus gene in pMOM13192 was created using Method II as described in Materials and Methods. Fragment Start was created and aInpli~ied from G-CSF sequence in pMON13037 using the primer set, 3g start (SEQ ID No:64) and P-bl start (SEQ ID NO:62). Fragment Stop was created and amplified ~rom G-CSF Serl7 seguence in pMON13037 using the primer set, 38 stop (SEQ ID NO:65) and P-bl stop (SEQ ID No:63). Frayment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII. After purification, the digested Fragments Start and Stop were combined with and ligated to ~he approximately 3800 base pair NcoI-HindIII vector ~ragment of pMON3934.
The intermediate plasmid described above contained the ~ull length new N-terminus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases McoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the ~ull-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, CA 0223406l l998-04-06 W O 97/12985 PCTAUS96~1~774 189 pMON13180, was digested with restric~ion endonucleases HindIII and A~lIII, resulting in a 4023 base pair vector ~ragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to trans~orm E. col i strain DH5~ cells (Li~e Technologies, &aithers~urg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to con~irm the correct in,sertion of the new gene. The resulting plasmid was designated pMON13192.
E. coli strain JM101 was transformed with pMON13192 for protei~ expression and protein isolation from inclusion bodies.
The plasmid, pMON13192, contains the DNA sequence o~
(SEO ID NO:104) which encodes the ~ollowing amino acid se~uence:
13192.Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp &lu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val ~lu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro ~eu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala ~er His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:176) W O 97/12985 PCT~US96/15774 ~XAMPLE 64 Construction of ~MON13193 5 The new N-terminus/C-terminuS gene in pMON13193 was created usiny Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 39 start (SEQ ID No:64) and P-bl start (SEQ ID NO:62).
10 Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 38 stop ~SEQ ID
NO:65) and P-bl stop (SEQ ID No:63). Fragment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII.
15 After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Ser17 gene and 20 was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Ser17 gene was isolated using Geneclean (BiolO1, Vista, CA). The intermediate plasmid, 25 pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer 30 Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH50C cells (Life Techrlologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to confirm the WO 97/12985 PCT/US9G/~5774 correct insertion of the new gene. The resulting plasmid was designated pMON13193.
E. coli strain JM101 was transformed with pMON13193 for protein expression and protein isolation ~rom inclusion bodies.
~.
The plasmid, pMON13193, contains the DNA sequence of (SEQ ID NO:105~ encodes the following amino acid se~uence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His HiS Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile ~lu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg ~is Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala ~ln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:177) E~MP~E 65 Construction of ~MON25190 The new N-terminus/C-terminus gene in pMON25190 was created using Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF se~uence in pMON13037 using the primer set, 97 start (SEQ ID Mo:66) and P-~l start (SEQ ID Mo:62). Fragment Stop ~, was created and amplified from G-CSF Ser17 sequence in W O 97/12985 PCTrUS96/15774 pMON13037 using the primer set, 96 stop (SEQ ID No:67) and P-bl stop (SEQ ID No:63)~ Fragment Start was digested with restriction endonuclease NcoI, and Fragment S~op was digested with restriction endonuclease HindIII. After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminuS G-CSF Serl7 gene and was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (soehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to confirm the correct insertion of the new gene. The resulting plasmid was designated pMON25190.
E. coli strain JM101 was transformed with pMON25190 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON25190, contains the DNA sequence of (SEQ ID NO:106) which encodes the following amino acid sequence: ~
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg ~7 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp WO 97/12985 PCT/US96~15774 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val ~eu Val Ala Ser Xis Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp (~ly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu I eu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln l:,eu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala ~eu Glu Gly Ile Ser (SEQ ID NO:178) F.~MpT.F. 66 Construction of pMON25191 The new M-terminus/C-terminuS gene in pMON25191 was created using Method II as described in Materlals and Methods. Fragment Start was created and amplified from G-CSF Serl7 se~uence in pMON13037 using the primer set, 97 start (SEQ ID NO:66) and P-bl start (SEQ ID NO:62).
Fragment Stop was created and amplified from G-CSF Serl7 se~uence in pMON13037 using the primer set, 96 stop (SEQ ID
NO:9 8) and P-bl stop (SEQ ID NO:63). Fragment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII~
After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Se:rl7 gene and was digested with restriction endonucleases NcoI and W O 97/12985 PCTrUS96/lS774 HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the ~ull-length new N-terminus/C-terminus G-CSF Ser17 gene was isolated using Geneclean (BiolO1, Vista, CA). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector ~ragment, and puri~ied using a Magic DNA Clean-up System kit (Prome~a, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to t~ansform ~. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid ~NA was isolated and sequenced to con~irm the correct insertion of the new gene. The resulting plasmid was designated pMON25191.
E. coli strain JM101 was transformed with pMON251~1 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON25191, contains the DMA se~uence o~
(SEQ ID NO:107) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His Xis Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu -W O 97112985 P ~ ~US96~774 Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:179) ~XA~PLE 67 Construction of pMO~13194 The new N-terminus/C-terminus gene in pMON13194 was created using Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF ~er17 sequence in pMON13037 using the primer set, 126 start (SEQ ID NO:68) and P-bl start (SEQ ID NO:62).
Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 125 stop (SEQ ID
NO:67) and P-bl stop (SEQ ID NO:63). Fragment Start was digested with restriction endonuclease McoI, and Fragment Stop was digested with restriction endonuclease HindIII.
After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Ser17 gene and was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Ser17 gene was isolated using Geneclean (BiolO1, Vista, CA). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer W O 97/12985 PCTrUS96/15774 Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to trans~orm E. coli strain DH5~ cells (Li~e Technologies, Gaithersburg, MD). Transformant bacteria were selected on amplcillin-containing plates. t Plasmid DMA was isolated and sequenced to con~irm the correct insertion o~ the new gene. The resulting plasmid r was designated pMON13194.
E. coli strain JM101 was transformed with pMON13194 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13194, contains the DNA sequence of (SEQ ID NO:108) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Ary Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:180) FXAMPT~ 68 Construct;on o~ ~MON13195 The new N-terminus/C-terminus gene in pMON13195 was created using Method II as described in Materials and W O 97/12985 PCTnUS96~15774 Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMOM13037 using the primer set, 126 start (SEQ ID NO:68) and P-bl start (SEQ ID NO:62).
Fragment S~op was created and amplified from G-CSF Serl7 sequence in pMOM13037 using the primer set, 125 stop (SEQ ID
No:69) and P-bl stop (SEQ ID NO:63). Fragment Start was digested with restriction endonuclease McoI, and Fragment Stop was digested with restriction endonuclease HindIII.
After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMOM3934.
The intermediate plasmid described above contained the ~ull length new M-terminus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new M-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, pMOM13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis~ IN). A portion of the ligation reaction was used to transform E. col i strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to confirm the correct insertion of the new gene. The resulting plasmid was designated pMON13195.
E. coli strain JM101 was transformed with pMOM13195 for protein expression and protein isolation from inclusion bodies.
W O 97/12985 PC~US96/15774 198 The plasmid, pMON13195, contains the DNA se~uence of (SEQ ID NO:109) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn ~eu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn ~eu Gln Pro Cys Leu Pro Ser Ala ~hr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg Hls Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr ~hr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:181) F.~MP~E 69 Construction of ~MON13196 The new N-terminus/C-terminus gene in pMON13196 was created uslng Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF sequence in pMOM13037 using the primer set, 133 start (SEQ ID NO:70) and P-bl start (SEQ ID NO:62). Fragment Stop was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 132 stop (SEQ ID NO:71) and P-bl stop (SEQ ID No:63)~ Fragment Start was digested with restriction endonuclease McoI, and Fragment Stop was digested with restriction endonuclease HindIII~ After puri~ication, the digested Fragments Start and Stop were W O 97~12g8~ PCT~US96flS774 lg9 combined with and ligated to the approximate~y 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases McoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. col i strain DH5~ cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to con~irm the correct insertion of the new gene. The resulting plasmid was designated pMON13196.
~ . coli strain JM101 was transformed with pMON13196 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13196, contains the DNA sequence of (SEQ ID NO:110) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala W O 97/12985 PCT~US96/15774 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys ~eu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO-182) F.~PT.F~ 70 Construction of ~MQN13197 The new M-terminus/C-terminus gene in pMON13197 was created using Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 133 start (SEQ ID NO:70) and P-bl start (SEQ ID NO:62).
Fragment Stop was created and amplified from G-CSF Serl7 25 sequence in pMON13037 using the primer set, 132 stop (SEQ ID
NO:71) and P-bl stop (SEQ ID No:63). Fragment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII.
After purification, the digested Fragments Start and Stop 30 were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terr~inus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases NcoI and 35 HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, ,~
pMON13 181, was digested with restriction endonucleases CA 0 2 2 3 4 0 61 19 9 8 - 0 4 - 0 6 . .
- - - - . - , .
DEMANDES OU E3R~V~TS VOLUMINEIJX
LA PRES~YTE PARTIE DE CEI IE DEMANDE OU CE~ BREVET
COMPRE~YD PLUS D'UN TOME.
CECI EST LE TOME / ~DE Z_ NOTE: Pour les ~omes additionels, ve~ ez c~ntacter le {3ureau c~nadien -des brevets z~3y~
JUIVIBO APPLICATIONSIPA~NTS
rHIS SECTION OF THE APPLICAT~ONIPATENT CONTAINS MORE
THAN ONE VOLUME
.
T~S IS VOLUME 1 OF '2 .
P~O~E: For additional v{~umes-please c~ntact~~h~e Canadian Patent ~ff~ce .
, . .,. :, ::' ' . ,. . ,' ... . .; .. ~, . . .. ..
.
DEMANDES OU BR~V{~TS VOLUM~N~JX
~A PRÉSBYTE PARTIE~ DE CEl~E D13VIANDE OU CE ~REVET
COMPRE~ ) PLUS D'UN TOME.
CECI EST LE TOME / --DE ~Z_ NOTE: Pour les tomes additicnels, veuillez c~ntacte~ le Bureau canadien ~es brevets z~3Y~k/ - -JUNIBO APPLICATIONS/PA~ENTS - .
l~HIS SECTION ~3F ~HE APPLICATION/PATENT CONTAINS MORE
THAN ONE VOLUME
T~IS IS VOI UME ¦ OF ~ -.
NO~: F~r additi~na1 ~rDiUmes please cs:~ntact~~e Canad~an Patent C)ff~ce . .
.
W O 9711~985 1 PCT~US96/15774 MULTI-FUNCTIONA~ HEMATOPOIETIC RECEPTOR AGONISTS
The present application claims priority under 35 USC
119(e) of United States provisional application Serial No.
5 60/004,834 ~iled October 05, 1995.
.
Field of the Invention The present invention relates to multi-functional hematopoietic receptor agonists.
Backaround of the Invention Colony stimulating factors (CSFs) which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells. CS~s in both human and murine systems have been identified and distinguished according to their activities. For example, granulocyte-CSF (G-CSF) and macrophage-CSF (M-CSF) stimulate the in vitro formation of neutrophilic granulocyte and macrophage colonies, respectively, while GM-CSF and interleukin-3 (IL-3) have broader activities and stimulate the ~ormation of both macrophage, neutrophilic and eosinophilic granulocyte colonies. IL-3 also stimulates the formation of mast, megakaryocyte and pure and mixed erythroid colonies.
U.S. 4,877,729 and U.S. 4,959,455 disclose human IL-3 and gibbon IL-3 cDNAs and the protein sequences for which they code. The hIL-3 disclosed has serine rather than proline at position 8 in the protein sequence.
International Patent Application (PCT~ WO 88/00598 discloses gibbon- and human-like IL-3. The hIL-3 contains a Ser8 -> Pro8 replacement. Suggestions are made to replace Cys by Ser, thereby breaking the disulfide bridge, and to replace one or more amino acids at the glycosylation sites.
U.S. 4,810,643 discloses the DNA sea!uence encoding human G-CSF.
WO 91/02754 discloses a fusion protein comprised of GM-CSF and IL-3 which has increased biological activity compared to GM-CSF or IL-3 alone. Also disclosed are nonglycosylated IL-3 and GM-CSF analog proteins as components of the multi-functional hematopoietic receptor agonist.
WO 92/04455 discloses fusion proteins composed of IL-3 fused to a lymphokine selected from the group consisting of IL-3, IL-6, I~-7, IL-9, IL-ll, EPO and G-CSF.
WO 95/21197 and WO 95/21254 disclose fusion proteins capable of broad multi-functional hematopoietic properties.
GB 2,285,446 relates to the c-mpl ligand (thrombopoietin) and various forms of thrombopoietin which are shown to influence the replication, dif~erentiation and maturation of megakaryocytes and megakaryocytes progenitors which may be used for the treatment of thrombocytopenia.
EP 675,201 Al relates to the c-mpl ligand ~Megakaryocyte growth and development factor (MGDF), allelic variations of c-mpl ligand and c-mpl ligand attached to water soluble polymers such as polyethylene glycol.
WO 95/21920 provides the murine and human c-mpl ligand and polypeptide fragments thereof. The proteins are useful for in vivo and ex vivo therapy for stimulating platelet production.
~e~rr~naement of Protein Seauences In evolution, rearranyements of DMA sequences serve an important role in generating a diversity of protein structure and function. Gene duplication and exon shuffling provide an important mechanism to rapidly generate diversity and thereby provide organisms with a competitive advantage, especially since the basal mutation rate is low (Doolittle, .
CA 0223406l l998-04-06 W O 97/12985 3 PCTrUS96/15774 Protein Science 1:191-200, 1992).
The development of recombinant DNA methods has made it possible to study the effects o~ sequence transposition on protein folding, structure and function. The approach used in creating new sequences resembles that of naturally occurring pairs of proteins that are related by linear reorganization of their amino acid sequences (Cunningham, et al., Proc. Natl . Acad . Sci . U. S.A. 76:3218-3222, 1979;
Teather & Erfle, J. Bacteriol. 172: 3837-3841, 1990;
St-~lmm;ng et al., Eur. J. Bioc~em. 204: 13-19, 1992i Yamiuchi and Minamikawa, FEBS Lett . 260: 127-130, 1991;
MacGregor et al., FEBS Lett. 378:263-266~. The ~irst in vitro application of this type o~ rearrangement to proteins was described by Goldenberg and Creighton (~. Mol . Biol .
15 165:407-413, 1983). A new N-terminus is selected at an internal site (breakpoint) of the original sequence, the new sequence having the same order o~ amino acids as the original from the breakpoint until it reaches an amino acid that is at or near the original C-terminus. At this point 20 the new sequence is joined, either directly or through an additional portion of sequence (linker), to an amino acid that is at or near the original N-terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid 25 that was N-terminal to the breakpoint site o~ the original sequence, this residue forming the new C-terminus o~ the chaln .
This approach has been applied to proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton, 30 J. Mol. Biol. 1~;5:407-413, 1983; Li & Coffino, Mol. Cell.
Biol. 13:2377-2383, 1993). The proteins examined have represented a broad range of structural classes, including proteins that contain predominantly a-helix (interleukin-4;
Kreitman et al., cytokine 7:311-318, lg95), ,B-sheet 35 (interleukin-l; Horlick et al., Protein Eng. 5:427-431, .
W O 97/12985 PCTrUS96/1~774 1992), or mixtures of the two (yeast phosphoribosyl anthranilate isomerase; Luger et al., Science ~43:206-210, 1989). Broad categories o~ protein function are represented in these sequence reorganization studies:
Enzymes T4 lysozyme Zhang et al., Biochemistry 32:12311-12318, 1993; Zhang et al., Nature Struct. Biol. 1:434-438 ~1995) dihydro~olate Buchwalder et al., Biochemistry reductase 31:1621-1630, 1994; Protasova et al., Prot. Eng. 7:1373-1377, 1995) ribonuclease Tl Mullins et al., ~. Am. Chem. Soc.
116:5529-5533, 1994; Garrett et al., Protein Science 5:204-211, 1996) Bacillus ~-glucanse Hahn et al., Proc. Natl. Acad. Sci.
U.S.A. 91:10417-10421, 1994) aspartate Yang & Schachman, Proc. Matl. Acad.
transcarbamoylase sci. U.S.A. 90:11980-11984, 1993) phosphoribosyl Luger et al., Science 243:206-210 anthranilate (1989; Luger et al., Prot. Eng.
isomerase 3:249-258, 1990) pepsin/pepsinogen Lin et al., Protein Science 4:159-166, 1995) glyceraldehyde-3- Vignais et al., Protein Science phosphate dehydro- 4:994-1000, 1995) W O 97/12985 PCTrUS96/lS774 genase ornithine Li & Co~ino, Mol. Cell. Biol.
decarboxylase 13:2377-2383, 1993) yeast Ritco-Vonsovici et al., Biochemistry phosphoglycerate 34:165g3-16551, 1995) dehydrogenase Enzyme Inhibitor basic pancreatic Goldenberg & Creighton, J. Mol.
trypsin inhibitor Biol. 165: 407-413, 1983) Cytokines interleukin-l~ Horlick et al., Protein Eng. 5:427-431, 1992) interleukin-4 Kreitman et al., Cytokine 7: 311-318, 1995) Tyrosine ginase Recognition Domain a-spectrin SH3 Viguera, et al., J.
domain Mol. Biol. 247: 670-681, 1995) Transmembrane Protein omp A Koebnik & Kramer, ~. Mol. Biol.
250:617-626, 1995) .~
3 5 Chimeric Protein W O 97/1298~ PCT~US96/~5774 interleukin-4- Kreitman et al., Proc. Matl. Acad.
Pseudomonas sci . u. S.A. 91:6889-6893, 1994).
exotoxin The results of these studies have been highly variable.
In many cases substantially lower activity, solubility or thermodynamic stability were observed tE. coli dihydrofolate reductase, aspartate transcarbamoylase, phosphoribosyl anthranilate isomerase, glyceraldehyde-3-phosphate dehydrogenase, ornithine decarboxylase, omp A, yeast phosphoglycerate dehydrogenase). In other cases, the sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease Tl, Bacillus ~-glucanase, interleukin-l~, a-spectrin SH3 domain, pepsinogen, interleukin-4). In exceptional cases, an unexpected improvement over some properties of the natural sequence w~s observed, e.g., the solubility and refolding rate for rearranged a-spectrin SH3 domain sequences, and the receptor affinity and anti-tumor activity of transposed interleukin-4-Pseudomonas exotoxin fusion molecule (Kreitman et al., Proc. Matl. Acad. Sci. U.S.~. 91:6889-6893, 1994;
Kreitman et al., Cancer Res. 55:3357-3363, 1995) .
The primary motivation for these types of studies has been to study the role of short-range and long-range interactions in protein folding and stability. Sequence rearrangements of this type convert a subset of interactions that are long-range in the original sequence into short-range interactions in the new sequence, and vice versa. The fact that many of these sequence rearrangements are able to attain a conformation with at least some activity is persuasive evidence that protein folding occurs by multiple folding pathways tViguera, et al., J. Mol. Biol. 247:670-681, 1995). In the case of the SH3 domain of a-spectrin, choosing new termini at locations that corresponded to ~-CA 0223406l l998-04-06 W O 97/12985 7 PCT~US96/15774 hairpin turns resulted in proteins with slightly less stability, but which were nevertheless able to fold.
The positions o~ the internal breakpoints used in the ~ studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N-terminus to the breakpoint is ca. 10 to 80% of the total se~uence length). The linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. In one case (Yang & Schachman, Proc. Natl.
Acad . Sci . U. S.A. 90:11980-11984, 1993), a portion of sequence has been deleted from the original C-terminal segment, and the connection made from the truncated C-terminus to the original M-terminus. Flexible hydrophilic residues such as Gly and Ser are frequently used in the linkers. Viguera, et al.(~. Mol . Biol . 247: 670-681, 1995) compared joining the original N- and C- termini with 3- or 4-residue linkers; the 3-residue linker was less thermodynamically stable. Protasova et al. (Protein Eng.
7:1373-1377, 1994) used 3- or 5-residue linkers in connecting the original N-termini of E. coli dihydrofolate reductase; only the 3-residue linker produced protein in good yield.
W O 97/12985 8 PCT~US96/15774 Sllmm~rv of the Invention Novel hematopoietic proteins o~ this invention are represented by the formulas:
R1-L1-R2, R2-Ll-Rll Rl-R2~ or R2-R1 wherein R1 and R2 are independently selected from the group consisting o~;
(I) A polypeptide comprising; a modified human G-CSF
amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa W O 97/1298~ 9 PCT~US96/15774 Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:l) ein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
~ Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 16~ is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids ~rom the N-terminus and 1-5 ~rom the C-terminus can be deleted; and W O 97/12985 PCT~US96115774 wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
38-3g 62-63 123-124 or 142-143;
(II) A polypeptide comprising; a modi~ied hIL-3 amino acid sequence of the ~ormula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa -CA 0223406l l998-04-06 W O 97/12985 11 PCTAUS96/l5774 Xaa Xaa Xaa Xaa X~a Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa -Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 ~SEQ ID NO:2);
wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at positlon 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
i W O 97/12985 12 PCT~US96/f5774 Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;~O Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, Hi~, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 4~ is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 5l is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 i8 Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
CA 0223406l l998-04-06 W O 97/12985 13 PCT~US96/15774 Xaa at position 53 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at poslt~on 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
0 Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 i5 Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
CA 0223406l l998-04-06 W O 97/12985 14 PCT~US96/15774 Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Argi Xaa at position 94 i8 Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
0 Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Ly~, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 i5 Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, CA 0223406l l998-04-06 W O 97/12985 15 PCT~US96/15774 Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, T~p, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cy~, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Glni Xaa at po~ition 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein optionally from 1 to 14 amino acids can be deleted from the M-terminus and/or f-om 1 to 15 amino acids can be deleted from the C-ter~inus; and wherein from 0 to 44 of the amino acids designated by Xaa are di~~erent from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the M-terminus to the C-terminus and having new C- and N-termini at amino acids;
33-3~ 65-66 90-91 or 103-104;
CA 0223406l 1998-04-06 WO 97112985 16 PCTnJS96/15774 or (III) A polypeptide comprising; a modified human c-mpl ligand amino aci~ sequence o~ the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer 10 HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGln~XaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal ArgArgAlaProProThrThrAlaValProSerArgThrSerLeuValLeuThrLeu AsnGluLeuProAsnArgThrSerGlyLeuLeUGluThrAsnPheThrAlaSerAla CA 0223406l l998-04-06 W O 97/12985 17 PCT~US96/15774 ArgThrThrGlyserGlyLeuLeuLysTrpGlnGlnGlypheArgAlaLysIlepro ; GlyLeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyTyrLeuAsnArg 210 215 220 225 IleHisGlu~euLeuAsnGlyThrArgGlyLeuPheProGlyProSerArgArgThr LeuGlyAlaProAspIleSerSerGlyThrSerAspThrGlySerLeuProProAsn LeuGlnProGlyTyrSerProSerProThrHisProProThrGlyGlnTyrThrLeu PheProLeuProProThrLeuProThrProValValGlnLeuHisProLeuLeuPro AspProSerAlaProThrProThrProThrSerProLeuLeuAsnThrSerTyrThr HisSerGlnAsnLeuSerGlnGluGly (SEQ ID NO: 3) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
30- Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 iS deleted or Gln, Gly, Ser, Thr, Tyr, 3 5 or Asn; and CA 0223406l l998-04-06 W O 97112985 PCTfUS96/15774 wherein the N-terminus is joined to the C-terminus directly or through a linker tL2) capable o~ joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128;
or 10(IV) A polypeptide comprising; a modified hIL-3 amino acid sequence o~ the ~ormula:
Ala Pro ~et Thr Gln Thr Thr Ser Leu Lys Thr ~er Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa W O 97112985 PCTfUS96/15774 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 0 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xa~ Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position l9 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;~5 Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 2~ is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
3Q Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
3~ Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
CA 0223406l l998-04-06 Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at posit~on 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
0 Xaa at position a~o is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 4:2 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
20 Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, 'ryr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
25 Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
30 Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
_ W O 97/12985 21 PCTnJS96/15774 Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
~ Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, hys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
W O 97/12985 22 PCT~US96/15774 Xaa at position 89 is Thr, A~p, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at positlon 9l is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 i5 Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position lO0 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at posit:cn lQl is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position lO9 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position llO is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position lll is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
CA 0223406l l998-04-06 Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 i8 Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at po~ition 117 is Thr, Ser, A-~n, Ile, Trp, Lys, or Pro;
Xaa at position 118 is heu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at po~it on 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
0 Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leui wherein optionally from 1 to 14 amino acids can be deleted from the N-terminus and/or from 1 to 15 amino acids can be deleted ~rom the C-terminus; and wherein from 1 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-1333 human interleukin-3 or (V) a colony stimulating factor;
and wherein Ll is a linker capable of linking Rl to R2;
with the proviso that at least Rl or R2 is selected from the polypeptide of formula (I) , (II), or (III); and~0 said hematopoietic protein can optionally be immediately preceded by (methionine-l), (alanine~l) or (methionine~2, alanine-l).
The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (I) W O 97112985 24 PCT~US96/15774 above are; 38-39, 39-40, 40-41, 41-42, 48-49, 53-54, 54-55, 55-56, 56-57, 57-58, 58-59, 59-60, 60-61, 61-62, 62-63, 64-65, 65-66, 66-67, 67-68, 68-69, 69-70, 96-97, 125-126, 126-127, 127-128, 128-129, 129-130, 130-131, 131-132, 132-133, 133-134, 134-13~, 135-136, 136-137, 137-138, 138-139, 13g-140, 140-141 and 141-142.
The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (I) above are;
38-39, 48-49, 96-97, 125-126, 132-133 and 141-142.
The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (II) above are; 28-29, 29-30, 30-31, 31-32, 32-33, 33-34, 34-35, 35-36, 36-37, 37-3&, 38-39, 39-40, 66-67, 67-68, 68-69, 69-70, 70-71, 84-85, 85-86, 86-87, 87-88, 88-89, 89-90, 90-91, 98-99, 99-100, 100-101 and 101-102.
The most preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (II) above are; 34-35, 69-70 and 90-91.
The more preferred breakpoints at which new C-terminus and N-terminus can be made in the polypeptide (III) above or the amino acid sequence of (SEQ ID NO:256) are; 80-81, 81-82, 82-83, 83-84, 84-85, 85-86, 86-87, 108-109, 109-110, 110-111, 111-112, 112-113, 113-114, 114-115, 115-116, 116-117, 117-118, 118-119, 119-120, 120-121, 121-122, 122-123, 123-124, 124-125, 125-126 and 126-127.
The most preferred breakpoints at which new C-terminu~
and N-terminus can be made in the polypeptide (III) above or the amino acid sequen~e o~ (SEQ ID Mo:256) are; 81-82, 108-109, 115-116, 119-120, 122-123 and 125-126.
The multi~unctional receptor agonist o~ the present invention can also be represented by the following formula:
(Tl)a-(Ll)b-Xl-~L)C-X2-(L2)d-(T2)e xl-(L)c-x2-(L)_yl_(L)c-y2 in which:
Xl i5 a peptide comprising an amino acid sequence corresponding to the sequence of residues n~l through J of the original protein having amino acids residues numbered sequentially 1 through J with an amino terminus at residue l;
L is an optional linker;
x2 is a peptide comprising an amino acid sequence of residues 1 through n of the original protein;
yl is a peptide comprising an amino acid sequence corresponding to the sequence of residues n=l through K of the original protein having amino acids residues numbered sequentially 1 through K with an amino terminus at residue l;
y2 is a peptide comprising an amino acid sequence o~
residues 1 through n of the original protein;
Ll and L2 are optional peptide spacers:
n is an integer ranging from 1 to J-l;
b, c, and d are each independently 0 or 1;
a and e are either 0 or 1, provided that both a and e cannot both be 0; and Tl and T2 are proteins.
Additionally, the present invention relates to recombinant expression vectors comprising nucleotide sequences encoding the multi-functional hematopoietic receptor agonists, related microbial expression systems, and processes for making the multi-functional hematopoietic W O 97/12985 26 PCT~US96/15774 receptor agonists. The invention also relates to pharmaceutical compositions containing the multi-functional hematopoietic receptor agonists, and methods ~or using the multi-functional hematopoietic receptor agonists.
In addition to the use of the multi-~unctional hematopoietic receptor agonists of the present invention in vivo, it is envisioned that in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth be~ore infusion into patients.
_ W O 97/1298~ 27 PCTrUS96/15774 Br-ef Descri~tion of the Fiall~es Figure 1 schematically illustrates the se~uence rearrangement of a protein. The N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly. The protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence. A rearranged molecule may be synthesized de novo as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint.
Figure 2 shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different M-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the amino acid 11 (a.a. 1- 10 are deleted) through a linker region and a new C-terminus created at amino acid 96 of the original sequence.
Figure 3 shows a schematic of Method II, for creating new proteins in which the original M-terminus and C-terminus of the native protein are joined without a linker and different N-terminus and C-terminus of the protein are created. In the example shown the se~uence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the original N-terminus and a new C-terminus created at amino acid 96 of the original se~uence.
W O 97/12985 28 PCT~US96/15774 Figure 4 shows a schematic of Method III, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the se~uence rearrangement results in a new gene encoding a protein with a new M-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence.
Detailed Descri~tion of the Invention The present invention encompasses multi-functional hematopoietic receptor agonists formed from covalently linked polypeptides, each of which may act through a different and specific cell receptor to initiate complementary biological activities. Hematopoiesis re~uires a complex series of cellular events in which stem cells generate continuously into large populations of maturing cells in all major lineages. There are currently at least 20 known regulators with hematopoietic proliferative activity.
Most of these proliferative regulators can ~nly stimulate one or another type of colony formation in vitro, the precise pattern of colony formation stimulated by each regulator is quite distinctive. No two regulators stimulate exactly the same pattern of colony formation, as evaluated by colony numbers or, more importantly, by the lineage and maturation pattern of the cells making up the developing colonies. Proliferative responses can most readily be analyzed in simplified in vitro culture systems. Three quite different parameters can be distinguished: alteration in colony size, alteration in colony numbers and cell lineage.
Two or more factors may act on the progenitor cell, inducing the formation of larger number of progeny thereby increasing the colony size. Two or more factors may allow increased number of progenitor cells to proliferate either because distinct subsets of progenitors cells exist that respond exclusively to one factor or because some progenitors require stimulation by two or more factors before being able to respond. Activation of additional receptors on a cell by the use of two or more factors is likely to enhance the mitotic signal because of coalescence of initially differing signal pathways into a common final pathway reaching the nucleus ~Metcalf, Nature 339:27, 1989). Other mechanisms .
W O 97/12985 PCT~US96/15774 could explain synergy. For example, if one signaling pathway is limited by an intermediate activation of an additional signaling pathway which is caused by a second factor, then this may result in a super additi~e response. In some cases, 5 activation of one receptor type can induce an enhanced expression of other receptors tMetcalf, Blood 82:3515-3523, ~
1993). Two or more factors may result in a di~ferent pattern of cell lineages than from a single factor. The use of multi-functional hematopoietic receptor agonists may have a 10 potential clinical advantage resulting from a proliferative response that is not possible by any single factor.
The receptors of hematopoietic and other growth factors can be grouped into two distinct families of related proteins: (1) tyrosine kinase receptors, including those for epidermal growth factor, M-CSF (Sherr, Bloo~ 75:1, 1990) and SCF (Yarden et al., EMBO J, 6:3341, 1987): and (2) hematopoietic receptors, not containing a tyrosine kinase domain, but exhibiting obvious homology in their extracellular domain (Bazan, PNAS U~A 87:6934-6938, 1990).
Included in this latter group are erythropoietin tEPo) (D~Andrea et al., Cell ~7:277, 1989), GM-CSF (Gearing et al., EMBO ~. 8:3667, 1989), IL-3 (Kitamura et al., Cell 66:1165, 1991), G-CSF (Fukunaga et al., J. Bio. Chem.
265:14008-15, 1990), I~-4 (~arada et al., PNAS USA 87:857, 1990), IL-5 (Takaki et al., EMBO ~. 9.4367, 1990), IL-6 (Yamasaki et al., Science 241:825, 1988), IL-7 (Goodwin et al., Cell 60:941-51, l99G), LIF (Gearing et al., EMBO ~.
10:2839, 1991) and IL-2 (Cosman et al., Mol-Immunol. 23:
935-94, 1986). Most of the latter group of receptors exists in a high-affinity form as heterodimers. After ligand binding, the specific ~-~h~ing become associated with at least one other receptor chain (~-chain, ~-chain). Many of these factors share a common receptor subunit. The ~-ch~- n~
for GM-CS~, IL-3 and IL-5 share the same ~-chain (Kitamura et al., Cell 66:1165, 1991), Takaki et al., EMBO ~.
