CA2128591C - Controlled release formulations coated with aqueous dispersions of acrylic polymers - Google Patents

Controlled release formulations coated with aqueous dispersions of acrylic polymers

Info

Publication number
CA2128591C
CA2128591C CA002128591A CA2128591A CA2128591C CA 2128591 C CA2128591 C CA 2128591C CA 002128591 A CA002128591 A CA 002128591A CA 2128591 A CA2128591 A CA 2128591A CA 2128591 C CA2128591 C CA 2128591C
Authority
CA
Canada
Prior art keywords
formulation
agent
active agent
substrate
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002128591A
Other languages
French (fr)
Other versions
CA2128591A1 (en
Inventor
Benjamin Oshlack
Mark Chasin
Frank Pedi, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Celtique SA
Original Assignee
Euro Celtique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Celtique SA filed Critical Euro Celtique SA
Publication of CA2128591A1 publication Critical patent/CA2128591A1/en
Application granted granted Critical
Publication of CA2128591C publication Critical patent/CA2128591C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/284Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone
    • A61K9/2846Poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A stable solid controlled release formulation having a coating derived from an aqueous dispersion of a hydrophobic acrylic polymer includes a substrate including an active agent selected from the group consisting of a systemically active therapeutic agent, a locally active therapeutic agent, a disinfecting and sanitizing agent, a cleansing agent, a fragrance agent and a fertilizing agent, overcoated with an aqueous dispersion of the plasticized water-insoluble acrylic polymer.
The formulation provides a stable dissolution of the active agent which is unchanged after exposure to accelerated storage conditions.

Description

CA 02128~91 1998-12-01 WITH AOUEO~8 DI8PER8ION8 OF ACRYLIC POLYMER8 BACRGROUND OF THE l~v~N.lON
An important aspect of the manufacture, regulatory review and approval of all dosage forms concerns their stability over extended periods of time. The stability data obtained with regard to a par-ticular dosage form directly affects its shelf-life. The stability of a pharmaceutical dosage form is related to maintaining its physical, chemical, microbiological, therapeutic, and toxicological properties when stored, i.e., in a particular container and environment. Stability study requirements are covered, e.g., in the Good Manufacturing Practices (GMPs), the U.S.P., as well as in the regulatory requirements of the country where approval to market a dosage form is being sought. In the United States, a request to test, and eventually market, a drug or a drug formulation may be made via a New Drug Application (NDA), an Abbreviated New Drug Application (ANDA) or an Investigational New Drug Applications (IND).
The agents used in sustained release dosage formulations often present special problems with regard to their physical stability during storage. For example, waxes which have been used in such formulations are known to undergo physical alterations on prolonged standing, thus precautions are taken to stabilize them at the time of manufacture or to prevent the change from occurring. Fats and CA 02128~91 1998-12-01 waxy materials when used in pùrified states are known to crys'tal-lize in unstable forms, causing unpredictable variations in availability rates during stability testing at the time of manufacture and during later storage.
It is known that certain strategies can be undertaken to obtain stabilized controlled release formulations in many cases, such as insuring that the indivldual agents are in a stable form before they are incorporated into the product, and that processing does not change this conditionj retarding the instability by including additional additives, and inducing the individual agents of the dosage form to reach a stable state before the product is finally completed.
It is also recognized that the moisture content of the product can also influence the stability of the product. Changes in the hydration level of a polymeric film, such as the ethyl celluloses, can alter the rate of water permeation and drug availability.
Also, binders such as acacia are known to become less soluble when exposed to moisture and heat. However, moisture content of a product can be controlled fairly successfully by controls in the processing method and proper packaging of the product.
Hydrophobic polymers such as certain cellulose derivatives, zein, acrylic resins, waxes, higher aliphatic alcohols, and poly-lactic and polyglycolic acids have been used in the prior art to develop controlled release dosage forms. Methods of using these polymers to develop controlled release dosage forms such as tablets, capsules, suppositories, spheroids, beads or microspheres include incorporating these agents into a controlled release matrix or using certain of these agents in a controlled release coating of the dosage form. It is known in the prior art that hydrophobic coatings can be applied either from a solution, suspension or dry.
Since most of the polymers used in controlled release coatings have CA 02128~91 1998-12-01 a low solubility in water, they are usually applied by dissol'ving the polymer in an organic solvent and spraying the solution onto the individual drug forms (such as beads or tablets) and evapor-ating off the solvent.
Aqueous dispersions of hydrophobic polymers have been used in the prior art to coat pharmaceutical dosage forms for aesthetic reasons such as film coating tablets or beads or for taste-masking.
However, these dosage forms are used for immediate release admin-istration of the active drug contained in the dosage form.
The use of organic solvents in the preparation of hydrophobic coatings is considered undesirable because of inherent problems with regard to flammability, carcinogenicity, environmental con-cerns, cost, and safety in general. It is considered very desir-able in the art, however, to provide a controlled release coating lS derived from aqueous dispersions of a hydrophobic material, such as an acrylic polymer.
While many formulations have been experimentally prepared which rely upon a hydrophobic coating derived f'rom an aqueous dispersion to provide controlled release of an active agent, such formulations have not proven to be commercially viable because of stability problems. Aqueous polymeric dispersions have been used to produce stable controlled release dosage forms, but this has only been possible by other methods such as incorporation of the same into the matrix of the dosage form, rather than via the use of a coating of the aqueous polymeric dispersion to obtain retardant properties.
When coating using aqueous polymeric dispersions to obtain a desired release profile of the active agent(s) over several hours or longer, it is known in the art that the dissolution release profile changes on ageing, e.g. when the final coated product is CA 02128~91 1998-12-01 stored for a period of time, during which time it may be exposed to elevated temperature and/or humidity above ambient conditions.
This was recently demonstrated by Munday, et al., Drug Devel.
and Indus. Phar., 17 (15) 2135-2143 (1991), which reported the effect of storing theophylline mini-tablets film coated with ethyl cellulose with PEG (2:1 ratio; total coating = 3% w/w), ethyl cellulose with EudragitX L (2:1 ratio; total coating = 3% w/w); and Eudragit~ RL (amount of coating = 1.5~ w/w) at varying temperatures and relative humidities upon the rate of drug release. Samples were subjected to isothermal storage at 28~C, 35~C and 45~C with the relative humidity (RH) maintained between 55-60%, under cyclic conditions of 45~C at 55% RH for 24 hours, then at 28~C and 20% RH
for 24 hours, and then at 5~C and 10% RH for 24 hours, after which the cycle was repeated, and alternating conditions every 24 hours between 45~C and 55% RH and 28~C and 0% RH. The aging process brought about by storage under the above stress conditions impeded dissolution, irrespective of the nature of the polymeric film. The greatest reduction in release rate was said to occur in the first 21 days (isothermal storage) after coating.
While this instability problem is known not to exist when the polymers are applied from organic solvent solution, it has not been possible to obtain a controlled release formulation utilizing coat-ings prepared from such aqueous acrylic polymer dispersions which is stable under various storage conditions.
In particular, it is known that controlled release coatings of commercially available acrylic polymers such as those sold under the tradename Eudragit~ by Rohm Pharma GmbH are not stable when cured according to recommended curing conditions of 45~C for 2 hours.

CA 02128~91 1998-12-01 OBJECTS AND SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a controlled release formulation of a substrate comprising an active agent, e.g. a therapeutically active agent, a disinfecting agent, a cleansing agent, a sanitizing agent and a fertilizing agent, coated with an aqueous dispersion of a hydrophobic acrylic polymer such that there is a stable dissolution or other release profile of the active agent when placed in an environment of use, despite exposure to a variety of storage conditions, including accelerated storage conditions.
It is another object of the present invention to provide a controlled release formulation comprising a plurality of inert beads comprising an active agent, and a controlled release tablet comprising a core containing an active agent, the beads or tablet core being coated with an aqueous dispersion of a hydrophobic polymer and providing a reproducible, stable dissolution despite exposure to accelerated storage conditions, as well as a method of preparing the same.
Still another object of the present invention is to provide a controlled release formulation comprising a substrate containing an active agent coated with an aqueous dispersion of a hydrophobic polymer which upon dissolution in-vitro provides a band range, when comparing the dissolution profile of the formulation after exposure to a variety of storage conditions including "stressed" or acceler-ated storage conditions, which is not wider than about 15% of totalactive agent released at any point of time during the dissolution.
A further object of the present invention is to provide a controlled release formulation wherein the controlled release is caused by a coating on the formulation of an aqueous dispersion of a hydrophobic polymer such as an acrylic polymer which coating provides a stable dissolution of an active agent contained in the CA 02128~91 1998-12-01 formulation, despite exposure to accelerated storage condit'ions such that the dissolution would be deemed acceptable by a govern-mental regulatory agency such as the U.S. FDA for purposes of according expiration dating.
These objects and others have been accomplished by the present invention, which relates in part to a controlled release formula-tion comprising a substrate comprising an active agent in an amount sufficient to provide a desired effect in an environment of use, the substrate being coated with an aqueous dispersion of plasti-cized pharmaceutically acceptable hydrophobic acrylic polymer in an amount sufficient to obtain a controlled release of said active agent when said formulation is exposed to an environmental fluid, and cured at a temperature greater than the glass transition tem-perature of the aqueous dispersion of plasticized acrylic polymer for a sufficient period of time until a curing endpoint is reached at which the coated substrate provides a stable dissolution of the active agent which is unchanged after exposure to accelerated storage conditions. The endpoint may be determined, e.g., by comparing the dissolution profile of the formulation immediately after curing to the dissolution profile of the formulation after exposure to accelerated storage conditions such as one to three months at a temperature of 37~C and at a relative humidity of 80%, or at a temperature of 40-C and at a relative humidity of 75%. In certain preferred embodiments, the substrate is coated to a weight gain from about 2% to about 25%.
In other preferred embodiments, the coated substrate when subjected to in-vitro dissolution, releases said active agent in amounts which do not vary at any time point along the dissolution curve by more than about 15% of the total amount of active agent released, when compared to the in-vitro dissolution of said coated substrate after curing.

CA 02128~91 1998-12-01 In yet other embodiments of the invention, the cured fdrmu-lation provides a stabilized dissolution of said active agent which is unchanged after exposure to accelerated storage conditions, the stabilized dissolution being deemed appropriate by the United States Food & Drug Administration for the purpose of according expiration dating for said formulation.
Other preferred embodiments relate to controlled release dosage formulation comprising a substrate coated with an effective amount of an aqueous dispersion of acrylic polymer to obtain a controlled release of an active agent which formulation, after exposure to accelerated storage conditions, releases an amount of therapeutically active agent which does not vary at any given dissolution time point by more than about 20% of the total amount of therapeutically active agent released, when compared to in-vitro dissolution conducted prior to storage. The acrylic polymer pre-ferably has a permeability which is unaffected by the pH conditions prevailing in the gastrointestinal tract.
In other embodiments, the coated substrate, upon in-vitro dissolution testing, provides a band range after exposure to accel-erated storage conditions which is not wider than about 20% at anypoint of time when compared to the dissolution profile prior to exposure to the accelerated storage conditions.
The active agent may be chosen for a wide variety of uses, in-cluding but not limited to systemically active therapeutic agents, locally active therapeutic agents, disinfectants, cleansing agents, fragrances, fertilizers, deodorants, dyes, animal repellents, insect repellents, pesticides, herbicides, fungicides, and plant growth stimulants.
The present invention is further related to a solid controlled release oral dosage formulation, comprising a substrate containing a systemically active therapeutic agent in an amount sufficient to CA 02128~91 1998-12-01 provide a desired therapeutic effect when said formulation is dral-ly administered. The substrate is coated with an aqueous disper-sion of plasticized acrylic polymer and cured at a temperature greater than the glass transition temperature of the aqueous dis-persion of plasticized acrylic polymer for a period of time suffic-ient to obtain a controlled release of said active agent when measured by the USP Paddle or Basket Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37CC from about 0% to about 42.5% (by wt) active agent released after 1 hour, from about 5% to about 60% (by wt) active agent released after 2 hours, from about 15% to about 75~ (by wt) active agent released after 4 hours, and from about 20% to about 90% (by wt) active agent released after 8 hours. The coated substrate has a stable release when comparing the rate of release of the active agent after exposing the coated substrate to accelerated conditions, to the release rate obtained immediately after curing. The dosage form preferably provides a therapeutic effect for about 24 hours. The present invention further relates to a method of preparing the dosage form.
The present invention is also related to a method for obtain-ing a controlled release formulation of an active agent, comprising preparing a solid substrate comprising an active agent, coating the substrate with a sufficient amount an aqueous dispersion of plasti-cized acrylic polymer to obtain a predetermined controlled release of the active agent when the coated substrate is exposed to an environmental fluid, and curing the coated substrate at a tempera-ture greater than the glass transition temperature of the aqueous dispersion of plasticized acrylic polymer until a curing endpoint is reached at which said coated substrate provides a stabilized dissolution of said active agent which is unchanged after exposure to accelerated storage conditions.

~ CA 02128~91 1998-12-01 The present invention is further related to a method of t~eat-ing a patient with an oral solid dosage form described above. In this method, present invention further comprises administering the oral solid dosage form comprising the cured, coated substrate to the patient to thereby obtain the desired therapeutic effect for about 12 to about 24 hours or more. In especially preferred em-bodiments, the oral solid dosage forms of the present invention provide a desired therapeutic effect for about 24 hours.
In certain preferred embodiments of the present invention, the hydrophobic acrylic polymer is comprised of copolymerizates of acrylic and methacrylic acid esters having a permeability which is unaffected by the pH conditions prevailing in the gastrointestinal tract. Preferably, these copolymerizates further include a low content of quaternary ammonium groups, which occur as salts and are responsible for the permeability of the lacquer substances.
The present invention provides many benefits over prior art coatings, including, but not limited to, avoidance of organic solvents which have inherent safety concerns (flammability, car-cinogenicity, environmental concerns, cost, safety in general), and extended stability which may result in extended shelf life and expiration dating.

BRIBF DESCRIPTION OF THE DRAWINGS
The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

- _ ~ CA 02128~91 1998-12-01 Figure 1 is a graphical representation of the dissolution results of Comparative Example 13A;
Figure 2 is a graphical representation of the dissolution results of Example 5;
Figure 3 is a graphical representation comparing the plasma levels obtained by Example 13 against the plasma levels obtained by Comparative Example 13A;
Figure 4 is a graphical representation of the plasma levels obtained for Examples 14A and 15A;
Figure 5 is a graphical representation of the plasma levels obtained for Examples 14 and 15;
Figure 6 is a graphical representation of the plasma levels obtained for Examples 16 and 17;
Figure 7 is a graphical representation of the trough levels obtained for Example 16A versus the results obtained for Examples 16 and 17; and Figure 8 is a graphical representation of the plasma levels obtained for Examples 19 and 20 versus the plasma levels of Comparative Example l9A.
DETAILED DESCRIPTION
The aqueous dispersions of hydrophobic acrylic polymers used as coatings in the present invention may be used to coat substrates such as tablets, spheroids (or beads), microspheres, seeds, pellets, ion-exchange resin beads, and other multi-particulate systems in order to obtain a desired controlled release of the active agent. Granules, spheroids, or pellets, etc., prepared in accordance with the present invention can be presented in a capsule or in any other suitable dosage form. The tablets of the present invention may be any suitable shape, such as round, oval, bicon-CA 02128~91 1998-12-01 cave, hemispherical, any polygonal shape such as squ'are, rectangular, and pentagonal, and the like.
In order to obtain a controlled release formulation, it is usually necessary to overcoat the substrate comprising the active agent with a sufficient amount of the aqueous dispersion of hydro-phobic acrylic polymer to obtain a weight gain level from about 2 to about 25 percent, although the overcoat may be lesser or greater depending upon the physical properties of the active agent and the desired release rate, the inclusion of plasticizer in the aqueous dispersion and the manner of incorporation of the same, for example. In certain embodiments of the invention, the controlled release coatings may be applied to the substrate up to, e.g., a 50 weight gain.
The cured, coated substrates of the present invention provide a stable dissolution profile (e.g., release of the active agent in the environment of use) when stored for extended periods of time at room temperature and ambient humidity (e.g., long term (real time) testing), and when tested under accelerated storage conditions.
The terms "stable dissolution profile" and "curing endpoint"
are defined for purposes of the present invention as meaning that the cured, coated substrate reproducibly provides a release of the active agent when placed in an environment of use which is un-changed, even after exposing the cured, coated substrate to accelerated storage conditions. Those skilled in the art will recognize that by "unchanged" it is meant that any change in the release of the active agent from the cured, coated formulation would be deemed insignificant in terms of the desired effect. For pharmaceutical formulations, stability is evaluated by, e.g, a regulatory agency such as the Food & Drug Administration (FDA) in the U.S., for the purpose of according an expiration date for the formulation.

CA 02128~91 1998-12-01 By the phrase "accelerated storage conditions" it is m~ant, e.g., storage conditions of elevated temperature and/or elevated relative humidity. Preferably, the phrase "accelerated storage conditions" refers to storage conditions to which the final drug formulation is subjected for the purpose of obtaining regulatory approval (e.g., FDA approval in the U.S.) and an expiration date.
The term "expiration date" is defined for purposes of the present invention as the date designating the time during which a packaged batch of the product (e.g., the cured, coated substrate) is expected to remain within specification if stored under defined conditions, and after which it should not be used.
By "environmental fluid", it is meant that the formulation is placed in an aqueous solution (e.g., in-vitro dissolution), in simulated gastric fluid (e.g., in accordance with the USP Basket Method (i.e., 37~C, 100 RPM, first hour 700 ml gastric fluid with or without enzymes at pH 1.2, then changed to 900 ml at pH 7.5), or in gastrointestinal fluid (in-vivo).
The term "band range" or "band width" for purposes of the present invention is defined as the difference in in-vitro dis-solution measurements of the controlled release formulations whencomparing the dissolution profile (curve) obtained by the formu-lation upon completion of the manufacturing of the coated product (prior to storage) and the dissolution profile obtained after the coated product is exposed to accelerated storage conditions, expressed as the total (absolute) change in percent of the active agent released from the coated product at any dissolution time point along the dissolution curves.
In general, the length of the studies and the storage test conditions required by regulatory agencies such as the FDA for pharmaceutical formulations are sufficient to cover storage, shipment, and subsequent use. Allowable storage test conditions CA 02128~91 1998-12-01 may vary depending upon the particulars of the product. ' For example, temperature sensitive drug substances should be stored under an alternative, lower temperature condition, which is then deemed to be the long term testing storage temperature. In such s cases, it is generally accepted that the accelerated testing should be carried out at a temperature at least 15~C above this designated long term storage temperature, together with appropriate relative humidity conditions for that temperature.
A generally accepted accelerated test employed in FDA guide-lines relates to the storage of a drug product (e.g., in its con-tainer and package) at 80% Relative Humidity (RH) and 37~C (1985 FDA guidelines). If the product holds up for, e.g., three months under these conditions (chemical stability, dissolution, and physical characteristics), then the drug product will be accorded, e.g., a two year expiration date. This accelerated test is also now also considered to be acceptable if conducted at 75% RH and 40~C (FDA 1987 guidelines). It has recently been proposed that long-term storage testing be conducted for pharmaceutical formu-lations at 25~C + 2~C at not less than 60% RH + 5% for a minimum time period of 12 months. It has been further proposed that accelerated testing be conducted for pharmaceutical formulations at 40~C + 2~C at 75% RH + 5% for a minimum time period of 6 months.
All of the above-mentioned accelerated testing criteria and others are deemed equivalent for purposes of the present invention, with regard to the determination of stability and the determination of the curing endpoint. All of the above-mentioned accelerated test-ing conditions, as well as others known to those skilled in the art, provide an acceptable basis for determining the curing (stability) endpoint of the controlled release formulations of the present invention.

CA 02128~91 1998-12-01 The controlled release coatings of the present invention com-prise aqueous dispersions of hydrophobic (water-insoluble) acrylic polymers. In certain preferred embodiments, the hydrophobic acrylic polymer coatings of the present invention have a solubility and permeability independent of the pH of the fluid present in the environment of use. In the case of oral solid dosage forms, the hydrophobic acrylic polymers of the present invention have a solu-bility and permeability independent of physiological pH values.
Hydrophobic acrylic polymers which may be used in the formulations of the present invention are derived from acrylic acid or deriva-tives thereof. Acrylic acid derivatives include, for example, the esters of acrylic acid and methacrylic acid, and the alkyl esters of acrylic acid and methacrylic acid. In certain preferred embodi-ments, the alkyl esters of acrylic acid and methacrylic acid have from about 1 to about 8 carbon atoms in the alkyl group. The mono-mers which may be used in the polymer coatings of the present invention also include styrene and its homologs, vinyl esters such as vinyl acetate, and vinyl chloride. Generally, monomers forming hydrophobic water-insoluble polymers are nonionic. The term "non-ionic monomers" for purposes of the present invention is meant toinclude not only monomers which have no ionic groups (such as alkali metal carboxylate or sulfonate or tertammonium groups) in the molecule, but also monomers which are unable to form such groups with bases or acids. In many cases, the composition of the hydrophobic acrylic polymer coating may include other monomers.
One skilled in the art will appreciate that the hardness and extensibility of the coating film and the lowest temperature at which film formation from the aqueous dispersion is possible are influenced by the particular monomers included in the hydrophobic acrylic polymer used in the present invention. Lower alkyl esters of methacrylic acid are known to form relatively harder homopoly-CA 02128~91 1998-12-01 mers, which acrylic acid esters and the higher alkyl ester's of methacrylic acid provide relatively softer homopolymers. Alkyl groups having greater than 4 carbon atoms or aryl groups have a hydrophobizing effect and thereby reduce the swelling capacity and diffusion permeability.
In certain preferred embodiments of the present invention, the acrylic polymer also includes one or more polymerizable perme-ability-enhancing compounds which will allow the active agent enclosed within the coating to be released at a desired diffusion rate, regardless of the prevailing pH value. In the case of oral solid dosage forms, the permeability-enhancing compound allows the active agent to be released at the same diffusion rate in each region of the digestive (gastrointestinal) tract (regardless of pH) during passage of the dosage form therethrough; after having been substantially completely extracted, the coatings of the present invention are eliminated without decomposing.
In certain preferred embodiments, the permeability-enhancing compound comprises at least one polymerizable quaternary ammonium compound. Such compounds are strong bases which are present as stable salts in a wide pH range, e.g., throughout the entire physi-ological pH region, and are easily water soluble. The nature, and particularly the amount, of the quaternary ammonium compound present in the copolymeric agent are important factors affecting diffusion behavior.
Suitable polymerizable quaternary ammonium compounds which may be used in the coatings of the present invention generally correspond to the general formula CA 02128~91 1998-12-01 R Rl CH2 = C-CO-A-B-N-R2, X~, wherein R is hydrogen or methyl; A is oxygen or NH; B is a linear or branched alkyl or is an alicyclic hydrocarbon, preferably having from about 2 to about 8 carbon atoms; Rl, R2 and R3, taken alone, are the same or different alkyl or aralkyl, and more particularly are lower alkyl having from about 1 to about 4 carbon atoms, or are benzyl, or Rl and R2, taken together with the quaternary nitrogen atom, are piperidinium or morpholinium; and ~ is a cation, preferably of an inorganic acid, particularly chloride, sulfate, or methosulfate.
Particular examples of polymerizable quaternary ammonium compounds include quaternized aminoalkyl esters and aminoalkyl 20 amides of acrylic acid and methacrylic acid, for example ~-methacryl-oxyethyl-trimethyl-ammonium methosulfate, ~-acryloxy-propyl-trimethyl-ammonium chloride, and trimethylaminomethyl-methacrylamide methosulfate. The quaternary ammonium atom can also be part of a heterocycle, as in methacryloxyethylmethyl-morpho-linium chloride or the corresponding piperidinium salt, or it canbe joined to an acrylic acid group or a methacrylic acid group by way of a group containing hetero atoms, such as a polyglycol ether group. Further suitable polymerizable quaternary ammonium com-pounds include quaternized vinyl-substituted nitrogen heterocycles such as methyl-vinyl pyridinium salts, vinyl esters of quaternized amino carboxylic acids, styryltrialkyl ammonium salts, and the like.

Other polymerizable quaternary ammonium compounds useful in the present invention are acryl- and methacryl-oxyethyltrimethyl-Z ~ ~ ~ 5 g ~
~, _ ammonium chloride and methosulfate, benzyldimethylammoniUme~hyl-methacrylate chloride, diethylmethylammoniumethyl-acrylate and -methacrylate methosulfate, N-trimethylammoniumpropylmethacrylamide chloride, and N-trimethylammonium-2,2-dimethylpropyl-1-methacrylate chloride.
Further information concerning suitable hydrophobic acrylic polymers may be obtained from U.S. Patent Nos. 3,520,970 and 4,737,357 (both assigned to Rohm G.m.b.H) One skilled in the art will appreciate that other polymeriz-abilable permeability-enhancing compounds may be substituted in the present invention for the quaternary ammonium compounds mentioned above. Such additional polymerizable permeability-enhancing com-pounds are contemplated to be within the scope of the appended claims.
In certain preferred embodiments, the hydrophobic acrylic polymer used in the coatings of the present invention comprises copolymerizates of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. Such copolymerizates are often referred to as ammonio methacrylate copolymers, and are commercially available from Rohm Pharma AG, e.g., under the trade-name Eudragit~. Ammonio methacrylate copolymers are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
In certain especially preferred embodiments of the present invention, the acrylic coating is derived from a mixture of two acrylic resin lacquers used in the form of aqueous dispersions, commercially available from Rohm Pharma under the Tradename Eudragit~ RL 30 D and Eudragit0 RS 30 D, respectively. Eudragit~
RL 30 D and Eudragit~ RS 30 D are copolymers of acrylic and meth-acrylic esters with a low content of quaternary ammonium groups, B

CA 02128~91 1998-12-01 the molar ratio of ammonium groups to the remaining ne~tral (meth)acrylic esters being 1:20 in Eudragit~ RL 30 D and 1:40 in Eudragit0 RS 30 D. The mean molecular weight is about 150,000.
The code designations refer to the permeability properties of these agents, RL for high permeability and RS for low permeability.
EudragitX RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
The Eudragit~ RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a controlled release formulation having a desirable dissolu-tion profile. Desirable controlled release formulations may be obtained, for instance, from a retardant coating derived from 100%
Eudragit~ RL, 50% Eudragit~ RL and 50% Eudragit0 RS, and 10%
EudragitX RL:Eudragit~ 90% RS, and 100% Eudragit~ RS.
The hydrophilic acrylic polymers used in the present invention may be manufactured in any manner known to those skilled in the art, including methods such as bulk polymerization in the presence of a free radical-forming initiator dissolved in the monomer mix-ture, or solution or precipitation polymerization in an organicsolvent, with the polymer thus formed thereafter being isolated from the solvent.
The hydrophobic acrylic polymer coatings of the present inven-tion may also include hydrophilic monomers having a solubility which is not dependent on pH. Examples are acrylamide and meth-acrylamide, hydroxy alkyl esters of acrylic acid and methacrylic acid, and vinyl pyrrolidone. Such materials if used, may be in-cluded in small amounts up to 20 percent by weight of the copoly-mer. Also, small amounts of ionic monomers, such as acrylic acid or methacrylic acid or amino monomers on which the quaternized monomers are based, may also be included.