W O 97/12985 31 PCTrUS96/15774 10:2833-8, 1991) and receptor complexes for IL-6, LIF and L-11 share a common ~-chain ~gpl30) (Taga et al., Cell ~8:573-81, 1989; Gearing et al., Science 255:1434-7, 1992).
The receptor complexes o~ IL-2, IL-4, IL-7, IL-9 and IL-15 share a common ~-chain (Kondo et al., Science 262:1874, 1993; Russell et al., Science 266: 10~2-1045, 1993;
Noguchi et al., Science 262:1877, 1993; Giri et al., ~MBO
. 13:2822-2830, 1994).
The use of a multiply acting hematopoietic ~actor may also have a potential advantage by reducing the demands placed on factor-producing cells and their induction systems. If there are limitations in the ability o~ a cell to produce a ~actor, then by lowering the re~uired concentrations of each of the factors, and using them in combination may use~ully reduce demands on the ~actor-producing cells. The use of a multiply acting hematopoietic factor may lower the amount of the ~actors that would be needed, probably reducing the likelihood o~ adverse side-e~fects.
Movel compounds of this invention are represented by a ~ormula selected ~rom the group consisting o~:
R1-L1-R2, R2-L1-R1, Rl-R2/ and R2-R1 Where R1 and R2 are as defined above.
R2 is preferably a colony stimulating ~actor with a di~ferent but complementary activity than R1. By complementary activity is meant activity which enhances or changes the response to another cell modulator. The R1 polypeptide is joined either directly or through a linker segment to the R2 polypeptide. The term "directly~ defines multi-functional hematopoietic receptor agonists in which the polypeptides are joined without a peptide linker. Thus L1 represents a chemical bond or polypeptide segment to which both R1 and R2 are joined in ~rame, most commonly W O 97/12985 32 PCT~US96/15774 is a linear peptide to which Rl and R2 are joined by amide bonds linking the carboxy terminus of Rl to the amino terminus o~- Ll and carboxy terminus of Ll to the amino terminus of R2. By "joined in frame" is meant that there is no translation termination or disruption between the reading frames of the DNA encoding Rl and R2.
A non-exclusive list of other growth factors, i.e.
colony stimulating factors (CSFs), are cytokines, lymphokines, interleukins, hematopoietic growth factors which can be joined to (I), (II) or (III) include GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (EPO), IL-l, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-ll, IL-12, IL-13, IL-15, LIF, flt3/flk2 ligand, human growth hormone, s-cell growth factor, B-cell di~ferentiation factor, eosinophil differentiation factor and stem cell ~actor (SCF) also known as steel factor or c-kit ligand. Additionally, this invention encompasses the use of modified Rl or R2 molecules or mutated or modified DNA se~uences encoding these Rl or R2 molecules. The present invention also includes multi-functional hematopoietic receptor agonists in which Rl or R2 is an hIL-3 variant, c-mpl ligand variant, or G-CSF variant.
A /~hIL-3 variantN is de~ined as a hIL-3 molecule which has amino acid substitutions and/or portions of hIL-3 deleted as disclosed in WO 94/12638, WO 94/12639 and WO 95/00646, as well as other variants known in the art. A "c-mpl ligand variant" is defined an c-mpl ligand molecule which has amino acid substitutions and/or portions of c-mpl ligand deleted, disclosed in United States Application Serial Number 08/383,035 as well as other variants known in the art. A ~G-CSF variant~ is de~ined an G-CSF molecule which has amino acid substitutions and/or portions of G-CSF deleted, as disclosed herein, as well as other variants known in the art.
W O 97/12985 PCT~US96/15774 The linking group ~Ll) is generally a polypeptide of between 1 and 500 amino acids in length. The linkers ~oining the two molecules are preferably designed to (1) allow the two molecules to fold and act independently of each other, (2) not have a propensity for developing an ordered secondary structure which could interfere with the functional domains of the two proteins, (3) have m;nim~l hydrophobic characteristics which could interact with the functional protein domains and (4) provide steric separation of Rl and R2 such that Rl and R2 could interact simultaneously with their corresponding receptors on a single cell. Typically surface amino acids in flexible protein regions include Gly, Asn and Ser. Virtually any permutation of amino acid sequences containing Gly, Asn and Ser would be expected to satisfy the above criteria for a linker sequence. Other neutral amino acids, such as Thr and Ala, may also be used in the linker sequence. Additional amino acids may also be included in the linkers due to the addition of unique restriction sites in the linker se~uence to facilitate construction of the multi-functional hematopoietic receptor agonists.
Preferred Ll linkers of the present invention include sequences selected from the group of ~ormulas:
(Gly3Ser)n (SEQ ID NO:4), (Gly4Ser)n (SEQ ID MO:5), (Gly5Ser)n (SEQ ID NO:6), (GlynSer)n (SEQ ID NO:7) or (AlaGlySer)n (SEQ ID NO:8).
One example of a highly-flexible linker is the glycine and serine-rich spacer region present within the pIII
protein o~ the filamentous bacteriophages, e.g.
bacteriophages M13 or fd (Schaller et al., P~AS USA 72: 737-741, 1975). This region provides a long, flexible spacer region between two domains of the pIII surface protein. The spacer region consists of the amino acid sequence:
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGluGlyGlyGlySerGlu .~
GlyGlyGlySerGluGlyGlyGlySerGluGlyGlyGlySerGlyGlyGlySer (SEQ ID NO:9).
The present invention also includes linkers in which an endopeptidase recognition sequence is included. Such a cleavage site may be valuable to separate the individual components of the multi-functional hematopoietic receptor agonist to determine if they are properly folded and actlve in vitro. Examples of various endopeptidases include, but are not limited to, plasmin, enterokinase, kallikrein, urokinase, tissue plasminogen activator, clostripain, chymosin, collagenase, Russell's viper venom protease, postproline cleavage enzyme, V8 protease, Thrombin and factor Xa.
Peptide linker segments from the hinge region of heavy chain immunoglobulins IgG, IgA, IgM, IgD or IgE provide an angular relationship between the attached polypeptides.
Especially useful are those hinge regions where the cysteines are replaced with serines. Preferred linkers of the present invention include sequences derived from murine IgG gamma 2b hinge region in which the cysteines have been changed to serines These linkers may also include an endopeptidase cleavage site. Examples of such linkers include the following sequences:
IleSerGluProSerGlyProIleSerThrIleAsnProSerProProSerLys GluSerHisLysSerPro (SEQ ID NO:10) and IleGluGlyArgIleserGluproserGlyproIleserThrIleAsnproser ProProSerLysGluSerHisLysSerPro (SEQ ID NO:ll).
The present invention is, however, not limited by the form, size or number of linker sequences employed and the only requirement of the linker is that functionally it does not interfere with the folding and function of the individual molecules of the multi-functional hematopoietic W O 97112985 PCTrUS96/15774 receptor agonist.
Determinat~ on of the T.; ~ker L~.
The length of the amino acid sequence of the linker L2 to be used in R1 and/or R2 can be selected empirically or with guidance ~rom structural information, or by using a combination of the two approaches.
When no structural information is available, a small 10 series o~ linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 A and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp & Woods, Mol.
Immunol. 20: 483-489, 1983), Kyte & Doolittle, LJ. Mol. Biol.
157:105-132; solvent exposed surface area, Lee & Richards, ~J. Mol. Biol. 55:379-4~0, 1971) and the ability to adopt the necessary conformation with out derangirlg the conformation of R1 or R2 (conformationally ~lexible; Karplus & Schulz, Naturwissenschaften 72:212-213, 1985). Assuming an average of translation of 2.0 to 3.8 A per residue, this would mean the length to test would be between 0 to 30 residues, with 0 to 15 residues being the preferred range.
Exemplary oE such an empirical series would be to construct linkers using a cassette sequence such as Gly-Gly-Gly-Ser (SEQ ID NO:12) repeated n times, where n is 1, 2, 3 or 4.
Those skilled in the art will recognize that there are many such sequences that vary in length or composition that can serve as linkers with the primary consideration being that they be neither excessively long nor short (cf., Sandhu, Critical Rev. Biotech. 12: 437-462, 1992); if they are too long, entropy effects will likely destabilize the three-dimensional ~old, and may also make folding kinetically impractical, and if they are too short, they will likely destabilize the molecule because of torsional or steric strain.
W O 9711298~ 36 PCT~US96/15774 Those skilled in the analysis of protein structural information will recognize that using the distance between the chain ends, defined as the distance between the c-alpha ,~
carbons, can be used to define the length of the sequence to be used, or at least to limit the number of possibilities that must be tested in an empirical selection of linkers.
They will also recognize that it is sometimes the case that the positions of the ends of the polypeptide chain are ill-defined in structural models derived from x-ray di~raction or nuclear magnetic resonance spectroscopy data, and that when true, this situation will therefore need to be taken into account in order to properly estimate the length of the linker required From those residues whose positions are well defined are selected two residues that are close in sequence to the chain ends, and the distance between their c-alpha carbons is used to calculate an approximate length for a linker between them. Using the calculated length as a guide, linkers with a range of number of residues (calculated using 2 to 3.8A per residue) are then selected.
These linkers may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series of linkers, one example being the Gly-Gly-Gly-Ser (SEQ ID NO:12) cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the appropriate total length may be used.
Determination of the Amino and Carbox~1 Termini of Rl and R~
Sequences of R1 and R2 capable of folding to biologically active states can be prepared by appropriate W O 97112985 PCT~US96/15774 selection ci the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original A polypeptide chain while using the linker sequence L2 as described above. Amino and carboxyl termini are selected 5 from within a common stretch of se~uence, referred to as a breakpoint region, using the guidelines described below. A
novel amino acid sequence is thus generated by selecting amino and carboxyl termini from within the same breakpoint region. In many cases the selection o~ the new termini will 10 be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus. However, those skilled in the art will recognize that selections of termini anywhere within the region may func'ion, and that these will effectively lead to either deletions or additions 15 to the amino or carboxyl portions of the new sequence.
It is a central tenet o~ molecular biology that the primary amino acid sequence of a protein dictates folding to the three-dimensional structure necessary for expression of its biological function. Methods are known to those skilled 20 in the art to obtain and interpret three-~;mPnsional structural information using x-ray diffraction of single protein crystals or nuclear magnetic resonance spectroscopy of protein solutions. Examples of structural information that are relevant to the identification of breakpoint 25 regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops;
Kabsch & Sander, Biopolymers 22: 2577-2637, 1983), the degree of solvent exposure of amino acid residues, the 30 extent and type of interactions o~ residues with one another (Chothia, Ann. Rev. Biochem. 53: 537-572, 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews, ~ethods Enzymol. 154:
511 533, 1987). In some cases additional information is 35 known about solvent exposure of residues; one example is a W O 97/lZ985 3 PCT~US96/15774 site of post-translational attachment of carbohydrate which is necessarily on the surface of the protein. When experimental structural information is not a~ailable, or is not feasible to obtain, methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility and the occurrence o~ turns and loops.
Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile Salvatore, Eur. J. Biochem. 218:603-621, 1993) Thus using either the experimentally derived struc~ural information or predictive methods te.g., Srinivisan & Rose Proteins: ~truct., Funct. & Genetics, 22: 81-99, 1995) the parental amino acid sequence is inspected to classify regions according to whether or not they are integral to the maintenance of secondary and tertiary structure. The occurrence of sequences within regions that are known to be involved in periodic secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets) are regions that should be avoided. Similarly, regions of amino acid sequence that are observed or predicted to have a low degree of solvent exposure are more likely to be part of the so-called hydrophobic core of the protein and should also be avoided for selection o~ amino and carboxyl termini. In contrast, those regions that are known or predicted to be in surface turns or loops, and especially those regions that are known not to be required for biological activity, are the preferred sites for location of the extremes of the polypeptide chain. Continuous stretches of amino acid sequence that are preferred based on the above criteria are referred to as a breakpoint region.
, W O 97112985 39 P~nJss6ns774 Non-covalent Multifunctional hemato~oietic qrowth f~ctors L An alternative method for connecting two hematopoietic growth factors is by means of a non-covalent interaction.
5 ~uch complexed proteins can be described by one of the formulae:
R1-C1 + R2-c2; or Cl-Rl + C2-R2; Cl-R1 + R2-C2; or Cl-R1 +
R1 and R2 are as is defined above. Domains C1 and C2 are either identical or non-identical chemical structures, typically ~roteinaceous, which can form a non-covalent, specific association. Complexes between C1 and C2 result in 15 a one-to-one stoichiometric relationship between ~1 and R2 for each complex. Examples of domains which associate are ~leucine zipperN domains of transcription factors, dimerization dom~i n~ of bacterial transcription repressors and immunoglobulin constant domains. Covalent bonds link R
20 and C1, and R2 and C2, respectively. As indicated in the formulae, the domains C1 and C2 can be present either at the N-terminus or C-terminus of their corresponding hematopoietic growth factor (R). These multimeri~ation domains (C1 and C2) include those derived from the bZIP
25 family of proteins (Abel et al., Nature 3~1:24-25, 1989;
Landshulz et al., ~cience 240:1759-1764, 1988; Pu et al., Nuc. Acid Res. 21:4348-4355, 1993; Kozarides et al., Nature 336:646-651, 1988), as well as multimerization dom~;n~ of the helix-loop-helix family of proteins (Abel et al., Nature 30 341:24-25, 1989; Murre et al., Cell 56:777-783, 1989;
Tapscott et al., Science 242: 405-411, 1988; Fisher et al., Genes & Dev. 5:2342-2352, 1991). Preferred multi-functional hematopoietic receptor agonists of the present invention include colony stimulating factors dimerized by virtue of their incorporation as translational multi-functional W O 97/12985 PCT~US96/15774 hematopoietic receptor agonists with the leucine zipper dimerization do~i n~ of the bZIP family proteins Fos and Jun. The leucine zipper domain of Jun is capable of interactin~ with identical domains. On the other hand, the leucine zipper ~m~ i n of Fos interacts with the Jun leucine zipper domain, but does not interact with other Fos leucine zipper domains. Mixtures of Fos and Jun predominantly result in formation of Fos-Jun heterodimers. Consequently, when joined to colony stimulating factors, the Jun domain can be used to direct the formation of either homo- or heterodimers. Preferential formation of heterodimers can be achieved if one of the colony stimulating factor partners is engineered to possess the Jun leucine zipper domain while the other is engineered to possess the Fos zipper.
Additional peptide sequences may also be added to facilitate purification or identification of multi-functional hematopoietic receptor agonist proteins (e.g., poly-His). A hi~hly antigenic peptide may also be added that would enabJ- rapid assay and facile purification of the multi-functional hematopoietic receptor agonist protein by a specific monoclonal antibody.
"Mutant amino acid sequence," ~mutant protein~, "variant protein~, "mutein", or ~mutant polypeptide" refers to a polypeptide having an amino acid sequence which varies from a native se~uence due to amino acid deletions, substitutions, or both, or is encoded by a nucleotide sequence intentionally made variant from a native sequence..
"Native sequence" refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a gene or protein.
Hematcpoietic growth factors can be characterized by their ability to stimulate colony formation by human W O 97112985 41 PCT~US96~15774 hematopoietic progenitor cells. The colonies ~ormed include erythroid, granulocyte, megakaryocyte, granulocytic macrophages and mixtures thereof. Many of the hematopoietic growth factors have demonstrated the ability to restore bone marrow ~unction and peripheral blood cell populations to therapeutically beneficial levels in studies performed initially in primates and subsequently in humans. Many or all of these biological activities of hematopoietic growth factors involve signal transduction and high affinity receptor b nding. Multi-functional hematopoietic receptor agonists of the present invention may exhibit useful properties such as having similar or greater biological activity when compared to a single factor or by having improved half-life or decreased adverse side effects, or a combination of these properties.
Multi-functional hematopoietic receptor agonists which have little or no agonist activity maybe useful as antagonists, as antigens for the production of antibodies for use in immunology or immunotherapy, as genetic probes or as intermediates used to construct other use~ul hI~-3 muteins.
Biological activity of the multi-functional hematopoietic receptor agonist proteins of the present invention can be determined by DNA synthesis in factor-dependent cell lines or by counting the colony ~orming units in an in vitro bone marrow assay.
The multi-functional hematopoietic receptor agonists of the present invention may have an improved therapeutic profile as compared to single acting hematopoietic agonists.
For example, some multi-functional hematopoietic receptor agonists of the present invention may have a si~ilar or more potent growth factor activity relative to other "
hematopoietic agonists without having a similar or corresponding increase in side-effects.
The present invention also includes the DNA
sequences which code for the multi-functional hematopoietic receptor agonist proteins, DNA sequences which are substantially similar and perform substantially the same function, and DNA sequences which differ from the DNAs encoding the multi-functional hematopoietic receptor agonists of the invention only due to the degeneracy of the genetic code. Also included in the present invention are the oligonucleotide intermediates used to construct the mutant DNAs and the polypeptides coded for by these oligonucleotides.
Genetic engineering techniques now standard in the art (united States Patent 4,935,233 and Sambrook et al., UMolecular 'loning A Laboratory Manual", Cold Spring Harbor Laboratory, 1989) may be used in the construction of the DNA
sequences of the present invention. One such method is cassette mutagenesis (Wells et al., Gene 34:315-323, 1985) in which a portion of the coding sequence in a plasmid is replaced with synthetic oligonucleotides that encode the desired amino acid substitutions in a portion of the gene between two restriction sites.
Pairs of complementary synthetic oligonucleotides encoding the desired gene can be made and annealed to each other. The DNA sequence of the oligonucleotide would encode sequence for amino acids of desired ~ene with the exception of those substituted and/or deleted from the sequence.
Plasmid DNA can be treated with the chosen restriction endonucleases then ligated to the annealed oligonucleotides.
The ligated mixtures can be used to trans~orm competent JM101 cells to resistance to an appropriate antibiotic.
Single colonies can be picked and the plasmid DMA examined by restriction analysis and/or DNA sequencing to identify CA 0223406l l998-04-06 W O9~/12985 PCTnUS96/I57~4 plasmids with the desired genes.
Cloning of the DNA se~uences of the novel multifunctional hematopoietic agonists wherein at least one o~ the with the DNA sequence of the other colony stimulating ~actor may be accomplished by the use of intermediate vectors. Alternatively one gene can be cloned directly into a vector cont~;ning the other gene. Linkers and adapters can be used for }oining the DNA se~uences, as well as replacing lost sequences, where a restriction site was internal to the region of interest. Thus genetic material (DNA) encoding one polypeptide, peptide linker, and the other polypeptide is inserted into a suitable expression vector which is used to transform bacteria, yeast, insect cells or mammalian cells. The transformed organism is grown and the protein isolated by standard techniques. The resulting product is therefore a new protein which has a colony stimulating factor joined by a linker region to a second colony stimulating factor.
Another aspect of the present invention provides plasmid DNA vectors ~or use in the expression o~ these novel multi-~unctional hematopoietic receptor agonists. These vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention.
Appropriate vectors which can transform microorganisms capable of expressing the multi-functional hematopoietic receptor agonists include expression vectors comprising nucleotide sequences coding for the multi-functional hematopoietic receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.
Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the multi-functional hematopoietic receptor agonist polypeptides. The vector employed in the method also contains selected regulatory sequences in W O 97/12985 P~T~US96/15774 operative association with the DNA coding sequences of the invention and which are capable of directing the replication and expression thereof in selected host cells.
As another aspect of the present invention, there is provided a method for producing the novel multi-functional hematopoietic receptor agonists. The method of the present invention involves culturing suitable cells or cell line, which has been transformed with a vector containing a DNA
sequence coding for expression of a novel multi-functional hematopoietic receptor agonist. Suitable cells or cell lines may be bacterial cells. For example, the various strains of E. coli are well-known as host cells in the field of biotechnolo~y. Examples of such strains include E. coli strains JM-Q1 (Yanish-Perron et al. Gene 33: 103-119, 1985) and MON105 (Obukowicz et al., Applied Envlronmental Microbiology 58: 1511-1523, 1992). Also included in the present invention is the expression of the multi-functional hematopoietic receptor agonist protein utilizing a chromosomal expression vector for E. coli based on the bacteriophage Mu (Weinberg et al., Gene 126: 25-33, 1993).
Various strains of B. subtilis may also be employed in this method. Many strains of yeast cells known to those skilled in the art are also available as host cells for expression of the polypeptides of the present invention. When expressed in the E. coli cytoplasm, the gene encoding the multi-functional hematopoietic receptor agonists of the present invention may also be constructed such that at the 5~ end of the gene codons are added to encode Met -~la - or Met at the N-terminus of the protein. The N termini o~
proteins made in the cytoplasm of E. coli are affected by post-translational processing by methionine aminopeptidase (Ben Bassat et al., ~. Bac. 169:751-757, 1987) and possibly by other peptidases so that upon expression the methionine is cleaved off the N-terminus. The multi-functional hematopoietic receptor agonists of the present invention may W O 97/12985 PCT~US96/15774 include multi-functionai hematopoietic receptor agonist polypeptides having Met , Ala or Met -Ala at the N-terminus. These mutant multi-~unctional hematopoietic receptor agonists may also be expressed in E. coli by fusing a secretion signal peptide to the N-terminus. This signal peptide is cleaved from the polypeptide as part of the secretion process.
Also suitable ~or use in the present invention are mammalian cells, such as Chinese hams~er ovary cells (CHO).
General methods for expression of foreign genes in m~mm~lian cells are reviewed in Kaufman, R. J., 1987) Genetic Engineering, Principles and Methods, Vol. 9, J. K. Setlow, editor, Plenum Press, New York. An expression vector is constructed in which a strong promoter capable of functioning in m~mm~l ian cells drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-~unctional hematopoietic receptor agonist. For example, plasmids such as pcDNA I/Neo, pRc/RSV, and pRc/CMV (obtained from Invitr~gen Corp., San Diego, California) can be used.
The eukaryotic secretion signal peptide coding region can be from the gene itself or it can be from another secreted mammalian protein (Bayne, M. L. et al., P~oc. Natl. Acad.
Sci. USA 84: 2638-2642, 1987). After construction o~ the vector containing the gene, the vector DNA is transfected into mammalian cells. Such cells can be, for example, the COS7, HeLa, BHK, CHO, or mouse L lines. The cells can be cultured, for example, in DMEM media (JRH Scientific). The polypeptide secreted into the media can be recovered by standard biochemical approaches following transient expression for 24 - 72 hours after transfection of the cells or after establishment of stable cell lines following selection for antibiotic resistance. The selection of suitable m~mm~l ian host cells and methods for transformation, culture, amplification, screening and W O 97/12985 46 PCTnUS96/15774 product production and puri~ication are known in the art.
See, e.g., Gething and Sambrook, Na~ure, 293:620-625, 1981), or alternatively, Kaufman et al, Mol. Cell. Biol., 5(7):1750-1759, 1985) or Howley et al., U.S. Pat. No.
4,419,446. Another suitable m~mm~l ian cell line is the monkey COS-1 cell line. A similarly useful mammalian cell line is the CV-1 cell line.
Where desired, insect cells may be utilized as host cells in the method of the present invention. See, e.g., Miller et al., Genetic Engineering, 8:277-298 (Plenum Press 1986) and ~eferences cited therein. In addition, general methods for expression of foreign genes in insect cells using Baculovirus vectors are described in: Summers, M. D.
and Smith, G. E., 1987) - A manual of methods for Baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station Bulletin No. 1555. An expression vector is constructed comprising a Baculovirus transfer vector, in which a strong saculovirus promoter (such as the polyhedron promoter) drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-functional hematopoietic receptor agonist polypeptide. For example, the plasmid pVL1392 (obtained from Invitrogen Corp., San Diego, California) can be used. After construction of the vector carrying the gene encoding the multi-functional hematopoietic receptor a~onist polypeptide, two micrograms of this DNA is co-transfected with one microgram of Baculovirus DNA (see Summers & Smith, 1987) into insect cells, strain SF9. Pure recombinant Baculovirus carrying the multi-functional hematopoietic receptor agonist is used to infect cells cultured, for example, in Excell 401 serum-free medium (JRH Biosciences, Lenexa, Kansas). The multi-functional hematopoietic receptor agonist secreted into the medium can be recovered by standard biochemical approaches. Supernatants from mammalian or insect cells W O 97/lZ985 PCT~US96/15774 expressing the multi-functional hematopoietic receptor agonist protein can be first concentrated using any of a number of commercial concentration units.
r The multi-functional hematopoietic receptor agonists of the present invention may be use~ul in the treatment of diseases characterized by decreased levels of either myeloid, erythroid, lymphoid, or megakaryocyte cells of the hematopoietic system or combinations thereof. In addition, they may be used to activate mature myeloid and/or lymphoid cells. Among conditions susceptible to treatment with the polypeptides of the present invention is leukopenia, a reduction in the number of circulating leukocytes ~white cells) in the peripheral blood. Leukopenia may be induced by exposure to certain viruses or to radiation. It is often a side effect of various forms of cancer therapy, e.g., exposure to chemotherapeutic drugs, radiation and of infection or hemorrhage. Therapeutic treatment of leukopenia with these multi-functional hematopoietic receptor agonists of the present invention may avoid undesirable side effects caused by treatment with presently available drugs.
The multi-functional hematopoietic receptor agonists of the present invention may be useful in the treatment of neutropenia and, for example, in the treatment of such - conditions as aplastic anemia, cyclic neutropenia, idiopathic neutropenia, Chediak-Higashi syndrome, systemic lupus erythematosus (SLE), leukemia, myelodysplastic syndrome and myelofibrosis.
The multi-functional hematopoietic receptor agonist of the present invention may be useful in the treatment or prevention of thrombocytopenia. Currently the only therapy for thrombocytopenia is platelet transfusion which are costly and carry the significant risks of infection (HIV, ~ 35 HBV) and alloimunization. The multi-functional hematopoietic , W O 97112985 48 PCT~US96/lS774 receptor agonist may alleviate or diminish the need for platelet transfusion. Severe thrombocytopenia may result from genetic defects such as Fanconi's Anemia, Wiscott-Aldrich, or May Hegglin syndromes. Acquired thrombocytopenia may result from auto- or allo-antibodies as in Immune Thrombocytopenia Purpura, Systemic Lupus Erythromatosis, hemolytic anemia, or fetal maternal incompatibility. In addition, splenomegaly, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, infection or prosthetic heart valves may result in thrombocytopenia.
Severe thrombocytopenia may also result from chemotherapy and/or radiation therapy or cancer. Thrombocytopenia may also result from marrow invasion by carcinoma, lymphoma, leukemia or fibrosis.
The multi-functional hematopoietic receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood. Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation. Hematopoietic growth factors including ~-CSF and GM-CSF have been shown to enhance tl~e number of circulating progenitors and stem cells in the peripheral blood. This has simplified the procedure for peripheral stem cell collection and dramatically decreased the cost of the procedure by decreasing the number of pheresis required. The multi-functional hematopoietic receptor agonist may be useful in mobilization of stem cells and further enhance the efficacy of peripheral s~em cell transplantation.
The multi-functional hematopoietic receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors and stem cells.
Colony stimulating factors ~CSFs), such as hIL-3, have been W O 97112985 P ~ nJS96/15774 administered alone, co-administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the neutropenia and thrombocytopenia which are often the result of such treatment. However the period of severe neutropenia and thrombocytopenia may not be totally eliminated. The myeloid lineage, which is comprised of monocytes (macrophages), granulocytes (including neutrophils) and megakaryocytes, is critical in preventiny in~ections and bleeding which can be life-threatening. Neutropenia and thrombocytopenia may also be the result of disease, genetic disorders, drugs, toxins, radiation and many therapeutic treatments such as conventional oncology therapy.
Bone marrow transplants have been used to treat this patient population. However, several problems are associated with the use of bone marrow to reconstitute a compromised hematopoietic system including: 1) the number o~ stem cells in bone marrow, spleen, or peripheral blood is limited, 2) Graft Versus Host Disease, 3) graft rejection and 4) possible contamination with tumor cells. Stem cells make up a very small percentage of the nucleated cells in the bone marrow, spleen and peripheral blood. It is clear that a dose response exists such that a greater number of stem cells will enhance hematopoietic recovery. Therefore, the in vitro expansion of stem cells should enhance hematopoietic recovery and patient survival. Bone marrow from an allogeneic donor has been used to provide bone marrow for transplant. However, Graft Versus Host Disease and graft rejection limit bone marrow transplantation even in recipients with HLA-matched sibling donors. An alternative to allogeneic bone marrow transplants is autologous bone marrow transplants. In autologous bone marrow transplants, some of the patient~s own marrow is harvested prior to myeloablative therapy, e.g. high dose chemotherapy, and is transplanted back into the patient afterwards. Autologous W O 97/12985 5 PCT~US96/15774 transp}ants eliminate the risk of Graft Versus Host Disease and graft rejection. However, autologous bone marrow transplants still present problems in terms of the limited number of stems cells in the marrow and possible contamination with tumor cells. The limited number of stem cells may be overcome by ex-vivo expansion of the stem cells. In addition, stem cells can be specifically isolated, based on the presence of speci~ic surface antigens such as CD34+ in order to decrease tumor cell contamination of the marrow graft.
The ~ollowing patents contain further details on separating stem cells, CD34+ cells, culturing the cells with hematopoietic factors, the use of ~he cells for the treatment of patients with hematopoietic disorders and the use of hematopoietic factors for cell expansion and gene therapy.
5,061,620 relates to compositions comprising human hematopoietic stem cells provided by separating the stem cells from dedicated cells.
5,199,942 describes a method for autologous hematopoietic cell transplantation comprising: (1) obt~i n ' ng hematopoietic progenitor cells from a patient; (2) ex-vivo expansion of cells with a growth factor selected from the group consisting of IL-3, flt3 ligand, c-kit ligand, GM-CSF, IL-1, GM-CSF~IL-3 fusion protein and combinations thereof; (3) administering cellular preparation to a patient.
5,240,856 relates to a cell separator that includes an apparatus for automatically controlling the cell separation process.
WO 91/16116 describes devices and methods for selectively W O 97/12985 51 PCTfUS96/15774 isolating and separating target cells ~rom a mixture of cells.
.
WO 91/18972 describes methods for in vitro culturing o~ bone marrow, by incubating suspension of bone marrow cells, using a hollow ~iber bioreactor.
WO 92/18615 relates to a process for maintaining and expanding bone marrow cells, in a culture medium containing speci~ic mixtures o~ cytokines, for use in transplants.
WO 93/08268 describes a method for selectively expanding stem cells, comprising the steps o~ ~a) separating CD34+
stem cells ~rom other cells and (b) incubating the separated cells in a selective medium, such that the stem cells are selectively expanded.
WO 93/18136 describes a process ~or in vitro support of mammalian cells derived ~rom peripheral blood.
WO 93/18648 relates to a composi~ion comprising human neutrophil precursor cells with a high content o~
myeloblasts and promyelocytes for treating genetic or acquired neutropenia.
WO 94/08039 describes a method o~ enrichment ~or human hematopoietic stem cells by selection ~or cells which express c-kit protein.
w~ 94/11493 describes a stem cell population that are CD34+
and small in size, which are isolated using a counter~low elutriation method.
Wo 94/27698 relates to a method combining immunoaf~inity separation and continuous ~low centri~ugal separation ~or .
W O 97/12985 S2 PCT~US96/15774 the selective separation of a nucleated heterogeneous cell population from a heterogeneous cell mixture.
WO 94/25848 describes a cell separation apparatus for collection and manipulation of target cells.
The long term culturing of highly enriched CD34+ precursors of hematopoietic progenitor cells from human bone marrow in cultures containing IL-la, IL-3, IL-6 or GM-CSF is discussed in Brandt et al J. Clin, Invest. 86:932-941, 1990).
One aspect of the present invention provides a method for selective ex-vivo expansion of stem cells. The term "stem cell" refers to the totipotent hematopoietic stem cells as well as early precursors and progenitor cells which can be isolated from bone marrow, spleen or peripheral blood. The term "expansion" re~ers to the differentiation and proliferation of the cells The present invention provides a method for selective ex-vivo expansion of stem cells, comprising the steps of: (a) separating stem cells from other cells, (b) culturing said separated stem cells with a selective media which contains multi-functional hematopoietic receptor agonist protein(s) and (c) harvesting said stems cells. Stem cells, as well as committed progenitor cells destined to become neutrophils, erythrocytes, platelets, etc. may be distinguished from most other cells by the presence or absence of particular progenitor marker antigens, such as CD34, that are present on the surface of these cells and/or by morphological characteristics. The phenotype for a highly enriched human stem cell fraction is reported as CD34+, Thy-1+ and lin-, but it is to be understood that the present invention is not limited to the expansion of this stem cell population. The CD34+ enriched human stem cell fraction can be separated by a number of reported methods, including affinity columns or W O 97/12985 PCTnUS96/lS774 beads, magnetic beads or ~low cytometry using antibodies directed to surface antigens such as the CD34+. Further, physical separation methods such as counterflow elutriation may be used to enrich hematopoietic progenitors. The CD34+
progenitors are heterogeneous, and may be divided into several sub-populations characterized by the presence or absence of co-expression o~ different lineage associated cell sur~ace associated molecules. The most immature progenitor cells do not express any known lineage associated markers, s~c~h as HLA-DR or CD38, but they may express CD90(thy-1). Other sur~ace antigens such as CD33, CD38, CD41, CD71, HLA-DR or c-kit can also be used to selectively isolate hematopoietic progenitors. The separated cells can be incubated in selected medium in a culture flask, sterile bag or in hollow fibers. Various colony stimulating ~actors may be utilized in order to selectively expand cells.