CA 02128~91 1998-12-01 In other embodiments of the present invention, the hydroph~bic acrylic polymer coating further includes a polymer whose permeabil-ity is pH dependent, such as anionic polymers synthesized from methacrylic acid and methacrylic acid methyl ester. Such polymers are commercially available, e.g., from Rohm Pharma GmbH under the tradename EudragitX L and Eudragit~ S. The ratio of free carboxyl groups to the esters is said to be 1:1 in Eudragit~ L and 1:2 in EudragitX S. EudragitX L is insoluble in acids and pure water, but becomes increasingly permeable above pH 5Ø Eudragit~ S is similar, except that it becomes increasingly permeable above pH 7.
The hydrophobic acrylic polymer coatings may also include a polymer which is cationic in character based on dimethylaminoethyl meth-acrylate and neutral methacrylic acid esters (such as Eudragit~ E, commercially available from Rohm Pharma). The hydrophobic acrylic polymer coatings of the present invention may further include a neutral copolymer based on poly (meth)acrylates, such as Eudragit~
NE (NE = neutral ester), commercially available from Rohm Pharma.
Eudragit8 NE 30D lacquer films are insoluble in water and digestive fluids, but permeable and swellable.
The dissolution profile of any given formulation in accordance with the present invention may by altered by changing the relative amounts of different acrylic resin lacquers included in the coat-ing. Also, by changing the molar ratio of polymerizable permeabil-ity-enhancing agent (e.g., the quaternary ammonium compounds) to the neutral (meth)acrylic esters, the permeability properties (and thus the dissolution profile) of the resultant coating can be modified.
The release of the active agent from the controlled release formulation of the present invention can be further influenced, i.e., adjusted to a desired rate, by the addition of one or more pore-formers which can be inorganic or organic, and include mater-CA 02128~91 1998-12-01 ials that can be dissolved, extracted or leached from the coating in the environment of use. Upon exposure to fluids in the environ-ment of use, the pore-formers are, e.g., dissolved, and channels and pores are formed that fill with the environmental fluid.
For example, the pore-formers may comprise one or more water-soluble hydrophilic polymers in order to modify the release charac-teristics of the formulation. Examples of suitable hydrophilic polymers include hydroxypropylmethylcellulose, cellulose ethers and protein-derived materials. Of these polymers, the cellulose ethers, especially hydroxyalkylcelluloses and carboxyalkylcellu-loses, are preferred. Also, synthetic water-soluble polymers may be used, such as polyvinylpyrrolidone, cross-linked polyvinyl-pyrrolidone, polyethylene oxide, etc., water-soluble polydextrose, saccharides and polysaccharides, such as pullulan, dextran, sucrose, glucose, fructose, mannitol, lactose, mannose, galactose, sorbitol and the like In certain preferred embodiments of the present invention, the hydrophilic polymer comprises hydroxypropyl-methylcellulose.
Other examples of pore-formers include alkali metal salts such as lithium carbonate, sodium chloride, sodium bromide, potassium chloride, potassium sulfate, potassium phosphate, sodium acetate, sodium citrate, and the like. The pore-forming solids may also be polymers which are soluble in the environment of use, such as Carbowaxes~, Carbopol~, and the like. The pore-formers embrace diols, polyols, polyhydric alcohols, polyalkylene glycols, polyglycols, poly(a-w)alkylenediols, and the like.
Semipermeable polymers may also be incorporated in the con-trolled release coating as a pore-former to change the release characteristics of the formulation. Such semipermeable polymers include, for example, cellulose acylates, acetates, and other semi-permeable polymers such as those described in U.S. Patent No.

z ~ g ~ ;
4,28s,987, as well as the selectively permeable polymers formed by the coprecipitation of a polycation and a polyanion as disclosed in U.S. Pat. Nos. 3,173,876; 3,276,586; 3,541,005; 3,541,006 and 3,546,142.
Other pore-formers which may be useful in the formulations of the present invention include starch, modified starch, and starch derivatives, gums, including but not limited to xanthan gum, alginic acid, other alginates, bentonite, veegum, agar, guar, locust bean gum, gum arabic, quince psyllium, flax seed, okra gum, arabinoglactin, pectin, tragacanth, scleroglucan, dextran, amylose, amylopectin, dextrin, etc., cross-linked polyvinylpyrrolidone, ion-exchange resins, such as potassium polymethacrylate, carrageenan, kappa-carrageenan, lambdacarrageenan, gum karaya, biosynthetic gum, etc. Other pore-formers include materials useful for making microporous lamina in the environment of use, such as polycarbon-ates comprised of linear polyesters of carbonic acid in which carbonate groups reoccur in the polymer chain, microporous mater-ials such as bisphenol, a microporous poly(vinylchloride), micro-porous polyamides, microporous modacrylic copolymers, microporous styrene-acrylic and its copolymers, porous polysulfones, halogen-ated poly(vinylidene), polychloroethers, acetal polymers, poly-esters prepared by esterification of a dicarboxylic acid or anhydride with an alkylene polyol, poly(alkylenesulfides), phenolics, polyesters, asymmetric porous polymers, cross-linked olefin polymers, hydrophilic microporous homopolymers, copolymers or interpolymers having a reduced bulk density, and other similar materials, poly(urethane), cross-linked chain-extended poly(ure-thane), poly(imides), poly(benzimidazoles), collodion, regenerated proteins, semi-solid cross-linked poly(vinylpyrrolidone).

~ ' 2859~
~_ In general, the amount of pore-former included in the'con-trolled release coatings of the present invention may be from about 0.1% to about 80%, by weight, relative to the combined weight of hydrophobic acrylic polymer and pore-former.
The controlled release coatings of the present invention may also include an exit means comprising at least one passageway, orifice, or the like. The passageway may be formed by such methods as those disclosed in U.S. Patent Nos. 3,845,770; 3,916,889;
4,063,064; and 4,088,864. The passageway can have any shape such as round, triangular, square, elliptical, irregular, etc. The passageway may be included instead of, or in addition to, the inclusion of permeability-enhancing compounds, hydrophilic monomers, pH-sensitive polymers, and/or pore-formers, in order to obtain a release of the active agent(s) included in the formulation.
In one embodiment of the present invention, the hydrophobic polymer included in the aqueous polymer coating dispersion is water-insoluble (such as a copolymer of acrylic and methacrylic acid esters without the inclusion of any quaternary ammonium compound), and the release of the active agent is controlled substantially only via the presence of one or more passageways through the coating.
An example of a suitable controlled release formulation pursuant to the present invention will provide a dissolution rate in vitro of the dosage form, when measured by the USP Paddle or Basket Method at 100 rpm in 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37~ C, is from about 0 to about 42.5% (by wt) thera-peutically active agent released after 1 hour, from about 25 from about 55% (by wt) released after 2 hours, between 45 and 75% (by wt) released after 4 hours and greater than about 55% (by wt~
released after 6 hours, for, e.g., a 12 hour formulation (admin-CA 02128~91 1998-12-01 istered twice daily). Another example of a suitable contrdlled release formulation pursuant to the present invention is one which will provide a dissolution rate in vitro of the dosage form, when measured by the USP Paddle or Basket Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37~C from about 0% to about 42.5% (by wt) active agent released after 1 hour, from about 5% to about 60% (by wt) active agent released after 2 hours, from about 15% to about 75% (by wt) active agent released after 4 hours, and from about 20% to about 90% (by wt) active agent released after 8 hours, for e.g., a 24 hour formulation (administered once daily).
These examples of acceptable dissolution rates are directed to certain preferred embodiments of the present invention where the formulations are oral solid dosage forms, and are not intended to be limiting in any manner whatsoever.
The coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating addi-tives, non-toxic, inert, and tack-free.
It is preferred that the acrylic coatings used in the present invention include an effective amount of a suitable plasticizing agent, as it has been found that the use of a plasticizer further improves the physical properties of the film. For example, the use of a plasticizer may improve the film elasticity and lower the film-forming temperature of the dispersion. The plasticization of the acrylic resin may be accomplished either by so-called "internal plasticization" and "external plasticization."
Internal plasticization usually pertains directly to molecular modifications of the polymer during its manufacture, e.g., by copolymerization, such as altering and/or substituting functional groups, controlling the number of side chains, or controlling the CA 02128~91 1998-12-01 length of the polymer. Such techniques are usually not perfo'rmed by the formulator of the coating solution.
External plasticization involves the addition of a material to a film solution so that the requisite changes in film properties of the dry film can be achieved.
The suitability of a plasticizer depends on its affinity or solvating power for the polymer- and its effectiveness at inter-fering with polymer-polymer attachments. Such activity imparts the desired flexibility by relieving molecular rigidity. Generally, the amount of plasticizer included in a coating solution is based on the concentration of the film-former, e.g., most often from about 1 to about 50 percent by weight of the film-former. Con-centration of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
Most preferably, about 20~ plasticizer is included in the a~ueous dispersion of acrylic polymer.
An important parameter in the determination of a suitable plasticizer for a polymer is related to the glass transition temperature (Tg) of the polymer. The glass transition temperature is related to the temperature or temperature range where there is a fundamental change in the physical properties of the polymer.
This change does not reflect a change in state, but rather a change in the macromolecular mobility of the polymer. Below the Tg, the polymer chain mobility is severely restricted. Thus, for a given polymer, if its Tg is above room temperature, the polymer will behave as a glass, being hard, non-pliable and rather brittle, properties which could be somewhat restrictive in film coating since the coated dosage form may be subjected to a certain amount of external stress.

CA 02128~91 1998-12-01 Incorporation of suitable plasticizers into the polymer matrix effectively reduces the Tg, so that under ambient conditions the films are softer, more pliable and often stronger, and thus better able to resist mechanical stress.
Other aspects of suitable plasticizers include the ability of the plasticizer to act as a good "swelling agent" for the acrylic resin.
Examples of suitable plasticizers for the acrylic polymers of the present invention include, but are not limited to citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol. Other plasticizers which have proved to be suitable for enhancing the elasticity of the films formed from acrylic films such as Eudragit~ RL/RS lacquer solutions include polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin. Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of acrylic polymers of the present invention.
It has further been found that the addition of a small amount of talc reduces the tendency of the aqueous dispersion to stick during processing, and acts as a polishing agent.
The dissolution profile of the ultimate product may also be modified, for example, by increasing or decreasing the thickness of the retardant coating, by altering the manner in which the plasti-cizer is added, by varying the amount of plasticizer relative to acrylic resin, and/or by altering other aspects of the method of manufacture, for example.
In one preferred embodiment of the present invention, the controlled release dosage form comprises pharmaceutically accept-able beads (e.g., spheroids) containing the active ingredient coated with a controlled release coating. The term spheroid is known in the pharmaceutical art and means, e.g., a spherical CA 02128~91 1998-12-01 granule having a diameter of between 0.2 mm and 2.5 mm especially between 0.5 mm and 2 mm. A suitable commercially available example of such beads are nu pariel 18/20 beads.
A plurality of the cured, coated (stabilized) controlled release beads may thereafter be placed in a gelatin capsule in an amount sufficient to provide an effective controlled release dose when ingested and contacted by gastric fluid.
When the dispersion of acrylic resin is used to coat inert pharmaceutical beads such as nu pariel 18/20 mesh beads, a plur-ality of the resultant stabilized solid controlled release beadsmay thereafter be placed in a gelatin capsule in an amount sufficient to provide an effective controlled release dose when ingested and contacted by gastric fluid. In this embodiment, beads coated with a therapeutically active agent are prepared, e.g., by dissolving the therapeutically active agent in water and then spraying the solution onto a substrate, for example, nu pariel 18/20 mesh beads, using a Wurster insert. Optionally, additional ingredients are also added prior to coating the beads in order to assist the active ingredient binding to the beads, and/or to color the solution, etc. For example, a product which includes hydroxy-propyl methylcellulose, etc. with or without colorant may be added to the solution and the solution mixed (e.g., for about 1 hour) prior to application of the same onto the beads. The resultant coated substrate, in this example beads, may then be optionally overcoated with a barrier agent, to separate the therapeutically active agent from the acrylic coating. An example of a suitable barrier agent is one which comprises hydroxypropyl methylcellulose.
However, any film-former known in the art may be used. It is preferred that the barrier agent does not affect the dissolution rate of the final product.

CA 02128~91 1998-12-01 The beads comprising the active agent (with optional prdtec-tive coating) may then be overcoated with the acrylic polymer. The dispersion of acrylic polymer preferably further includes an effec-tive amount of plasticizer, e.g. triethyl citrate. Pre-formulated dispersions of acrylic resins, such as various commercially avail-able forms of Eudragit0, such as EudragitX RS30D and EudragitX RL
30D.
The coating solutions of the present invention preferably contain, in addition to the film-former, plasticizer, and solvent lo system (i.e., water), a colorant to provide elegance and product distinction. Color may be added to the solution of the thera-peutically active agent instead, or in addition to the overcoat.
Suitable ingredients for providing color to the formulation include titanium dioxide and color pigments, such as iron oxide pigments.
The incorporation of pigments, may, however, increase the retard effect of the coating. Alternatively, any suitable method of pro-viding color to the formulations of the present invention may be used.
The plasticized coating of acrylic polymer (with optional permeability enhancing compounds and/or pore-formers) may be applied onto the substrate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the core material and effects drying while the acrylic polymer coating is sprayed on. A sufficient amount of the coating to obtain a pre-determined controlled release of the therapeutically active agent when said coated substrate is exposed to aqueous solutions, e.g.
gastric fluid, is preferably applied, taking into account the physical characteristics of the therapeutically active agent, the manner of incorporation of the plasticizer, etc. After coating CA 02128~91 1998-12-01 with acrylic resin, a further overcoat of a film-former, such as opadry~, is optionally applied to the beads. This overcoat is pro-vided, if at all, in order to substantially reduce agglomeration of the beads.
Next, the coated beads, tablets, etc. are cured in order to obtain a stabilized release rate of the therapeutically active agent.
Traditionally, curing has been carried out for EudragitX
coated formulations, if at all, via a fluid bed at 45~C for 2 hours after application. Such a standard curing is recommended by Rohm Pharma because it is above the glass transition temperature (Tg) of Eudragit~ RS 30 D plasticized with triethylcitrate at a 20~ level of solids. This recommended curing does not stabilize the dissolu-tion profile of the formulation upon storage, as will be demon-strated by the examples set forth herein.
The curing step pursuant to the present invention is accomp-lished by subjecting the coated substrate, e.g., beads, to a temperature greater than the Tg of the coating formulation and continuing the curing until an endpoint is reached at which the coated formulation attains a dissolution profile which is sub-stantially unaffected by exposure to storage conditions of elevated temperature and/or humidity. Generally, the curing time is about 24 hours or more, and the curing temperature may be, for example, about 45~C. It has further been discovered in the present inven-tion that it is not necessary to subject the coated substrate to humidity levels above ambient conditions during the curing step in order to achieve a stabilized end product.
one possible mechanism for the change in the dissolution pro-file of prior art products cured by the standard methods is that these products continue to cure during storage, and may never reach a stabilized end-point at which the product provides a substantial-CA 02128~91 1998-12-01 ly constant dissolution profile. In contrast, the cured prod~cts of the present invention provide a release rate of the therapeutic-ally active agent which is substantially unaffected during storage by elevations in temperature and humidity.
In preferred embodiments of the present invention, the stabil-ized product is obtained by subjecting the coated substrate to oven curing at a temperature above the Tg of the plasticized acrylic polymer for the required time period, the optimum values for temp-erature and time for the particular formulation being determined experimentally.
In certain embodiments of the present invention, the stabil-ized product is obtained via an oven curing conducted at a temper-ature of about 45~C for a time period from about 24 to about 48 hours. In certain embodiments, it may be preferable to cure the product for, e.g., 36 hours. In certain preferred embodiments, the product is cured for about 48 hours. It is also contemplated herein that certain products coated with the controlled release coating of the present invention may require a curing time longer than 48 hours, e.g. 60 hours or more. One skilled in the art will recognize that curing conditions will be affected by the particular drug incorporated in the formulation, as well as by the thickness of the controlled release coating, and the size of the substrate (e.g., beads as compared to tablets).
It is especially contemplated that the time period needed for curing to an endpoint as described above may actually be longer or shorter than the time periods mentioned above. Such curing times which achieve the intended result of a stabilized formulation are considered to be encompassed by the appended claims. Additionally, it will be appreciated by those skilled in the art that it may be possible to cure the aqueous dispersion coated substrates of the present invention in other manners in order to reach the endpoint CA 02128~91 1998-12-01 at which the coated substrate provides a stable dissolution~pro-file. Additional curing methods (such as sonication) which achieve the intended result of a stabilized formulation are also considered to be encompassed by the appended claims.
The curing endpoint may be determined by comparing the dis-solution profile of the cured, coated substrate (e.g., the "formu-lation") immediately after curing (hereinafter referred to as "the initial dissolution profile") to the dissolution profile of the formulation after exposure to accelerated storage conditions.
Generally, the curing endpoint may be determined by comparing the dissolution profile of the formulation after exposure to acceler-ated storage conditions of, e.g., 37~C/80% RH or 40~C/75% RH for a time period of one month to the initial dissolution profile. How-ever, the curing endpoint may be further confirmed by continuing to expose the cured, coated formulation to accelerated storage condi-tions for a further period of time and comparing the dissolution profile of the formulation after further exposure of, e.g., two months and/or three months, to the initial dissolution profile obtained.
In certain preferred embodiments of the present invention in which the cured coated substrate is a pharmaceutical formulation, the curing endpoint is attained when the data points plotted along a graph of the dissolution curve obtained after, e.g., exposure to accelerated conditions of 1-3 months, show a release of the active agent which does not vary at any given time point by more than about 15% of the total amount of active agent released when com-pared to in-vitro dissolution conducted prior to storage. Such a difference in the in-vitro dissolution curves, referred to in the art as a "band range" or a "band width" of, e.g., 15%. In general, where the in-vitro dissolution prior to storage and after exposure to accelerated conditions varies by not more than, e.g., about 20 CA 02128~91 1998-12-01 of the total amount of active agent released, the formulatioh is considered acceptable when considered by governmental regulatory agencies such as the U.S. FDA for stability concerns and expiration dating. Acceptable band ranges are determined by the FDA on a case-by-case basis, and any band range for a particular pharmaceu-tical which would be deemed acceptable by such a governmental regulatory agency would be considered to fall within the appended claims. In preferred embodiments, the aforementioned band range is not more than 10% of the total amount of active agent released. In more preferred embodiments, the band range is not more than 7% of the total amount of active agent released. In the appended Examples, the band range is often less than 5%.
When the controlled release coating of the present invention is to be applied to tablets, the tablet core (e.g. the substrate) lS may comprise the active agent along with any pharmaceutically accepted inert pharmaceutical filler (diluent) material, including but not limited to sucrose, dextrose, lactose, microcrystalline cellulose, xylitol, fructose, sorbitol, mixtures thereof and the like. Also, an effective amount of any generally accepted pharma-ceutical lubricant, including the calcium or magnesium soaps may be added to the above-mentioned agents of the excipient prior to compression of the tablet core agents. Most preferred is magnesium stearate in an amount of about 0.2-5% by weight of the solid dosage form.
In certain embodiments of the present invention, the coated substrate includes an additional dose of active agent included in either the controlled release coating comprising the aqueous dis-persion of hydrophobic polymer, or in an additional overcoating coated on the outer surface of the controlled release coating.
This may be desired when, for example, a loading dose of a thera-peutically active agent is needed to provide therapeutically effec-~ ~ 2 ~ 5 ~ ~
_ tive blood levels of the active agent when the formulation is ~irst exposed to gastric fluid. In such cases, a further protective coating (e.g., of HPMC) may be ineluded to separate the immediate release eoating layer from the eontrolled release coating layer.
S The aetive agent(s)-ineluded in the eontrolled release formu-lations of the present invention inelude systemieally aetive thera-peutie agents, loeally aetive therapeutie agents, disinfeeting agents, ehemical impregnants, eleansing agents, deodorants, frag-ranees, dyes, animal repellents, inseet repellents, a fertilizing agents, pesticides, herbicides, fungicides, and plant growth stimulants, and the like.
A wide variety of therapeutieally active agents can be used in conjunction with the present invention. The therapeutically active agents (e.g. pharmaceutical agents) which may be used in the eompo-sitions of the present invention include both water soluble and-water insoluble drugs. Examples of such therapeutically active agents inelude antihistamines (e.g., dimenhydrinate, diphenhyd-ramine, ehlorpheniramine and dexehlorpheniramine maleate), analge-sics(e.g., aspirin*, codeine, morphine, dihydromorphone, oxycodone, etc.), non-steroidal anti-inflammatory agents (e.g., naproxyn, diclofenae, indomethaein, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide), anti-epilepties (e.g., phenytoin, meprobamate and nitrezepam), vasodilators (e.g., nifedipine, papaverine, diltiazem and nicardirine), anti-tussive agents and expectorants (e.g., codeine phosphate), anti-asthmatics (e.g. theophylline), antacids, anti-spasmodics (e.g. atropine, scopolamine), antidiabetics (e.g., insulin), diuretics (e.g., ethacrynic acid, bendrofluazide), anti-hypotensives (e.g., propranolol, clonidine), antihypertensives (e.g, clonidine, methyldopa), bronchodilators te.g., albuterol), steroids (e.g., hydrocortisone, triamcinolone, prednisone), anti-biotics (e.g., tetracycline), antihemorrhoidals, hypnotics, psycho-* Trade-mark 32 CA 02128~91 1998-12-01 tropics, antidiarrheals, mucolytics, sedatives, decongestahts, laxatives, vitamins, stimulants tincluding appetite suppressants such as phenylpropanolamine), as well as salts, hydrates, and solvates of the same. The above list is not meant to be exclusive.
In certain preferred embodiments, the therapeutically active agent comprises hydromorphone, oxycodone, dihydrocodeine, codeine, dihydromorphine, morphine, buprenorphine, salts, hydrates and solvates of any of the foregoing, mixtures of any of the foregoing, and the like.
In another preferred embodiment of the present invention, the active agent is a locally active therapeutic agent and the environ-ment of use may be, e.g., the gastrointestinal tract, or body cavities such as the oral cavity, periodontal pockets, surgical wounds, the rectum or vagina.
The locally active pharmaceutical agent(s) include antifungal agents (e.g., amphotericin B, clotrimazole, nystatin, ketoconazole, miconazol, etc.), antibiotic agents (penicillins, cephalosporins, erythromycin, tetracycline, aminoglycosides, etc.), antiviral agents (e.g, acyclovir, idoxuridine, etc.), breath fresheners (e.g. chlorophyll), antitussive agents (e.g., dextromethorphan hydrochloride), anti-cariogenic compounds (e.g. metallic salts of fluoride, sodium monofluorophosphate, stannous fluoride, amine fluorides), analgesic agents (e.g., methylsalicylate, salicylic acid, etc.), local anesthetics (e.g., benzocaine), oral anti-septics (e.g., chlorhexidine and salts thereof, hexylresorcinol, dequalinium chloride, cetylpyridinium chloride), anti-flammatory agents (e.g., dexamethasone, betamethasone, prednisone, predni-solone, triamcinolone, hydrocortisone, etc.), hormonal agents (oestriol), antiplaque agents (e.g, chlorhexidine and salts thereof, octenidine, and mixtures of thymol, menthol, methysali-cylate, eucalyptol), acidity reducing agents (e.g., buffering CA 02128~91 1998-12-01 agents such as potassium phosphate dibasic, calcium carbonate, sodium bicarbonate, sodium and potassium hydroxide, etc.), and tooth desensitizers (e.g., potassium nitrate). This list is not meant to be exclusive.
In another preferred embodiment of the present invention, the active agent is disinfecting agent, e.g. a chlorine compound such as calcium hypochlorite, and the environment of use is a surround-ing body of water, e.g. a recreational pool.
In still another preferred embodiment of the present inven-tion, the active agent comprises at least one of a cleansing agent, a germicide, a deodorant, a surfactant, a fragrance, a perfume, a sanitizer, and/or a dye, and the environment of use is an aqueous solution, e.g. a urinal or toilet bowl.
In yet another preferred embodi~ent of the present invention, the active agent is a chemical impregnant, e.g. fertilizer, Ani~l repellents, insect repellents, pesticides, herbicides, fungicides, plant growth stimulants, and the environment of use is, e.g., any-where around the home, e.g. soil, trees etc. The fertilizer may be, for example, a nitrogen containing compound such as urea, urea for-maldehyde composites, potassium nitrate, potassium sulfate, potas-sium chloride, ammonium nitrate, ammonium sulfate, monoammonium phosphate, dibasic ammonium phosphate. ammoniated super-phosphoric acid, micronutrient ingredients such as trace elements of iron, zinc, manganesie, copper, boron, molybdenum, and mixtures of any of the foregoing. The fertilizer may be, e.g., in granular form. In these embodiments, the thickness of the controlled release coating will depend upon, among other things, the desired rate and overall time period for release of an effective amount of the active agent.
In some circumstances where a relatively long time period of efficacy is desired, the substrate may be coated to a relatively high weight gain of, e.g., up to 50~ or more. In other situations, 2 ~ ~ ~ 5 ~ ~
it may be desirable to obtain the desired efficacy by utili~ing coated substrates which are coated to different weight gains, br which include different components of the coating, so that a desired proportion of the coated substrates provide a release of S active agent which is faster relative to other of the coated substrates, thereby providing an overall release of active agent which is within the desired effective levels for an even longer extended period of time.
For example, when the coated substrate is a coated chlorine tablet for combatting bacterial and algaecidal contamination of swimming pools and the like, the substrate may comprise commercial grade calcium hypochlorite, with or without trichloroisocyanuric acid, sodium dichlorocyanurate, lithium hypochlorite, powdered lime, and/or the like.
lS For example, the substrate may comprise about 98.S% commercial grade calcium hypochlorite and about 1.5% powdered lime, by weight.
The substrate may also comprise commercial granular calcium hypo-chlorite, up to 20% by weight chloride of lime, and 1% zinc stear-ate having an available chlorine percentage o~ about 69% and a mass of about 57 g and a diameter of about 40 mm, as described in U.S.
Patent No. 4,192,763 The substrate is then coated with the aqueous dispersion of plasticized hydrophobic polymer to a desired weight gain, and the coated tablet is then cured in accordance with the present invention until an endpoint is reached at which the 2S cured coated tablet provides a reproducibly stable dissolution profile When the active agent comprises a composition suitable for cleaning and preventing the staining of toilet bowls, the substrate may include a well-known disinfectant such as calcium hypochlorite and/or trichloroisocyanuric acid. The active agent may alterna-tively comprise an alkali metal salt of dichloroisocyanuric acid B' 35 ': 2~2~5g~
_ and a chloride salt such as calcium chloride and barium chlo~ide, such as that which is described in U.S. Patent No. 4,654,341 One possible example of such a product might include a sub-strate comprising 0.5-5~O fragrance, 1-10% dye, 10-40% surfactant (which may be nonionic, cationic, anionic or zwitterion surfact-ants), and other optional components such as germicides, disinfect-ants, processing aids, and other commonly included ingredients known to those skilled in the art. Such active agents may be incorporated into a substrate comprising a tablet, along with other well-known ingredients such as detergents, surfactants, perfumes, dyes, and any necessary fillers.
The substrate may be alternatively comprised of a pellet which is prepared by homogenously mixing together, e.g., 1 g of azure blue dye 65% (dye commercially available from Hilton David), 1 g Pluronic* F-127 (a nonionic surfactant comprising the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine; commercially available from BASF-Wyandote Chemicals), 38 g Carbowax* 8000 (a solid polyethylene glycol, molecular weight 80~0; commercially available from Union Carbide), and 40 g Kemamide* U (a oleylamide surfactant; commercially available from Witco) and an optional fragrance (e.g., 0.5~ by weight citrus pine fragrance~, and there-after processing the above ingredients into a pellet by conven-tional methods such as noodling, plodding, extruding and cutting and stamping the mass to form the pellets. Optionally, the pellets may also include a suitable amount of an inorganic salt to cause the pellet to settle to the tank bottom, and one or more binding agents such as guar gum. The pellet is then coated with the aqueous dispersion of plasticized hydrophobic polymer to a weight gain from about 2 to about 30 percent, depending upon the desired * Trade-mark L~, 5 g ~ -rate of dissolution, and the coated pellet is then cured in ac~ord-ance with the present invention until an endpoint is reached at which the cured coated pellet provides a reproducibly stable dissolution profile.
Another example of a substrate useful for the treatment of the flush water of toilets is one which comprises an iodophor such as povidone iodine, as de~cribed in U.S. Patent No. 5,043,090.
When the substrate comprises a fragrance, the fragrance may be any conventional commercially available perfume oil, e.g., volatile compounds including esters, ethers aldehydes, alcohols, unsaturated hydrocarbons, terpenes, and other ingredients which are well known in the art. Their type and compatibility is limited only by their compatibility and desirability, as may be determinable by those skilled in the art.
When the active agent comprises a composition suitable for use as a fertilizer, the active agent may comprise granular urea which is coated with the aqueous dispersion of plasticized hydro-phobic polymer to a weight gain from about ~ to about 30 percent and then cured in accordance with the present invention. In urea pill production, urea at 70% solids concentration in water is heated to remove substantially all of the water. The molten urea is then injected as droplets to an air cooling tower where crystal-line urea is formed as a hard pill or bead, which is then coated and cured in accordance with the present invention.
When the substrate comprises plant food formulations, the substrate can be pelleted, ball-shaped, particulate, or in stick form, and may additionally contain growth promoting substances such as gibberellic acid along with soil fungistats such as formaldehyde and paraformaldehyde, etc.