Representative factors that have been utilized ~or ex-vivo expansion o~ bone marrow include, c-kit ligand, IL-3, G-CSF, GM-CSF, IL-1, IL-6, IL-ll, flt-3 ligand or combinations thereo~. The proli~eration of the stem cells can be monitored by enumerating the number of stem cells and other cells, by standard techniques (e.g. hemacytometer, CFU, LTCIC) or by flow cytometry prior and subsequent to incubation.
Several methods ~or ex-vivo expansion of stem cells have been reported utilizing a number o~ selection methods and expansion using various colony stimulating ~actors including c-kit ligand (Brandt et al., Blood 83:1507-1514 [1994], McKenna et al., Blood 86:3413-3420 [1995]), IL-3 (Brandt et al., Blood 83:1507-1514 [1994~, Sato et al., Blood 82:3600-3609 [1993]), G-CSF ~Sato et al., Blood 82:3600-3609 [1993]), GM-CSF (Sato et al., Blood 82:3600-3609 [1993]), IL-l (Muench et al., Blood 81:3463-3473 [1993]), IL-6 (Sato et al., Blood 82:3600-3609 [1993]), IL-W O 97/12985 PCT~US96/1~774 11 (Lemoli et al., Exp. Hem. 21:1668-1672 [1993~, Sato et al., Blood 82:3600-3609 [lg93~), flt-3 ligand (McKenna et al., Blood 86:3413 3420 [1995]) and/or combinations thereof (Brandt et al., Blood 83:1507 1514 [1994], Haylock et al., Blood 80:1405-1412 [1992], Koller et al., Biotechnology 11:358-363 [1993], (Lemoli et al., Exp. Hem. 21:1668-1672 [1993]), McKenna et al., Blood 86:3413-3420 [1995], Muench et al., Blood 81:3463-3473 rl993~, Patchen et al., Biotherapy 7:13-26 [1994], Sato et al., Blood 82:3600-3609 [1993], Smith et al., Exp. Hem. 21:870-877 [1993], Steen et al., Stem Cells 12:214-224 [1994], Tsujino et al., Exp. Hem.
21:137g-1386 [1993]). Among the individual colony stimulating factors, hIL-3 has been shown to be one of the most potent in expanding peripheral blood CD34+ cells (Sato et al., Blood 82:3600-3609 ~1993], Kobayashi et al., Blood 73:1836-1841 [1989]). However, no single factor has been shown to be as effective as the combination of multiple factors. The present invention p~ovides methods for ex vivo expansion that utilize multi-functional hematopoietic receptor agonists that are more effective than a single factor alone.
Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, Blood 85:997-1105, 1995) that has been supplemented with a multi-functional hematopoietic receptor agonist of the present invention.
Another projected clinical use of growth factors has been in the in vitro activation of hematopoietic progenitors and stem cells for gene therapy. Due to the long life-span of hematopoietic progenitor cells and the distribution of W O 97/1298~ PCTAUS96/15774 their dau~hter cells throughout the entire body, hematopoietic progenitor cells are good candidates for ex vivo gene transfection. In order to have the gene o~
interest incorporated into the genome of the hematopoietic progenitor or stem cell one needs to stimulate cell divlsion and DNA rer'ication. Hematopoietic stem cells cycle at a very low fre~uency which means that growth factors may be useful to promote gene transduction and thereby enhance the clinical prospects for gene therapy. Potential applications of gene therapy (review Crystal, Science 270: 404-410 [1995]) include; 1) the treatment o~ many congenital metabolic disorders and immunode~iciencies (Kay and Woo, Trends Genet. 1~ :253-257 [1994]), 2) neurological disorders (Friedmann, Trends Genet. 10:210-214 [1994]), 3) cancer (Culver and Blaese, Trends Genet. 10:174-178 [1994]) and 4) infectious diseases (Gilboa and Smith, Trends Genet. 10:139-144 [1994]).
There are a variety of methods, known to those with skill in the art, ~or introducing genetic material into a host cell. A number of vectors, both viral and non-viral have been developed ~or transferring therapeutic genes into primary cells. Viral based vectors include; 1) replication de~icient recombinant retrovirus (Boris-Lawrie and Temin, Curr. Opin. Genet. Dev. 3:102-109 [1993], Boris-Lawrie and Temin, Annal. New York Acad. Sci. 716:59-71 [1994], Miller, Current Top. Microbiol. Tmm17nol~ 158:1-24 [1992]) and replication-de~icient recombinant adenovirus (Berkner, BioTechniques 6:616-629 [1988], Berkner, Current Top.
Microbiol. Immunol. 158:39-66 [1992~, Brody and Crystal, Annal. New York Acad. Sci. 716:90-103 [1994]). Non-viral based vectors include protein/DNA complexes (Cristiano et al., PNAS USA. 90:2122-2126 [1993], Curiel et al., PNAS USA
88:8850-8854 [1991], Curiel, Annal. New York Acad. Sci.
716:36-58 [1994]), electroporation and liposome mediated delivery such as cationic liposomes (Farhood et al., Annal.
W O 97/12985 56 PCT~US96/15774 New York Acad. Sci. 71~:23-35 [1994~).
The present invention provides an improvement to the existing methods of expanding hematopoietic cells, which new genetic material has been introduced, in that it provides methods utilizing multi-functional hematopoietic receptor agonist proteins that have improved biological activity, including an activity not seen by any single colony stimulation factor.
Many drugs may cause bone marrow suppression or hematopoietic deficiencies. Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherap~, antibiotics such as chloramphenicol, penicillin, gancyclovir, daunomycin and sulfa drugs, pheno~hiazones, tranquilizers such as meprobamate, analgesics such as aminopyrine and dipyrone, anti-convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics. The multi-functional hematopoietic receptor agonists of the present invention may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs.
Hematopoietic de~iciencies may also occur as a result of viral, microbial or parasitic infections and as a result of treatment for renal disease or renal failure, e.g., dialysis. The multi-functional hematopoietic receptor agonists of the present invention may be useful in treating such hematopoietic deficiencies.
The treatment of hematopoietic deficiency may include administration of a pharmaceutical composition containing the multi-functional hematopoietic receptor agonists to a patient. The multi-functional hematopoietic receptor agonists of the present invention may also be useful for the activation and amplification of hematopoietic precursor cells by treating these cells in vitro with the multi-functional hematopoietic receptor agonist proteins of the CA 0223406l l998-04-06 W O 97112985 PCT~US96/1~774 present invention prior to injecting the cells into a patient.
Various immunodeficiencies, e.g., in T and/or B
lymphocytes, or immune disorders, e.g., rheumatoid arthritis, may also be beneficially affec~ed by treatment with the multi-functional hematopoietic receptor agonists of the present invention. Immunodeficiencies may be the result of viral infections, e.g., HTLVI, HTLVII, HTLVIII, severe exposure to radiation, cancer therapy or the result of other medical treatment. The multi-functional hematopoietic receptor agonists of the present invention may also be employed, alone or in combination with other colony stimulating ~actors, in the treatment of other blood cell deficiencies, including thrombocytopenia (platelet deficiency), or anemia. Other uses for these novel polypeptides are the in vivo and ex vivo treatment of patients recovering from bone marrow transplants, and in the developmen~ of monoclonal and polyclonal antibodies generated by standard methods for diagnostic or therapeutic use.
Other aspects of the present invention are methods and therapeutic compositions for treating the conditions referred to above. Such compositions comprise a therapeutically effective amount of one or more of the multi-functional hematopoietic receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.
The dosage regimen involved in a method for treating W O 97/12985 58 PCT~US96/15774 the above-described conditions will be determined by the attending physician considering various factors which modify the action of drugs, e.g., the condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, a daily regimen may be in the range of 0.2 - 150 ~g/kg of multi-functional hematopoietic receptor agonist protein per kilogram of body weight. Dosages would be adjusted relative to the activity of a given multi-functional hematopoietic receptor agonist protein and it would not be unreasonable to note that dosage regimens may include doses as low as 0.1 microgram and as high as 1 milligram per kilogram of body weight per day. In addition, there may exist specific circumstances where dosages of multi-functional hematopoietic receptor agonist would be adjusted higher or lower than the range of 0 .2 - 15Q micrograms per kilogram o~
body weight. These include co-administration with other colony stimulating factors or IL-3 variants or growth factors; co-administration with chemotherapeutic drugs and/or radiation; the use of glycosylated multi-functional hematopoietic receptor agonist protein; and various patient-related issues mentioned earlier in this section. As indicated above, the therapeutic method and compositions may also include co-administration with other human factors. A
non-exclusive list of other appropriate colony stimulating factors (CSFs), cytokines, lymphokines, hematopoietic growth factors and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention includes GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-ll, IL-12, IL-13, IL-15, IL-16, LIF, flt3/flk2 ligand, B-cell growth factor, B-cell differentiation factor and eosinophil differentiation factor, stem cell factor (SCF) also known as steel factor or c-kit ligand, or combinations thereof. The W O 97112985 5 PCTnUS96/15774 dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition.
Progress of the treated patient can be monitored by periodic assessment of the hematological profile, e.g., differential cell count and the like.
MATE~IA~S ~D METHODS
Unless noted otherwise, all specialty chemicals were obtained ~rom Sigma, Co. (St. Louis, MO). Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs (Beverly, MA) or Boehringer Mannheim (Indianapolis, IN).
~r~n~formation of E. coli strains E. coli strains, such as DH5~ (Life Technologies, Gaithersburg, MD) and TGl (Amersham Corp., Arlington Heights, IL) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells. E. coli strains, such as JM101 (Yanisch-Perron, et al., Gene, 33: 103-119, 1985) and MOM105 (Obukowicz, et al., Appl. and Envir. Micr., 58: 1511-1523, 1992) can be used for expressing the multi-functional hematopoietic receptor agonist of the present invention in the cytoplasm or periplasmic space.
MON105 ATCC~55204: F-, lambda-,IN(rrnD, rrE)l, rpoD+, rpoH358 DH5~: F-, phi80dlacZdeltaM15, delta(lacZYA-argF)U169, deoR, recAl, endAl, hsdR17(rk-,mk+), phoA, supE441amda-, thi-1, gyrA96, relAl W O 97/12985 PCTfUS96/15774 TG1: delta(lac-pro), supE, thi-1, hsdD5/F' (traD36, proA+B+, lacI~, lacZdeltaM15) JM101 ATcc#33876: delta (pro lac), supE, thi, F~(traD36, proA+B+, lacIq, lacZdeltaM15) DH50~TM Subcloning efficiency cells are purchased as competent cells and are ready for transformation using the manufacturer's protocol, while both F~. col i strains T(~1 and MOM105 are rendered competent to take up DNA using a CaCl2 method. Typically, 20 to 50 mL of cells are grown in LB
medium (1% bacto-tryptone, 0.5% bacto-yeast extract, 150 mM
NaCl) to a density o~ approximately 1.0 optical density unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, NY). The cells are collected by centrifugation and resuspended in one-fifth culture volume of CaCl2 solution (50 rnM CaCl2, 10 mM Tris-Cl, pH7.4) and are held at 4-C ~or 30 mirLutes. The cells are again collected by centri~ugation and resuspended in one-tenth culture volume of CaC12 solution. Ligated DNA is added to 0.2 mL of these cells, and the samples are held at 4 C for 30-60 minutes. The samples are shifted to 42'C for two minutes and 1.0 mL of LB is added prior to sha3~ing the samples at 37 C for one hour. Cells from these samples are spread on plates (LB medium plus 1.5% bacto-agar) containing either ampicillin (100 micrograms/mL, ug/mL) when selecting for ampicillin-resistant transformants, or spectinomycin (75 ug/mL) when selecting for spectinomycin-resistant transformants. The plates are incubated overnight at 37 C.
Colonies are picked and inoculated into Ls plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL
spectinomycin) and are grown at 37~C while shaking.
Methods ~or creation of ~enes with new N-terminus/C-terminus ~-CA 0223406l l998-04-06 W O 97/12985 61 PCTAUS96/1~774 Method I. Creation of genes with new N-terminus/C-terminus which contain a linker region (L2).
Genes with new N-terminus/C-terminus which contain a linker region (L2) separating the original C-terminus and N-terminus can be made essentially following the method described in L. S. Mullins, et al J. Am. Chem. Soc. 116, 5529-5533, 1994). Multiple steps of polymerase chain reaction (PCR) amplifications are used to rearrange the DMA
sequence encoding the primary amino acid sequence of the protein. The steps are illustrated in Figure 2.
In th~ first step, the first primer set ("new start"
and "linker start") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Start ) that contains the sequence encoding the new N-terminal portion of the new protein followed by the linker (L2) that connects the C-terminal and N-terminal ends of the original protein. In the second step, the second primer set (~new stop" and 'llinker stop") is used to create and amplify, from the original gene sequence, the DNA fragment (~Fragment Stop") that encodes the same linker as used above, followed by the new C-terminal portion of the new protein. The "new start" and ~new stop~ primers are designed to include the appropriate restriction sites which allow cloning of the new gene into expression plasmids. Typical PCR conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C
denaturatio~ for one minute, 50~C annealing for one minute and 72~C extension for one minute; plus one cycle 72~C
extension for seven minutes. A Perkin Elmer GeneAmp PCR
Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and lx PCR
buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl2. PCR
reactions are performed in a Model 480 ~NA thermal cycler (Perkin Elmer Corporation, Norwalk, CT).
W O 97/12985 62 PCT~US96/15774 "Fragment Start" and "Fragment Stop", which have complementary sequence in the linker region and the coding sequence for the two amino acids on both sides of the 5 linker, are joined together in a third PCR step to make the full-length gene encoding the new protein. The DNA
fragments "Fragment Start" and "Fragment Stop" are resolved on a 19~ TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments 10 are combined in equimolar quantities, heated at 70~C for ten minutes and slow cooled to allow annealing through their shared sequence in '~linker start" and "linker stop". In the third PCR step, primers "new start" and "new stop" are added to the annealed fragments to create and amplify the full-15 length new N-terminus/C-terminus gene. Typical PCR
conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C denaturation for one minute, 60~C annealing for one minute and 72~C extension for one minute; plus one cycle 72~C extension for seven minutes. A Perkin Elmer GeneAmp 20 PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole o~ each primer and approximately 0.5 ug of DNA;
and lx PCR buffer, 200 UM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM
MgCl2. PCR reactions are purified using a Wizard PCR Preps 25 kit (Promega).
Method II. Creation of genes with new N-terminus/C-terminus without a linker region.
New N-terminus/C-terminus genes without a linker joining the original M-terminus and C-terminus can be made using two steps of PCR amplification and a blunt end ligation. rrhe steps are illustrated in Figure 3. In the first step, the primer set ("new start" and "P-bl start") is used to create and amplify, from the original gene sequence, W O 97/12985 63 P ~ nUS96~S774 the DNA fragment ("Fragment Start") that contains the sequence encodin~ the new M-terminal portion of the new protein. In the second step, the primer set (~new stop~ and ~P-bl stop") is used to create and amplify, from gene se~uence, the DNA fragment ("Fragment Stop") that contains the sequence encoding the new C-terminal portion of the new protein. The "new start" and "new stop" primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors. Typical PCR
conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C denaturation for one minute, 50~C annealing for 45 seconds and 72~C extension ~or 45 seconds. Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manu~acturer. The "P-bl start" and "P-bl stop" primers are phosphorylated at the 5' end to aid in the subsequent blunt end ligation of "Fragment Start~ and "Fragment Stop~ to each other. A 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and lx Vent buffer (New England siolabs)~ 300 UM dGTP, 300 uM dATP, 300 uM dTTP, 300 uM
dCTP, and 1 unit Deep Vent polymerase. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reaction products are puri~ied using a Wizard PCR Preps kit (Promega).
The primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typically "Fragment Start~ is designed to create NcoI restriction site , and "Fragment Stop" is designed to create a HindIII restriction site.
Restriction digest reactions are puri~ied using a Magic DNA
Clean-up System kit (Promega). Fragments Start and Stop are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined with and annealed to the ends of the W O 97/12985 64 PCT~US96/15774 ~ 3800 base pair NcoI/HindIII vector fragment of pMON3934 by heating at 50~C for ten minutes and allowed to slow cool.
The three fragments are ligated together using Tg DNA ligase (Boehringer Mannheim). The result is a plasmid containing the full-length new N-terminus/C-terminus gene. A portion of the ligation reaction is used to transform E. coli strain DH5(X cells ~Life Technologies, Gaithersburg, MD). Plasmid DNA is purified and sequence confirmed as below.
Method III. Creation of new N-terminus/C-terminus genes by tandem-duplication method New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al Protein Eng.
5:427-431, 1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps are illustrated in Figure 3.
The tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA
se~uence encoding a linker connecting the original C- and N-terminal ends of the two copies of the gene. Specific primer sets are used to create and amplify a full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95~C melting for two minutes; 25 cycles 94~C
denaturation for one minute, 50~C anneallng for one minute and 72~C extension for one minute; plus one cycle 72~C
extension for seven minutes. A Perkin Elmer GeneAmp PCR
Core Reagents kit (Perkin Elmer Corporation, Norwalk, CT) is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and lx PCR buffer, 200 uM dGTP, W O 97/12985 65 PCT~US96/15774 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl2. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reactions are purified using a Wizard PCR
Preps kit (Promega).
Clo~; n~ of new N-terminus/C-terminus qenes into mulci-functional receptor aaonist ex~ression vectors.
The new N-terminus/C-terminus gene is digested with restriction endonucleases to create ends that are compatible to insertion into an expression vector containing another colony stimulating factor gene. This expression vector is likewise digested with restriction endonucleases to form compatible ends. A~ter purification, the gene and the vector DMAs are combined and ligated using T4 DNA ligase. A
portion of the ligation reaction is used to trans~orm E.
coli. Plasmid DNA is purified and se~uenced to confirm the correct insert. The correct clones are grown for protein expression.
DNA ;~olation and characterization Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein.
Plasmid DNA is isolated using the Promega Wizard~ Miniprep kit (Madison, WI), the Qiagen QIAwell Plasmid isolation kits (Chatsworth, CA) or Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation.
Brie~ly, cells are pelleted by centrifugation (5000 x g), plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000 x g). The supernatant (containing the plasmid DNA) is loaded onto a column containing a DMA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the E. coli cells are inoculated into 50-100 mls of LB plus appropriate antibiotic for overnight growth at 37~C in an air incubator while shaking. The purified plasmid DNA is used for DNA
sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian, E. coli or other cells.
Se~uence confirmation.
Purified plasmid DNA is resuspended in dH2o and quantitated by measuring the absorbance at 260/280 nm in a Bausch and Lomb Spectronic 601 W spectrometer. DNA samples are sequenced using ABI PRISM~ DyeDeoxy~ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the manu~acturers suggested protocol usually modifled by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) following the recommended amplification conditions. Samples are purified to remove excess dye terminators with Centri-Sep~ spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized ~ormamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA
3C sequencer. Overlapping DNA sequence ~ragments are analyzed and assembled into master DNA contigs using Sequencher v2.1 DNA analysis software (Gene Codes Corporation, Ann Arbor, MI).
~ression of multi-~unctional rece~tor a~onists in m~mm~ n cells W O 97/1298~ 67 PCT~US96/15774 Mammalian Cell Transfection/Production of Conditioned Media The B~K-21 cell line can be obtained from the ATCC
(~ockville, MD). The cells are cultured in Dulbecco~s modified Eagle media (DMEM/high-glucose), supplemented to 2 mM (mM) L-glutamine and 10% fetal bovine serum ~FB~). This formulation is designated BHK growth media. Selective media is BHK growth media supplemented with 453 units/mL
hygromycin B (Calbiochem, San Diego, CA). The BHK-21 cell line was previously stably trans~ected with the HSV
transactivating protein VP16, which transactivates the IE110 promoter ~ound on the plasmid pMoN3359 (See Hippenmeyer et al., Bio/Technolo~y, pp.1037-1041, 1993). The VP16 protein drives expression of genes inserted behind the IE110 promoter. BHK-21 cells expressing the transactivating protein VP16 are designated sHK-VP16. The plasmid pMON1118 (See Highkin et al., Pou l t ry Sci ., 7 0: 970-981, 1991) expresses ~he hygromycin resistance gene from the SV40 promoter. A similar plasmid is available from ATCC, pSV2-hph.
BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3 X 105 cells per dish 24 hours prior to transfection. Cells are transfected for 16 hours in 3 mL
of NOPTIMEM"~ (Gibco-BRL, Gaithersburg, MD) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid, pMON1118, and 80 ug of Gibco-BRL /~LIPOFECT~MINE"~ per dish. The media is subsequently aspirated and replaced with 3 mL of growth media. At 48 hours post-transfection, media from each dish is collected and assayed for activity (transient conditioned media). The cells are removed from the dish by trypsin-EDTA, diluted ~ 1:10 and transferred to 100 mm tissue culture dishes containing 10 mL of selective media. After approximately 7 days in selective media, resistant cells grow into colonies W O 97112985 68 PCTrUS96/15774 several millimeters in diameter. The colonies are removed from the dish with filter paper (cut to approximately the same size as the colonies and soaked in trypsin/EDTA) and transferred to individual wells of a 24 well plate containing 1 mL of selective media. After the clones are grown to confluence, the conditioned media is re-assayed, and positive clones are expanded into growth media.
~x~ression of multi-functional rece~tor aqonists ;n E. coli E. coll strain MON105 or JM101 harboring the plasmid of interest are grown at 37~C in M9 plus casamino acids medium with shaking in a air incubator Model G25 from New Brunswick Scientific (Edison, New Jersey). Growth is monitored at OD600 until it reaches a value of 1.0 at which time Nalidixic acid (10 milligrams/mL) in 0.1 N NaOH is added to a final concentration of 50 ~g/mL. The cultures are then shaken at 37~C for three to four additional hours. A hi~h degree of aeration is maintained throughout culture period in order to achieve maximal production of the desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies (IB). One mL ali~uots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see ~aniatis et al.
Molecular Cloning: A Laboratory Manual, 1982). The culture is centrifuged (5000 x g) to pelle~ the cells.
~nclus;on Body pre~aration, Extraction, Refol~ina, Dialvsis, D~ Chromatoaraphv, and Characterization of the mlllti-funct;ona~ hemato~oietic ~ece~tor aaonists which accumulate ~s inclusion bodies in E. coli .
Isolation of Inclusion Bodies:
-W O 97/1298~ PCTAUS96/15774 The cell pellet ~rom a 330 mL E. coli culture is resuspended in 15 mL of sonication buffer (10 mM 2-amino-2-(hydroxymethyl) 1,3-propanediol hydrochloride (Tris-HCl), pH
8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA). These - resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-Ultrasonics, Inc., Farmingdale, New York). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion bodies (IB). The ~irst round of sonication is a 3 minute burst ~ollowed by a 1 minute burst, and the ~inal two rounds of sonication are ~or 1 minute each.
Extraction and refolding of proteins from inclusion body pellets:
Following the final centrifugation step, ~he IB pellet is resuspended in 10 mL o~ 50 IrM Tris-HC1, p~ 9.5, 8 M urea and 5 mM dithiothreitol (DTT) and stirred at room temperature for approximately 45 minutes to allow for denaturation o~ the expressed protein.
The extraction solution is transferred to a beaker containing 70 mL of 5 mM Tris-HCl, pH 9.5 and 2.3 M urea and 25 gently stirred while exposed to air at 4~C ~or 18 to 48 hours to allow the proteins to refold. Refolding is monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high pressure liquid chromatography (RP-HPLC) column (0.46x25 cm). A linear gradient of 40% to 65%
acetonitrile, containing 0.1% tri~luoroacetic acid (TFA), is employed to monitor the refold. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute.
~ Denatured proteins generally elute later in the gradient than the refolded proteins.
W O 97/12985 70 PCT~US96/15774 Purification:
Following the refold, contaminating ~. coli proteins are removed by acid precipitation. The pH of the refold solution is titrated to between pH 5.0 and pH 5.2 using 15%
(v/v) acetic acid (HOAc). This solution is stirred at 4~C
for 2 hours and then centrifuged for 20 minutes at 12,000 x g to pelle~ any insoluble protein.
The supernatant from the acid precipitation step is dialyzed using a Spectra/Por 3 membrane with a molecular weight cut off (MWCO) of 3,50Q daltons. The dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10 mM
Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE
chromatography. The sample is then centrifuged (20 minutes at 12,000 x g) to pellet any insoluble protein following dialysis.
A Bio-Rad Bio-Scale DEAE2 column (7 x 52 mm) is used for ion exchange chromatography. The column is equilibrated in a buffer containing 10 mM Tris-HCl, pH 8.0, and a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buf~er, over 45 column volumes is used to elute the protein.
A flow rate of 1.0 mL per minute is used throughout the run.
Column fractions (2.0 mL per fraction) are collected across the gradient and analyzed by RP HPLC on a Vydac (~Iesperia, Ca.) C18 column (0.46 x 25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Pooled fractions are then dialyzed against 2 changes of 4 liters (50-to-500-fold excess) of 10 mM ammonium acetate (NH4Ac), pH 4.0 for a total of 18 hours. Dialysis is performed using a Spectra/Por 3 membrane with a MWCO of 3,500 daltons.
Finally, the sample is sterile filtered using a 0.22~m syringe filter (~Star LB syringe filter, Costar, Cambridge, W O 97112985 71 P~T~US96115774 Ma.), and stored at 4~C.
In some cases the folded proteins can be a~finity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix. Alternatively, (or in addition) purification can be accomplished using any of a - variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.
These and other protein puri~ication methods are described in detail in Methods in Enzymology, Volume 182 'Guide to Protein Purification' edited by Murray Deutscher, Academic Press, San Diego, CA (1990).
15 Protein Characterization:
The purified protein is analyzed by RP-HPLC, electrospray mass spectrometry, and SDS-PAGE. The protein quantitation is done by amino acid composition, RP-~PLC, and 20 Bradford protein determination. In some cases tryptic peptide mapping is performed in conjunction with electrospray mass spectrometry to confirm the identity of the protein.
25 ~L Proliferation Assav for Bioactive Human Interleukin-3 The factor-dependent cell line AML 193 was obtained from the American Type Culture Collection (ATCC, Rockville, MD). This cell line, established from a patient with acute myelogenous leukemia, is a growth factor dependent cell line 30 which displayed enhanced growth in GM-CSF supplemented medium (Lan~e, B., et al., Blood 70: 192, 1987; Valtieri, M., et al., J. Immunol . 138:4042, 1987). The ability of AML 193 cells to proliferate in the presence of human IL-3 r has also been documented. (Santoli, D., et al., J. Immunol.
35 139: 348, 1987). A cell line variant was used, AML 193 W O 97/12985 72 PCT~US96/15774 1.3, which was adapted for long term growth in IL-3 ~y washing out the growth factors and starving the cytokine dependent AML 193 cells for growth factors for 24 hours.
The cells are then replated at lx105 cells/well in a 24 well ,~
plate in media containing 100 U/mL IL-3. It took approximately 2 months for the cells to grow rapidly in IL-3. These cells are maintained as AML 193 1.3 thereafter by supplementing tissue culture medium (see below) with human AML 193 1.3 cells are washed 6 times in cold ~anks balanced salt solution (HBSS, Gibco, Grand Island, NY) by centrifuging cell suspensions at 250 x g for 10 minutes ~ollowed by decantation of the supernatant. Pelleted cells are resuspended in HBSS and the procedure is repeated until six wash cycles are completed. Cells washed six times by this procedure are resuspended in tissue culture medium at a density ranging from 2 x 105 to 5 x 105 viable cells/mL.
This medium is prepared by supplementing Iscove's modified Dulbecco's Medium (IMDM, Hazelton, Lenexa, KS) with albumin, transferri~, lipids and 2-mercaptoethanol. Bovine albumin (Boehringer-Mannheim, Indianapolis, IN) is added at 500 ~g/mL; human transferrin (Boehringer-Mannheim, Indianapolis, IN) is added at 100 ~g/mL; soy~ean lipid (Boehringer-Mannheim, Indianapolis, IN) is added at 50 ~g/mL; and 2-mercaptoethanol (Sigma, St. Louis, MO) is added at 5 x 10-5 M.
Serial dilutions of human interleukin-3 or multi-functional hematopoietic receptor agonist proteins are made in triplicate series in tissue culture medium supplemented as stated above in 96 well Costar 3596 tissue culture plates. Each well contained 50 ~l of medium containing interleukin-3 or multi-functional hematopoietic receptor agonist proteins once serial dilutions are completed.
Control wells contained tissue culture medium alone ~negative ccntrol). AML 193 1.3 cell suspensions prepared WO 97/~2g85 PCTf'US96/lS774 as above are added to each well by pipetting 50 ~l (2.5 x 104 cells) into each well. Tissue culture plates are incubated at 37~C with 5% CO2 in humidified air for 3 days.
On day 3, 0.5 ~Ci 3H-thymidine (2 Ci/mM, New England Muclear, Boston, MA) is added in 50 ~l of tissue culture medium. Cultures are incubated at 37~C with 5% CO2 in humidified air for 18-24 hours. Cellular DNA is harvested onto glass filter mats (Pharmacia LKB, Gaithersburg, MD) using a TOMTEC cell harvester (TOMTEC, Orange, CT) which utilized a water wash cycle followed by a 70% ethanol wash cycle. Filter mats are allowed to air dry and then placed into sample bags to which scintillation fluid (Scintiverse II, Fisher Scientific, St. Louis, MO or BetaPlate Scintillation Fluid, Pharmacia LKB, Gaithersburg, MD) is added. Beta emissions of samples from individual tissue culture wells are counted in a LKB BetaPlate model 1205 scintillation counter (Pharmacia LKB, Gaithersburg, MD) and data is expressed as counts per minute of 3H-thymidine incorporated into cells from each tissue culture well.
Activity of each human interleukin-3 preparation or multi-functional hematopoietic receptor agonist protein preparation is quantitated by measuring cell proliferation (3H-thymidine incorporation~ induced by graded concentrations of interleukin-3 or multi-functional hematopoietic receptor agonist. Typically, concentration ranges from 0.05 pM - 105 pM are quantitated in these assays. Activity is determined by measuring the dose of interleukin-3 or multi-functional hematopoietic receptor agonist protein which provides 50% of maximal proliferation (ECso = 0.5 x (maximum average counts per minute of 3H-thymidine incorporated per well among triplicate cultures of all concentrations of interleukin-3 tested - background proliferation measured by 3H-thymidine incorporation observed in triplicate cultures lacking interleukin-3).
- 35 This ECso value is also equivalent to 1 unit of bioactivity.
W O 97/12985 PCTAJS~6/1~774 Every assay is performed with native interleukin-3 as a reference s~andard so that relative activity levels could be assigned.
Typically, the multi-functional hematopoietic receptor agonist proteins were tested in a concentration range of 2000 pM to 0.06 pM titrated in serial 2 fold dilutions.
Activity for each sample was determined by the concentration which gave 50% of the maximal response by fitting a four-parameter logistic model to the data. It was observed that the upper plateau (maximal response) for the sample and the standard with which it was compared did not differ. Therefore relative potency calculation for each sample was determined from EC50 estimations for the sample and the standard as indicated above. AML 193.1.3 cells proliferate in response to hIL-3, hGM-CSF and hG-CSF.
Therefore the following additional assays were performed for some samples to demonstrate that the G-CSF receptor agonist portion of the multi-functional hematopoietic receptor agonist proteins was active. The proliferation assay was performed with the multi-functional hematopoietic receptor agonist plus and minus neutralizing monoclonal antibodies to the hIL-3 receptor agonist portion. In addition, a fusion molecule with the factor Xa cleavage site was cleaved then purified and the halves of the molecule were assayed for proliferative activity. These experiments showed that both components of the multi-functional hematopoietic receptor agonist proteins were active.