n D

CA 02128~91 1998-12-01 A theophylline bead was coated in accordance with the present invention prior to curing. The coating was an aqueous dispersion of Eudragit. Due to, e.g., cracks or pores in the coating, the coating allowed the environmental fluid to pass through to the underlying core where the active agent is found.
Coated beads were cured in an oven at 45~C for a time period of 48 hours. Morphological changes to the coating on the surface of the bead were apparent. This curing is believed to play a significant role in the stabilization of the dissolution profile of the coated substrate.
1~ When the controlled release coating of the present invention is to be applied to tablets, the tablet core (e.g. the substrate) may comprise the active agent along with any pharmaceutically accepted inert pharmaceutical filler (diluent) material, including but not limited to sucrose, dextrose, lactose, microcrystalline cellulose, xylitol, fructose, sorbitol, mixtures thereof and the like. Also, an effective amount of any generally accepted pharma-ceutical lubricant, including the calcium or magnesium soaps may be added to the above-mentioned ingredients of the excipient prior to compression of the tablet core ingredients. Most preferred is magnesium stearate in an amount of about 0.2-5% by weight of the solid dosage form.
Tablets overcoated with a sufficient amount of the coating of acrylic resin to achieve a controlled release formulation pursuant to the present may be prepared and cured in similar fashion as explained above with regard to the preparation of beads. One a ~
skilled in the art will recognize that necessary curing condit'ions with regard to the particular elevated temperature, elevated humidity and time ranges necessary to obtain a stabilized product, will depend upon the particular formulation.

DETA~LED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.

Preparation of Hydromorphone Beads Hydromorphone beads were prepared by dissolving hydromorphone HC1 in water, adding Opadry~ Y-5-1442, light pink (a product commercially available from Coloron, West Point, Pennsylvania, which contains hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose, titanium dioxide, polyethylene glycol and D&C Red No. 30 Aluminum Lake), 20% w/w, and mixing for about 1 hour, and then spraying onto nu pariel 18/20 mesh beads using a Wurster insert.
20 The resultant preparation had the ~ormula set forth in Table 1 below:

InqredientsPercent (by wt)Amt/Unit (mg) Hydromorphone HClS.0% 4.0 mg Nu Pariel* 18/2092.5% 74.0 mg Opadry~
- Lt. Pink Y-5-14422.5% 2.0 mg 100.0% ~0.0 mg Retardant Coating - No Curing Step In Example 2, hydromorphone beads prepared in accordance with Example 1 were overcoated with Eudragit~ RS 3OD to a 5%
weight gain as set forth in Table 2 below. No terminal drying was conducted.

* Trade mark ~., ~ Ingredients Percent (by wt) Amt/Unit (mq) Hydromorphone beads92.59 80 Eudragit~ RS30D 4.63 4 Citroflex* 2 (triethyl citrate)0.93 0.8 Talc 1.85 1.6 Purified water qs 100 - 86.4 The hydromorphone beads were tested for initial dissolution, and then stored for one month under accelerated conditions of 37~C/80%RH (RH = relative humidity). After one month, the beads were found to have agglomerated.
Dissolution tests were carried out via the USP Basket Method, 37CC, 100 RPM, first hour 700 ml gastric fluid at pH 1.2, then changed to 900 ml at 7.5. The dissolution was conducted by placing an open capsule containing an appropriate weight of beads into a vessel. The results are set forth in Table 3 below:

Hydromorphone HCl 12 mg Controlled Released Capsules Stability Performance Data Hydro-mor- Average phone Fill Wt Time HCl (ma) 1 hr 2 hr 4 hr 8 hr 12 hr 18 hr 24 hr Initial 12.34 259.2 1.5 5.1 15.6 53.5 76.9 93.6 100.0 37~C/80~RH
1 mo. 12.42 262.6 2.1 6.1 12.6 35.1 56.2 75.1 86.1 The above results demonstrate that there was a slowing of the dissolution of hydromorphone HCl from the coated beads when the beads were subjected to accelerated storage conditions.

Protecting the Retardant Coating In order to determine if the slowing of the dissolution of the hydromorphone beads of Example 2 was due to a stability problem between the hydromorphone and the retardant, in Example 3 Nu pariel hydromorphone beads were prepared according to Example * Trade-mark B

CA 02128~91 1998-12-01 1, then overcoated with 5% HPMC, and tested without the reta~dant layer. Dissolution tests were conducted initially, and after storage at accelerated conditions of 37-C dry and 37~C/80%RH.
The results of the dissolution tests for Example 3 are set forth in Table 4 below:

Hydromorphone HCl 8 mg Controlled Release Capsules Stability Data Summary Average Hydromorphone Weight Testinq Time HCl (mg) 1 hr 2 hr Initial 8.49 166 100.0 100.0 37~C dry 1 month 8.49 167 100.0 100.0 2 months 8.49 167 100.0 100.0 37~C/80~ RH
1 month 8.4g 167 100.0 100.0 2 months 8.49 170.3 100.0 100.0 The results of Example 3 show that the coated beads which did not include a retardant coating were stable.
In order to determine the relative humidity under "dry conditions" in the oven, the relative humidity in a water-filled desiccator in a 60~C oven was determined as follows. First, about 500 grams of purified water is poured into a plastic desic-cator and the metal guard inserted. A hygrometer/temperature indicator is placed on top of the guard and the desiccator covered and placed in the 60-C oven for 24 hours. After 24 hours the relative humidity in the desiccator was 85% while the temperature was still 60~C. On placing the hygrometer alone in the 60-C oven for 24 hours, the relative humidity was 9% at 60~C.

Prior Art Curinq (According to Literature Recommendations) In Example 4, hydromorphone ~eads prepared according to Example 3 were coated with the Eudragit~ RS to a 5% weight gain.

CA 02128~91 1998-12-01 After application of the coating, the beads were dried (cured~ at 45~C in a fluidized bed dryer for 2 hours. This temperature is above the Tg of Eudragit~ RS 30D, plasticized with Triethyl-citrate at 20% level of solids. Dissolution tests were conducted initially, and after storage at 37~C dry and 37~C/80%RH. The results are set forth in Table 5 below:

Hydromorphone HCl 8 mg Controlled Release Capsules Stability Data Summary Hydro-mor- Average Testing phone Weight Time HCl (mq) 1 hr 2 hr 4 hr 8 hr 12 hr 18 hr 2 hours* 8.50 178.5 8.0 21.8 45.7 79.3 94.2 *initial dissolution after curing 37~C dry 1 mo. 8.50 177 16.8 25.8 44.2 67.8 80.8 2 mo. 8.39 174 24.6 40.8 61.8 83.4 94.0 100.0 37~C/80%RH
1 mo. 8.50 174 48.8 60.1 80.7 94.0 100.0 2 mo. 8.55 178 53.6 76.3 90.7 98.2 100.0 From the results provided above, it can be seen that the hydromorphone dissolution from the beads underwent significant changes upon storage, and that the short curing step recommended in the literature and utilized in Example 4 did not to help the stability/curing problem.

Examples 5 - 7 Optimizing Curing and Ingredients of Retardant Coatinq The results obtained from Examples 2-4 indicated that the dissolution of the beads overcoated with a retardant coating seemed to slow down to a point and no further. However, the endpoint dissolutions achieved were too slow.
In Examples 5-7, additional tests were conducted to deter-mine processing conditions reguired during manufacture to cure the product to its endpoint dissolution.

CA 02128~91 1998-12-01 In order to obtain a formulation having a more suitable~
dissolution curve, and, rather than reduce the coating to less than 5% weight gain, the more soluble EudragitD RL (methacrylic ester 1:20 quaternary ammonium groups) was included in the retardant coat.
In Examples 5-7, the hydromorphone beads prepared pursuant to Example 4, except that they were overcoated with a 5% HPMC to protect the retardant coating from the environment. In Example 5, the retardant coating consisted of 100% Eudragit~ RL. In Example 6, the retardant coating consisted of 50% Eudragit~ RL
and 50% Eudragit~ RS. Finally, In Example 7, the retardant coat-ing consisted of 10% Eudragit~ RL: Eudragit~ 90% RS. Each of Examples 5-7 were coated to total weight gain of 5%.
Each of the HPMC-protected coatings of Examples 5-7 were cured to 1, 2, 7, 10, 21 and 30 days at 45~ C dry, at which times dissolution studies as set forth in Example 2 were conducted.
only Example 7 showed a desirable release profile, and curing was complete after only one day. Dissolution studies of the products of Examples 5 and 6 showed the same to be immediate release products, the amount/type of retardant used not being sufficient to prevent immediate release of the drug (i.e., about 100% of the drug being released after one hour), even after the formulations were cured. Example 7 was further tested by storing under accelerated conditions as follows. After curing for 21 days, the samples of Example 7 were placed in a 37~C/80%RH oven, and dissolution tests as set forth in Example 2 were conducted after 7 and 30 days. Representative dissolution profiles for Example 7 (mean results for three samples) are set forth in Table 6 below:

CA 02128~91 1998-12-01 Hydromorphone HCl 8 mg MD CR Eudragit~ 5% Beads CuringPercent Hydromorphone HCl Dissolved Time Wt(mgl1 hr 2 hr 4 hr 8 hr 12 hr 18 hr 24hr Initial Mean 191 16.6 53.1 69.3 86.7 95.6 99.3 100.0 1 day Mean 190.7 7.1 33.1 66.6 87.3 99.5 97.9 99.0 2 days Mean 190.7 7.4 35.0 67.0 87.4 95.1 98.4 99.2 7 days Mean 190.7 8.0 36.3 67.7 86.6 93.3 96.8 98.4 1 0 daYs Mean 191.3 7.2 36.5 68.9 88.5 94.8 98.0 99.5 21 daYs Mean 191 6.9 36.1 66.9 86.2 92.7 99.8 99.0 30 daYs Mean 190.3 5.83 31.9 65.2 82.7 90.4 96.3 96.7 Stora~e Time/Conditions 30-C/80%RH
7 days Mean 190.7 5.9 25.1 62.7 84.6 92.6 97.6 99.5 30 daYs Mean 190.3 5.8 31.9 65.2 82.7 90.4 96.3 96.9 The results set forth in Table 6 demonstrate that the 1 month dissolution profile showed no slowdown as compared to the initial cured sample, even for the samples tested under accelerated conditions. Thus, after curing for 24 hours at 45~ C, the methacrylate controlled release film coating was essentially stabilized.

Optimizing Retardant Coating Thickness In Examples 8 - 10, additional experimentation was conducted to determine the optimum weight of methacrylate polymer to use for a desirable release profile and to determine reproducibility and effectiveness of the 48 hour curing step at 45~ C dry. Three CA 02128~91 1998-12-01 batches were manufactured at different levels of methacrylate load and cured in a 45~ C dry oven.
In Example 8, hydromorphone beads were prepared in accord-ance with those of Example 3, as set forth in Table 7 below:

Hydromorphone HCl MD Beads InqredientsPercent (by wt) Amt/Unit (mg) Hydromorphone HCl 4.75% 4 Nupariels Pa 18/20 87.89% 74 Opadry Lt Pin~ Y-5-14422.38% 2 Opadry Lt Pink Y-5-14424.99% 4.2 100% 84.2 The hydromorphone beads were then further processed in accordance with Example 5. In Example 7, the retardant coating was Eudragit~ RS, Eudragit8 RL 90:10 (5% w/w coating). The formula for Example 7 is set forth in Table 8 below:

Hydromorphone HCl MD CR Eudragit~ 5% Beads Inqredients Percent (by wt)Amt/Unit (m~) Hydromorphone beads87.96% 84.2 mg Eudragit~ RS 30D (90%) 3.97% 3.8 mg EudragitX RL 30D (10%) 0.42% 0.4 mg TEC (20% of RS & RL)0.88% 0.84 mg Talc (40% of RS & RL)1.75%1.68 mg Purified water qs Opadry Lt Pink Y-5-14425.01% 4.8 100% 95.72 mg Examples 9 and 10 are prepared in similar fashion to Example 7. In Example 9, the retardant coating was Eudragit~ RS, Eudragit~ RL 90:10 (8% w/w coating). In Example 10, the retard-ant coating was Eudragit2 RS, Eudragit~ RL 90:10 (12% w/w coat-ing). The formulas for Examples 9 and 10 are set forth in Tables 9 and 10, respectively, below:

CA 02128~91 1998-12-01 Hydromorphone HCl MD CR Eudragit~ 8% Spheres Ingredients Percent (by wt~ Amt/Unit (m~) Hydromorphone beads 84.2% 84.2 EudragitX RS 30D (90%) 6.07% 6.07 Eudragit~ RL 30D (10%) 0.67% 0.67 TEC (20% of RS & RL) 1.35% 1.35 Talc (40% of RS & RL) 2.70% 2.70 Purified water qs Opadry Lt Pink Y-5-1442 5.0% 5.0 99 . 99% 99 . 99 Hydromorphone HCl MD CR EudragitX 12% Spheres Ingredients Percent (by wt) Amt/Unit (mg) Hydromorphone beads 79.69% 84.2 Eudragit2 RS 30D (90%) 8.61% 9.1 Eudragit~ RL 30D (10%) 0.95% 1.0 TEC (20% of RS & RL) 1.91% 2.02 Talc (40% of RS & RL) 3.82% 4.04 Purified water qs Opadry Lt Pink Y-5-1442 5.02% 5.3 100% 105.66 Each of Examples 9 - 10 were cured on paper lined trays in a 45~ C oven for two days after the application of the Eudragit~
Controlled Release Coating and the HPMC 5% overcoating. Dissolu-tion studies were then conducted on Examples 8 - 10.
Initial dissolution profiles (after curing) of Example 8 showed it to resemble Example 7 (the products of both Examples were overcoated with a 5% w/w EudragitX coating). After curing for 2 days, samples of Example 8 were subjected to further tests at room temperature, and under accelerated conditions of 37-C/
80%RH, 37~C dry and 50~C dry. Representative dissolution pro-files for Example 8 (mean results for three samples) are set forth in Table 11 below:

CA 02128~91 1998-12-01 Hydromorphone HCl CR 8 mg Eudragit~ 5% Capsules Percent Hydromorphone HCl Dissolved Time Wt(mq) 1 hr 2 hr 4 hr 8 hr 12 hr 18 hr 24hr 2 days*
Mean 191.3 6.3 36.2 69.3 87.8 97.3 100.0 *initial dissolution after curing RT
1 mo.
Mean 191.1 6.0 30.8 63.1 83.4 91.8 96.3 97.9 37~C/80%RH
1 mo.
Mean 191.6 6.9 28.5 63.2 84.5 91.5 95.6 97.8 2 mo.
Mean 194.3 11.4 35.6 70.7 90.5 96.8 100 37~C Dry 1 mo.
Mean 192.0 11.4 35.1 68.6 87.9 94.5 98.9 100 50~C DrY
1 mo.
- Mean 191.4 11.1 41.4 70.6 90.4 96.5 100 Comparison to Example 9 (1 day and 2 day dissolutions) 1 day Mean 190.7 7.1 33.1 66.6 87.3 99.5 97.9 99.0 2 DaYs Mean 190.7 7.4 35.0 67.0 87.4 95.1 98.4 99.2 As can be seen from the dissolution results provided for Example 8, although the dissolution profile of the samples were not taken after 1 day of curing, the results obtained after 2 day curing are substantially similar to the results obtained for the 1 and 2 day curings of Example 7. Therefore, it is hypothesized that the product of Example 8 was also stable after one day curing.
After curing for 2 days, samples of Example 9 were tested for dissolution, and then samples of Example 9 were exposed to accelerated conditions of 37~C/80%RH for one month. Repre-sentative initial dissolution profiles (mean results for three samples) for Example 9 are set forth in Table 12 below:

CA 02128~91 1998-12-01 Hydromorphone HCl CR 8 mg Eudragit~ 8% Capsules Percent Hydromorphone HCl Dissolved Time Wt(mg~ 1 hr 2 hr 4 hr 8 hr 12 hr 18 hr 24hr 2 days*
Mean 201.3 0.8 3.3 40.0 78.4 90.7 97.5 99.9 *initial dissolution after curing 37-C/80%RH
1 mo.
Mean 7.3 8.6 34.1 72.8 85.5 93.2 97.2 As can be seen from the dissolution results provided above for Example 9, the results obta-ined after 2 day curing are substantially similar to the results obtained under accelerated lS storage conditions of 37~C/80%RH, thus indicating the stability of Example 9 after a 2 day curing. Furthermore, the dissolution results obtained with Example 9 showed slower release rates of hydromorphone, as would be expected given the thicker retardant coating.
After curing for 2 days, samples of Example 10 were tested for dissolution, and then samples of Example 10 were subjected to further tests after storing for one month at room temperature, and under accelerated conditions of 37-C/80%RH, 37 C dry and 50 C
dry. Representative dissolution profiles (mean results for three samples) for Example 10 are set forth in Table 13 below:

Hydromorphone HCl CR 8 mg EudragitX 12% Capsules Percent Hydromorphone HCl Dissolved Time Wt(mg) 1 hr 2 hr 4 hr 8 hr 12 hr 18 hr 24hr 2 daYs*
Mean 215.3 0.8 3.1 9.3 70.9 90.4 100.8 104.8 *initial dissolution after curing RT
1 mo.
Mean 210.8 0 1.8 4.6 62.9 84.3 96.1 99.8 37~C/80%RH
1 mo.
Mean 213.8 2.2 4.8 7.2 50.8 74.3 87.3 93.3 37-C Dry 1 mo.
Mean 210.4 0.8 2.2 6.9 59.7 82.2 96.3 100 50 C Dry 1 mo.
Mean 207.3 1.6 1.5 3.3 51.5 76.2 90.9 97.4 CA 02128~91 1998-12-01 As can be seen from the dissolution results provided abo've for Example 10, the dissolution results obtained with Example 10 showed slower release rates of hydromorphone as compared to the thinner retardant coatings of Examples 8 and 9, as expected. The overall results obtained after 2 day curing are substantially similar to the results obtained under accelerated storage conditions of 37~C/80%RH, with the exception of the percent drug dissolved at the 8 hour and 12 hour points. These results might indicate that at high loads of retardant coating, it may be necessary to cure the coating for a longer period of time to attain a stabilized formulation.

MorPhine Sulfate Coated Beads In Example ll, the curing step of the present invention was applied to a formulation in which morphine sulfate was substi-tuted as the drug.
A suspension of morphine sulfate and HPMC (Opadry~ Clear Y-5-7095) was applied onto 18/20 mesh nupariel beads in a fluid bed dryer with a Wurster insert at an inlet temperature of 60-C. An Opadry~ Lavender YS-1-4729 HPMC Base filmcoating suspension was then applied after drug loading as a protective coat at a 5 weight gain.
After the overcoating process was completed, the morphine sulfate beads were then overcoated with a retardant coating mixture of Eudragit2 RS 30D and Eudragit~ RL 30D at a ratio of 90:10, RS to RL, at a 5% weight gain level. The application of this mixture of Eudragit~ RS 30D and Eudragit~ RL 30D along with talc (included as an anti-tacking agent) and triethyl citrate (plasticizer) was done at an inlet temperature of 35~C in a Wurster Insert.

CA 02128~91 1998-12-01 Once the retardant overcoating was complete, the morphin'e sulfate beads were given a final overcoating of Opardry~ lavender YS-1-4729 at a 5% weight gain level.
After completion of the final filmcoating process, the morphine sulfate beads were cured on paper lined trays in a 45~C
dry oven for 2 days. After curing, the beads were filled into gelatin capsules at a 30 mg morphine sulfate strength. The final formula is provided in Table 14 below:
Table 14 Processinq Ste~ Ingredient Mq/Capsule Drug Load Morphine Sulfate30 mg Nupariel PG 18/20255 mg Opadry~ Clear Y-5-709515 mg First Overcoat OpadryX Lavender YS-1-4729 15.8 mg Retardant Overcoat Eudragit~ RS 30D14.2 mg Eudragit2 RL 30D1.6 mg Triethylcitrate3.2 mg Talc 6.3 mg Final Overcoat Opadry~ Lavender YS-1~4729 18.0 mq Total: 359.1 mg Dissolution stability studies were then conducted on the product of Example 11 after the above-mentioned curing step at storage conditions of room temperature, 37~C/80%RH, 37~C dry, and 50 C dry after one month and after two months. The results are set forth in Table 15 below:

~ ,~

CA 02128~91 1998-12-01 Morphine Sulfate CR 30 mg Eudragit~ 5% Capsules Percent Morphine Sulfate Dissolved Time l hr 2 hr 4 hr 6 hr 8 hr 12 hr18 hr 24hr 52 daYs*
Mean 0.0 43.5 74.9 -- 91.8 95.399.8 100 *initial dissolution after curing RT
1 mo.
Mean 0.0 36.9 73.8 86.9 92.296.5 99.9 100 2 mo.
Mean 2.0 37 72 82 88 92 96 99 37~C/80%RH
1 mo.
Mean 0.0 28.4 70.3 84.8 92.1 97.7100 2 mo.
Mean 1.9 30.1 68.4 79.9 87.0 93.595.6 97.8 37~C Dry 1 mo.
Mean 0.0 32.0 72.5 86.0 93.2 97.3100 2 mo.
Mean 0.9 26.4 67.5 78.8 88.6 94.098.0 99.5 50~C Dry 1 mo.
Mean 0.0 37.7 74.1 89.3 93.7 98.5100 2 mo.
Mean 2.0 33.0 74 85 94 98 100 The results set forth in Table 15 demonstrate that the curing process stabilized the dissolution profile of the morphine sulfate to an endpoint dissolution rate which substantially remained constant, even for the samples stored under accelerated conditions.

Controlled Release Hydromorphone HCl 8 mg Formulations - Acrylic PolYmer Coatinq Example 12 is prepared as follows:
1. Drug Loading. Hydromorphone beads were prepared by dis-solving hydromorphone HCl in water, adding Opadry Y-5-1442, light pink (a product commercially available from Colorcon, West Point, PA, which contains hydroxypropyl methylcellulose, hydroxypropyl cellulose, titanium dioxide, polyethylene glycol and D&C Red No.

CA 02128~91 1998-12-01 30 aluminum lake) and mixing for about 1 hour to obtain a 20%'w/w suspension. This suspension was then sprayed onto Nu-Pareil 18/20 mesh beads using a Wurster insert.
2. First Overcoat. The loaded hydromorphone beads were then overcoated with a 5% w/w gain of Opadry Light Pink using a Wurster insert. This overcoat was applied as a protective coating.
3. Retardant Coat. After the first overcoat, the hydromor-phone beads were then coated with a 5% weight gain of a retardant coating mixture of Eudragit RS 30D and Eudragit RL 30D at a ratio of 90:10, RS to RL. The addition of Triethyl Citrate (a plasti-cizer) and Talc (anti-tacking agent) was also included in the Eudragit suspension. The Wurster insert was used to apply the coating suspension.
4. Second Overcoat. Once the retardant coating was complete, the hydromorphone beads were given a final overcoat of Opadry Light Pink to a 5% weight gain using a Wurster insert.
This overcoat was also applied as a protective coating.
5. Curing. After the completion of the final overcoat, the hydromorphone beads were cured in a 45-C oven for 2 days. The cured beads were then filled into gelatin capsules at an 8 mg Hydromorphone strength. The complete formula for the beads of Example 12 is set forth in Table 16 below:

Processing Ste~ Inqredient % mq/unit Drug Loading Hydromorphone HCl 8.2 8.0 Nu-Pareil 18/20 73.3 74.0 Opadry Lt Pink 2.1 2.0 First Overcoat Opadry Lt Pink 4.4 4.2 Retardant Coat Eudragit RS 30D
(dry wt.) 4Ø 3.8 Eudragit RL 30D
(dry wt.) 0.4 0.4 Triethyl Citrate 0.8 0.8 Talc 1.8 1.7 Second Overcoat Opadry Lt Pink 5.0 4.8 Total 52 100.0 99.7 mg CA 02128~91 1998-12-22 Dissolution studies were conducted on the Eudragit-coate'd hydromorphone beads of Example 12 both initially and after 28 days. The results are set forth in Table 17 below:

Time 1 hr 2 hr 4 hr 8 hr 12 hr 18 hr - 24 hr Initial 17.2 48.4 77.4 93.3 97.2 98.8 98.8 28 days at 37~C/
80% RH 16.8 50.6 79.7 95.2 99.0 101.9 102.7 The stability studies of the Eudragit-coated hydromorphone beads as set forth in Table 17 below show the initial dissolution to be the same as the dissolution done on samples placed at a 37~C/80~ RH condition.

In Example 13, a single dose six-way randomized cross-over study (one week wash-out) was conducted in 12 patients and compared to the results obtained with an equivalent dose of an immediate release preparation. Blood samples were taken initi-ally, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 10, 12, 18, 24, 30, 36 and 48 hours after administration in order to determine plasma levels. Comparative Example 13A is 8 mg of a hydromorphone immediate release formulation (two tablets of Dilaudid~ 4 mg tablets, commercially available from Knoll).
Example 13 is an 8 mg dose of the encapsulated hydromorphone beads of Example 12.
The results obtained for Comparative Example 13A are set forth in Figure 1. The results obtained for Example 5 are set forth in Figure 2. Figure 5 shows the plasma levels of Example 13 plotted against the results for Comparative Example 13A. The results for Example 13 are further set forth in Table 18 below, , ........ . .