TF1 c-m~l liaand de~endent ;orQliferation assay The c-mpl ligand proliferative activity can be assayed usin~ a subclone of the pluripotential human cell line TF1 (Kitamura et al., J. Cell Physiol 140:323-334. [1989]). TFl cells are maintained in h-IL3 (100 U/mL). To establish a sub-clone responsive to c-mpl ligand, cells are maintained W O 971~2g85 PCTAJS96/15774 in passage media containing 10% supernatant ~rom BHK cells transfected with the gene expressing the 1-153 form of c-mpl ligand (pMOM26448). Most o~ the cells die, but a subset of cells survive. After dilution cloning, a c-mpl ligand responsive clone is selected, and these cells are split into passage media to a density of 0.3 x 106 cells/mL the day prior to a~say set-up. Passage media for these cells is ~he ~ollowing: RPMI 1640 (Gibco), 10% FBS (Harlan, Lot #91206), 10% c-mpl ligand supernatant ~rom transfected sHK cells, 1 mM sodium pyruvate (Gibco), 2 mM glutamine (Gibco), and 100 ug/mL penicillin-streptomycin (Gibco). The next day, cells are harvested and washed twice in RPMI or IMDM media with a final wash in the ATL, or assay media. ATL medium consists of the following:IMDM (Gibco), 500 ug/mL of bovine serum albumin, 100 ug/mL of human transferrin, 50 ug/mL soybean lipids, 4 x 10-8M beta-mercaptoethanol and 2 mL of A9909 (Sigma, antibiotic solution) per 1000 mL of ATL. Cells are diluted in assay media to a final density of 0.25 x 106 cells/mL in a 96-well low evaporation plate (Costar) to a final volume of 50 ul. Transient supernatants (conditioned media) from transfected clones are added at a volume of 50 ul as duplicate samples at a final concentration of 50% and diluted three-fold to a final dilution of 1.8%. Triplicate samples of a dose curve of IL-3 variant pMON13288 starting at 1 ng/mL and diluted using three-fold dilutions to 0.0014ng/mL is included as a positive control. Plates are incubated at 5% CO2 and 37~ C. At day six of culture, the plate is pulsed with 0.5 Ci of 3H/well (NEN) in a volume of 20 ul/well and allowed to incubate at 5% CO2 and 37~ C for four hours. The plate is harvested and counted on a Betaplate counter.
Other in vitro cell based ~roliferation assays ~ 35 Other in vitro cell based assays, known to those W O 97/12985 76 PCT~US96/15774 skilled in the art, may also be useful to determine the activity of the multi-functional hematopoietic receptor agonists depending on the factors that comprise the molecule in a similar manner as described in the AML 193.1.3 cell proliferation assay. The following are examples of other useful assays.
TF1 proliferation assay: TF1 is a pluripotential human cell line (Kitamura et al., J. Cell Physiol 140:323-334. [1989]) that responds to hIL-3.
32D proliferation assay: 32D is a murine IL-3 dependent cell line which does not respond to human IL-3 but does respond to human G-CSF which is not species restricted.
Baf/3 proliferation assay: Baf/3 is a murine IL-3 dependent cell line which does not respond to human IL-3 or human c-mpl ligand but does respond to human G-CSF which is not species restricted.
T1165 proliferation assay: T1165 cells are a IL-6 aependent murine cell line (Nordan et al., 1986) which respond to IL-6 and IL-11.
Human Plasma Clot meg-CSF Assay: Used to assay megakaryocyte colony formation activity (Mazur et al., 1981).
Tr~nqfected cçll lines:
Cell lines such as the murine Baf/3 cell line can be transfected with a colony stimulating factor receptor, such as the human G-CSF receptor or human c-mpl receptor, which the cell line does not have. These transfected cell lines can be used to determine the activity of the ligand for which the receptor has been transfected into the cell line.
One such transfected Baf/3 cell line was made by W O 97~2985 PCT~US96nS774 cloning the cDNA encoding c-mpl from a library made from a c-mpl responsive cell line and cloned into the multiple cloning site of the plasmid pcDNA3 (Invitrogen, San Diego Ca.). Baf/3 cells were transfected with the plasmid via electropora~ion. The cells were grown under G418 selection in the presence of mouse IL-3 in Wehi conditioned media.
Clones were established through limited dilution.
In a similar manner the human G-CS~ receptor can be transfected into the Baf/3 cell line and used to determine the bioactivity of the multi-functional hematopoietic receptor agoinsts.
Analysis cf c-mpl li~and proliferative activitv Methods 1. Bone marrow proliferation assay a. CD34~ Cell Purification:
Bone r.. arrow aspirates (15-20 mL) were obtained from normal allogeneic marrow donors after informed consent.
Cells were diluted 1:3 in phosphate buffered saline (PBS, Gibco-BRL), 30 mL were layered over 15 mL Histopaque-1077 (Sigma) and centrifuged for 30 minutes at 300 RCF. The mononuclear interface layer was collected and washed in PBS.
CD34+ cells were enriched from the mononuclear cell p~eparation using an affinity column per manufacturers instructions (CellPro, Inc, Bothell WA). After enrichment, the purity of CD34+ cells was 70% on average as determined by using flow cytometric analysis using anti-CD34 monoclonal antibody conjugated to fluorescein and anti-CD38 conjugated to phycoery~hrin (Becton Dickinson, San ~ose CA).
Cells were resuspended at 40,000 cells/mL in X-Vivo 10 media (Bio-whittaker~ Walkersville, MD) and 1 mL was plated ~ 35 in 12-well tissue culture plates (Costar). The growth _ W O 97/12985 78 PCTrUS9611~774 factor rhIL-3 was added at 100 ng/mL (pMON5873) was added to some wells. hIL3 variants were used at 10 ng/mL to 100 ng/mL. Conditioned media from BHK cells transfected with plasmid encoding c-mpl ligand or multi-~unctional 5 hematopoietic receptor agonists were tested by addition of 100 ~1 of supernatant added to 1 mL cultures (approximately a 10% dilution). Cells were incubated at 37~C ~or 8-14 days at 5% CO2 in a 37~C humidified incubator.
b. Cell Harvest and Analysis:
At the end of the culture period a total cell count was obtained ~or each condition. For ~luorescence analysis and ploidy determination cells were washed in megakaryocyte buffer (MK buffer, 13.6 mM sodium citrate, 1 mM
theophylline, 2.2 ~lm PGEl, 11 mM glucose, 3% w/v BSA, in PBS, pH 7.4,) (Tomer et al., Blood 70: 1735-1742, 19~7) resuspended in 500 ,ul of MK buffer containing anti-CD41a FITC antibody (1:200, AMAC, Westbrook, ME) and washed in MK
buffer. For DNA analysis cells were permeablized in MK
bu~er containing 0.5% Tween 20 ~Fisher, ~air Lawn MJ)for 20 min. on ice ~ollowed by fixation in 0.5% Tween-20 and 196 paraformaldehyde (Fisher Chemical) ~or 30 minutes followed by incubation in propidium iodide ~Calbiochem, La Jolla Ca) (50 ,Ug/mL) with RNA-ase (400 U/mL) in 55% v/v MK bu~fer (200mOsm) for 1-2 hours on ice. Cells were analyzed on a FACScan or Vantage flow cytometer ~Becton Dickinson, San Jose, CA~. Green ~luorescence (CD41a-FITC) was collected along with linear and log signals for red ~luorescence (PI) to determine DNA ploidy. All cells were collected to determine the percent of cells that were CD41+. Data analysis was performed using software by LYSIS (Becton Dickinson, San Jose, CA). Percent of cells expressing the CD41 antigen was obtained from ~low cytometry analysis(Percent). Absolute (Abs) number o~ CD41+ cells/mL
was calculated by: (Abs)=(Cell Count)*(Percent)/100.
_ CA 0223406l l998-04-06 W O 97/12985 PCT~US96/I5774 2. Megakaryocyte fibrin clot assay.
CD34+ enriched population were isolated as described above.
Cells were suspended at 25,000 cells/mL with or without cytokine(s) in a media consisting of a base Iscoves IMDM
media supplemented with 0.3% B~A, 0.4mg/mL apo-transferrin, 6.67~M FeC12, 25~g/mL CaC12, 25~g/mL L-asparagine, 500~g/mL
~-amino-n-caproic acid and penicillin/streptomycin. Prior to plating into 35mm plates, thrombin was added (0.25 Units/mL) to initiate clot formation. Cells were incubated at 37~C for 13 days at 5% CO2 in a 37~C humidified incubator.
At the end o~ the culture period plates were ~ixed with methanol:acetone (1:3), air dried and stored at -200C until staining. A peroxidase immunocytochemistry staining procedure ~s used (Zymed, Histostain-SP. San Francisco, CA) using a cocktail of primary monoclonal antibodies consisting o~ anti-CD41a, CD42 and CD61. Colonies were counted after staining and classified as negative, CFU-MK (small colonies, 1-2 foci and less that approx. 25 cells), BFU-MK (large, multi-foci colonies with > 25 cells) or mixed colonies (mixture of both posi~ive and negative cells.
Methvlcellulose Assa~
This assay reflects the ability o~ colony stimulating factors to stimulate normal bone marrow cells to produce different types of hematopoietic colonies in vitro (Bradley et al., Aust. Exp Biol. Sci. 44:287-300, 1966), Pluznik et al., J. Cell Comp. Physio 66:319-324, 1965).
Methods Approximately 30 mL o~ fresh, normal, healthy bone marrow W O 97112985 80 PCT~US96/15774 aspirate are obtained from individuals following informed consent. Under sterile conditions samples are diluted 1:5 with a lX PBS (#14040.059 Li~e Technologies, ~aithersburg, MD.) solution in a 50 mL conical tube (~25339-50 Corning, ,~
Corning MD). Ficoll (Histopaque 1077 Sigma H-8889) is layered under the diluted sample and centrifuged, 300 x g for 30 min. The mononuclear cell band is removed and washed two times in lX PBS and once with 1~ BSA PBS (CellPro Co., Bothel, WA!. Mononuclear cells are counted and CD34+ cells are selected using the Ceprate LC (CD34) Kit (CellPro Co., Bothel, WA) column. This fractionation is performed since all stem and progenitor cells within the bone marrow display CD34 surface antigen.
Cultures are set up in triplicate with a final volume of 1.0 mL in a 35 X 10 mm petri dish (Nunc#174926). Culture medium is purchased from ~erry Fox Labs. (HCC-4230 medium (Terry Fox Labs, Vancouver, s.C., Canada) and erythropoietin (Amgen, Thousand oaks, CA.) is added to the culture media.
3,000-10,000 CD34+ cells are added per dish. Recombinant IL-3, purified from mammalian cells or E. coli, and multi-functional hematopoietic receptor agonist proteins, in conditioned media from trans~ected mammalian cells or purified from conditioned media from transfected m~mm~l ian cells or ~. coli, are added to give final concentrations ranging from .001 nM to 10 nM. Recombinant hIL-3, GM-CSF, c-mpl ligand and multi-functional hematopoietic receptor agonist are supplied in house. G-CSF (Neupogen) is from Amgen (Thousand Oaks Calf.). Cultures are resuspended using a 3cc syringe and 1.0 mL is dispensed per dish. Control (baseline response) cultures received no colony stimulating factors. Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox ~ab. H2400).
Cultures are incubated at 37~C, 5% CO2 in humidified air.
Hematopoietic colonies which are defined as greater than 50 CA 0223406l l998-04-06 W O 97/12985 81 PCTnUS96~lS774 cells are counted on the day of peak response ~days 10-11) using a Nikon inverted phase microscope with a 40x objective combination. Groups of cells containing fewer than 50 cells are referred to as clusters. Alternatively colonies can be identified by spreading the colonies on a slide and stained or they can be picked, resuspended and spun onto cytospin slides for staining.
Hl~m~n Cord Blood Hemopoietic Growth Factor AssaYs Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity.
However, human bone marrow is not always available, and there is considerable variability between donors. Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al., PNAS USA 89:4109-113, 1992; Mayani et al., Blood 81:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily available on a regular basis. There is also a potential to reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of cryopreserved cells for this purpose. By modifying the culture conditions, and/or analyzing for lineage specific markers, it is be possible to assay specifically for granulocyte / macrophage colonies (CFU-GM), for megakaryocyte CSF activity, or for high proliferative potential colony forming cell (HPP-CFC) activity.
Methods Mononuclear cells (MNC) are isolated from cord blood within 24 hr. of collection, using a standard density gradient (1.077 g/mL Histopaque). Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14-, CD34+ cells; panning for SBA-, CD34+ fraction using coated flasks from Applied Immune Science (Santa Clara, CA); and CD34+ selection using a CellPro (Bothell, WA) avidin column.
Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) are prepared with lx104 cells in lml of 0.9%
methycellulose containing medium without additional growth factors (Methocult H4230 from Stem Cell Technologies, Vancouver, BC.). In some experiments, Methocult H4330 containing erythropoietin (EPO) was used instead of Methocult H4230, or Stem Cell Factor ~SCF), 50 ng/mL
(Biosource International, Camarillo, CA) was added. After culturing for 7-9 days, colonies containing >30 cells are counted. In order to rule out subjective bias in scoring, assays are scored blind.
Additional details about recombinant DMA methods which may be used to create the variants, express them in bacteria, m~mm~l ian cells or insect cells, purification and refold of the desired proteins and assays for determining the bioactvity of the proteins may be found in co-filed Applications WO 95/00646, WO 94/12639, WO 94/12638, WO
95/20976, WO 95/21197, WO 95/20977, WO 95/21254 and US
08/383,035 which are hereby incorporated by reference in their entirety.
Further details known to those skilled in the art may be found in T. Maniatis, et al., Molecular Clonin~, A
T~hor~torv Manual, Cold Spring Harbor Laboratory, 1982) and references cited therein, incorporated herein by referencei and in J. Sambrook, et al., Molecular CloPina, A Laboratorv Ma~~ , 2nd edition, Cold Spring Harbor Laboratory, 1989) and references cited therein, incorporated herein by reference.
W O 97/12985 83 PCTnUS96~5774 TART.~ 1 OTlTGoNucLEoTID~s c-mplNcoI
ACGTCCATGGCMTCNCCNGCNCCNCCTGCTTGTGCACTCCGAGTC
(SEQ ID NO:13) N=A,C,G or T
Ecompl ATGCACGAATTCCCTGACGCAGAGGGTGGA
(SEQ ID NO:14) c-mplHindIII TGACAAGCTTACCTGACGCAGAGGGTGGACCCT
(SEQ ID MO:15) 4L-5' AATTCGGCAA (SEQ ID NO:16) 4L-3' CATGTTGCCG (SEQ ID NO:17) 20 5L-5' AATTCGGCGGCAA ~SEQ ID NO:18) 5L-3' CATGTTGCCGCCG (SEQ ID NO:19) 8L-5' AATTCGGCGGCAACGGCGGCAA ~SEQ ID No:20) 8L-3' CATGTTGCCGCCGTTGCCGCCG (SEQ ID NO:21) 31-5' CGATCCATGGAGGTTCACCCTTTGCCT (SEQ ID No:22) 30 31-3' GATCAAGCTTATGGGCACTGGCTCAGTCT (SEQ ID No:23) 35-5' CGATACATGTTGCCTACACCTGTCCTG (SEQ ID NO:24) 35-3' GATCAAGCTTAAGGGTGAACCTCTGGGCA (SEQ ID NO:25) 39-5' CGATCCATGGTCCTGCTGCCTGCTGTG (SEQ ID NO:26) 39-3' GATCAAGCTTAAGGTGTAGGCAAAGGGTG (SEQ ID NO:27) 40 43-5' CGATCCATGGCTGTGGACTTTAGCTTGGGA
(SEQ ID NO:28) 43-3' GATCAAGCTTAAGGCAGCAGGACAGGTGT (SEQ ID No:29) 45 45-5' CGATCCATGGACTTTAGCTTGGGAGAA (SEQ ID NO:30) 45-3' GATCAAGCTTACACAGCAGGCAGCAGGAC (SEQ ID NO:31) 49-5' CGATCCATGGGAGAATGGAAAACCCAG (SEQ ID NO:32) 49-3' GATCAAGCTTACAAGCTAAAGTCCACAGC (SEQ ID NO:33) W O 97/1298~ 84 PCTfUS96/15774 82-5' CGATCCATGGGACCCACTTGCCTCTCA ~SEQ ID NO:34) 82-3' GATCAAGCTTACAGTTGTCCCCGTGCTGC (SEQ ID NO:35) 109-5/ CAGTCCATGGGAACCCAGCTTCCTCCA (SEQ ID NO:36) 109-3' GATCAAGCTTAAAGGAGGCTCTGCAGGGC (SEQ ID NO:37) 10 116-5' CGATCCATGGGCAGGACCACAGCTCAC (SEQ ID NO:38) 116-3' GATCAAGCTTACTGTGGAGGAAGCTGGGTT
(SEQ ID NO:39) 15 120-5' CGATCCATGGCTCACAAGGATCCCAATGCC
(SEQ ID NO:40) 120-3~ GATCAAGCTTATGTGGTCCTGCCCTGTGG (SEQ ID NO:41) 20 123-5' CGATCCATGGATCCCAATGCCATCTTCCTG
(SEQ ID NO:42) 123-3' GATCAAGCTTACTTGTGAGCTGTGGTCCT (SEQ ID MO:43) 25 126-5' CGATCCATGGCCATCTTCCTGAGCTTCCAA
(SEQ ID No:44) 126-3' GATCAAGCTTAATTGGGATCCTTGTGAGCTGT
(SEQ ID NO:45) SYNNOXAl.REQ AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA
GAACGCGCAG GCTCAACAGT ACGTAGAGGG CGGTGGAGGC
TCC (SEQ ID No:46) ~5 SYNNOXA2.REQ CCGGGGAGCC TCCACCGCCC TCTACGTACT GTTGAGCCTG
CGCGTTCTCC AAGGTTTTCA GATAGAAGGT CAGTTTACGA
CGG (SEQ ID No:47) Llsyn.~or GTTACCCTTG AGCAAGCGCA 'GGAACAACAG GGTGGTGGCT
CTAACTGCTC TATAATGAT (SEQ ID NO:48) Llsyn.rev CGATCATTAT AGAGCAGTTA GAGCCACCAC CCTGTTGTTC
CTGCGCTTGC TCAAGG (SEQ ID NO:49) 45 L3syn.for GTTACCCTTG AGCAAGCGCA GGAACAACAG GGTGGTGGCT
CTGGCGGTGG CAGCGGCGGC GGTTCTAACT GCTCTATAAT
GAT (SEQ ID NO:50) L3syn.rev CGATCATTAT AGAGCAGTTA GAACCGCCGC CGCTGCCACC
GCCAGAGCCA CCACCCTGTT GTTCCTGCGC TTGCTCAAGG
(SEQ ID NO:51) r W O 97/1298~ 85 PCT~US96/1~774 35start.seq GATCGACCAT GGCTCTGGAC CCGAACAACC TC
(SEQ ID MO:52) 34rev.seq CTCGATTACG TACAAAGGTG CAGGTGGT
(SEQ ID No:53) 70start.seq GATCGACCAT GGCTAATGCA TCAGGTATTG AG
(SEQ ID N3:54) 10 69rev.seq CTCGATTACG TATTCTAAGT TCTTGACA
(SEQ ID NO:55~
91start.seq GATCGACCAT GGCTGCACCC TCTCGACATC CA
(SEQ ID NO:56) 9Orev.seq CTCGATTACG TAGGCCGTGG CAGAGGGC
(SEQ ID No:57) lOlstart.seq GATCGACCAT GGCTGCAGGT GACTGGCAAG AA
(SEQ ID No:58) lOOrev.seq CTCGATTACG TACTTGATGA TGATTGGA
(SEQ ID No:59) L-llstart.seq GCTCTGAGAG CCGCCAGAGC CGCCAGAGGG
CTGCGCAAGG TGGCGTAGAA CGCG (SEQ ID NO:60) L-llstop.seq CAGCCCTCTG GCGGCTCTGG CGGCTCTCAG
AGCTTCCTGC TCAAGTCTTT AGAG (SEQ ID MO:61) P-blstart.seq GGGCTGCGCA AGGTGGCG (SEQ ID NO:62) P-blstop.seq ACACCATTGG GCCCTGCCAG C (SEQ ID NO:63) 35 39start.seq GATCGACCAT GGCTTACAAG CTGTGCCACC CC
(SEQ ID MO:64) 38stop.Se~ CGATCGAAGC TTATTAGGTG GCACACAGCT TCTCCT
(SEQ ID NO:65) g7start.se~ GATCGACCAT GGCTCCCGAG TTGGGTCCCA CC
(SEQ ID Mo:66) 96stop.Seq CGATCGAAGC TTATTAGGAT ATCCCTTCCA GGGCCT
(SEQ ID NO:67) 126start.seq GATCGACCAT GGCTATGGCC CCTGCCCTGC AG
(SEQ ID No:68) 125stop.Seq CGATCGAAGC TTATTATCCC AGTTCTTCCA TCTGCT
(SEQ ID NO:69) W O 97/12985 86 PCT~US96/15774 133start.seq GATCGACCAT GGCTACCCAG GGTGCCATGC CG
(SEQ ID NO:70~
132stop.seq CGATCGAAGC TTATTAGGGC TGCAGGGCAG GGGCCA
(SEQ ID MO:71) 142start.se~ GATCGACCAT GGCTTCTGCT TTCCAGCGCC GG
(SEQ ID No:72) 141stop.Seq CGATCGAAGC TTATTAGGCG AAGGCCGGCA TGGCAC
(SEQ ID MO:73) GLYXAl GTAGAGGGCG GTGGAGGCTC C (SEQ ID NO:74) 15 GLYXA2 CCGGGGAGCC TCCACCGCCC TCTAC (SEQ ID NO:75) lGGGSfor TTCTACGCCA CCTTGCGCAG CCCGGCGGCG GCTCTGACAT
GTCTACACCA TTG (SEQ ID NO:76) 20 lGGGSrev CAATGGTGTA GACATGTCAG AGCCGCCGCC GGGCTGCGCA
AGGTGGCGTA GAA (SEQ ID NO:77) Synnoxal.req AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA
GAACGCGCAG GCTCAACAGT ACGTAGAGGG CGGTGGAGGC
TCC (SEQ ID NO:240) Synnoxa2.req CCGGGGAGCC TCCACCGCCC TCTACGTACT GTTGAGCCTG
CGCGTTCTCC AAGGTTTTCA GATAGAAGGT CAGTTTACGA
CGG (SEQ ID NO:241) ~0 W O 97/12985 87 PCTfUS96/15774 TART.F. 2 GT~.NF. SEOUENCES
pMoN30304 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGT (SEQ ID NO:78) pMoN26458 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC (SEQ ID NO:79) pMON28548 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCG
TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCTCACAAGGATCCC
AATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:80) pMON28500 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
W O 97/12985 88 PCT~US96/15774 CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCT
CCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTC
CTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTG
CCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAG
GACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTG
GGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTT
GGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCAC
AAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTC
CTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:81) pMON28501 TCCCCAGCTCCACCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTcTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCG
TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID MO:82) pMON28502 TCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGA~AGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGC
AACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGT
GACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACA
CCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAG
ACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG~GAGTGATGGCAGCA
CGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTC
CGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGG
ACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGA
AAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
(SEQ ID NO:83) W O 97112985 8g PCTAUS96/15774 Syntanl (SEQ ID NO:84) Syntan3 701 GAACAACAGT AC (SEQ ID NO:85) pMON31104 r401 CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
.
W O 97/1298S o PCTrUS96/15774 951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID No:86) pMON31105 951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:87) pMON31106 601 TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG .' W O 97/12985 91 PCTAUS9~15774 851 AAGGGATATC CCCCGAGTTG GGTCCCACCT TGGACACACT &CAGCTGGAC
951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:88) pMON31107 3Sl GTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
30951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:89) pMON31108 ~,801 CCTGCAGCTG GCAGGCTGCT TGAGCCAACT CCATAGCGGC CTTTTCCTCT
W O 97/12985 92 PCT~US96/15774 ~SEQ ID NO:90) f pMON31109 301 GTCTCTATCC TGATGGACCG AAACCTTCGA CTTCCA~ACC TGGAGAGCTT
451 AAAG~ATCTC ATAAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC
901 ACCTTGGACA CACTGCAGCT GGACGTCGCC GACTT~GCCA CCACCATCTG
(SEQ ID NO:91) pMOM31110 (SEQ ID NO:92) ~' pMON3 1111 t 151 CACTTAAAGA GACCACCTGC ACCTTTGCTG GACCCGAACA ACCTCAATGA
801 CCTG~AGCTG GCAGGCTGCT TGAGCCAACT CCATAGCGGC CTTTTCCTCT
(SEQ ID NO:93) pMON13 1 8 2 901 CTGTGTGCCA CCTAATAA (SEQ ID NO:94) pMON13 183 W O 97/12985 94 PCT~US96/15774 951 TGCCACCTAA TAA (SEQ ID NO:95) 20pMON13184 40901 GAAGGGATAT CCTAATAA (SEQ ID NO:96) pMOM13185 301 TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG ,~
-W O 97/12985 95 PCT~US96/15774 951 GATATCCTAA TAA (SEQ ID NO:97) 15pMON13186 35901 GAAGAACTGG GATAATAA (SEQ ID NO:98) pMON13187 ~~551 TGGAGGTGTC GTACCGCGTT CTACGCCACC TTGCGCAGCC CTCTGGCGGC
.
651 GATCC'AGGGC GATGGCGCAG CGCTCCAGGA GAAGCTGTGT GCCACCTACA
951 ACTGGGATAA TAA (SEQ ID NO:99) 10pMON13188 551 GCTTCC'TGCT CAAGTCTTTA GAGCAAGTGA GAAAGATCCA GGGCGATGGC
30901 GCCCTGCAGC CCTAATAA (SEQ ID N~:100) pMON13189 W O 97/1298S PCTAJS96~5774 951 GCAGCCCTAA TAA (SEQ ID NO:101) 5pMON13190 10151 AGGGCmGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
25901 CCGGCCTTCG CCTAATAA ~SEQ ID NO:102) pMON13191 g51 CTTCGCCTAA TAA (SEQ ID NO:103 pMON13192 W O 97112985 PCTrUS96/15774 20901 CAGGAGAAGC TGTGTGCCAC CTAATAA (SEQ ID NO:104) pMON13193 101 CTATCCTGAT GGACCGAAAC CTTCGACTTC CAAACCTG&A GAGCTTCGTA
951 GAAGCTGTGT GCCACCTAAT AA (SEQ ID NO:105) pMON25190 151 AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG.=CAATTCTTCG
W O 97/1298S PCT~US96/1S774 15901 CAGGCCCTGG AAGGGATATC CTAATAA (SEQ ID NO:106) pMON25191 451 TTGGC~l'CCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
951 CCTGGAAGGG ATATCCTAAT AA (SEQ ID NO:107) pMON13194 801 CCAGGGGCTC CTGCAGGCCC TGGAAGGGAT ATCCCCCGAG TTGGGTCCCA r 10901 CAGCAGATGG AAGAACTGGG ATAATAA (SEQ ID NO:108) pMON13195 951 GATGGAAGAA CTGGGATAAT AA (SEQ ID NO:109) pMON13196 601 GGCGATGGCG CAGCGCTCCA GGAGAAGCTG TGTGCCACCT ACAAGCTGTG ,~
W O 971~2985 101 PCT~US96/1~77~
5901 ATGGCCCCTG CCCTGCAGCC CTAATAA (SEQ ID NO:110) pMON13197 301 TTCTATCTGG TTACCCTTGA GCAAGC&CAG GAACAACAGT ACGTAGAGGG
801 ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGA~G
951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:lll) pMON13198 901 GGTGCCATGC CGGCCTTCGC CTAATAA (SEQ ID NO:112) CA 0223406l l998-04-06 W O 97/12985 102 PCTrUS96/15774 pMON13199 951 CATGCCGGCC TTCGCCTAAT AA (SEQ ID NO:113) pMON3 1112 951 GCAGCCCTAA TAA ~SEQ ID NO:114) pMON31113 W O 97/12985 103 PCTnUS96/I5774 201 AAATCTCCTG CCATGTCTGC CCCT&GCCAC GGCCGCACCC ACGCGACATC
' 251 CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID MO:115) pMON31114 1 ATGGCl'AACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
951 GCAGCCCTAA TAA (SEQ ID NO:116) pMON31115 W O 97/12985 104 PCT~US96/15774 351 CGGT&GAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
601 CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA r 951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:117) pMoN28505 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGAcTTccAAAccTGGAGAGcTTcGTAAGGGcTGTcAAGAAcTTAGAAAATGcATcAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTG
GACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACT
TGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTG
CAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCC
AATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCG
CCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGC
AGACTGAGCCAGTGCCCA (SEQ ID NO:118) pMoN28506 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
GGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTT
GGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTC
CTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCC
ACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGAC
CTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAG
TGCCCAGAGGTTCACCCT (SEQ ID NO:~l9) W O 97/12985 105 PCTfUS96n~774 pMON28507 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAG
CTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTT
CCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAA
CACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTC
AGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTC
AGTAAACTGCTl'CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTT
CACCCTTTGCCTACACCT (SEQ ID NO:120) pMOM28508 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCT~C~GGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCT (SEQ ID NO:121) pMON2850~
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGT
CTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACC
CA 0223406l l998-04-06 W O 97/~2985 106 PCTrUS96/}577~
ACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAG
GTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAAC
ATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGAC
TCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCT
5 GTCCTGCTGCCTGCTGTG (SEQ ID NO:122) pMON28510 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCC
TAAACTCCAAACATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
CTGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCA
CTTGCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCT
GCAGGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCC
TAGGGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCA~CATGGCGTCTCCCGCTCCGCC
TGCTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGA
CTGACCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACT
TTAGTTG (SEQ ID NO:123) pMON28511 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTG
CCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATG
GAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATG
GCAGCACGGGGACAACTG (SEQ ID MO:124) 45 pMON28512 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
W O 97/12985 107 PCT~US96/15774 CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCC
GCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTT
CACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCT
GCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTT (SEQ ID NO:125) pMON28513 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGA
GAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTT
CTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTC
CTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGA
ACCCAGCTTCCTCCACAG (SEQ ID NO:126) pMON28514 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACAGGGCAGGACCACA (SEQ ID NO:127) pMON28515 W O 97/1~985 108 PCT~US96/15774 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTC~AAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAG (SEQ ID NO:128) pMON28516 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTAC;'CTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATG
GCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAG
GCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGA
CAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTC
CTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACA
GCTCACAAGGATCCCAAT (SEQ ID NO:129) pMON28519 GcTAAcTGcTcTATAATGATcGATGAAATTATAcATcAcTTAAAGAGAccAccTGcAccT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATA~ATCTCCAAACATGGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTG
GACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTG
GGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACT
TGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTG
CAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCC
AATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCT
W O 97112985 109 PCT~US96/I~774 GCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGA
CTGAGCCAGTGCCCA (SEQ ID NO:130) pMO~28520 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
GGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTT
GGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTC
CTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCC
ACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCT (SEQ ID NO:131) pMON28521 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAG
CTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTT
CCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAA
CACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTC
AGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCT (SEQ ID NO:132) pMON28522 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
AACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGT
GACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACA
CCTGTCCTGCTGCCT (SEQ ID NO:133) pMON28523 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGT
CTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACC
ACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAG
GTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATG
GCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAA~CTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTG (SEQ ID NO:134) pMON28524 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGA~ACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCT
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTA~ACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCT
GTGGACTTTAGCTTG (SEQ ID NO:135) pMON28525 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
_ W O 97112985 111 PCT~US9~15774 CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTG (SEQ ID NO:136) pMON28526 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC~ACATGGCGTCTCCCGCT
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCT
GTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
CTGGGAGCAG~GACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCC
ACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCC
CTGCAGAGCCTCCTT (SEQ ID NO:137) pMON28527 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGA
GTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCA
GAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAA
TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTG
CTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTG
GGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACC
CAGCTTCCTCCACAG (SEQ ID NO:138) pMON28528 CA 0223406l l998-04-06 W O 97/12985 112 PCTrUS96/15774 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAA
CTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCT
TTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAG
ATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTG
ATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCT
GGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCA
CAGGGCAGGACCACA ~SEQ ID NO:13g) pMOM28529 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
AACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGT
GACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACA
CCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAG
ACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCA
CGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTC
CGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGG
ACCACAGCTCACAAG (SEQ ID MO:140) pMON28530 GCTAACTGCTC'TATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCG
TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
W O 97112985 113 PCT~US96/I5774 CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAAT (~EQ ID NO:141) pMON28533 GCTAACTGCTCTATAATGATCGATGA~ATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
GACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGTA
TGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCTCG
CATCCAATCATCATCAAGGCAGGTGACTG&CAAGAATTCCGGGAAAAACTGACGTTCTAT
TGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCCCCGG
TAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTA~AGAATCTCATAAA
TCTCCAAACATGGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTT
AGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCA
GTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTC
TCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGC
CTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCC
ATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGA
GGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCG
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCA (SEQ ID NO:142) pMON28534 GCTAACTGCI~ J ATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGA~AATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTG
GGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACC
CTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCC
CTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTT
GGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTC
CTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCC
ACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCT
GCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGA
CTGAGCCAGTGCCCAGAGGTTCACCCT (SEQ ID NO:143) pMoN28535 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
W O 97/12985 114 PCT~US96/15774 ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAG
CTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTT
CCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAA
CACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTC
AGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCTTTGCCTACACCT (SEQ ID NO:144) pMON28536 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCT (SEQ ID NO:145) pMON28537 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCA~GCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACC
AAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGG
GGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGT
CTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACC
ACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAG
GTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAAC
GGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTG
CTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTG
CCTACACCTGTCCTGCTGCCTGCTGTG (SEQ ID NO:146) pMON28538 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT ,~
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
CA 0223406l l998-04-06 ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATG
GCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTG (SEQ ID NO:147) pMoN28539 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTccGTcTccTccTTGGGGcccTGcAGAGccTccTTGGAAcccAGcTTccTccAcAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTC
AGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTT
CACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTG (SEQ ID NO:148) pMOM28540 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATG
GCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAG
GCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGA
CAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTC
CTCCTTGGGGCCCTGCAGAGCCTCCTT (SEQ ID NO:149) W O 97/12985 116 PCT~US96/15774 pMON28541 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACC'GTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCT
TGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTG
AGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTT
AGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCA
GTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTC
TCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGC
CTCCTTGGAACCCAGCTTCCTCCACAG (SEQ ID NO:150) 20 pMON2~3 54 2 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGA~AAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGA
GTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCA
GAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAA
TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTG
GGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACC
CAGCTTCCTCCACAGGGCAGGACCACA (SEQ ID NO:151) pMON28543 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC ~.