CA 02128~91 1998-12-22 which provides data regarding area under the curve (bioavail-ability), the peak plasma concentration (C~x), and the time to reach peak plasma concentration (T~x).

Product AUC Cmax Tmax PWQHH

Example 13A
2 Dilaudid 4 mg Tablets 12427+ 3013+ 1.10+ 1.67+
1792 539 0.14 0.22 Example 13 13707+ 1211+ 4.42+ 7.79+
1381 153- 0.38 1.96 Example 13 110% 40% 402% 466%

The results obtained for Example 13 showed that at the 12th hour after administration, the blood levels of hydromorphone are over 500 pg/ml hydromorphone, and at the 24th hour after admin-istration, the plasma levels are well over 300 pg/ml. Therefore, this product is considered to be suitable for once a day administration.

In Examples 14 - 15, a single dose 4-way randomized cross-over study was conducted in 10 subjects. Example 14 was an 8 mg dose of the hydromorphone beads of Example 13 - fasted; whereas Example 15 is an 8 mg dose of the hydromorphone beads of Example 13 - fed. In Comparative Example 14A, 8 mg of immediate release hydromorphone (2 Dilaudid 4 mg tablets) were administered -fasted. In Comparative Example 15A, 8 mg of immediate release hydromorphone (2 Dilaudid 4 mg tablets) were administered - fed.

The plasma levels for Comparative Examples 14A and 15A are set forth in Figure 4, whereas the plasma levels for Examples 14 and 15 are set forth in Figure 5. The results for Examples 16 -17 and Comparative Examples 16A and 17A are further set forth in .... ~ . ...
. _.. . .

CA 02128~91 1998-12-01 Table 21, which provides data regarding area under the curve and percent absorbed as compared to immediate release (bioavail-ability), the peak plasma concentration (C~x), and the time to reach peak plasma concentration (T~x).

Group AUC ~IR ~,x ~x Example 14 21059 101 4.9 1259 Example 15 25833 106 4.6 1721 Example 14A 20903 100 0.85 3816 Example 15A 24460 100 1.15 3766 As can be ascertained from the results provided by Examples 14 - 15 and Comparative Examples 14A and 15A, there is a minimal food effect for both the immediate release tablets and the controlled-release beads of Examples 14 and 15, with a small increase in bioavailability for the controlled-release beads of Examples 14 and 15. The plasma levels again confirm that this product is suitable for once a day administration. In the 24th hour, the controlled-release product provides plasma levels of nearly 600 pg/ml and at the 12th hour provided plasma levels of over 700 pg/ml.

In Examples 16 - 17, a steady-state 3-way cross-over study is conducted for 4 days. In Comparative Example 16A, the sub-jects are dosed with 8 mg immediate release hydromorphone (2 Dilaudid 4 mg tablets) every 6 hours. In Example 16, 8 mg of the hydromorphone beads of Example 15 are administered every 12 hours. In Example 17, 8 mg of the hydromorphone beads of Example 13 are administered every 24 hours. Blood samples are taken on the fourth day.

CA 02128~91 1998-12-22 i~he plasma levels for Comparative Example 16A versus the plasma levels for Examples 16 and 17 are set forth in Figure 6.
The trough levels for Comparative Example 16A versus the levels for Examples 16 and 17 are set forth in Figure 7 (the values for Example 17 are doubled in Figure 7). The results for Examples 16 - 17 and Comparative Example 16A are further set forth in Table 20, which provides data regarding area under the curve and percent absorbed as compared to immediate release (bioavailabil-ity), the peak plasma concentration (C~), and the time to reach peak plasma concentration (T~).

Group AUC AUC* ~m~ ~x ~x*
Example 16 62223 27595 5.5 3475 2232 Example 17 39233 28879 4.8 2730 2189 Comparative Example 16A 47835 22236 1.0 3124 2163 *AUC=0-12 hr. for Q12H, 0-24 hr. for Q24H, and 0-12 hr. for Q6H
*Cm.x=Cm,x minus zero time value With reference to the area under the curve (AUC) as a measure of bioavailability, it can be ascertained from the data provided in Table 20 that Comparative Example 16A and Examples 16 and 19 all have an equivalent AUC increased over the dosing interval, indicating that all dosage regimes are bioavailable.
Furthermore, in this study, Example 17, which was only dosed at 8 mg every 24 hours, shows that this formulation provides an excellent 24 hour preparation if the amount of beads are doubled to provide a once a day dosage of 16 mg, which is the equivalent amount of hydromorphone dosed by the immediate release formula-tion (4 mg every 6 hours). The minimum or trough concentration shown in Figure 7 for Example 17 show that this product will be the equivalent of the 4 mg immediate release formulation (dosed CA 02128~91 1998-12-01 ~ ,.
every 6 hours), and therefore this would provide an excellent once a day product.

Controlled-Release Morphine Sulfate 30 mq Formulation - Acrylic PolYmer Coatinq Example 18 is prepared in the same manner as the above Examples. The complete formula for the beads of Example 18 is set forth in Table 21 below:

Drug Loading Ingredients Amt/Unit Morphine Sulfate Powder 30.0 mg Lactose Hydrous Impalpable42.5 mg Povidone* 2.5 mg Nupareil* PG 18/20 125.0 mg Purified Water qs Opadry Red YS-1-1841 10.5 mg Purified Water qs Retardant Coating Eudragit RS30D 10.3 mg Eudragit RL30D 0.2 mg Triethyl Citrate 2.1 mg Talc 4.2 mg Purified Water qs Second Overcoat Opadry Red YS-1-1841 12.0 Purified Water qs Total 239.3 mg The ratio of Eudragit~ RS 30D to Eudragit~ RL30D is 98:2.
After completion of the final overcoat, the morphine beads are cured in a 45-C oven for 2 days. The cured beads are then filled into gelatin capsules at a 30 mg strength.
The finished product is subjected to dissolution testing initially; after being stored for 3 months and 6 months at room temperature; and after exposure to accelerated storage conditions (40~C/75% RH) for one month, two months and three months. The results are set forth in Table 22 below:

* Trade-mark CA 02128~91 1998-12-01 ..
Table 22 Dissolution (% Dissolved) Time (Hr) Storage Conditions 1 2 4 8 12 Testing Time Hr. Hrs. Hrs. Hrs. Hrs.
Initial 2.6 24.7 60.5 89.4 98.8 1 Month 40~C/75% RH 5.8 27.3 62.0 89.8 99.1 3 Months 40~C/75% RH 6.8 26.5 65.3 87.6 95.1 3 Months RT 6.4 24.4 56.8 83.5 93.2 6 Months RT 5.6 21.1 55.0 84.2 94.8 The dissolutions set forth in Table 22 show the beads of Example 18 to be stable.
A double-blind single dose cross-over study is then con-ducted in 12 subjects with regard to the dosage form of Example 18 against a standard, commercially available controlled-release morphine sulfate tablet (Comparative Example 18A; MS Contin~ 30 mg tablets, available from the Purdue Frederick Company). The results are set forth in Table 23.
Table 23 Example 18 Pharmacokinetic MS Contin 5% Eudragit Coating Parameter (Fasted) (RS:RL, 98:2)(Fasted) AUC 76.2 93.6 T~ 2.2 6.1 C~ 9.4 6.2 From the data obtained from Example 18, it appears that the product may be suitable for once-a-day administration.

Therefore, in Examples 19 - 20, high load base beads are produced which have a higher load of morphine sulfate so that larger doses can be easily administered once-a-day. The high CA 02128~91 1998-12-01 load beads are prepared via powder layering in a Glatt Rotor Processor. The formulation for Example 19 - 20 is set forth in Table 23 below:
Table 23 High Load Inqredients Bead mg Morphine Sulfate 30.0 Lactose 6.0 Povidone C-30 1.25 Sugar Beads 7.75 Opadry 2.37 Purified Water qs 47.37 Since the base beads are different in comparison to the low load beads used in Example 18, more of the relatively soluble Eudragit~ RL is included in the formula, as well as an extra HPMC
protective coat between the EudragitX layer and the morphine immediate release layer to further enhance stability.
The formula for the 60 mg dose is set forth in Table 24:
Table 24 Ingredient Amt/60 mq Unit fmg) Morphine (high load) base beads 85.26 Retardant Coating Eudragit RS 30D 4.2 Eudragit RL 30D 0.1 Triethyl Citrate 0.9 Talc 1.7 Overcoatings Opadry Blue YS-1-10542A 4.9 Purified Water qs Morphine Sulfate Powder 6.0 Opadry Blue YS-1-10542A 5.10 Purified Water qs 108.16 The beads are then cured in a 45~C oven for 2 days, and thereafter are divided into two portions. Portion 1 is filled into hard gelatin capsules at a strength equivalent to 60 mg and _ CA 02128~91 1998-12-22 portion 2 is filled into hard gelatin capsules at a strength equivalent to 30 mg.
Dissolution studies are conducted on both strength capsules.
The data shows that the percent morphine dissolved is identical at both strengths. Stability studies are conducted with the 60 mg capsules. The results for the 60 mg capsules is set forth in Table 2S below:

Table 25 Dissolution (~ Dissolved) Time (Hr) Storage Conditions 1 2 4 8 12 14 Time Hr. Hrs. Hrs. Hrs. Hrs. Hrs.

Initial 11.0 14.0 24.0 44.1 58.9 83.3 1 Month 11.9 14.9 25.0 43.6 56.6 85.1 40OC/75% RH

2 Months 11.7 14.7~ 25.7 48.5 65.5 93.1 40~C/75% RH

A bioavailability study is then conducted using the 30 mg strength capsule (Example 19 = fasted; Example 20 = fed) with MS
Contin 30 mg - fasted (Example l9A) as a reference.
The results are set forth in Table 26.
Table 26 Example 19 Example 20 Pharmaco- High Load High Load kinetic MS Contin with 10% IR with 10% IR
Parameter (Fasted) Overcoat (Fasted) Overcoat (Fed) TM~X 2.8 12.9 8.0 CM~X 11. 6 4.0 5 4 Figure 8 is a graph showing the plasma levels of Examples 19 - 20 (both fed and fasted) versus the plasma levels obtained with Comparative Example l9A. From the data obtained, it appears that the product is suitable for once-a-day administration.

CA 02128~91 1998-12-01 Controlled Release Acetaminophen (APAP) tablets are prepared in accordance with the present invention as follows:
First, immediate release APAP cores are prepared by com-pressing Compap coarse L into tablet cores weighing 555.6 mg.
Compap coarse L contains approximately 90% APAP along with pharmaceutical grade excipients including a binder, disintegrant and lubricant, and is a directly compressible material commer-cially available from Mallinckrodt, Inc., St. Louis, MO. The 10 APAP tablet cores include approximately 500 mg of APAP. The Compap coarse L is compressed using a rotary tablet press equipped with a 7/16" round, standard concave cup, plain, tool-ing. The cores were compressed at a theoretical weight of 555.6 mg and at a hardness of about 8-9 Kp.
Next, the APAP tablet cores prepared above are coated with the controlled release coating of the present invention as follows:
Appropriate amounts of Eudragit RS-3OD and Eudragit RL-3OD
are combined, and purified water is added. The amount of puri-fied water is calculated such that the final coating suspensionwill have a concentration of about 20% of solids polymer, plasti-cizer and talc. Then triethyl citrate is added with mixing for 15 minutes. Thereafter, talc is added with mixing for an additional 15 minutes. The appropriate quantity of APAP tablet cores are loaded into an Accela Cota coating pan. The coating suspension is sprayed from an appropriate spray gun until a weight gain of 4% per tablet of the polymer coating is attained.
After the spraying of the functional coat is completed, the tablets are sprayed with a film coat of Opadry. This coat is sprayed in a similar manner to the functional coat.

CA 02128~91 1998-12-01 ,.
Further information concerning the Controlled Coated APAP
tablets is set forth in Table 27 below:
Table 27 Ingredients mg/tab APAP IR tablet cores 555.60 Eudragit RS-30D (solids) 5.56 Eudragit RL-30D (solids) 16.66 Triethyl citrate 4.44 Talc 8.89 Opadry White Y-5-7068 18.28 Purified Water qs Total 609.43 After completion of the coating process, the functional coated tablets are discharged into a curing tray and cured in a chamber at a temperature of 45~C for 48 hours. The results of dissolution testing for the coated tablets are set forth in Table 28 below:

Table 28 Test Period (Hours) % APAP Dissolved 1 2.1 2 4.8 4 10.4 8 20.0 12 29.2 18 41.2 24 52.1 In Example 22, controlled release Acetaminophen (APAP) tab-lets are prepared. To provide a faster dissolution is required, the amount of Eudragit RL-30D is increased and the amount of Eudragit RS-30D is decreased. Consequently, controlled release APAP tablets are prepared containing only Eudragit RL-30D and no Eudragit RS-30D. APAP cores are made as described in Example 4.
Next, the APAP tablet cores prepared above are coated with the CA 02128~91 1998-12-01 .~ ..
controlled release coating of the present invention as follow's:
Purified water is added to the Eudragit RL-30D. The amount of purified water is calculated such that the final coating suspension will have a concentration of about 20$ of solids polymer, plasticizer and talc. Then, triethyl citrate is added with mixing for 15 minutes. Then, talc is added with mixing for an additional 15 minutes. The appropriate quantity of APAP
tablet cores are loaded into an Accela Cota coating pan. The coating suspension is sprayed from an appropriate spray gun until a weight gain of 4% per tablet of the polymers is attained.
After the spraying of the functional coat is completed, the tablets are sprayed with a film coat of Opadry to prevent the tablets from sticking. This coat is sprayed in a similar manner to the functional coat.
Further information concerning the Controlled Release Coated APAP tablets is set forth in Table 29 below:
Table 29 Inqredients mg/tab APAP IR tablet cores 555.60 Eudragit RL-30D (solids) 22.22 Triethyl citrate 4.44 Talc 8.89 Opadry White Y-5-7068 18.28 Purified Water qs Total 609.43 After completion of the coating process, the functional coated tablets are discharged into a curing tray and cured in a chamber at a temperature of 45~C for 48 hours. Dissolution testing of the coated tablets provides the data set forth in Table 30 below:

~ ..