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CA 0223406l l998-04-06 W O 97/1298~ 117 PCT~US96/15774 CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACA&GGCAGGACCACAGCTCACAAG (SEQ ID NO:152) pMoN2 8544 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGAcATccAATcATcATcAAGGcAGGTGAcTGGcAAGAATTccGGGAAAAAcTGAcGTTc TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGC
GGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
AcAccTGTccTGcTGccTGcTGTGGAcTTTAGcTTGGGAGAATGGAAAAcccAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAAT (SEQ ID NO:153) pMON28545 GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCT
CACAAG (SEQ ID NO:154) pMON15981 251 CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA A~AACTGACG
CA 0223406l l998-04-06 W O 97/12985 118 PCT~US96/15774 951 CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAA TAA;
(SEQ ID NO:155) p~ON15982 401 CGTCTCCTCC GTCTAAAGAA TCTCATA~AT CTCCAAACAT GTCTCCCGAG
951 CTACCAGGGG CTCCTGCAGG CCCTGGAAGG GATATCCTAA TAA;
(~EQ ID NO:156) pMON15965 401 CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTTCTGCT ,~
-W O 97112985 ~CTAUS96/15774 (SEQ ID NO:157) pMON15966 35(SEQ ID NO:158 pMON15967 W O 97/12985 120 PCT~US96/15774 (SEQ ID NO:159) pMON15960 1051 CTACGCCACC TTGCGCAGCC CTGATAA (SEQ ID NO:160 TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACA~
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:249) PMON3Zl33 TCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCTCACAAGGATCCC ,-CA 0223406l l998-04-06 AATGCCATCTTCCTGAGCTTCCAACACCTGCTCC&AGGAAAGGTGCGTTTCCTGATGCTT
GTAGGAGGGTCCACCCTCTGCGTCAGG (SEQ ID NO:250) pMON32134 TCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCAT
GTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTG
CTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCA
CAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAA
CTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTC
CTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCT
CACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGT
TTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG ~SEQ ID NO:251) 15 Pmonl3181 301 CGTTCTATCT GGTTACCCTT GAGCAAGCGC AGGAACAACA GTACGTAgag 351 ggcggtggag gctcCCCGGG TGAACCGTCT GGTCCAATCT CTACTATCAA
451 CCGCATGCAA GCTT (SEQ ID No:257) Pmonl3180.Seg 301 CGTTCTATCT GGTTACCCTT GAGCAAGCGC AGGAACAACA GTACGTAgag 351 ggcggtggag gctcCCCGGG TGGTGGTTCT GGCGGCGGCT CCAACATGTA
401 AGGTACCGCA TGCAAGCTT (SEQ ID NO:258) _ W O 97/12985 122 PCT~US96/15774 T~RT.F. 3 PROTEIN SEOUENC~S
pMON26458pep SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeukeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe (SEQ ID NO:161) pMOM28548pep SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAla SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArg (SEQ ID NO-162) pMON28500 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuGysValArgGluPheGlyAsnMetAlaSer ProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisVal LeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeu ProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGln AspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGlnLeu GlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeu ,-GlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHis CA 0223406l l998-04-06 W O 97112985 123 PCT~US96/15774 LysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPhe LeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:163) pMON28501 ; SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLySThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAla SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLySThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeUSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPrOProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:164) pMOM28502 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGly AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr ProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAla ArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnVal ArgLeuLeuLeuGlyAla~euGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArg ThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGly LysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:165) 13182.Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ilt~ Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro W O 97/12985 124 PCT~US96/15774 Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly 5 Leu Leu Gln Ala Leu Glu Gly Il e Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu 10 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SF~Q ID NO: 166) 13183 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 20 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 25 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala 3 0 Gly Cys Leu Ser &ln Leu ~Iis Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg 3 5 Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:167) 1318a . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg 45 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp 50 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly W O 97/12985 125 PCT~US96/15774 Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His l eu Gln Ser Phe 5 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser - Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cy5 His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 10 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser ~SEQ ID NO:168) 15 13185 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu 2 0 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg H1s Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro 25 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln 3 0 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg E~is Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu 35 Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO: 169 ) 13186 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 45 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile I,eu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 50 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe W O 97/12985 126 PCT~US96/15774 Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Ar~ Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu 5 Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu 10 Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( SEQ ID NO: 17 0 ) 13187 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 2 0 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro 2 5 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Se~ HiS Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu 3 0 Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu 3 5 Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( SEQ ID NO: 171 ) 40 13188 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His HiS Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu 45 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro 50 Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg CA 0223406l l998-04-06 W O 97~12985 127 PCT~US96tlS774 Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr ~ys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly 5 Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu 10 Gln Pro (SEQ ID NO: 172 ) 13189 . Pept 15 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Il~_ Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 20 Ala Ala Pro Ser Arg Xis Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu I,ys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala 2 5 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys 3 0 Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr 3 5 Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ( SEQ ID NO :173 ) 13190 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 45 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln 50 Arg Arg Ala Gly Gly Val Leu val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu W O 97/12985 128 PCT~US96/15774 Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly HiS Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS
5 Ser Gly Lell Phe :~eu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala ( SEQ ID NO: 17 4 ) 13191 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg 15 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp 2 0 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 2 5 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Al,. Thr Tyr Lys Leu Cys HiS Pro Glu Glu Leu Val Leu Leu Gly HiS Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 3 0 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala 3 5 Phe Ala ( SEQ ID NO: 17 5 ) 13192 . Pept 40 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 45 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly GIy Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu CyS
His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro 50 Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly I,eu Phe Leu Tyr Gln Gly ,~
Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr -W O 97/lZ985 129 PCT~US96/15774 Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser HiS Leu Gln Ser Phe Leu Glu 5 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr ( SEQ ID NO: 17 6 ) 13193 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 15 val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 2Q Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala 25 Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg 3 0 Ala Gly Gly Val Leu Val Ala - Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:177) 25190 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile HiS His Leu Lys Arg 4 0 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp 45 Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr ~hr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu 50 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr W O 97tl2985 130 PCT~US96/1~774 Pro Leu Gl~ Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser ( SEQ ID NO: 17 8 ) pMON25191. Pep Asn Cys Ser Ile Me~ Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn M~t Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile TrE) Gln Gln Met Glu Glu Leu Gly Me~: Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser ~eu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 30 Leu Val Leu Leu Gly His Ser I eu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:179) 131g4 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Ilys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp 40 Val Ser Ile Leu Met ASp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu 45 Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser ~is Leu ~ln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 50 Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala ,-Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu , CA 0223406l l998-04-06 5 131 PCTAUS9fi~1~774 Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr 5 Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( S13Q ID NO :180 ) 13195 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu ASp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 15 Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro 20 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu 2 5 Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln 3 0 Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ( SEQ ID NO: 181 ) 3 5 1319 6 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu 40 Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro 45 Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg 50 Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln ..
W O 97/1298~ 132 PCT~JS96/15774 Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala 5 Pro Ala Leu Gln Pro ( SEQ ID NO :182 ) 13197 . Pept 10 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu ~et Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 15 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Glrl Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr GlrL Gly Ala 20 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala 25 Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 3 0 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ~SEQ ID NO: 183 ) 1319 8 . Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro I-eu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile 40 Glu Ala Ile Leu Arg Asn Leu Gln Pro CyS Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Plle Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln 45 Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 50 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser ,.
Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala W O 97/12985 PCTnUS96/1577~
Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala ( SEQ ID NO :184 ) 13199 . Pept 10 Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr 15 Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln 2~ Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 25 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met 3 0 Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:185) 31104.Pep Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg 40 His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser W O 97/12985 13~ PCTrUS96/15774 Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 5 Ala Pro Ala Leu Gln Pro ~SEQ ID NO:186) 31105 . Pep 10 Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His ~is Leu Lys Arg 15 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala 20 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser Xis Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys 25 Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser l,eu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala 3 0 Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ( SEQ ID NO: 187 ) 31106 . Pep Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His HiS Leu Lys Ar~ Pro Pro Ala Pro Leu Leu 40 Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn 45 Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val 50 Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys Xis Pro Glu Glu Leu Val Leu Leu Gly ,~
His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser W O 97112985 135 PCTnUS96n5774 Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 5 Ala Pro Ala Leu Gln Pro ~SEQ ID N0:188) 31107 . Pep 10 Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser 15 Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala 20 Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys 25 Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp val Ala 3 0 Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO :189 ) 31108 . Pep Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro 45 Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe 50 Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp W O 97/1298~ 13~ PCTAUS96/15774 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu G1n Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp 5 Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:l90) 31109 . Pep 10 Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp 15 Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val :I.ys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu 20 Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly 2 5 Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln ~la Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu 3 0 Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:l91) 31110 . Pep Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln &ln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu 40 Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro 45 Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe 50 Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp W O 97/12985 137 PCT~US96/15774 Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:192) 31111.Pep Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly.Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Ly~ Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu HiS Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID MO:193) pMON15981 MetAlaAsnCysSerIleMetIleAspGluIleIleHiSHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr pheTyrLeuvalThrLeuGluGlnAlaGlnGluGlnGlnTyrvalGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaTyrLysLeuCySHisproGluGluLeuvalLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeUASpThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGly ValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeUArgHis LeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeu ProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAla AlaLeuGlnGluLysLeuCysAlaThr (SEQ ID MO:194) W O 97/12985 138 PCTnJS96/1~774 pMON15982 MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGl.uProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu ArgHisLeuAlaGlnproGlyGlyGlyserAspMetAlaThrproLeuGlyproAlaser SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln AlaLeuGlnLeuAlaGlyCysLeuSerGln~euHisSerGlyLeuPhe~euTyrGlnGly LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:195) pMON15965 MetAlaAsnCysSerIleMetIleAspGluIleIleHiSHisLeuLysArgProProAla ProLeuLeuAspproAsnAsnLeuAsnAspGluAspvalserIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer PheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGly~laAlaLeuGln GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis SerLeuGlyIleProTrpAlaProLeuSerSerCySProSerGlnAlaLeuGlnLeuAla GlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196) pMON15966 MetAlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet ,~
ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu CA 0223406l l998-04-06 W O 97/~298S 139 PCT~US96/I5774 GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly SerAspMetAlaThrProLeuGlyProAlaSerSerLeUproGlnserpheLeuLeuLys SerLeuGluGlnvalArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeucys AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSer ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:197) pMON15967 MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerproGlyGluproserGlyproIleserThrIleAsnproserproproserLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeu GlyProAlaSerSerLeuProGlnSerPheLeuLeuLySSerLeuGluGlnValArgLys IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeucysAlaThrTyrLysLeucysHis ProGluGluLeuValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSer CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu LeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:198) pMON31112.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisproIleHisIleLysAspGlyAspTrpAsnGlupheArgArgLysLeuThr PheTyrLeuLysThrLeu&luAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe ~ AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro (SEQ I~ NO:l99) CA 0223406l 1998-04-06 W O 97/1~985 140 PCT~US96/15774 pMON31113.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyPro~leSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLySLeuCySHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID NO:200) pMON31114.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisPr IleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgVal~euArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:201) pMON31115.pep MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAsplleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIle~isIleLysAspGlyASpTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe CA 0223406l l998-04-06 W O 97/1298~ 141 PCT~US96~5774 GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThr~euGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID No:202) pMON28505 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer 2~ ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal AsppheserLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaPro ProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSer ArgLeuSerGlnCysPro (SEQ ID No:203) pMON28506 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu GlyThrGlnLeuproproGlnGlyArgThrThrAlaHisLysAspproAsnAlaIlephe LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer ThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAsp LeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGln CysProGluValHisPro (SEQ ID MO:204) pMoN28507 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro .
CA 0223406l l998-04-06 W O 97tl298~ 1~2 PCT~US96/lS774 LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln LeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu ProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGln HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal ArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal HisProLeuProThrPro (SEQ ID No:205) pMON28508 AlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySAsn~euGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluP~oSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeULeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCySProGluValHisProLeuPro ThrProValLeuLeuPro (SEQ ID NC:206) pMON28509 AlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleI~eIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLyS
ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn MetAlaSerProAlaProProAlaCysAspLeuAr~ValLeuSerLysLeuLeuArgAsp SerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro W O 97/12985 143 PcTnJsg6ns774 ValLeuLeuProAlaVa~ (S~Q ID No:207) pMOM28510 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerPro AlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeu HisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuPro AlaValAspPheSerLeu (SEQ ID NO:208) pMON28511 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeu ProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMet GluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMet AlaAlaArgGlyGlnLeu (SEQ ID No:209) pMON28512 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMetAlaSerPro .
W O 97/12985 144 PCTrUS96/1~77~
AlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeu ~isSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuPro AlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeu (SEQ ID NO:210) pMON28513 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspAr~AsnLeu ArgLeuProAsnLeuGluSerPheValAryAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuvalThrLeuGluGlnAlaGlnGluGlnGlnTyrvalGluGlyGlyGlyGlyser ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysserproAsnMetGlyAr~ThrThrAlaHisLysAspproAsnAlaIlepheLeu SerPheGlnIIisLeuLeuArgGlyLysValArgPheLeu~etLeuValGlyGlySerThr LeuCysValArgGluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeu ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCys ProGluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGly GluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeu LeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCySLeuSerSerLeu LeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGly ThrGlnLeuProProGln (SEQ ID NO:211) pMON28514 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaG~nGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgvalLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro ProGlnGlyArgThrThr (SEQ ID NO:212) pMON28515 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe WO 9'71129'85 145 PCT~US96/15774 TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHlsValLeuHisSerArgLeuSerGlnCySPrOGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeUGlyGlUTrpLySThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLys (SEQ ID MO:213) pMON28516 AlaAsnCysSerIleMetIleAspGluIleIleHisHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaIlePheLeuSerPheG~ n~i sT~euLeuArgGlyLysval ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys AlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGly GlnLeuGly~_~ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu LeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThr AlaHisLysAspProAsn (SEQ ID NO:214) pMON28519 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLySValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAlaProPro AlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArg LeuSerGlnCysPro (SEQ ID NO:215) pMON28520 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuproAsnLeuGluserphevalArgAlavalLysAsnLeuGluAsnAlaserGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr 10 LeuLeuLeuGluGlyvalMe~tAlaAlaArgGlyGlnLeuGlyproThrcysLeuserser LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePhe LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer ThrLeuCysValArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeu ArgValLeuSerLysLeuLeuArgAspSerHisVal~euHisSerArgLeuSerGlnCys ProGluValHisPro (SEQ ID NO:216) pMON28521 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluproserGlyproIleserThrIleAsnproserproproserLysGluser HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln LeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyT~rGlnLeu ProproGlnGlyArgThrThrAlaHisLysAspproAsnAlaIlepheLeuserpheGln HisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal ArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysASpLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrPro (SEQ ID NO:217) pMON28522 AlaAsnCysSerIleMetIleAspGluIleIleHis~isLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluproserGlyproIleserThrIleAsnproserproproserLysGluser HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTr~LysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg ~CA 02234061 1998-04-06 W O 97112985 147 PCT~US96/15774 AspSerHisV~lLeuHisSerArgLeuSerGlnCySProGluValHisProLeuProThr ProValLeuLeuPro (SEQ ID NO:218) pMON28523 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer 10 ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleASnProSerProProSerLysGluSer HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaVal (SEQ ID MO:219) pMOM28524 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuÇly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAla ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHis SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla ValAspPheSerLeu (SEQ ID No:220) pMON28525 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln W O 97/12985 lg8 PCT~US96/15774 GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnKisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeu (SEQ ID NO:221) pMON28526 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuA-rgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyASnMetAlaSerProAla ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHiSValLeuHis SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla ValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIle LeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyPro ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAla LeuGlnSerLeuLeu (SEQ ID NO:222) pMON28527 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr LeuCysValArgGluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr GlnLeuProProGln (SEQ I~ NO:223) pMON28528 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly ,~
IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer W O 97/12985 149 PCTnUS96/15774 ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLys LeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisPro LeuProThrProValLeuLeuProAlaValASpPheSerLeuGlyGluTrpLysThrGln MetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyVal MetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSer GlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProPro GlnGlyArgThrThr (SEQ ID NO:224) pMOM28529 AlaAsnCysSerIleMetIleAspGluIleIleXisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProI~eIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly AsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArg AspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThr ProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAla ArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnVal ArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArg ThrThrAlaHisLys (SEQ ID NO:225) pMON28530 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAla SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsn (SEQ ID NO:226) pMON28533 W O 97/12985 150 PCTAJS96/1~774 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGluValHisProLeuProThrProValLeuLeuProAlaVal AspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeu GlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThr CysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeu GlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSer ProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisVal LeuHisSerArgLeuSerGlnCysPro (SEQ ID NO:227) pMON28534 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetLeuProThrProValLeuLeuProAlaValAspPheSerLeu GlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThr LeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSer LeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu GlyThrGlnLeuproproGlnGlyArgThrThrAlaHisLysAspproAsnAlaIlephe LeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySer ThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProPro AlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArg LeuSerGlnCysProGluValHisPro (SEQ ID NO:228) pMoN28535 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGln LeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeu ProProGlnGlyArgThrThrAlaHisLySASpProAsnAlaIlePheLeuSerPheGln t~
HisLeuLeuArgGlyLysValArgPheLeUMetLeUValGlyGlySerThrLeuCysVal CA 0223406l l998-04-06 W O 97/12985 151 PCr~US96/15774 ArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysASpLeu ArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCyS
ProGluValHisProLeuProThrPro (SEQ ID NO:229) pMON28536 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly 10 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuPro (SEQ ID NO:230) pMON28537 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThr LysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArg GlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArg LeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThr ThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLys ValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn GlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeu ProThrProValLeuLeuProAlaVal (SEQ ID NO:231) pMON28538 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAsp W O 97/12985 152 PCTrUS96/15774 IleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGly ProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGly AlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsn&lyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProA'aValAspPheSerLeu (SEQ ID NO:232) pMON28539 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal HisProLeuProThrProValLeuLeuProAlaValASpPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeu (SEQ ID MO:233) pMON28540 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeu,ProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHiSLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys AlaGlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGly GlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu LeuLeuGlyAlaLeuGlnSerLeuLeu (SEQ ID No:234) pMON28541 AlaAsnCysSerIleMetIleAspGluIleIleHiSHiSLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLySASnLeuGluAsnAlaSerGly W O 97/12985 153 PCT~US96/15774 IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr LeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAla CysAspLeuArgValLeuSerLysLeuLeuArgAspSer~IiSValLeuHisSerArgLeu SerGlnCysProGluValHisProLeuProThrProValLeuLeuProAlaValAspPhe SerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAla ValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeu SerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSer LeuLeuGlyThrGlnLeuProProGln (SEQ ID NO:235) pMON285~2 AlaAsnCysSerIleMetIleAspGluIleIleHlsHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr GlnLeuProProGlnGlyArgThrThr (SEQ ID NO:236) pMON28543 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro ProGlnGlyArgThrThrAlaHisLys (SEQ ID No:237) W O 97/12985 154 PCT~US96/15774 pMoN28544 AlaAsncysserIleMetIleAspGluIleIleHisHisLeuLysArgproproAlapro LeuLeuAspP-oAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnprocysLeuproserAlaThrAlaAlaproser ArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluproserGlyproIleserThrIleAsnproserproproserLysGluser 10 HisLysserproAsnMetAlaIlepheLeuserpheGlnHisLeuLeuArgGlyLysval ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsn (SEQ ID NO:238) pMoN28545 AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisproILeIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThrphe TyrLeuValT~.rLeuGluGlnAlaGlnGluGlnGlnTyrValGlUGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHiSLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCySProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAla HisLys ~SEQ ID NO:239) pMON32132 SerProAlaProProAlaCysAspLeuArgValLeuSerLySLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHiSProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeUSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPrOPrOGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCySValArg ~SEQ ID NO:2 52) W O 97112985 155 PCT~US96/15774 SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLySThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlavalThrLeuLeuLeuGluGlyvalMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAlaHisLysAspPro AsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeu ValGlyGlySerThrLeuCysValArg (SEQ ID NO:253) SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHis ValLeuHisSerArgLeuSerGlnCySProGluValHisProLeuProThrProValLeu LeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGln LeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeu LeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla HisLysAspProAsnAlaIlePheLeuSerPheGlnHiSLeuLeuArgGlyLysValArg PheLeuMetLeuValGlyGlySerThrLeuCysValArg (SEQ ID NO:254) W O 97/12985 PCT~US96/15774 lS6 The following examples will illustrate the invention in greater detail although it will be understood that the invention is not limited to these specific examples.
F~X~MPT.F~ 1 Construction of ~ar~ntal BH~ exoression vector A. Removal of AflIII site from m~mm~l ian expression plasmid.
A new ~mm~l ian expression vector was constructed to accept NcoI-HindIII or AflIII-HindIII gene fra~ments in-frame and 3' to the hIL-3 receptor agonist pMON13146 (WO
94/12638) gene and a mouse IgG2b linker fragment. First, the single AflIII site was removed from pMON3934, which is a derivative of pMON3359. pMON3359 is a pUC18-based vector containing a mammalian expression cassette. The cassette includes a herpes simplex viral promoter IEllO ~-800 to +120) followed by a modified human IL-3 signal peptide sequence and an SV40 late poly-adenylation (poly-A) signal which has been subcloned into the pUC18 polylinker (See Hippenmeyer et al., Bio/Technology, 1993, pp.1037-1041).
The modified human IL-3 signal sequence, which facilitates secretion of gene products outside of the cell, is flan~ed by a BamHI site on the 5' end and a unique NcoI site on the 3' end. A unique HindIII site is 3' to the NcoI site and 5 to the poly-A sequence. The DNA sequence encoding the signal peptide is shown below (res~riction enzyme sites are indicated above). ~he ATG (methionine) codon within ~he NcoI site is in-frame with the ini~iator ATG of the signal peptide (underlined);
W 0 97/1298~ PCTrUS96/~57~4 BamHI NcoI
5'GGATCCACC~T~AGCCGCC~GCCCGTCCTGCTCCTGCTCCAACTCCTGGTCCGCCCCGCCATGG
(SEQ ID NO:255) The single A~lIII site was removed ~rom pMoN3934 by digestion with AflIII followed by filling in the overhangs - by addition of a DNA polymerase and nucleotides. The digested DNA fragment was purified via Magic PCR Clean up kit (Promega) and ligated with T4 DNA ligase. The ligation reaction was transformed into DH5~ ~ and the cells were plated onto LB-agar plus ampicillin. Individual colonies were screened for the loss of the AflIII site by restriction analysis with A~lIII and HindIII which results in a single fragment i~ the AflIII site was removed. The resulting plasmid was designated pMoN30275.
B. Transfer o~ hIL-3 receptor agonist pMON13416/IgG2b cassette into pMON30275.
The McoI-HindIII ~ragment (ca. 425 bp) from pMoN30245 was ligated to the McoI-HindIII fragment (ca. 3800 bp) of the pMON30275. pMON30245 (WO 94/12638) contains the gene coding ~or hIL-3 receptor agonist pMON13416 joined to a mouse IgG2b hinge fragment. Immediately 3' to the IgG2b hinge and 5~ to the HindIII site is an A~lIII site. Genes can be cloned into the AflIII-HindIII sites as NcoI-HindIII
or AflIII-HindIII fragments in frame with the hIL-3 variant pMON13416/IgG2b hinge to create novel chimeras. The NcoI
site and the AflIII site have compatible overhangs and will ligate but both recognition sites are lost. The plasmid, pMON30304 containing the DNA se~uence of (SEQ ID NO:78), coding for hIL-3 variant pMON13416 joined with a mouse IgG2b hinge region, was a result of this cloning.
.
~ 35 F~MPT~F 2 W O 97/12985 PCT~US96/15774 Constructio~ of an intermediate plasmid cont~intna one co~v of the c-m~l liqand (1-153) aene of the dimer template In order to generate a plasmid DNA with the coding sequence of c-mpl (1-153) ligand ~ollowed by a unique EcoRI
restriction site, the gene is isolated via reverse transcriptase/polymerase chain reaction (RT/PCR). Human fetal (lot #38130) and adult liver (lot #46018) A~ RNA are obtained from Clontech (Palo Alto, CA) for source of c-mpl ligand messenger RNA (mRNA). The first strand cDNA
reactions are carried out using a cDNA Cycle~ Kit obtained from Invitrogen (San Diego, CA). In the RT reaction, random primers and oligo dT primer are used to generate cDNA from a combination of human and fetal liver mRNA. For amplification of c-mpl ligand gene fragment encoding amino acids 1-153, the RT product serves as the template for PCR
with a combination of the primers, Forward primer: c-mplNcoI
(SEQ ID NO:13) and Reverse primer: Ecompl. The c-mplNcoI
primer ann~als to the c-mpl ligand gene (bases #279-311 based on c-mpl ligand sequence from Gene bank accession #L33410 or de Sauvage et al., Nature 369: 533-538 (1994)) and encodes a NcoI restriction enzyme site immediately 5~ to the first codon (Ser~l) of c-mpl ligand. The NcoI
restriction enzyme site codes for methionine and alanine codons prior to Ser+l and includes codon degeneracy for the Ala codon and the first four codons (Ser, Pro, Ala, & Pro) of c-mpl ligand. The Ecompl primer anneals to bases #720-737 of c-mpl ligand and encodes an EcoRI site (GAATTC) in-frame with the c-mpl ligand gene immediately following Arg-153. The EcoRI site creates Glu and Phe codons following Arg-153. The ca. 480 bp PCR product was purified, digested with NcoI and EcoRI and ligated to the NcoI-EcoRI vector fragment of pMON3993 (ca. 4550 bp.). pMON3993 was a derivative of pMoM3359 (described in Example 1). The human W O 97/12985 PCT~US96/I5~74 IL-3 signal peptide sequence, which had been subcloned as a BamHI fragment into the unique BamHI site between the IE110 promoter and poly-A signal, contains an NcoI site at its 3' end and is followed by a unique EcoRI site. The plasmid, pMON26458 containing the DNA sequence of ~SEQ ID NO:79), coding for c-mpl ligand amino acids 1-153 (SEQ ID NO:161), was the result of this cloning.
~MPLE 3 Construction of the parental plasmids containing the second genes of the dimer templates For amplification of c-mpl ligand gene fragments starting at amino acid 1 (Ser) with a termination codon following amino acid 153 (Arg), the RT reaction from Example 2 serves as the template for PCR with a combination of the following primers; c-mplNcoI (SEQ ID NO:13) (forward primer) and c-mplHindIII ~SEQ ID NO:15) (reverse primer). The c-mplMcoI
(SEQ ID NO: 13) primer is described in Example 2. The c-mplHindIII (SEQ ID NO:15) primer, which anneals to bases #716-737 of c-mpl ligand, adds both a termination codon and a HindIII restriction enzyme site immediately following the final codon, Arg1 53.
Two types of PCR products are generated from the RT
cDNA samples, one with a deletion of the codons for amino acids 112-115 and one without the deletion of these codons.
The c-mpl ligand PCR products (ca. 480 bp) are digested with NcoI and HindIII restriction enzymes for transfer to a mammalian expression vector, pMoN3934~ pMON3934 is digested with McoI and HindIII (ca. 3800 bp) and will accept the PCR
products.
Plasmid, pMON32132 ~SEQ ID NO:249), coding for c-mpl ligand amino acids 1-153 (~EQ ID NO:252) was a result of W O 97/12985 PCT~US96/15774 this cloning. Plasmid, pMON32134 (SEQ ID NO:250), coding for c-mpl ligand amino acids 1-153 (SEQ ID NO:253) was a result of this cloning. Plasmid, pMON32133 (SEQ ID NO:251), coding for c-mpl ligand amino acids 1-153 with a deletion of codons 112-115 (~112-115) (SEQ ID NO:254) was also a result of this cloning.
~.XAMpT . ~. 4 Generat;on of PCR dimer t~mnlate 5T- with a ~112-115 deletion in the second c-m~l liaand ~ene A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
fragment of pMoN26458 to the 1 Kbp NcoI/BstXI fragment from pMON32133 (containing a deletion of amino acids 112-115) along with the EcoRI/AflIII 5L synthetic oligonucleotide linker 5L-5' (SEQ ID NO:18) and 5L-3' (SEQ ID NO:19).
The EcoRI end of the linker will ligate to the EcoRI
end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMON32133, and neither restriction site will be retained upon ligation. The BstXI sites of pMoN26458 and pMON32133 will ligate as well. Plasmid, pMON28548, is a result of the cloning and contains the DNA
se~uence of (SEQ ID No:80) which encodes amino acids 1-153 c-mpl ligand fused via a GluPheGlyGlyAsnMetAla (SEQ ID
NO:222) linker to amino acids 1-153 c-mpl ligand that contains a deletion of amino acids 112-115 (SEQ ID NO:162).
~.XAMPT.~. 5 Generation of PCR ~imer tem~late 4L
A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
W O 97tl2985 PCTAJS96115774 fragment of pMOM26458 to the 1 Kbp NcoI/BstXI fragment from pMON32132 along with the EcoRI/AflIII 4L synthetic oligonucleotide linker 4L-5' (SEQ ID NO:16) and 4L-3' (SEQ
ID NO:17).
The EcoRI end of the linker will ligate to the EcoRI
- end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMON32132, and neither restriction site will be retained upon ligation. The BstXI sites of pMON26458 ar~d pMON32132 will ligate as well. The plasmid, pMoN28500, is a result of the cloning and contains the DNA
sequence of (SEQ ID NO:82) which encodes amino acids 1-153 c-mpl ligand fused via a GluPheGlyAsnMetAla (SEQ ID NO:223) linker (4L) to amino acids 1-153 c-mpl ligand (SEQ ID
NO:163).
F~Mp~E 6 Generation of PCR dimer t~mr~late 5T.
A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
fragment of pMoN26458 to the 1 Kbp NcoI/BstXI fragment from pMON32132 along with the EcoRI/AflIII 5L synthetic oligonucleotide linker SL-5' (SEQ ID NO:18) and 5~-3' (SEQ
ID NO:l9).
The EcoRI end of the linker will ligate to the EcoRI
end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMOM32132, and neither restriction site will be retained upon ligation. The BstXI sites of pMON26458 and pMON32132 will ligate as well. Plasmid, pMON28501 is a result of the cloning and contains the DNA
sequence of (SEQ ID NO: 82) which encodes amino acids 1-153 c-mpl ligand fused via a GluPheGlyGlyAsnMetAla (SEQ ID
NO:222~ linker t5~) to amino acids 1-153 c-mpl ligand (SEQ
ID NO:164).
EX~MP~.F. 7 ~neration of PCR ~imer t~m~lates 8L
A PCR template for generating novel forms of c-mpl ligand is constructed by ligating the 3.7 Kbp BstXI/EcoRI
fragment of pMON26458 to the 1 Kbp NcoI/BstXI fragment from pMON32134 along with the EcoRI/AflIII 8L synthetic oligonucleotide linker 8L-5' (SEQ ID NO:20~ and 8L-3' ~SEQ
ID NO:21).
The EcoRI end of the linker will ligate to the EcoRI
end of pMON26458. The AflIII end of the linker will ligate to the NcoI site of pMON32134, and neither restriction site will be retained upon ligation. The BstXI sites o~
pMoN26458 and pMON32134 will ligate as well. Plasmid, pMON28502 is a result of the cloning which contains the DNA
sequence of (SEQ ID NO:83) and encodes amino acids 1-153 c-mpl ligand ~used via a GluPheGlyGlyAsnGlyGlyAsnMetAla (SEQ
ID No:224) linker ~8L) to amino acids 1-153 c-mpl ligand (SEQ ID NO:165).
F~MPLES 8-44 Generation of novel c-m~l liqand aenes with new N-terminus ~nd C-terminus A. PCR generation of genes encoding novel c-mpl ligand receptor agonists.
Genes encoding novel c-mpl ligand receptor agonists were generated using Method III (Horlick et al., Prot. Eng.
5:427-433, 1992 ). The PCR reactions were carried out using dimer templates, pMONs 28500, 28501, 28502 or 28548 and one of the sets of synthetic primer sets below (The first number -refers to the position of the ~irst amino acid in the original sequence. For example, the 31-5' and 31-3' refers to the 5~ and 3' oligo primers, receptively, for the sequence beginning at the codon corresponding to residue 31 of the original sequence.).
31-5' (SEQ ID NO:22) and 31-3~ (SEQ ID N~:23), 35-5' (SEQ ID
No:24) and 35-3' (SEQ ID NO:25), 39-5' (SEQ ID No:26) and 39-3' (SEQ lD NO:27), 43-5' (SEQ ID NO:28) and 43-3' (SEQ ID
No:29), 45-5' (SEQ ID NO:30) and 45-3' (SEQ ID NO:31), 49-5' (SEQ ID NO:32) and 49-3' (SEQ ID N5:33), 82-5' (SEQ ID
NO:34) and 82-3' (SEQ ID NO:35), 109-5' (SEQ ID NO:36) and 109-3' (SEQ ID No:37), 115-5' (SEQ ID NO:38) and 115-3' (SEQ
ID NO:39), 120-5~ (SEQ ID No:4o) and 120-3~ (SEQ ID NO:41), 123-5~ (SEQ ID NO:42) and 123-3~ (SEQ ID NO:43), 126-5' (SEQ
ID NO:44) and 126-3' (SEQ ID MO:45).
The templates and oligonucleotide sets used in the PCR
reactions are shown in Table 4. The products that were generated were about 480 bp and were purified via Magic PCR
Clean up kits (Promega).
B. Subcloning of novel c-mpl receptor agonist gene products into mammalian expression vector for generation of chimeras.
The c-mpl receptor agonist gene PCR products were digested with NcoI and HindIII or AflIII and HindIII
restriction enzymes (ca. 470 bp) for transfer to a m~mm~l ian expression vector. The expression vector, pMON30304, was digested with NcoI and HindIII (ca. 4200 bp) and accepts the PCR products as McoI-HindIII or AflIII-HindIII fragments.
The restriction digest of the PCR product and the resulting plasmids are shown in Table 4 W O 97/lZ985 PCTnUS96/15774 PCR Product PCR Product Resulting Breakpoint Example # PCR template Primer set Restriction Linker Plasmid in c-mpl Digest pMONligand Example 8 pMON28501 31 NcoI/HindIII 5L 28505 30-31 Example 9 pMON28501 35 AflIII/HindIII 5L 28506 34-35 Example 10 pMON28501 39 NcoI/HindIII 5L 28507 38-39 Example 11 pMON28501 43 NcoI/HindIII 5L 28508 42-43 Example 12 pMON28501 45 NcoI/HindIII 5L 28509 g4-45 Example 13 pMON28501 49 NcoI/HindIII 5L 28510 48-49 Example 14 pMON28501 82 NcoI/HindIII 5L 28511 81-82 Example 15 pMON28501 109 NcoI/HindIII 5L 28512 108-109 Example 16 p~ i28501 116 NcoI/HindIII 5L 28513 115-116 Example 171~MON28501 120 NcoI/HindIII 5L 28514 119-120 Example 18 pMON28501 123 NcoI/HindIII 5L 28515 122-123 Example 19 pMON28501 126 NcoI/HindIII 5L 28516 125-126 Example 20 pMCN28500 31 NcoI/HindIII 4L 28519 30-31 Example 21 pMON28500 35 AflIII/HindIII 4L 28520 34-35 Example 22 pMoN28500 39 NcoI/HindIII 4L 28521 38-39 Example 23 pMON28500 43 NcoI/HindIII 4L 28522 42-43 Example 24 pMON28500 45 NcoI/HindIII 4L 28523 44-45 Example 25 pMoN28500 49 NcoI/HindIII 4L 28524 48-49 Example 26 pMoN28500 82 NcoI/HindIII 4L 28525 81-82 Example 27 pMON28500 109 NcoI/HindIII 4L 28526 108-109 Example 28 pMON28500 116 NcoI/HindIII 4L 28527 115-116 Example 29 pMON28500 120 NcoI/HindIII 4L 28528 119-120 Example 30 pMON28500 123 NcoI/HindIII 4L 28529 122-123 Example 31 pMI~N28500 126 NcoI/HindIII 4L 28530~ 125-126 Example 32 pMoN28502 31 NcoI/HindIII 8L 28533 30-31 Example 33 pMON28502 35 AflIII/HindIII 8L 28534 34-35 Example 34 pMoN28502 39 NcoI/HindIII 8L 28535 38-39 Example 35 pMoN28502 43 NcoI/HindIII 8L 28536 42-43 W O 97J1~985 PCT~US96/15774 TABLE 4 cont.
PCR Pro~uct PCR Product Resulting Breakpoint Example H PCR templaLe Primer set Restrictio~ Linker Plasmid in c-mpl Digest pMONligand Example 36p~ 28502 45 NcoI/HindIII 8L 28537 44-45 Example 37pMON28502 49 NcoI/HindIII BL 28538 48-49 Example 38pMON28502 82 NcoI/HindIII 8L 28539 81-82 ~xa~ple 39pMON28502 109 NcoI/~indIII 8L 28540 108-109 Example 40pMON28502 116 NcoI/HlndIII 8L 285~1 115-116 EXAMPLE 41pMON28502 120 NcoI/HindIII 8L 28542 119-120 Example 42pMON28502 12~ NcoI/~indIII 8L 28543 122-123 Example 43pMON28502 126 NcoI/HindIII 8L 28544 125-126 Example 44pMoN28548 123 NcoI/HindIII 5L 28545 122-123 F'.~Z~MPT.F. 45 ~onstruction of pMONl5960 Construction of pMON15960, an intermediate plasmid used for constructing plasmids containing DNA sequences encoding G-CSF Serl7 with a new N-terminus and C-terminus. Plasmid pACYC177 (Chang, A.C.Y. and Cohen, S.N. ~. Bacteriol.
134:1141-1156, 1978) DNA was digested with restriction enzymes HindIII and BamHI, resulting in a 3092 base pair HindIII, BamHI fragment. Plasmid, pMON13037 (WO 95/21254), DNA was digested with BglII and FspI, resulting in a 616 base pair BglII, FspI fragment. A second sample of plasmid, pMON13037, DNA was digested with NcoI and HindIII, resulting in a 556 base pair McoI, HindIII fragment. The synthetic DNA oligonucleotides lGGGSfor (SEQ ID NO:76) and lGGGSrev (SEQ ID NO:77) were annealed to each other, and then digested with AflIII and FspI, resulting in a 21 base pair AflIII, FspI fragment. The restriction fragments were ligated, and the ligation reaction mixture was used to W O 97/12985 PCT~US96/15774 trans~orm E. coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA
was isolated and analyzed by restriction analysis to confirm the correct insert.
F.XAMPT,~. 46 Con~truction o~ ~MON15981 Construction o~ pMON15981, a plasmid cont~in~n~ DNA
sequences encoding a multi-~unctional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reac~ion using synthetic DNA oligonucleotides 38 stop (SEQ
ID NO:65) and 39 start (SEQ ID NO:64) as primers, resulting in the ampli~ication o~ a DNA ~ragment o~ 576 base pairs.
The amplified ~ragment was digested with restriction en~ymes HindIII and NcoI, resulting in a HindIII, NcoI ~ragment o~
558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and A~lIII, resulting in a HindIII, AflIII fragment of 4068 base pairs. The restriction ~ragments were ligated, and the ligation reaction mixture was used to trans~orm E.
coli K-12 strain JM101. Trans~ormant bacteria were selected on ampicillin-containing plates. Plasmid DMA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15981, contains the DNA sequence o~ (SEQ ID NO:155) which encodes the ~ollowing amlno acld se~uence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsn~euAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGlu~euGlyProThrLeuAspThrLeuGlnLeuAspVal CA 0223406l l998-04-06 W O 97/12985 PCTfUS96/15774 AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGly ValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHis LeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeu ProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAla AlaLeuGlnGluLysLeuCysAlaThr (SEQ ID NO:195) MPT.F. 47 constructiGn of DMON15982 Construction of pMON15982, a plasmid containing DNA
sequences encoding a multi-functional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 96 stop (SEQ
ID NO:67) and 97 start (SEQ ID NO: 66) as primers, resulting in the amplification of a DNA fragment of 576 base pairs.
The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII~ NcoI fragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, AflIII fragment of 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to transform E.
coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15982, contains the DNA sequence of (SEQ ID NO:157) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisproIleIleIleLysAlaGlyAspTrpGlnGlupheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla i W O 97112985 PCTrUS96/1~77 GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu ArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSer SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln AlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGly LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:196) ~XAMPLE 48 Co~truct;on of ~MQN15965 Construction of pMON15965, a plasmid containing DNA
sequences encoding a multi-~unctional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 142 stop (SEQ
ID NO:73) and 141 start (SEQ ID NO:72) as primers, resulting in the amplification o~ a DNA ~ragment of 576 base pairs.
The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII, NcoI ~ragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, A~lIII ~ragment o~ 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to transform E.
coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15965, contains the DNA sequence of (SEQ ID NO:157) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluASpValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHi~LysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal WO 97/lZ985 PCT/US96/15774 AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer PheLeuLeuLysserLeuGluGlnvalArgLysIleGlnGlyAspGlyAlaAlaLeuGln GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis SerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAla GlyCysLeuSe~GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196) F~AMPL~ 49 Construction of ~MON15966 ~onstruction of pMON15966, a plasmid containing DNA
sequences encoding a multi-functional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 126 stop (SEQ
ID NO:68) and 125 start (SEQ ID NO:69) as primers, resulting in the amplification of a DNA fragment o~ 576 base pairs. The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII, NcoI
fragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, AflIII fragment of 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to transform E. coli K-12 strain JM101.
Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15966, contains the DNA sequence of (SEQ ID
NO:158) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCySLeuProSerAlaThrAlaAlaPro : SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly W O 97tl2~85 PCTAUS96/15774 SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly SerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSerPheLeuLeuLys SerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCys AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer GlnLeuHisserGlyLeupheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleser ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:198 ~x~MpT~F~ 50 Construction of ~MON15967 Construc~ion of pMON15967, a plasmid containing DNA
sequences encoding a multi-functional hematopoietic receptor agonist. Plasmid, pMON15960, DNA was digested with restriction enzyme SmaI and used as template in a PCR
reaction using synthetic DNA oligonucleotides 132 stop (SEQ
ID NO:71) and 133 start (SEQ ID NO:70) as primers, resulting in the ampli~ication of a DNA ~ragment o~ 576 base pairs.
The amplified fragment was digested with restriction enzymes HindIII and NcoI, resulting in a HindIII, NcoI fragment of 558 base pairs. Plasmid, pMON13181, DNA was digested with HindIII and AflIII, resulting in a HindIII, AflIII fragment o~ 4068 base pairs. The restriction fragments were ligated, and the ligation reaction mixture was used to trans~orm E.
coli K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The plasmid, pMON15967, contains the DNA
sequence of (SEQ ID NO: ~59) which encodes the following amino acid sequence:
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysAr~ProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro WO 97~12985 PC~S96~i77 SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeu GlyProAlaSerSerLeuProGlnSerPheLeu~euLysSerLeuGluGlnValArgLys IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeucysAlaThrTyrLysLeucysHis ProGluGluLeuValLeuLeuGly~isSerLeuGlyIleProTrpAlaProLeuSerSer CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu LeuGlyMetAlaProAlaLeuGlnPro ~X~MpLE 51 Con~truction of ~MON13180, an intermediate ~l~smid used for constructina ~lasmids that contain DNA sequence encodina multi-functional hemato~oietic rece~tor a~onists.
Plasmid, pMON13046 (WO 95/21254), DNA was digested with restriction endonucleases XmaI and SnaBI, resulting in a 4018 base pair vector fragment. The 4018 base pair XmaI-SnaBI fragment was puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI) in which the 25 base pair XmaI-SnaBI insert fragment is not retained. The complimentary pair of synthetic oligonucleotides, glyxal (SEQ ID MO:74) and glyxa2 (SEQ ID NO:75), were designed to remove sequence encoding a factor Xa cleavage site. When properly assembled these oligonucleotides also result in XmaI and ~naBI ends. The primers, Glyxal and glyxa2, were annealed in annealing buffer (20mM Tris-HCl pH7.5, 10 mM
MgCl2, 50 mM NaCl) by heating at 70~C for ten minutes and allowed to slow cool. The 4018 base pair XmaI-~naBI
fragment from pMON13046 was ligated with the assembled oligonucleotides using T4 DNA~ligase (Boehringer Mannheim, Indianapolist IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were W O 97/12985 PCTfUS96/15774 selected on ampicillin-containing plates. Plasmid DNA was isolated from the transformants and analyzed using a PCR
based assay. Plasmid DNA from selected transformants was sequenced to confirm the correct insertion of the oligonucleotides. The resulting plasmid was designated pMON13180 and contains the DNA sequence of (SEQ ID NO:**).
E:XAMPT,~. 52 Co~truction of pMON13181, an intermediate ~ m;d used for construct:~n~ };)lasmids that contain DNA se~uences encodina mult;-functional hemato~oietic rece~tor a~onists.
Plasmid, pMON13047 (WO 95/21254), DNA was digested with restriction endonucleases XmaI and SnaBI, resulting in a 4063 base pair vector fragment. The 4063 base pair XmaI-SnaBI fragment was purified using a Magic DNA Clean-up ~ystem kit (Promega, Madison, WI) in which the 25 base pair XmaI-SnaBI insert fragment is not retained. The complimentary pair of synthetic oligonucleotides, glyxal (SEQ ID NO:74) and glyxa2 (SEQ ID NO:75), were designed to remove se~uence encoding the factor Xa cleavage site. When properly assembled these oligonucleotides also result in XmaI and SnaBI ends. Glyxal and glyxa2 were annealed in annealing buffer by heating at 70~C for ten minutes and allowed to slow cool. The 4063 base pair XmaI-SnaBI
fragment ~rom pMOM13047 was ligated with the assembled oligonucleotides using T4 DN~ ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from the transformants and analyzed using a PCR
based assay. Plasmid DNA from selected transformants was sequenced to confirm the correct insertion of the W O 9711Z985 PCTnUS96~774 oligonucleotides. The resulting plasmid was designated pMON13181 and contains the DNA sequence of (SEQ ID NO:**).
E:x~MpT~F~ 53 Construction of pMON13182 The new N-terminus/C-terminus gene in pMON13182 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 39 start (SEQ ID NO:64) and L-ll start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Serl7 sequence i. pMON13037 using the primer set, 38 stop (SEQ ID
NO:65) and L-ll stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Serl7 gene was created and amplified from the annealed Fragments Start and Stop using primers 39 start and 38 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells ~Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13182.
W O 97/1298S PCTrUS96/15774 E. coli strain JM101 was transformed with pMON13182 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13182, contains the DNA sequence of (SEQ ID No:a4) which encodes the following amino acid ~equence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile ~is His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu &lu Ser Phe val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met ~la Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly ~Iis Ser Leu Gly Ile Pro Trp Ala Pro ~eu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:166) F~.~Al~qpr.~. 54 C~n~truction of pMON13183 The new N-terminus/C-terminus gene in pMON13183 was created using Method I as described in Materials and Methods. "Fragment Start" was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 39 start (SEQ ID NO:64) and L-ll start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 38 stop (SEQ ID
No:65) and L-ll stop (SEQ I~ NO:61). The full-length new N
W O 97/~2985 PCT~US96/1577 terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 39 start and 38 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and A~lIII, resulting in a 4068 base pair vector ~ragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to transform E. coli strain DH5OC cells (Li~e Technologies, Gaithersburg, MD). Trans~ormant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13183.
E. coli strain JM101 was trans~ormed with pMON13183 ~or protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13183, contains the DMA ses~uence of (SEQ ID NO:95) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile .
W O 97/12985 PCT~US96/15774 Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Me~ Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe I~eu Glu Val Ser l~rr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys ~eu Cys Ala Thr (SEQ ID No:167) F~MPLE 55 ~onstruction of ~MON~3184 The new N-terminus/C-terminus gene in pMON13184 was created using Method I as described in Materials and Methods. Fragment Start was crea~ed and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 97 start (SEQ ID NO:66) and L-11 start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMOM13û37 using the primer set, 96 stop (SEQ ID
No:67) and L-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified from the annealed Fragments Start and Stop using 97 start and 96 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMOM13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DMA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform ~. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was WO 97112985 PC'r~'US96~5774 isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13184.
E . col i strain JM101 was transformed with pMON13184 for S protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13184, contains the DNA sequence of (SEQ ID NO:96) which encodes the following amino acid se~uence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg ~is Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:168) EX~MPLE 56 cQnstruction of ~MON13185 The new N-terminus/C-terminus gene in pMON13185 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 97 start (SEQ ID No:66) and L-ll start (SEQ ID Mo:60).
Fragment Stop was created and ampli~ied from G-CSF Serl7 W O 97/12985 PCT~US96/15774 sequence in pMON13037 using the primer set, 96 stop (SEQ ID
NO:67 and L-~l stop (SEQ ID NO:61). The ~ull-length new N
terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 97 start and 96 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, ~I). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to con~irm the correct insert. The resulting plasmid was designated pMON13185.
E. col i strain JM101 was trans~ormed with pMON13185 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13185, contains the DNA se~uence o~
(SEQ ID Mo:67) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ald Pro Leu Leu Asp Pro Asn Asn Leu Asn As~ Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gl~ Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr WO 971129a5 PCT/US96/1~;774 Thr Ile Trp Gln Gln Met Glu Giu ~eu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln r Arg Arg Ala Gly Gly Val Leu ~al Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:169) EXAMPT.F. 57 Construction of ~MON13186 The new N-terminus/C-terminuS gene in pMON13186 was created using Method I as described in Materials and Methods. Fragment Start was created and ampli~ied from G-CSF Ser17 sequence in pMON13037 using the primer set, 126 start (SEQ ID NO:68) and L-11 start (SEQ ID No:60).
Fragment Stop was created and ampli~ied ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 125 stop (SEQ ID
NO:69) and k-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 126 start and 125 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector ~ragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life W O 97/12985 PCT~US96/15774 Technologies, Gaithersburg, MD). Trans~ormant ~acteria were selected on ampicillin-containing plates. Plasmid DMA was isolated and sequenced to confirm the correct insert. The resulting plasmid was desi~nated pMON13186.
E. coli strain JM101 was transformed with pMOM13186 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13186, contains the DNA sequence o~
(SEQ ID Mo:98) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Ty~ Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ~SEQ ID NO:170) E~MPTIF 58 Constructio~ of ~MON13187 The new N-terminus/C-terminus gene in pMON13187 was created using Method I as described in Materials and Methods. Fragment Start was created and ampli~ied from G-CSF Serl7 sequence in pMoNl3o37 using the primer set, 126 start (SEQ ID NO:68) and L-ll start (SEQ ID NO:60).
-W O 97112985 P ~ ~US96~5774 181 Fragment Stop was created and amplified ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 125 stop (SEQ ID
NO:69) and L-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified ~rom the annealed Fragments Start and Stop using 126 start and 125 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5a cells (Li~e Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and se~uenced to confirm the correct insert. The resulting plasmid was designated pMON13187.
E. coli strain JM101 was transformed with pMON13187 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13187, contains the DNA se~uence o~
(SEQ ID NO:99) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro W O 97/12g85 PCTrUS96/15774 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr ~eu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly ~SEQ ID NO:171) ~.XAMP~E 59 Construction o~ ~MON13188 The new ~-terminus/C-terminus gene in pMON13188 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 133 start tSEQ ID MO:70) and L-11 start (SEQ ID NO:60).
Fragment Stop was created and amplified ~rom G-CSF Ser17 sequence in pMON13037 using the primer set, 132 stop (SEQ ID
NO:71) and L-11 stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified from the annealed Fragments Start and Stop using 133 start and 132 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life W O 97/12985 PCT~US96/15774 Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to con~irm the correct insert. The resulting plasmid was designated pMON13188.
E. coli strain JM101 was transformed with pMON13188 ~or protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13188, contains the DNA sequence of (SEQ ID MO:100) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Glr- Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:172) ~ P~ 60 Con~truction o~ pMON13189 The new N-terminus/C-terminus gene in pMON13189 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified ~rom G-CSF Serl7 sequence in pMON13037 using the primer set, 133 start (SEQ ID NO:70) and L-ll start (SEQ ID No:60).
W O 97/12985 PCTrUS96/1~774 184 Fragment Stop was created and amplified ~rom G-CSF Ser17 sequence in pMOM13037 using the primer set, 132 stop (SEQ ID
~0:71) and L-11 stop (SEQ ID NO:61). The ~ull-length new N
terminus/C-terminus G-CSF Ser17 gene was created and amplified ~rom the annealed Fragments Start and Stop using 133 start and 132 stop.
The resulting DNA ~ragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and A~lIII, resulting in a 4068 base pair vector fragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to transform E. coli strain DH50~ cells ~Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DMA was isolated and se~uenced to confirm the correct insert. The resulting plasmid was designated pMON13189.
E. coli strain JM101 was transformed with pMON13189 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13189, contains the DNA sequence of (SEQ ID NO:101) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro W O 97/12985 PCT~US96/15774 Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:173) F.~MPT.~ 61 Construction of pMON13190 The new N-terminus/C-terminus gene in pMON13190 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 142 start (SEQ ID NO:72) and L-ll start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Serl7 se~uence in pMON13037 using the primer set, 141 stop (SEQ ID
NO:73) and L-ll stop (SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Serl7 gene was created and amplified from the annealed Fragments Start and Stop using 142 start and 141 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5~ cells (Life W O 97/12985 PCT~US96/15774 ~86 Technologies, Gaithersburg, MD). Trans~ormant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and se~uenced to confirm the correct insert. The resulting plasmid was designated pMON13190.
E. coli strain JM101 was transformed with pMON13190 for protein exLression and protein isolation from inclusion bodies.
The plasmid, pMON13190~ contains the DNA sequence o~
(SEQ ID NO:102) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln G1~ Ala Met Pro Ala Phe Ala (SEQ ID NO:174) FX~MP~E 62 Construction of pMON13191 The new N-terminuS/C-terminus gene in pMON13191 was created using Method I as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 142 W O 97112985 PCT~US96/15774 start (SEQ ID NO:72) and L-11 start (SEQ ID NO:60).
Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 141 stop (SEQ ID
NO:73) and L-11 stop ~SEQ ID NO:61). The full-length new N
terminus/C-terminus G-CSF Ser17 gene was created and ampli~ied ~rom the annealed Fragments Start and Stop using 142 start and 141 stop.
The resulting DNA fragment which contains the new gene was digested with restriction endonucleases NcoI and HindIII
and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to trans~orm E. coli strain DH5Oc cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm the correct insert. The resulting plasmid was designated pMON13191.
E. coli strain JM101 was transformed with pMON13191 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMOM131~1, contains the DNA sequence of (SEQ ID NO:103) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu - Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp '~ Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro W O 97/12985 PCT~US96/15774 Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe ~eu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys Xis Pro Glu Glu I,eu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:175) l~XAl'qPLE 63 Construction of l?MQN131~2 20 The new N-terminus/C-terminus gene in pMOM13192 was created using Method II as described in Materials and Methods. Fragment Start was created and aInpli~ied from G-CSF sequence in pMON13037 using the primer set, 3g start (SEQ ID No:64) and P-bl start (SEQ ID NO:62). Fragment Stop was created and amplified ~rom G-CSF Serl7 seguence in pMON13037 using the primer set, 38 stop (SEQ ID NO:65) and P-bl stop (SEQ ID No:63). Frayment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII. After purification, the digested Fragments Start and Stop were combined with and ligated to ~he approximately 3800 base pair NcoI-HindIII vector ~ragment of pMON3934.
The intermediate plasmid described above contained the ~ull length new N-terminus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases McoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the ~ull-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, CA 0223406l l998-04-06 W O 97/12985 PCTAUS96~1~774 189 pMON13180, was digested with restric~ion endonucleases HindIII and A~lIII, resulting in a 4023 base pair vector ~ragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to trans~orm E. col i strain DH5~ cells (Li~e Technologies, &aithers~urg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to con~irm the correct in,sertion of the new gene. The resulting plasmid was designated pMON13192.
E. coli strain JM101 was transformed with pMON13192 for protei~ expression and protein isolation from inclusion bodies.
The plasmid, pMON13192, contains the DNA sequence o~
(SEO ID NO:104) which encodes the ~ollowing amino acid se~uence:
13192.Pept Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp &lu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val ~lu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro ~eu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala ~er His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:176) W O 97/12985 PCT~US96/15774 ~XAMPLE 64 Construction of ~MON13193 5 The new N-terminus/C-terminuS gene in pMON13193 was created usiny Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 39 start (SEQ ID No:64) and P-bl start (SEQ ID NO:62).
10 Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 38 stop ~SEQ ID
NO:65) and P-bl stop (SEQ ID No:63). Fragment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII.
15 After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Ser17 gene and 20 was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Ser17 gene was isolated using Geneclean (BiolO1, Vista, CA). The intermediate plasmid, 25 pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer 30 Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH50C cells (Life Techrlologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to confirm the WO 97/12985 PCT/US9G/~5774 correct insertion of the new gene. The resulting plasmid was designated pMON13193.
E. coli strain JM101 was transformed with pMON13193 for protein expression and protein isolation ~rom inclusion bodies.
~.
The plasmid, pMON13193, contains the DNA sequence of (SEQ ID NO:105~ encodes the following amino acid se~uence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His HiS Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile ~lu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg ~is Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala ~ln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:177) E~MP~E 65 Construction of ~MON25190 The new N-terminus/C-terminus gene in pMON25190 was created using Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF se~uence in pMON13037 using the primer set, 97 start (SEQ ID Mo:66) and P-~l start (SEQ ID Mo:62). Fragment Stop ~, was created and amplified from G-CSF Ser17 sequence in W O 97/12985 PCTrUS96/15774 pMON13037 using the primer set, 96 stop (SEQ ID No:67) and P-bl stop (SEQ ID No:63)~ Fragment Start was digested with restriction endonuclease NcoI, and Fragment S~op was digested with restriction endonuclease HindIII. After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminuS G-CSF Serl7 gene and was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and puri~ied using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (soehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to confirm the correct insertion of the new gene. The resulting plasmid was designated pMON25190.
E. coli strain JM101 was transformed with pMON25190 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON25190, contains the DNA sequence of (SEQ ID NO:106) which encodes the following amino acid sequence: ~
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg ~7 Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp WO 97/12985 PCT/US96~15774 Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val ~eu Val Ala Ser Xis Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp (~ly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu I eu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln l:,eu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala ~eu Glu Gly Ile Ser (SEQ ID NO:178) F.~MpT.F. 66 Construction of pMON25191 The new M-terminus/C-terminuS gene in pMON25191 was created using Method II as described in Materlals and Methods. Fragment Start was created and amplified from G-CSF Serl7 se~uence in pMON13037 using the primer set, 97 start (SEQ ID NO:66) and P-bl start (SEQ ID NO:62).
Fragment Stop was created and amplified from G-CSF Serl7 se~uence in pMON13037 using the primer set, 96 stop (SEQ ID
NO:9 8) and P-bl stop (SEQ ID NO:63). Fragment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII~
After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Se:rl7 gene and was digested with restriction endonucleases NcoI and W O 97/12985 PCTrUS96/lS774 HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the ~ull-length new N-terminus/C-terminus G-CSF Ser17 gene was isolated using Geneclean (BiolO1, Vista, CA). The intermediate plasmid, pMON13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector ~ragment, and puri~ied using a Magic DNA Clean-up System kit (Prome~a, Madison, WI). The puri~ied restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion o~ the ligation reaction was used to t~ansform ~. coli strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid ~NA was isolated and sequenced to con~irm the correct insertion of the new gene. The resulting plasmid was designated pMON25191.
E. coli strain JM101 was transformed with pMON251~1 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON25191, contains the DMA se~uence o~
(SEQ ID NO:107) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His Xis Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu -W O 97112985 P ~ ~US96~774 Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:179) ~XA~PLE 67 Construction of pMO~13194 The new N-terminus/C-terminus gene in pMON13194 was created using Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF ~er17 sequence in pMON13037 using the primer set, 126 start (SEQ ID NO:68) and P-bl start (SEQ ID NO:62).
Fragment Stop was created and amplified from G-CSF Ser17 sequence in pMON13037 using the primer set, 125 stop (SEQ ID
NO:67) and P-bl stop (SEQ ID NO:63). Fragment Start was digested with restriction endonuclease McoI, and Fragment Stop was digested with restriction endonuclease HindIII.
After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Ser17 gene and was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Ser17 gene was isolated using Geneclean (BiolO1, Vista, CA). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction ~ragments were combined and ligated using T4 DNA ligase (Boehringer W O 97/12985 PCTrUS96/15774 Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to trans~orm E. coli strain DH5~ cells (Li~e Technologies, Gaithersburg, MD). Transformant bacteria were selected on amplcillin-containing plates. t Plasmid DMA was isolated and sequenced to con~irm the correct insertion o~ the new gene. The resulting plasmid r was designated pMON13194.
E. coli strain JM101 was transformed with pMON13194 for protein expression and protein isolation ~rom inclusion bodies.
The plasmid, pMON13194, contains the DNA sequence of (SEQ ID NO:108) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg HiS Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Ary Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:180) FXAMPT~ 68 Construct;on o~ ~MON13195 The new N-terminus/C-terminus gene in pMON13195 was created using Method II as described in Materials and W O 97/12985 PCTnUS96~15774 Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMOM13037 using the primer set, 126 start (SEQ ID NO:68) and P-bl start (SEQ ID NO:62).
Fragment S~op was created and amplified from G-CSF Serl7 sequence in pMOM13037 using the primer set, 125 stop (SEQ ID
No:69) and P-bl stop (SEQ ID NO:63). Fragment Start was digested with restriction endonuclease McoI, and Fragment Stop was digested with restriction endonuclease HindIII.
After purification, the digested Fragments Start and Stop were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMOM3934.
The intermediate plasmid described above contained the ~ull length new M-terminus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases NcoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new M-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, pMOM13181, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4068 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis~ IN). A portion of the ligation reaction was used to transform E. col i strain DH5a cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to confirm the correct insertion of the new gene. The resulting plasmid was designated pMON13195.
E. coli strain JM101 was transformed with pMOM13195 for protein expression and protein isolation from inclusion bodies.
W O 97/12985 PC~US96/15774 198 The plasmid, pMON13195, contains the DNA se~uence of (SEQ ID NO:109) which encodes the ~ollowing amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn ~eu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn ~eu Gln Pro Cys Leu Pro Ser Ala ~hr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg Hls Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr ~hr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:181) F.~MP~E 69 Construction of ~MON13196 The new N-terminus/C-terminus gene in pMON13196 was created uslng Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF sequence in pMOM13037 using the primer set, 133 start (SEQ ID NO:70) and P-bl start (SEQ ID NO:62). Fragment Stop was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 132 stop (SEQ ID NO:71) and P-bl stop (SEQ ID No:63)~ Fragment Start was digested with restriction endonuclease McoI, and Fragment Stop was digested with restriction endonuclease HindIII~ After puri~ication, the digested Fragments Start and Stop were W O 97~12g8~ PCT~US96flS774 lg9 combined with and ligated to the approximate~y 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terminus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases McoI and HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, pMON13180, was digested with restriction endonucleases HindIII and AflIII, resulting in a 4023 base pair vector fragment, and purified using a Magic DNA Clean-up System kit (Promega, Madison, WI). The purified restriction fragments were combined and ligated using T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN). A portion of the ligation reaction was used to transform E. col i strain DH5~ cells (Life Technologies, Gaithersburg, MD). Transformant bacteria were selected on ampicillin-containing plates.
Plasmid DNA was isolated and sequenced to con~irm the correct insertion of the new gene. The resulting plasmid was designated pMON13196.
~ . coli strain JM101 was transformed with pMON13196 for protein expression and protein isolation from inclusion bodies.
The plasmid, pMON13196, contains the DNA sequence of (SEQ ID NO:110) which encodes the following amino acid sequence:
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala W O 97/12985 PCT~US96/15774 Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys ~eu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO-182) F.~PT.F~ 70 Construction of ~MQN13197 The new M-terminus/C-terminus gene in pMON13197 was created using Method II as described in Materials and Methods. Fragment Start was created and amplified from G-CSF Serl7 sequence in pMON13037 using the primer set, 133 start (SEQ ID NO:70) and P-bl start (SEQ ID NO:62).
Fragment Stop was created and amplified from G-CSF Serl7 25 sequence in pMON13037 using the primer set, 132 stop (SEQ ID
NO:71) and P-bl stop (SEQ ID No:63). Fragment Start was digested with restriction endonuclease NcoI, and Fragment Stop was digested with restriction endonuclease HindIII.
After purification, the digested Fragments Start and Stop 30 were combined with and ligated to the approximately 3800 base pair NcoI-HindIII vector fragment of pMON3934.
The intermediate plasmid described above contained the full length new N-terr~inus/C-terminus G-CSF Serl7 gene and was digested with restriction endonucleases NcoI and 35 HindIII. The digested DNA was resolved on a 1% TAE gel, stained with ethidium bromide and the full-length new N-terminus/C-terminus G-CSF Serl7 gene was isolated using Geneclean (BiolOl, Vista, CA). The intermediate plasmid, ,~
pMON13 181, was digested with restriction endonucleases CA 0 2 2 3 4 0 61 19 9 8 - 0 4 - 0 6 . .
- - - - . - , .
DEMANDES OU E3R~V~TS VOLUMINEIJX
LA PRES~YTE PARTIE DE CEI IE DEMANDE OU CE~ BREVET
COMPRE~YD PLUS D'UN TOME.
CECI EST LE TOME / ~DE Z_ NOTE: Pour les ~omes additionels, ve~ ez c~ntacter le {3ureau c~nadien -des brevets z~3y~
JUIVIBO APPLICATIONSIPA~NTS
rHIS SECTION OF THE APPLICAT~ONIPATENT CONTAINS MORE
THAN ONE VOLUME
.
T~S IS VOLUME 1 OF '2 .
P~O~E: For additional v{~umes-please c~ntact~~h~e Canadian Patent ~ff~ce .
, . .,. :, ::' ' . ,. . ,' ... . .; .. ~, . . .. ..
Claims (41)
1. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 and R2 are independently selected from the group consisting of;
(I) A polypeptide comprising; a modified human G-CSF
amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can optionally be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively;
(II) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position g6 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2), capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 103-104 respectively;
(III) A polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID NO:256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128 respectively;
(IV) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro, Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Arp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; and wherein from 1 to 44 of the amino acids designated by xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and (V) a colony stimulating factor;
and wherein L1 is a linker capable of linking R1 to R2;
with the proviso that at least R1 or R2 is selected from the polypeptide of formula (I) , (II), or (III); and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 and R2 are independently selected from the group consisting of;
(I) A polypeptide comprising; a modified human G-CSF
amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can optionally be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively;
(II) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position g6 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2), capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 103-104 respectively;
(III) A polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID NO:256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128 respectively;
(IV) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro, Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Arp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; and wherein from 1 to 44 of the amino acids designated by xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and (V) a colony stimulating factor;
and wherein L1 is a linker capable of linking R1 to R2;
with the proviso that at least R1 or R2 is selected from the polypeptide of formula (I) , (II), or (III); and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
2. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 and R2 are independently selected from the group consisting of;
(I) A polypeptide comprising; a modified human G-CSF
amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively;
(II) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, his, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optlonally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; and wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 103-104 respectively;
(III) A polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID NO:256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 127-128 respectively;
(IV) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa xaa Xaa Xaa Xaa Xaa Xaa Xaa xaa xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at positlon 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Glu, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to la amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; and wherein from 1 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and (V) a colony stimulating factor;
and wherein L1 is a linker capable of linking R1 to R2;
with the proviso that at least R1 or R2 is selected from the polypeptide of formula (I) , (II), or (III); and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 and R2 are independently selected from the group consisting of;
(I) A polypeptide comprising; a modified human G-CSF
amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively;
(II) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, his, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optlonally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; and wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 103-104 respectively;
(III) A polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID NO:256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 127-128 respectively;
(IV) A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa xaa Xaa Xaa Xaa Xaa Xaa Xaa xaa xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at positlon 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Glu, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to la amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; and wherein from 1 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and (V) a colony stimulating factor;
and wherein L1 is a linker capable of linking R1 to R2;
with the proviso that at least R1 or R2 is selected from the polypeptide of formula (I) , (II), or (III); and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
3. The hematopoietic protein as recited in claim 1 wherein the polypeptide of (IV) is selected from the from the group consisting of;
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:225);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:226);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:227); and Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:228).
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:225);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:226);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:227); and Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:228).
4, The hematopoietic protein as recited in claim 2 wherein the polypeptide of (IV) is selected from the from the group consisting of;
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:225);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:226);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:227); and Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:228).
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:225);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:226);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:227); and Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:228).
5. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2/ or R2-R1 wherein R1 is a polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and M-termini at amino acids or 142-143 respectively;
wherein R2 is a polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at positlon 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human interleukin-3 amino acid sequence; and wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 103-104 respectively;
wherein L1 is a linker capable of linking R1 to R2; and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2/ or R2-R1 wherein R1 is a polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and M-termini at amino acids or 142-143 respectively;
wherein R2 is a polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe 125 130 (SEQ ID NO:2) wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at positlon 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human interleukin-3 amino acid sequence; and wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 103-104 respectively;
wherein L1 is a linker capable of linking R1 to R2; and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
6. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, Xis, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively; and R2 is a polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe. or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gin, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at posi.tion 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus; and wherein from 1 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3;
wherein L1 is a linker capable of linking R1 to R2; and additionally said hematopoietic protein can be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, Xis, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at position 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSF amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively; and R2 is a polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe. or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gin, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at posi.tion 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus; and wherein from 1 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3;
wherein L1 is a linker capable of linking R1 to R2; and additionally said hematopoietic protein can be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
7. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at posltion 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSP amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively; and R2 is a polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnxaaxaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID No:256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128;
wherein L1 is a linker capable of linking R1 to R2; and additionally said hematopoietic protein can be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human G-CSF amino acid sequence of the formula:
Xaa Xaa Xaa Gly Pro Ala Ser Ser Leu Pro Gln Ser Xaa Leu Leu Xaa Xaa Xaa Glu Gln Val Xaa Lys Xaa Gln Gly Xaa Gly Ala Xaa Leu Gln Glu Xaa Leu Xaa Ala Thr Tyr Lys Leu Xaa Xaa Xaa Glu Xaa Xaa Val Xaa Xaa Gly His Ser Xaa Gly Ile Pro Trp Ala Pro Leu Ser Ser Xaa Pro Ser Xaa Ala Leu Xaa Leu Ala Gly Xaa Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Xaa Thr Leu Gln Xaa Asp Val Ala Asp Phe Ala Xaa Thr Ile Trp Gln Gln Met Glu Xaa Xaa Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Xaa Gln Xaa Xaa Ala Gly Gly Val Leu Val Ala Ser Xaa Leu Gln Xaa Phe Leu Xaa Xaa Ser Tyr Arg Val Leu Xaa Xaa Leu Ala Gln Pro (SEQ ID NO:1) wherein Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
Xaa at position 2 is Pro or Leu;
Xaa at position 3 is Leu, Arg, Tyr or Ser;
Xaa at position 13 is Phe, Ser, His, Thr or Pro;
Xaa at position 16 is Lys, Pro, Ser, Thr or His;
Xaa at position 17 is Cys, Ser, Gly, Ala, Ile, Tyr or Arg;
Xaa at position 18 is Leu, Thr, Pro, His, Ile or Cys;
Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
Xaa at position 24 is Ile, Pro, Tyr or Leu;
Xaa at position 27 is Asp, or Gly;
Xaa at position 30 is Ala, Ile, Leu or Gly;
Xaa at position 34 is Lys or Ser;
Xaa at position 36 is Cys or Ser;
Xaa at position 42 is Cys or Ser;
Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
Xaa at position 44 is Pro, Gly, Arg, Asp, Val, Ala, His, Trp, Gln, or Thr;
Xaa at position 46 is Glu, Arg, Phe, Arg, Ile or Ala;
Xaa at position 47 is Leu or Thr;
Xaa at position 49 is Leu, Phe, Arg or Ser;
Xaa at position 50 is Leu, Ile, His, Pro or Tyr;
Xaa at position 54 is Leu or His;
Xaa at position 64 is Cys or Ser;
Xaa at position 67 is Gln, Lys, Leu or Cys;
Xaa at position 70 is Gln, Pro, Leu, Arg or Ser;
Xaa at position 74 is Cys or Ser;
Xaa at posltion 104 is Asp, Gly or Val;
Xaa at position 108 is Leu, Ala, Val, Arg, Trp, Gln or Gly;
Xaa at position 115 is Thr, His, Leu or Ala;
Xaa at position 120 is Gln, Gly, Arg, Lys or His Xaa at position 123 is Glu, Arg, Phe or Thr Xaa at position 144 is Phe, His, Arg, Pro, Leu, Gln or Glu;
Xaa at position 146 is Arg or Gln;
Xaa at position 147 is Arg or Gln;
Xaa at position 156 is His, Gly or Ser;
Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
Xaa at position 162 is Glu, Leu, Gly or Trp;
Xaa at position 163 is Val, Gly, Arg or Ala;
Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
Xaa at position 170 is His, Arg or Ser;
wherein optionally 1-11 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said modified human G-CSP amino acid sequence; and wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
or 142-143 respectively; and R2 is a polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnxaaxaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID No:256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128;
wherein L1 is a linker capable of linking R1 to R2; and additionally said hematopoietic protein can be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
8. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID NO: 256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capaple of joining the N-terminus to the C-terminus and having new C- and M-termini at amino acids;
50-51 88-89 or 127-128;
wherein R2 is a polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gl , Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human interleukin-3 amino acid sequence; and wherein from 1 to 44 of the amino acids designated by xaa are different from the corresponding amino acids of native (1-133) human interleukin-3;
wherein L1 is a linker capable of linking R1 to R2; and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID NO: 256) wherein;
Xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capaple of joining the N-terminus to the C-terminus and having new C- and M-termini at amino acids;
50-51 88-89 or 127-128;
wherein R2 is a polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;
Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;
Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;
Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;
Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser or Val;
Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val or Gly;
Xaa at position 23 is Ile, Val, Ala, Gly, Trp, Lys, Phe, Leu, Ser, or Arg;
Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;
Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;
Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;
Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;
Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys;
Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;
Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gl , Ala, or Glu;
Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;
Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe, Ile or Met;
Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;
Xaa at position 36 is Asp, Leu, or Val;
Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;
Xaa at position 38 is Asn, or Ala;
Xaa at position 40 is Leu, Trp, or Arg;
Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;
Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly or Ser;
Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala or Pro;
Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;
Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr, Ile, Val or Gly;
Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;
Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His, Phe, Met or Gln;
Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met;
Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala or Leu;
Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
Xaa at position 57 is Asn or Gly;
Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;
Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;
Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;
Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or His;
Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;
Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu;
Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn;
Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;
Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln, or Leu;
Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;
Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;
Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp;
Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;
Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;
Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
Xaa at position 85 is Leu, Asn, Val, or Gln;
Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
Xaa at position 87 is Leu, Ser, Trp, or Gly;
Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or Ser;
Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;
Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;
Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile or Leu;
Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro;
Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;
Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;
Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;
Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe, or His;
Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro;
Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;
Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
Xaa at position 103 is Asp, or Ser;
Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;
Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;
Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;
Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala or Pro;
Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser, or Trp;
Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;
Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;
Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;
Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;
Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;
Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;
Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;
Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;
Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;
Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys;
Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human interleukin-3 amino acid sequence; and wherein from 1 to 44 of the amino acids designated by xaa are different from the corresponding amino acids of native (1-133) human interleukin-3;
wherein L1 is a linker capable of linking R1 to R2; and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
9. The hematopoeitic protein of claim 6 or 8 wherein R2 is selected from the group consisting of;
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:225);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:226);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:227); and Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:228).
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:225);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:226);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:227); and Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln (SEQ ID NO:228).
10. A hematopoietic protein comprising; an amino acid sequence of the formula:
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID MO:256) wherein;
xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128 respectively;
wherein R2 is G-CSF or G-CSF Ser17;
wherein L1 is a linker capable of linking R1 to R2; and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
R1-L1-R2, R2-L1-R1, R1-R2, or R2-R1 wherein R1 is a polypeptide comprising; a modified human c-mpl ligand amino acid sequence of the formula:
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrPro ValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGlu ThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnXaaXaaXaa XaaGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysVal Arg (SEQ ID MO:256) wherein;
xaa at position 112 is deleted or Leu, Ala, Val, Ile, Pro, Phe, Trp, or Met;
Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, Ile, Trp, or Met;
Xaa at position 115 is deleted or Gln, Gly, Ser, Thr, Tyr, or Asn; and wherein the N-terminus is joined to the C-terminus directly or through a linker (L2) capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
50-51 88-89 or 127-128 respectively;
wherein R2 is G-CSF or G-CSF Ser17;
wherein L1 is a linker capable of linking R1 to R2; and said hematopoietic protein can optionally be immediately preceded by (methionine-1), (alanine-1) or (methionine-2, alanine-1).
11. The hematopoietic protein as recited in claim 1, 2, 3, 4, 5, 6, 7, 8, or 10 wherein said linker (L2) is selected from the group consisting of;
GlyGlyGlySer (SEQ ID MO:12);
GlyGlyGlySerGlyGlyGlySer (SEQ ID NO:242);
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer (SEQ ID No:243);
SerGlyGlySerGlyGlySer (SEQ ID No:244);
GluPheGlyAsnMetAla (SEQ ID NO:245);
GluPheGlyGlyAsnMetAla (SEQ ID NO:246);
GluPheGlyGlyAsnGlyGlyAsnMetAla (SEQ ID NO:247); and GlyGlySerAspMetAlaGly (SEQ ID NO:248).
GlyGlyGlySer (SEQ ID MO:12);
GlyGlyGlySerGlyGlyGlySer (SEQ ID NO:242);
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer (SEQ ID No:243);
SerGlyGlySerGlyGlySer (SEQ ID No:244);
GluPheGlyAsnMetAla (SEQ ID NO:245);
GluPheGlyGlyAsnMetAla (SEQ ID NO:246);
GluPheGlyGlyAsnGlyGlyAsnMetAla (SEQ ID NO:247); and GlyGlySerAspMetAlaGly (SEQ ID NO:248).
12. The hematopoietic protein as recited in claim 9 wherein said linker (L2) is selected from the group consisting of;
GlyGlyGlySer (SEQ ID NO:12);
GlyGlyGlySerGlyGlyGlySer (SEQ ID NO:242);
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer (SEQ ID NO:243);
SerGlyGlySerGlyGlySer (SEQ ID No:244);
GluPheGlyAsnMetAla (SEQ ID NO:245);
GluPheGlyGlyAsnMetAla (SEQ ID NO:246);
GluPheGlyGlyAsnGlyGlyAsnMetAla (SEQ ID No:247); and GlyGlySerAspMetAlaGly (SEQ ID NO:248).
GlyGlyGlySer (SEQ ID NO:12);
GlyGlyGlySerGlyGlyGlySer (SEQ ID NO:242);
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer (SEQ ID NO:243);
SerGlyGlySerGlyGlySer (SEQ ID No:244);
GluPheGlyAsnMetAla (SEQ ID NO:245);
GluPheGlyGlyAsnMetAla (SEQ ID NO:246);
GluPheGlyGlyAsnGlyGlyAsnMetAla (SEQ ID No:247); and GlyGlySerAspMetAlaGly (SEQ ID NO:248).
13. The hematopoietic protein as recited in claim 1 wherein said protein is selected from the group consisting of;
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:166);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:167);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala ASp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:168);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:169);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:170);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:171);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:172);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser HiS Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:173);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:177);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:175);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:176);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile HiS His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:177);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:179);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:181);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:182);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Glu Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:183);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:184);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGly ValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHis LeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeu ProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAla AlaLeuGlnGluLysLeuCysAlaThr (SEQ ID NO:194);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu ArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSer SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln AlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGly LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:195);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer PheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGln GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis SerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAla GlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly SerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSerPheLeuLeuLys SerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCys AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSer ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:197);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeu GlyProAlaSerSerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLys IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHis ProGluGluLeuValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSer CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu LeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:198);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro Pro Gln Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu (SEQ ID NO:209);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Gly Thr Gln Leu Pro Pro Gln Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu (SEQ ID NO:210);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro Pro Gln (SEQ ID NO:211);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro Pro Gln Gly Arg Thr Thr (SEQ ID NO:212);
Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ( SEQ ID NO: 186);
Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:187);
Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:189);
Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val l,eu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ
ID NO:190);
Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro;
(SEQ ID NO:191) MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleHisIleLysAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro;
(SEQ ID NO:199) MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID NO:200);
MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro;
(SEQ ID NO:201) MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleHisIleLysAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID NO:202);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeu (SEQ ID NO:221);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAla ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHis SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla ValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIle LeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyPro ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAla LeuGlnSerLeuLeu (SEQ ID No:222);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal HisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeu (SEQ ID No:223;
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys AlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGly GlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu LeuLeuGlyAlaLeuGlnSerLeuLeu (SEQ ID NO:234);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr LeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAla CysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeu SerGlnCysProGluValHisProLeuProThrProValLeuLeuProAlaValAspPhe SerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAla ValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeu SerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSer LeuLeuGlyThrGlnLeuProProGln (SEQ ID NO:235);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr GlnLeuProProGlnGlyArgThrThr (SEQ ID No:236);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro ProGlnGlyArgThrThrAlaHisLys (SEQ ID No:237);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsn (SEQ ID NO:238); and AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAla HisLys (SEQ ID NO:239).
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:166);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:167);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala ASp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:168);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:169);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:170);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:171);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:172);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser HiS Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:173);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:177);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:175);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:176);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile HiS His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr (SEQ ID NO:177);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser (SEQ ID NO:179);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly (SEQ ID NO:181);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:182);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Glu Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:183);
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Gly Gly Ser Gly Gly Gly Ser Asn Met Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala (SEQ ID NO:184);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGly ValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHis LeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeu ProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAla AlaLeuGlnGluLysLeuCysAlaThr (SEQ ID NO:194);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaProGluLeuGlyProThrLeuAspThrLeuGlnLeu AspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaPro AlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAla GlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeu ArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSer SerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAsp GlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeu ValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGln AlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGly LeuLeuGlnAlaLeuGluGlyIleSer (SEQ ID NO:195);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuVal AlaSerHisLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGln ProGlyGlyGlySerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSer PheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGln GluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHis SerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAla GlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeu GluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAsp PheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro ThrGlnGlyAlaMetProAlaPheAla (SEQ ID NO:196);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaMetAlaProAlaLeuGlnProThrGlnGlyAlaMet ProAlaPheAlaSerAlaPheGlnArgArgAlaGlyGlyValLeuValAlaSerHisLeu GlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProGlyGlyGly SerAspMetAlaThrProLeuGlyProAlaSerSerLeuProGlnSerPheLeuLeuLys SerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCys AlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlyIle ProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSer GlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSer ProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPheAlaThrThr IleTrpGlnGlnMetGluGluLeuGly (SEQ ID NO:197);
MetAlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAla ProLeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsn LeuArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSer GlyIleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaPro SerArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThr PheTyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProGlyGlyGlySerAspMetAlaThrProLeu GlyProAlaSerSerLeuProGlnSerPheLeuLeuLysSerLeuGluGlnValArgLys IleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHis ProGluGluLeuValLeuLeuGlyHisSerLeuGlyIleProTrpAlaProLeuSerSer CysProSerGlnAlaLeuGlnLeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPhe LeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeu AspThrLeuGlnLeuAspValAlaAspPheAlaThrThrIleTrpGlnGlnMetGluGlu LeuGlyMetAlaProAlaLeuGlnPro (SEQ ID NO:198);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro Pro Gln Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu (SEQ ID NO:209);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Gly Thr Gln Leu Pro Pro Gln Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu (SEQ ID NO:210);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Gly Arg Thr Thr Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro Pro Gln (SEQ ID NO:211);
Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Tyr Val Glu Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala His Lys Asp Pro Asn Ala Ile Phe Leu Ser Phe Gln His Leu Leu Arg Gly Lys Val Arg Phe Leu Met Leu Val Gly Gly Ser Thr Leu Cys Val Arg Glu Phe Gly Gly Asn Met Ala Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu Gly Ala Val Thr Leu Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln Leu Gly Pro Thr Cys Leu Ser Ser Leu Leu Gly Gln Leu Ser Gly Gln Val Arg Leu Leu Leu Gly Ala Leu Gln Ser Leu Leu Gly Thr Gln Leu Pro Pro Gln Gly Arg Thr Thr (SEQ ID NO:212);
Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro ( SEQ ID NO: 186);
Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:187);
Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ ID NO:189);
Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val l,eu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro (SEQ
ID NO:190);
Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Tyr Val Glu Gly Gly Gly Gly Ser Pro Gly Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Ser Pro Pro Ser Lys Glu Ser His Lys Ser Pro Asn Met Ala Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Ser Gly Gly Ser Gly Gly Ser Gln Ser Phe Leu Leu Lys Ser Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro;
(SEQ ID NO:191) MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleHisIleLysAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro;
(SEQ ID NO:199) MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID NO:200);
MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetGluAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleIleIleArgAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProSerGlyGlySerGlyGlySerGlnSerPhe LeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGlu LysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSer LeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGlnLeuAlaGly CysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGlu GlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspValAlaAspPhe AlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeuGlnPro;
(SEQ ID NO:201) MetAlaAsnCysSerAsnMetIleAspGluIleIleThrHisLeuLysGlnProProLeu ProLeuLeuAspPheAsnAsnLeuAsnGlyGluAspGlnAspIleLeuMetAspAsnAsn LeuArgArgProAsnLeuGluAlaPheAsnArgAlaValLysSerLeuGlnAsnAlaSer AlaIleGluSerIleLeuLysAsnLeuLeuProCysLeuProLeuAlaThrAlaAlaPro ThrArgHisProIleHisIleLysAspGlyAspTrpAsnGluPheArgArgLysLeuThr PheTyrLeuLysThrLeuGluAsnAlaGlnAlaGlnGlnTyrValGluGlyGlyGlyGly SerProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGlu SerHisLysSerProAsnMetAlaThrGlnGlyAlaMetProAlaPheAlaSerAlaPhe GlnArgArgAlaGlyGlyValLeuValAlaSerHisLeuGlnSerPheLeuGluValSer TyrArgValLeuArgHisLeuAlaGlnProThrProLeuGlyProAlaSerSerLeuPro GlnSerPheLeuLeuLysSerLeuGluGlnValArgLysIleGlnGlyAspGlyAlaAla LeuGlnGluLysLeuCysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeu GlyHisSerLeuGlyIleProTrpAlaProLeuSerSerCysProSerGlnAlaLeuGln LeuAlaGlyCysLeuSerGlnLeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGln AlaLeuGluGlyIleSerProGluLeuGlyProThrLeuAspThrLeuGlnLeuAspVal AlaAspPheAlaThrThrIleTrpGlnGlnMetGluGluLeuGlyMetAlaProAlaLeu GlnPro (SEQ ID NO:202);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeu (SEQ ID NO:221);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyAsnMetAlaSerProAla ProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHis SerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeuProAla ValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIle LeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyPro ThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAla LeuGlnSerLeuLeu (SEQ ID No:222);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGly GlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGln GlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPhe GlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeu SerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluVal HisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLys ThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGlu GlyValMetAlaAlaArgGlyGlnLeu (SEQ ID No:223;
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLys AspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheLeu MetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMet AlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeuArgAspSer HisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProVal LeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLys AlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAlaAlaArgGly GlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeu LeuLeuGlyAlaLeuGlnSerLeuLeu (SEQ ID NO:234);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeu SerPheGlnHisLeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThr LeuCysValArgGluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAla CysAspLeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeu SerGlnCysProGluValHisProLeuProThrProValLeuLeuProAlaValAspPhe SerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAla ValThrLeuLeuLeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeu SerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSer LeuLeuGlyThrGlnLeuProProGln (SEQ ID NO:235);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHis LeuLeuArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArg GluPheGlyGlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArg ValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro GluValHisProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGlu TrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeu LeuGluGlyValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThr GlnLeuProProGlnGlyArgThrThr (SEQ ID No:236);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnGlyGlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSer LysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHis ProLeuProThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThr GlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGly ValMetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeu SerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuPro ProGlnGlyArgThrThrAlaHisLys (SEQ ID No:237);
AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysVal ArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGlyGlyAsnGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnLeuProProGlnGly ArgThrThrAlaHisLysAspProAsn (SEQ ID NO:238); and AlaAsnCysSerIleMetIleAspGluIleIleHisHisLeuLysArgProProAlaPro LeuLeuAspProAsnAsnLeuAsnAspGluAspValSerIleLeuMetAspArgAsnLeu ArgLeuProAsnLeuGluSerPheValArgAlaValLysAsnLeuGluAsnAlaSerGly IleGluAlaIleLeuArgAsnLeuGlnProCysLeuProSerAlaThrAlaAlaProSer ArgHisProIleIleIleLysAlaGlyAspTrpGlnGluPheArgGluLysLeuThrPhe TyrLeuValThrLeuGluGlnAlaGlnGluGlnGlnTyrValGluGlyGlyGlyGlySer ProGlyGluProSerGlyProIleSerThrIleAsnProSerProProSerLysGluSer HisLysSerProAsnMetAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArg GlyLysValArgPheLeuMetLeuValGlyGlySerThrLeuCysValArgGluPheGly GlyAsnMetAlaSerProAlaProProAlaCysAspLeuArgValLeuSerLysLeuLeu ArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuPro ThrProValLeuLeuProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGlu GluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMetAla AlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGln ValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeuGlyThrGlnGlyArgThrThrAla HisLys (SEQ ID NO:239).
14. The hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10 or 11 wherein said colony stimulating factor is selected from the group consisting of GM-CSF, G-CSF, G-CSF Ser17, c-mpl ligand (TPO), M-CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, flt3/flk2 ligand, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor (SCF).
15. The hematopoietic protein of claim 14 wherein said colony stimulating factor is selected from the group consisting of G-CSF, G-CSF Ser17 and c-mpl ligand (TPO).
16. A nucleic acid molecule encoding said hematopoietic protein of claim 1.
17. A nucleic acid molecule encoding said hematopoietic protein of claim 2.
18. A nucleic acid molecule encoding said hematopoietic protein of claim 3.
19. A nucleic acid molecule encoding said hematopoietic protein of claim 4.
20. A nucleic acid molecule encoding said hematopoietic protein of claim 5.
21. A nucleic acid molecule encoding said hematopoietic protein of claim 6.
22. A nucleic acid molecule encoding said hematopoietic protein of claim 7.
23. A nucleic acid molecule encoding said hematopoietic protein of claim 8.
24. A nucleic acid molecule encoding said hematopoietic protein of claim 9.
25. A nucleic acid molecule encoding said hematopoietic protein of claim 10.
26. A nucleic acid molecule encoding said hematopoietic protein of claim 11.
27. A nucleic acid molecule encoding said hematopoietic protein of claim 12.
28. A nucleic acid molecule encoding said hematopoietic protein of claim 13.
29. A nucleic acid molecule encoding said hematopoietic protein of claim 14.
30. A nucleic acid molecule encoding said hematopoietic protein of claim 15.
31. The nucleic acid molecule according to claim 27 selected from group consisting of;
901 CTGTGTGCCA CCTAATAA (SEQ ID NO:94);
951 TGCCACCTAA TAA (SEQ ID NO:95);
851 GCCAA~TCCA TAGCGGCCTT TTCCTCTACC AGGGGCTCCT GCAGGCCCTG
901 GAAGGGATAT CCTAATAA (SEQ ID NO:96);
951 GATATCCTAA TAA (SEQ ID NO:97);
901 GAAGAACTGG GATAATAA (SEQ ID NO:98);
951 ACTGGGATAA TAA (SEQ ID NO:99);
901 GCCCTGCAGC CCTAATAA (SEQ ID NO:100);
951 GCAGCCCTAA TAA (SEQ ID NO:101);
901 CCGGCCTTCG CCTAATAA (SEQ ID NO:102);
pMON25191 951 CCTGGAAGGG ATATCCTAAT AA (SEQ ID NO:107);
951 CTTCGCCTAA TAA (SEQ ID NO:103);
901 CAGGAGAAGC TGTGTGCCAC CTAATAA (SEQ ID NO:104);
951 GAAGCTGTGT GCCACCTAAT AA (SEQ ID NO:105);
951 GATGGAAGAA CTGGGATAAT AA (SEQ ID NO:109);
901 ATGGCCCCTG CCCTGCAGCC CTAATAA (SEQ ID NO:110);
951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:111);
CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCGGCTCC AACATGGCTT
CTGCTTTCCA GCGCCGGGCA GGAGGGGTCC TGGTTGCTAG CCATCTGCAG
AGCTTCCTGG AGGTGTCGTA CCGCGTTCTA CGCCACCTTG CGCAGCCCAC
ACCATTGGGC CCTGCCAGCT CCCTGCCCCA GAGCTTCCTG CTCAAGTCTT
TAGAGCAAGT GAGAAAGATC CAGGGCGATG GCGCAGCGCT CCAGGAGAAG
CTGTGTGCCA CCTACAAGCT GTGCCACCCC GAGGAGCTGG TGCTGCTCGG
ACACTCTCTG GGCATCCCCT GGGCTCCCCT GAGCTCCTGC CCCAGCCAGG
CCCTGCAGCT GGCAGGCTGC TTGAGCCAAC TCCATAGCGG CCTTTTCCTC
TACCAGGGGC TCCTGCAGGC CCTGGAAGGG ATATCCCCCG AGTTGGGTCC
CACCTTGGAC ACACTGCAGC TGGACGTCGC CGACTTTGCC ACCACCATCT
GGCAGCAGAT GGAAGAACTG GGAATGGCCC CTGCCCTGCA GCCCACCCAG
GGTGCCATGC CGGCCTTCGC CTAATAA (SEQ ID NO:112);
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC
CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTTACAAG
CTGTGCCACC CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC
CTGGGCTCCC CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT
GCTTGAGCCA ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG
GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA
GCTGGACGTC GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC
TGGGAATGGC CCCTGCCCTG CAGCCCACCC AGGGTGCCAT GCCGGCCTTC
GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG GTCCTGGTTG CTAGCCATCT
GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC CTTGCGCAGC
CCGGCGGCGG CTCTGACATG GCTACACCAT TAGGCCCTGC CAGCTCCCTG
CCCCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGGA AGATCCAGGG
CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAA TAA (SEQ ID
NO:155);
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC
CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTCCCGAG
TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCCT GCCCTGCAGC
CCACCCAGGG TGCCATGCCG GCCTTCGCCT CTGCTTTCCA GCGCCGGGCA
GGAGGGGTCC TGGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA
CCGCGTTCTA CGCCACCTTG CGCAGCCCGG CGGCGGCTCT GACATGGCTA
CACCATTAGG CCCTGCCAGC TCCCTGCCCC AGAGCTTCCT GCTCAAGTCT
951 CTACCAGGGG CTCCTGCAGG CCCTGGAAGG GATATCCTAA TAA (SEQ ID
NO:156);
951 CCTGCAGCCC ACCCAGGGTG CCATGCCGGC CTTCGCCTAA TAA; (SEQ
ID NO:157) 951 TGCCACCACC ATCTGGCAGC AGATGGAAGA ACTGGGATAA TAA; (SEQ
ID NO:158) ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC
CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC GGCGGCGGCT CTGACATGGC TACACCATTA
GGCCCTGCCA GCTCCCTGCC CCAGAGCTTC CTGCTCAAGT CTTTAGAGCA
AGTGAGGAAG ATCCAGGGCG ATGGCGCAGC GCTCCAGGAG AAGCTGTGTG
CCACCTACAA GCTGTGCCAC CCCGAGGAGC TGGTGCTGCT CGGACACTCT
CTGGGCATCC CCTGGGCTCC CCTGAGCTCC TGCCCCAGCC AGGCCCTGCA
GCTGGCAGGC TGCTTGAGCC AACTCCATAG CGGCCTTTTC CTCTACCAGG
GGCTCCTGCA GGCCCTGGAA GGGATATCCC CCGAGTTGGG TCCCACCTTG
GACACACTGC AGCTGGACGT CGCCGACTTT GCCACCACCA TCTGGCAGCA
GATGGAAGAA CTGGGAATGG CCCCTGCCCT GCAGCCCTAA TAA; (SEQ
ID NO:159) GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTG
CTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTG
CCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATG
GAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATG
GCAGCACGGGGACAACTG (SEQ ID NO:124);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCG
GCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTT
CACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCT
GCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTT (SEQ ID No:125);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGA
GAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTT
CTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTC
CTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGA
ACCCAGCTTCCTCCACAG (SEQ ID NO:126);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACAGGGCAGGACCACA (SEQ ID NO:127);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAG (SEQ ID NO:128);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTAAT GGACAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CGCTAGCCAC GGCCGCACCC ACGCGACATC
CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
CGGCCTTTTC CTCTACCAGG GGCTCCTGCA GGCCCTGGAA GGGATATCCC
CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
GCAGCCCTAA TAA (SEQ ID NO:114);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTGAT GGAAAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC ACGCGACATC
CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCCC
CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
TGGCGCAGCG CTCCAGGAGA AGCTGTGTGC CACCTACAAG CTGTGCCACC
CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:115);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTGAT GGAAAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC ACGCGACATC
CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
CGGCCTTTTC CTCTACCAGG GGCTCCTGCA GGCCCTGGAA GGGATATCCC
CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
GCAGCCCTAA TAA (SEQ ID NO:116);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTAAT GGACAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CGCTAGCCAC GGCCGCACCC ACGCGACATC
CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCCC
CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
TGGCGCAGCG CTCCAGGAGA AGCTGTGTGC CACCTACAAG CTGTGCCACC
CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:117);
ATGGCTCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT
GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA
AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG TAATCTCCAA
CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC CAATCATCAT
CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG TTCTATCTGG
TTACCCTTGA GCAAGCGCAG GAACAACAGG GTGGTGGCTC TAACTGCTCT
ATAATGATCG ATGAAATTAT ACATCACTTA AAGAGACCAC CTGCACCTTT
GTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
GGCAGGAGGG GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG
CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
CCCCTGAGCT CCTGCCCCAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
CCAACTCCAT AGCGGCCTTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
AAGGGATATC CCCCGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:86);
ATGGCTAATG CATCAGGTAT TGAGGCAATT CTTCGTAATC TCCAACCATG
TCTGCCCTCT GCCACGGCCG CACCCTCTCG ACATCCAATC ATCATCAAGG
CAGGTGACTG GCAAGAATTC CGGGAAAAAC TGACGTTCTA TCTGGTTACC
CTTGAGCAAG CGCAGGAACA ACAGGGTGGT GGCTCTAACT GCTCTATAAT
GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA CCTTTGCTGG
ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGACCGAAAC
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA
ATACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
GGCAGGAGGG GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG
CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
CCCCTGAGCT CCTGCCCCAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
CCAACTCCAT AGCGGCCTTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
AAGGGATATC CCCCGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:87);
ATGGCTGCAC CCTCTCGACA TCCAATCATC ATCAAGGCAG GTGACTGGCA
AGAATTCCGG GAAAAACTGA CGTTCTATCT GGTTACCCTT GAGCAAGCGC
AGGAACAACA GGGTGGTGGC TCTAACTGCT CTATAATGAT CGATGAAATT
ATACATCACT TAAAGAGACC ACCTGCACCT TTGCTGGACC CGAACAACCT
CAATGACGAA GACGTCTCTA TCCTGATGGA CCGAAACCTT CGACTTCCAA
ACCTGGAGAG CTTCGTAAGG GCTGTCAAGA ACTTAGAAAA TGCATCAGGT
ATTGAGGCAA TTCTTCGTAA TCTCCAACCA TGTCTGCCCT CTGCCACGGC
CTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID No:88);
(SEQ ID NO:90);
ACCAGGGGCT CCTGCAGGCC CTGGAAGGGA TATCCCCCGA GTTGGGTCCC
ACCTTGGACA CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG
GCAGCAGATG GAAGAACTGG GAATGGCCCC TGCCCTGCAG CCCTAATAA
(SEQ ID NO:91);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTG (SEQ ID NO:136);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCT
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCT
GTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
CTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCC
ACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCC
CTGCAGAGCCTCCTT (SEQ ID NO:137);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTC
AGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTT
CACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTG (SEQ ID NO:148);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATG
GCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAG
GCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGA
CAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTC
CTCCTTGGGGCCCTGCAGAGCCTCCTT (SEQ ID NO:149);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCT
TGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTG
AGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTT
AGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCA
GTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTC
TCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGC
CTCCTTGGAACCCAGCTTCCTCCACAG (SEQ ID NO:150);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGA
GTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCA
GAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAA
TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTG
CTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTG
GGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACC
CAGCTTCCTCCACAGGGCAGGACCACA (SEQ ID NO:151);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACAGGGCAGGACCACAGCTCACAAG (SEQ ID NO:152);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGC
GGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAAT (SEQ ID NO:153); and GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCT
CACAAG (SEQ ID NO:154).
901 CTGTGTGCCA CCTAATAA (SEQ ID NO:94);
951 TGCCACCTAA TAA (SEQ ID NO:95);
851 GCCAA~TCCA TAGCGGCCTT TTCCTCTACC AGGGGCTCCT GCAGGCCCTG
901 GAAGGGATAT CCTAATAA (SEQ ID NO:96);
951 GATATCCTAA TAA (SEQ ID NO:97);
901 GAAGAACTGG GATAATAA (SEQ ID NO:98);
951 ACTGGGATAA TAA (SEQ ID NO:99);
901 GCCCTGCAGC CCTAATAA (SEQ ID NO:100);
951 GCAGCCCTAA TAA (SEQ ID NO:101);
901 CCGGCCTTCG CCTAATAA (SEQ ID NO:102);
pMON25191 951 CCTGGAAGGG ATATCCTAAT AA (SEQ ID NO:107);
951 CTTCGCCTAA TAA (SEQ ID NO:103);
901 CAGGAGAAGC TGTGTGCCAC CTAATAA (SEQ ID NO:104);
951 GAAGCTGTGT GCCACCTAAT AA (SEQ ID NO:105);
951 GATGGAAGAA CTGGGATAAT AA (SEQ ID NO:109);
901 ATGGCCCCTG CCCTGCAGCC CTAATAA (SEQ ID NO:110);
951 CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:111);
CGGTGGAGGC TCCCCGGGTG GTGGTTCTGG CGGCGGCTCC AACATGGCTT
CTGCTTTCCA GCGCCGGGCA GGAGGGGTCC TGGTTGCTAG CCATCTGCAG
AGCTTCCTGG AGGTGTCGTA CCGCGTTCTA CGCCACCTTG CGCAGCCCAC
ACCATTGGGC CCTGCCAGCT CCCTGCCCCA GAGCTTCCTG CTCAAGTCTT
TAGAGCAAGT GAGAAAGATC CAGGGCGATG GCGCAGCGCT CCAGGAGAAG
CTGTGTGCCA CCTACAAGCT GTGCCACCCC GAGGAGCTGG TGCTGCTCGG
ACACTCTCTG GGCATCCCCT GGGCTCCCCT GAGCTCCTGC CCCAGCCAGG
CCCTGCAGCT GGCAGGCTGC TTGAGCCAAC TCCATAGCGG CCTTTTCCTC
TACCAGGGGC TCCTGCAGGC CCTGGAAGGG ATATCCCCCG AGTTGGGTCC
CACCTTGGAC ACACTGCAGC TGGACGTCGC CGACTTTGCC ACCACCATCT
GGCAGCAGAT GGAAGAACTG GGAATGGCCC CTGCCCTGCA GCCCACCCAG
GGTGCCATGC CGGCCTTCGC CTAATAA (SEQ ID NO:112);
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC
CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTTACAAG
CTGTGCCACC CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC
CTGGGCTCCC CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT
GCTTGAGCCA ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG
GCCCTGGAAG GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA
GCTGGACGTC GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC
TGGGAATGGC CCCTGCCCTG CAGCCCACCC AGGGTGCCAT GCCGGCCTTC
GCCTCTGCTT TCCAGCGCCG GGCAGGAGGG GTCCTGGTTG CTAGCCATCT
GCAGAGCTTC CTGGAGGTGT CGTACCGCGT TCTACGCCAC CTTGCGCAGC
CCGGCGGCGG CTCTGACATG GCTACACCAT TAGGCCCTGC CAGCTCCCTG
CCCCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGGA AGATCCAGGG
CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAA TAA (SEQ ID
NO:155);
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC
CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTCCCGAG
TTGGGTCCCA CCTTGGACAC ACTGCAGCTG GACGTCGCCG ACTTTGCCAC
CACCATCTGG CAGCAGATGG AAGAACTGGG AATGGCCCCT GCCCTGCAGC
CCACCCAGGG TGCCATGCCG GCCTTCGCCT CTGCTTTCCA GCGCCGGGCA
GGAGGGGTCC TGGTTGCTAG CCATCTGCAG AGCTTCCTGG AGGTGTCGTA
CCGCGTTCTA CGCCACCTTG CGCAGCCCGG CGGCGGCTCT GACATGGCTA
CACCATTAGG CCCTGCCAGC TCCCTGCCCC AGAGCTTCCT GCTCAAGTCT
951 CTACCAGGGG CTCCTGCAGG CCCTGGAAGG GATATCCTAA TAA (SEQ ID
NO:156);
951 CCTGCAGCCC ACCCAGGGTG CCATGCCGGC CTTCGCCTAA TAA; (SEQ
ID NO:157) 951 TGCCACCACC ATCTGGCAGC AGATGGAAGA ACTGGGATAA TAA; (SEQ
ID NO:158) ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG
ACCACCTGCA CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT
CTATCCTGAT GGATCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA
AGGGCTGTCA AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG
TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC
CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GTCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC GGCGGCGGCT CTGACATGGC TACACCATTA
GGCCCTGCCA GCTCCCTGCC CCAGAGCTTC CTGCTCAAGT CTTTAGAGCA
AGTGAGGAAG ATCCAGGGCG ATGGCGCAGC GCTCCAGGAG AAGCTGTGTG
CCACCTACAA GCTGTGCCAC CCCGAGGAGC TGGTGCTGCT CGGACACTCT
CTGGGCATCC CCTGGGCTCC CCTGAGCTCC TGCCCCAGCC AGGCCCTGCA
GCTGGCAGGC TGCTTGAGCC AACTCCATAG CGGCCTTTTC CTCTACCAGG
GGCTCCTGCA GGCCCTGGAA GGGATATCCC CCGAGTTGGG TCCCACCTTG
GACACACTGC AGCTGGACGT CGCCGACTTT GCCACCACCA TCTGGCAGCA
GATGGAAGAA CTGGGAATGG CCCCTGCCCT GCAGCCCTAA TAA; (SEQ
ID NO:159) GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTG
CTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTG
CCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATG
GAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATG
GCAGCACGGGGACAACTG (SEQ ID NO:124);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCG
GCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTT
CACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCT
GCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGAC
ATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGA
CCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGG
GCCCTGCAGAGCCTCCTT (SEQ ID No:125);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTC
CGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGC
CCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGA
GAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTT
CTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTC
CTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGA
ACCCAGCTTCCTCCACAG (SEQ ID NO:126);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACAGGGCAGGACCACA (SEQ ID NO:127);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCGGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAG (SEQ ID NO:128);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTAAT GGACAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CGCTAGCCAC GGCCGCACCC ACGCGACATC
CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
CGGCCTTTTC CTCTACCAGG GGCTCCTGCA GGCCCTGGAA GGGATATCCC
CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
GCAGCCCTAA TAA (SEQ ID NO:114);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTGAT GGAAAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC ACGCGACATC
CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCCC
CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
TGGCGCAGCG CTCCAGGAGA AGCTGTGTGC CACCTACAAG CTGTGCCACC
CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:115);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTGAT GGAAAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC ACGCGACATC
CAATCATCAT CCGTGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC TCTGGCGGCT CTGGCGGCTC TCAGAGCTTC
CTGCTCAAGT CTTTAGAGCA AGTGAGAAAG ATCCAGGGCG ATGGCGCAGC
GCTCCAGGAG AAGCTGTGTG CCACCTACAA GCTGTGCCAC CCCGAGGAGC
TGGTGCTGCT CGGACACTCT CTGGGCATCC CCTGGGCTCC CCTGAGCTCC
TGCCCCAGCC AGGCCCTGCA GCTGGCAGGC TGCTTGAGCC AACTCCATAG
CGGCCTTTTC CTCTACCAGG GGCTCCTGCA GGCCCTGGAA GGGATATCCC
CCGAGTTGGG TCCCACCTTG GACACACTGC AGCTGGACGT CGCCGACTTT
GCCACCACCA TCTGGCAGCA GATGGAAGAA CTGGGAATGG CCCCTGCCCT
GCAGCCCTAA TAA (SEQ ID NO:116);
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA
GCCACCGCTG CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG
ATATCCTAAT GGACAATAAC CTTCGTCGTC CAAACCTCGA GGCATTCAAC
CGTGCTGTCA AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA
AAATCTCCTG CCATGTCTGC CGCTAGCCAC GGCCGCACCC ACGCGACATC
CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT ACGTAGAGGG
CGGTGGAGGC TCCCCGGGTG AACCGTCTGG TCCAATCTCT ACTATCAACC
CGTCTCCTCC GTCTAAAGAA TCTCATAAAT CTCCAAACAT GGCTACCCAG
GGTGCCATGC CGGCCTTCGC CTCTGCTTTC CAGCGCCGGG CAGGAGGGGT
CCTGGTTGCT AGCCATCTGC AGAGCTTCCT GGAGGTGTCG TACCGCGTTC
TACGCCACCT TGCGCAGCCC ACACCATTGG GCCCTGCCAG CTCCCTGCCC
CAGAGCTTCC TGCTCAAGTC TTTAGAGCAA GTGAGAAAGA TCCAGGGCGA
TGGCGCAGCG CTCCAGGAGA AGCTGTGTGC CACCTACAAG CTGTGCCACC
CCGAGGAGCT GGTGCTGCTC GGACACTCTC TGGGCATCCC CTGGGCTCCC
CTGAGCTCCT GCCCCAGCCA GGCCCTGCAG CTGGCAGGCT GCTTGAGCCA
ACTCCATAGC GGCCTTTTCC TCTACCAGGG GCTCCTGCAG GCCCTGGAAG
GGATATCCCC CGAGTTGGGT CCCACCTTGG ACACACTGCA GCTGGACGTC
GCCGACTTTG CCACCACCAT CTGGCAGCAG ATGGAAGAAC TGGGAATGGC
CCCTGCCCTG CAGCCCTAAT AA (SEQ ID NO:117);
ATGGCTCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT
GGACCGAAAC CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA
AGAACTTAGA AAATGCATCA GGTATTGAGG CAATTCTTCG TAATCTCCAA
CCATGTCTGC CCTCTGCCAC GGCCGCACCC TCTCGACATC CAATCATCAT
CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG TTCTATCTGG
TTACCCTTGA GCAAGCGCAG GAACAACAGG GTGGTGGCTC TAACTGCTCT
ATAATGATCG ATGAAATTAT ACATCACTTA AAGAGACCAC CTGCACCTTT
GTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
GGCAGGAGGG GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG
CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
CCCCTGAGCT CCTGCCCCAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
CCAACTCCAT AGCGGCCTTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
AAGGGATATC CCCCGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:86);
ATGGCTAATG CATCAGGTAT TGAGGCAATT CTTCGTAATC TCCAACCATG
TCTGCCCTCT GCCACGGCCG CACCCTCTCG ACATCCAATC ATCATCAAGG
CAGGTGACTG GCAAGAATTC CGGGAAAAAC TGACGTTCTA TCTGGTTACC
CTTGAGCAAG CGCAGGAACA ACAGGGTGGT GGCTCTAACT GCTCTATAAT
GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA CCTTTGCTGG
ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGACCGAAAC
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA
ATACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
GGCAGGAGGG GTCCTGGTTG CTAGCCATCT GCAGAGCTTC CTGGAGGTGT
CGTACCGCGT TCTACGCCAC CTTGCGCAGC CCTCTGGCGG CTCTGGCGGC
TCTCAGAGCT TCCTGCTCAA GTCTTTAGAG CAAGTGAGAA AGATCCAGGG
CGATGGCGCA GCGCTCCAGG AGAAGCTGTG TGCCACCTAC AAGCTGTGCC
ACCCCGAGGA GCTGGTGCTG CTCGGACACT CTCTGGGCAT CCCCTGGGCT
CCCCTGAGCT CCTGCCCCAG CCAGGCCCTG CAGCTGGCAG GCTGCTTGAG
CCAACTCCAT AGCGGCCTTT TCCTCTACCA GGGGCTCCTG CAGGCCCTGG
AAGGGATATC CCCCGAGTTG GGTCCCACCT TGGACACACT GCAGCTGGAC
GTCGCCGACT TTGCCACCAC CATCTGGCAG CAGATGGAAG AACTGGGAAT
GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID NO:87);
ATGGCTGCAC CCTCTCGACA TCCAATCATC ATCAAGGCAG GTGACTGGCA
AGAATTCCGG GAAAAACTGA CGTTCTATCT GGTTACCCTT GAGCAAGCGC
AGGAACAACA GGGTGGTGGC TCTAACTGCT CTATAATGAT CGATGAAATT
ATACATCACT TAAAGAGACC ACCTGCACCT TTGCTGGACC CGAACAACCT
CAATGACGAA GACGTCTCTA TCCTGATGGA CCGAAACCTT CGACTTCCAA
ACCTGGAGAG CTTCGTAAGG GCTGTCAAGA ACTTAGAAAA TGCATCAGGT
ATTGAGGCAA TTCTTCGTAA TCTCCAACCA TGTCTGCCCT CTGCCACGGC
CTACGTAGAG GGCGGTGGAG GCTCCCCGGG TGAACCGTCT GGTCCAATCT
CTACTATCAA CCCGTCTCCT CCGTCTAAAG AATCTCATAA ATCTCCAAAC
ATGGCTACCC AGGGTGCCAT GCCGGCCTTC GCCTCTGCTT TCCAGCGCCG
951 GGCCCCTGCC CTGCAGCCCT AATAA (SEQ ID No:88);
(SEQ ID NO:90);
ACCAGGGGCT CCTGCAGGCC CTGGAAGGGA TATCCCCCGA GTTGGGTCCC
ACCTTGGACA CACTGCAGCT GGACGTCGCC GACTTTGCCA CCACCATCTG
GCAGCAGATG GAAGAACTGG GAATGGCCCC TGCCCTGCAG CCCTAATAA
(SEQ ID NO:91);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTG (SEQ ID NO:136);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCAACATGGCGTCTCCCGCT
CCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCAC
AGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCT
GTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATT
CTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCC
ACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCC
CTGCAGAGCCTCCTT (SEQ ID NO:137);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGA
CAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAG
GGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTC
CGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTC
GGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTC
AGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTT
CACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAA
ACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAG
GGAGTGATGGCAGCACGGGGACAACTG (SEQ ID NO:148);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAG
GATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTG
ATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATG
GCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCC
CATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTC
CTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAG
GCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGA
CAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTC
CTCCTTGGGGCCCTGCAGAGCCTCCTT (SEQ ID NO:149);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTG
AGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACC
CTCTGCGTCAGGGAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCT
TGTGACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTG
AGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTT
AGCTTGGGAGAATGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCA
GTGACCCTTCTGCTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTC
TCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGC
CTCCTTGGAACCCAGCTTCCTCCACAG (SEQ ID NO:150);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACAC
CTGCTCCGAGGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGG
GAATTCGGCGGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGA
GTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCA
GAGGTTCACCCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAA
TGGAAAACCCAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTG
CTGGAGGGAGTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTG
GGGCAGCTTTCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACC
CAGCTTCCTCCACAGGGCAGGACCACA (SEQ ID NO:151);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACGGCGGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGT
AAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCAC
CCTTTGCCTACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACC
CAGATGGAGGAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGA
GTGATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTT
TCTGGACAGGTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCT
CCACAGGGCAGGACCACAGCTCACAAG (SEQ ID NO:152);
GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTG
CGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGCGGCAACGGC
GGCAACATGGCGTCCCCAGCGCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGCTTCCTCCACAGGGC
AGGACCACAGCTCACAAGGATCCCAAT (SEQ ID NO:153); and GCTAACTGCTCTATAATGATCGATGAAATTATACATCACTTAAAGAGACCACCTGCACCT
TTGCTGGACCCGAACAACCTCAATGACGAAGACGTCTCTATCCTGATGGACCGAAACCTT
CGACTTCCAAACCTGGAGAGCTTCGTAAGGGCTGTCAAGAACTTAGAAAATGCATCAGGT
ATTGAGGCAATTCTTCGTAATCTCCAACCATGTCTGCCCTCTGCCACGGCCGCACCCTCT
CGACATCCAATCATCATCAAGGCAGGTGACTGGCAAGAATTCCGGGAAAAACTGACGTTC
TATCTGGTTACCCTTGAGCAAGCGCAGGAACAACAGTACGTAGAGGGCGGTGGAGGCTCC
CCGGGTGAACCGTCTGGTCCAATCTCTACTATCAACCCGTCTCCTCCGTCTAAAGAATCT
CATAAATCTCCAAACATGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGA
GGAAAGGTGCGTTTCCTGATGCTTGTAGGAGGGTCCACCCTCTGCGTCAGGGAATTCGGC
GGCAACATGGCGTCTCCCGCTCCGCCTGCTTGTGACCTCCGAGTCCTCAGTAAACTGCTT
CGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCT
ACACCTGTCCTGCTGCCTGCTGTGGACTTTAGCTTGGGAGAATGGAAAACCCAGATGGAG
GAGACCAAGGCACAGGACATTCTGGGAGCAGTGACCCTTCTGCTGGAGGGAGTGATGGCA
GCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAG
GTCCGTCTCCTCCTTGGGGCCCTGCAGAGCCTCCTTGGAACCCAGGGCAGGACCACAGCT
CACAAG (SEQ ID NO:154).
32. A method of producing a hematopoietic protein comprising: growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising a nucleic acid molecule of claim 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 in a manner allowing expression of said hematopoietic protein and recovering said hematopoietic protein.
33. A pharmaceutical composition comprising; the hematopoietic protein according to claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14 and a pharmaceutically acceptable carrier.
34. A method of stimulating the production of hematopoietic cells in a patient comprising the step of;
administering an effective amount of the hematopoietic protein as recited in claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14 to said patient.
administering an effective amount of the hematopoietic protein as recited in claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14 to said patient.
35. A method of stimulating the production of hematopoietic cells in a patient comprising the step of; administering an effective amount of the hematopoietic protein as recited in claim 9 to said patient.
36. A method for selective ex vivo expansion of stem cells, comprising the steps of;
a) separating stem cells from other cells;
(b) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14; and (c) harvesting said cultured cells.
a) separating stem cells from other cells;
(b) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14; and (c) harvesting said cultured cells.
37. A method for selective ex vivo expansion of stem cells, comprising the steps of;
(a) separating stem cells from other cells;
(b) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 9;
and (c) harvesting said cultured cells.
(a) separating stem cells from other cells;
(b) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 9;
and (c) harvesting said cultured cells.
38. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;
(a) removing stem cells;
(b) separating stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14;
(d) harvesting said cultured cells; and (e) transplanting said cultured cells into said patient.
(a) removing stem cells;
(b) separating stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14;
(d) harvesting said cultured cells; and (e) transplanting said cultured cells into said patient.
39. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;
(a) removing stem cells;
(b) separating stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 9;
(d) harvesting said cultured cells; and (e) transplanting said cultured cells into said patient.
(a) removing stem cells;
(b) separating stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 9;
(d) harvesting said cultured cells; and (e) transplanting said cultured cells into said patient.
40. A method of human gene therapy, comprising the steps of;
(a) removing stem cells from a patient;
(b) separating said stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14;
(d) introducing DNA into said cultured cells;
(e) harvesting said transduced cells; and (f) transplanting said transduced cells into said patient.
(a) removing stem cells from a patient;
(b) separating said stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14;
(d) introducing DNA into said cultured cells;
(e) harvesting said transduced cells; and (f) transplanting said transduced cells into said patient.
41. A method of human gene therapy, comprising the steps of;
(a) removing stem cells from a patient;
(b) separating said stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14;
(d) introducing DNA into said cultured cells;
(e) harvesting said transduced cells; and (f) transplanting said transduced cells into said patient.
(a) removing stem cells from a patient;
(b) separating said stem cells from other cells;
(c) culturing said separated stem cells with a selected culture medium comprising; the hematopoietic protein of claim 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 or 14;
(d) introducing DNA into said cultured cells;
(e) harvesting said transduced cells; and (f) transplanting said transduced cells into said patient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US483495P | 1995-10-05 | 1995-10-05 | |
US60/004,834 | 1995-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2234061A1 true CA2234061A1 (en) | 1997-04-10 |
Family
ID=21712756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002234061A Abandoned CA2234061A1 (en) | 1995-10-05 | 1996-10-04 | Multi-functional hematopoietic receptor agonists |
Country Status (14)
Country | Link |
---|---|
EP (1) | EP0854928A2 (en) |
JP (1) | JPH11510062A (en) |
KR (1) | KR100456212B1 (en) |
CN (2) | CN1590407A (en) |
AU (1) | AU705083B2 (en) |
BR (1) | BRPI9610977A2 (en) |
CA (1) | CA2234061A1 (en) |
CZ (1) | CZ295518B6 (en) |
IL (1) | IL123832A0 (en) |
MX (1) | MX9802730A (en) |
NO (1) | NO981500L (en) |
NZ (1) | NZ320978A (en) |
PL (1) | PL184424B1 (en) |
WO (1) | WO1997012985A2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5581476A (en) | 1993-01-28 | 1996-12-03 | Amgen Inc. | Computer-based methods and articles of manufacture for preparing G-CSF analogs |
US6967092B1 (en) | 1996-10-25 | 2005-11-22 | Mc Kearn John P | Multi-functional chimeric hematopoietic receptor agonists |
US5969105A (en) * | 1996-10-25 | 1999-10-19 | Feng; Yiqing | Stem cell factor receptor agonists |
US6660257B1 (en) * | 1996-10-25 | 2003-12-09 | Pharmacia Corporation | Circular permuteins of flt3 ligand |
US6242570B1 (en) | 1997-07-10 | 2001-06-05 | Beth Israel Deaconess Medical Center | Production and use of recombinant protein multimers with increased biological activity |
US6165476A (en) * | 1997-07-10 | 2000-12-26 | Beth Israel Deaconess Medical Center | Fusion proteins with an immunoglobulin hinge region linker |
US6187564B1 (en) | 1997-07-10 | 2001-02-13 | Beth Israel Deaconess Medical Center | DNA encoding erythropoietin multimers having modified 5′ and 3′ sequences and its use to prepare EPO therapeutics |
AU7825500A (en) * | 1999-10-07 | 2001-04-23 | Pharmacia Corporation | Inhibition enzyme linked immunosorbent assay (iELISA) for the detection and quantification of antibodies in biological samples |
JP4444652B2 (en) | 2001-07-11 | 2010-03-31 | マキシゲン・ホールディングズ・リミテッド | G-CSF conjugate |
CN101193658B (en) | 2005-06-01 | 2011-08-31 | 马克西根控股公司 | Pegylated G-CSF polypeptides and methods of producing same |
WO2007075899A2 (en) * | 2005-12-21 | 2007-07-05 | Maxygen, Inc. | Dual agonist compounds and uses thereof |
CN102675472B (en) * | 2012-05-07 | 2014-07-30 | 北京诺派生物科技有限公司 | Kit for detecting pig suffering from porcine reproductive and respiratory syndrome |
CA2896053A1 (en) | 2012-12-21 | 2014-06-26 | Ocata Therapeutics, Inc. | Methods for production of platelets from pluripotent stem cells and compositions thereof |
LT6161B (en) | 2013-09-27 | 2015-06-25 | Uab Profarma | Fused proteins of granulocyte colony-stimulating factor with other partners of growh factor, preferably with stem cell factor, and method of preparation thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5355790A (en) * | 1989-04-19 | 1990-11-16 | Cetus Corporation | Multifunctional m-csf proteins and genes encoding therefor |
US5738849A (en) * | 1992-11-24 | 1998-04-14 | G. D. Searle & Co. | Interleukin-3 (IL-3) variant fusion proteins, their recombinant production, and therapeutic compositions comprising them |
US6057133A (en) * | 1992-11-24 | 2000-05-02 | G. D. Searle | Multivariant human IL-3 fusion proteins and their recombinant production |
US5635599A (en) * | 1994-04-08 | 1997-06-03 | The United States Of America As Represented By The Department Of Health And Human Services | Fusion proteins comprising circularly permuted ligands |
-
1996
- 1996-10-04 CN CNA031551432A patent/CN1590407A/en active Pending
- 1996-10-04 KR KR10-1998-0702547A patent/KR100456212B1/en not_active IP Right Cessation
- 1996-10-04 CA CA002234061A patent/CA2234061A1/en not_active Abandoned
- 1996-10-04 IL IL12383296A patent/IL123832A0/en unknown
- 1996-10-04 AU AU73844/96A patent/AU705083B2/en not_active Ceased
- 1996-10-04 CN CN96198815A patent/CN1124348C/en not_active Expired - Fee Related
- 1996-10-04 PL PL96326072A patent/PL184424B1/en not_active IP Right Cessation
- 1996-10-04 EP EP96936114A patent/EP0854928A2/en not_active Withdrawn
- 1996-10-04 WO PCT/US1996/015774 patent/WO1997012985A2/en not_active Application Discontinuation
- 1996-10-04 BR BRPI9610977A patent/BRPI9610977A2/en not_active IP Right Cessation
- 1996-10-04 JP JP9514385A patent/JPH11510062A/en not_active Abandoned
- 1996-10-04 NZ NZ320978A patent/NZ320978A/en unknown
- 1996-10-04 CZ CZ1998965A patent/CZ295518B6/en not_active IP Right Cessation
-
1998
- 1998-04-02 NO NO981500A patent/NO981500L/en not_active Application Discontinuation
- 1998-04-06 MX MX9802730A patent/MX9802730A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19990064068A (en) | 1999-07-26 |
WO1997012985A3 (en) | 1997-08-07 |
NO981500L (en) | 1998-05-20 |
WO1997012985A2 (en) | 1997-04-10 |
CN1204369A (en) | 1999-01-06 |
MX9802730A (en) | 1998-09-30 |
AU705083B2 (en) | 1999-05-13 |
NO981500D0 (en) | 1998-04-02 |
JPH11510062A (en) | 1999-09-07 |
NZ320978A (en) | 2001-03-30 |
AU7384496A (en) | 1997-04-28 |
KR100456212B1 (en) | 2005-01-15 |
PL326072A1 (en) | 1998-08-17 |
CZ96598A3 (en) | 1998-09-16 |
PL184424B1 (en) | 2002-10-31 |
IL123832A0 (en) | 1998-10-30 |
BRPI9610977A2 (en) | 2019-09-17 |
CN1590407A (en) | 2005-03-09 |
CZ295518B6 (en) | 2005-08-17 |
EP0854928A2 (en) | 1998-07-29 |
CN1124348C (en) | 2003-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2268023A1 (en) | Circularly permuted polypeptides as novel stem cell factor receptor agonists | |
US6730303B1 (en) | Fused G-CSF and IL-3 proteins and uses thereof | |
CA2234061A1 (en) | Multi-functional hematopoietic receptor agonists | |
AU725547B2 (en) | Multi-functional chimeric hematopoietic receptor agonists | |
CA2268027A1 (en) | Novel flt-3 receptor agonists | |
WO1997012985A9 (en) | Multi-functional hematopoietic receptor agonists | |
AU717733B2 (en) | Novel G-CSF receptor agonists | |
US6358505B1 (en) | G-CSF receptor agonists | |
US20070081979A1 (en) | Multi-functional chimeric hematopoietic receptor agonists | |
AU722759B2 (en) | Novel C-MPL receptor agonists | |
AU703627B2 (en) | Interleuken-3 (IL-3) receptor agonists | |
WO1998046750A1 (en) | flt3 LIGAND CHIMERIC PROTEINS | |
MXPA99003877A (en) | Multi-functional chimeric hematopoietic receptor agonists |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued | ||
FZDE | Discontinued |
Effective date: 20071004 |