Table 30 Test Period (Hours) % APAP Dissolved 1 2.5 2 6.2 4 14.6 8 29.8 12 42.0 18 56.6 24 . 68.1 The examples provided above are not meant to be exclusive.
Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.

Claims (76)

1. A controlled release formulation comprising a substrate containing active agent in an amount sufficient to provide a desired effect in an environment of use, said substrate coated with a plasticized aqueous dispersion consisting essentially of ammoniomethacrylate copolymers which are copolymerizates of acrylic and methacrylic esters having a low content of quaternary ammonium groups in an amount sufficient to obtain a controlled release of said active agent when said formulation is exposed to an environmental fluid, said coated substrate being cured at a temperature greater than the glass transition temperature of the aqueous dispersion of said plasticized water-insoluble acrylic polymer for about 24 to about 60 hours until a curing endpoint is reached at which said cured coated substrate provides a stabilized dissolution of said active agent which is unchanged after exposure to accelerated storage conditions, said endpoint being determined by comparing the dissolution profile of the formulation immediately after curing to the dissolution profile of the formulation after exposure to accelerated storage conditions of at least one month at a temperature of 37°C, and at a relative humidity of 80%.
2. The formulation of claim 1, wherein said water-insoluble acrylic polymer is comprised of monomers selected from the group consisting of an ester of acrylic acid, an ester of methacrylic acid, an alkyl ester of acrylic acid, an alkyl ester of methacrylic acid, and mixtures of any of the foregoing.
3. The formulation of claim 1, wherein said substrate is coated to a weight gain from about 2% to about 50%.
4. The formulation of claim 1, wherein said active agent is selected from the group consisting of a systemically active therapeutic agent, a locally active therapeutic agent, a disinfecting agent, a cleansing agent, a fragrance, a fertilizing agent, a deodorant, a dye, an animal repellant, an insect repellant, a pesticide, a herbicide, a fungicide, and a plant growth stimulant.
5. The formulation of claim 4, wherein said locally active therapeutic agent is selected from the group consisting of an antifungal agent, an antibiotic, an antiviral agent, a breath freshener, an antitussive agent, an anti-cariogenic agent, an analgesic agent, a local anesthetic, an antiseptic, an anti-flammatory agent, a hormonal agent, an antiplaque agent, an acidity reducing agent, and a tooth desensitizer.
6. The dosage form of claim 4, wherein said systemically active therapeutic agent is selected from the group consisting of antihistamines, analgesics, non-steroidal anti-inflammatory agents, gastro-intestinals, anti-emetics, anti-epileptics, vasodilators, anti-tussive agents, expectorants, anti-asthmatics, hormones, diuretics, anti-hypotensives, anti-hypertensives, bronchodilators, antibiotics, antivirals, antihemorrhoidals, steroids, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, and stimulants.
7. The dosage form of claim 4, wherein said active agent is an opioid analgesic selected from the group consisting of hydromorphone, oxycodone, morphine, levorphanol, methadone, meperidine, heroin, dihydrocodeine, codeine, hydrocodone, tramadol, dihydromorphine, buprenorphine, mixed opiate receptor agonists-antagonists, salts, hydrates and solvates of any of the foregoing, and mixtures of any of the foregoing.
8. The dosage form of claims 1-7, wherein said substrate is a pharmaceutically acceptable bead, and a plurality of said coated, cured beads are placed in a capsule in an amount sufficient to provide an effective controlled release dose when contacted by an aqueous solution.
9. The dosage form of claims 1-8, wherein said substrate is a tablet core.
10. The formulation of claim 6, wherein said formulation provides effective blood levels of said systemically active therapeutic agent for about 24 hours.
11. The formulation of claim 7, wherein said formulation provides effective blood levels of said systemically active therapeutic agent for about 24 hours.
12. The dosage form of claim 8, wherein said beads are coated with said aqueous dispersion of water-insoluble acrylic polymer to a weight gain from about 2% to about 25%.
13. The dosage form of claim 1, wherein said coating is cured for a time period from about 24 to about 48 hours until said endpoint is reached.
14. The dosage form of claims 1-13, wherein said coating further comprises a permeability-enhancing compound in an amount effective to modify the rate of release of said therapeutically active agent from said cured, coated substrate.
15. The dosage form of claim 14, wherein said permeability-enhancing compound is a monoethylenically unsaturated quaternary ammonium compound capable of free-radical polymerization.
16. The dosage form of claims 1-13, wherein said coated substrate includes at least one passageway through said coating which modifies the release of said systemically active therapeutic agent.
17. The dosage form of claims 1-13, which provides a stabilized dissolution of said active agent which is unchanged after exposure to accelerated storage conditions of a temperature of 40°C and a relative humidity of 75% for 3 months.
18. The dosage form of claims 3, 7, 10 and 12, wherein a portion of the amount of said active agent included in said formulation is incorporated into a coating on said substrate.
19. The dosage form of claim 2, characterized in that the band range, when comparing the dissolution profile after exposure to accelerated storage conditions of at least one month at a temperature of 40°C and a relative humidity of 75%
to the dissolution profile prior to exposure to said accelerated conditions, does not differ by more than about 10%.
20. The dosage form of claim 2, characterized in that the band range, when comparing the dissolution profile after exposure to accelerated storage conditions of at least one month at a temperature of 40°C and a relative humidity of 75%
to the dissolution profile prior to exposure to said accelerated conditions, does not differ by more than about 7%.
21. Use of the oral solid dosage form of claims 1 to 20 in the treatment of a human patient.
22. The formulation of claim 2, wherein said water-insoluble acrylic polymer comprises a mixture of copolymers of acrylic and methacrylic esters having a molar ratio of ammonium groups to (meth)acrylic esters from about 1:20 to about 1:40.
23. The formulation of claim 2, wherein said water-insoluble acrylic polymer comprises a mixture of a first copolymer of acrylic and methacrylic esters having a molar ratio of ammonium groups to (meth)acrylic esters of about 1:20 and a second copolymer of acrylic and methacrylic esters having a molar ratio of ammonium groups to (meth)acrylic esters of about 1:40, the ratio of said first copolymer to said second copolymer being from about 0:100 to about 100:0.
24. The formulation of claim 1, which provides a stable dissolution of said active agent which is unchanged after exposure to accelerated storage conditions which are deemed appropriate by the United States Food & Drug Administration for the purpose of according expiration dating for said formulation.
25. The formulation of claim 1, wherein said cured coated substrate, when subjected to in-vitro dissolution after exposure to said accelerated conditions, releases an amount of said active agent which does not vary at any given time point by more than about 15% of the total amount of active agent released when compared to in-vitro dissolution conducted prior to storage.
26. The formulation of claim 1, wherein said cured coated substrate, when subjected to in-vitro dissolution after exposure to said accelerated conditions, releases an amount of said active agent which does not vary at any given time point by more than about 10% of the total amount of active agent released when compared to in-vitro dissolution conducted prior to storage.
27. The formulation of claim 1, wherein said cured coated substrate, when subjected to in-vitro dissolution after exposure to said accelerated conditions, releases an amount of said active agent which does not vary at any given time point by more than about 7% of the total amount of active agent released when compared to in-vitro dissolution conducted prior to storage.
28. A solid controlled release formulation, comprising a substrate containing an active agent in an amount sufficient to provide a desired effect in an environment of use, said substrate coated with a plasticized aqueous dispersion consisting essentially of ammoniomethacrylate copolymers which are copolymerizates of acrylic and methacrylic esters having a low content of quaternary ammonium groups in an amount sufficient to obtain a controlled release of said active agent when said formulation is exposed to an environmental fluid, said coated substrate being cured at a temperature greater than the glass transition temperature of the plasticized water-insoluble acrylic polymer for about 24 to about 60 hours until an endpoint is reached at which said cured coated substrate, when exposed to an environment of use, releases said active agent in amounts which do not vary at any time point along the dissolution curve by more than about 15% of the total amount of active agent released, when compared to the in-vitro dissolution of said coated substrate prior to curing.
29. The formulation of claim 28, wherein said cured, coated substrate provides the same rate of release immediately after curing to said endpoint, and after subsequent exposure to accelerated storage conditions of one month at a temperature of 37°C, and at a relative humidity of 80%.
30. The formulation of claim 28, wherein said cured, coated substrate provides the same rate of release immediately after curing to said endpoint, and after subsequent exposure to accelerated storage conditions of one month at a temperature of 40°C, and at a relative humidity of 75%.
31. The formulation of claim 28, wherein said water-insoluble acrylic polymer is comprised of monomers selected from the group consisting of an ester of acrylic acid, an ester of methacrylic acid, an alkyl ester of acrylic acid, an alkyl ester of methacrylic acid, and mixtures of any of the foregoing.
32. The formulation of claim 28, wherein said substrate is coated to a weight gain from about 2 to about 50%.
33. The formulation of claim 28, wherein said active agent is selected from the group consisting of a systemically active therapeutic agent, a locally active therapeutic agent, a disinfecting agent, a cleansing agent, a fragrance, a fertilizing agent, a deodorant, a dye, an animal repellant, an insect repellant, a pesticide, a herbicide, a fungicide, and a plant growth stimulant.
34. The formulation of claim 33, wherein said locally active therapeutic agent is selected from the group consisting of an antifungal agent, an antibiotic, an antiviral agent, a breath freshener, an antitussive agent, an anti-cariogenic agent, an analgesic agent, a local anesthetic, an antiseptic, an anti-flammatory agent, a hormonal agent, an antiplaque agent, an acidity reducing agent, and a tooth desensitizer.
35. The formulation of claim 33, wherein said systemically active therapeutic agent is selected from the group consisting of antihistamines, analgesics, non-steroidal anti-flammatory agents, gastro-intestinals, anti-emetics, anti-epileptics, vasodilators, anti-tussive agents, expectorants, anti-asthmatics, hormones, diuretics, anti-hypotensives, anti-hypertensives, bronchodilators, antibiotics, antivirals, antihemorrhoidals, steroids, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, and stimulants.
36. The formulation of claim 33, wherein said substrate is a pharmaceutically acceptable bead, and a plurality of said coated, cured beads are placed in a capsule in an amount sufficient to provide an effective controlled release dose when contacted by an aqueous solution.
37. The formulation of claim 33, wherein said substrate is a tablet core.
38. The formulation of claim 35, wherein said substrate is selected from the group consisting of a tablet core and a plurality of pharmaceutically inert beads, and said cured, coated formulation when administered orally provides effective blood levels of said systemically active therapeutic agent for about 24 hours.
39. The formulation of claim 35, wherein said substrate is selected from the group consisting of a tablet core and a plurality of pharmaceutically inert beads, and said cured, coated formulation when administered orally provides effective blood levels of said systemically active therapeutic agent for about 12 hours.
40. The formulation of claim 38, wherein said active agent is an opioid analgesic selected from the group consisting of hydromorphone, oxycodone, morphine, levorphanol, methadone, meperidine, heroin, dihydrocodeine, codeine, hydrocodone, tramadol, dihydromorphine, buprenorphine, mixed opiate receptor agonist-antagonists, salts, hydrates and solvents of any of the foregoing, and mixtures of any of the foregoing.
41. The formulation of claim 28, wherein said coating is cured for a time period from about 24 to about 48 hours, until said endpoint is reached.
42. The formulation of claim 28, wherein said coating further comprises a permeability-enhancing compound in an amount effective to modify the rate of release of said active agent from said cured, coated substrate.
43. The formulation of claim 42, wherein said permeability-enhancing compound is a monoethylenically unsaturated quaternary ammonium compound capable of free-radical polymerization.
44. A solid controlled release oral dosage formulation, comprising a substrate containing a systemically active therapeutic agent in an amount sufficient to provide a desired therapeutic effect when said formulation is orally administered, said substrate being coated with an aqueous dispersion consisting, essentially of a plasticized copolymer of acrylic and methacrylic acid esters having a permeability which is unaffected by the pH conditions prevailing in the digestive tract, to a weight gain sufficient to obtain a controlled release of said active agent when measured by the USP Paddle or Basket Method at 100 rpm at 900 ml aqueous buffer (pH between 6 and 7.2) at 37°C from about 0% to about 42.5% (by wt) active agent released after 1 hour, from about 25% to about 55% (by wt) active agent released after 2 hours, from about 45% to about 75% (by wt) active agent released after 4 hours and greater than about 55% (by wt) active agent released after 6 hours, said coated substrate being cured at a temperature greater than the glass transition temperature of said aqueous dispersion of the plasticized acrylic polymer for a time period of about 20 to about 60 hours, said coated substrate when subjected to accelerated storage conditions of at least one month at 40°C/75% RH releasing an amount of said therapeutically active agent upon in-vitro dissolution which does not vary at any given time point by more than about 15%

of the total amount of therapeutically active agent released when compared to in-vitro dissolution conducted prior to storage, and when administered orally providing effective blood levels of said systemically active therapeutic agent for at least about 12 hours.
45. The formulation of claim 44, wherein said therapeutically active agent is selected from the group consisting of antihistamines, analgesics, non-steroidal anti-inflammatory agents, gastro-intestinals, anti-emetics, anti-epileptics, vasodilators, anti-tussive agents, expectorants, anti-asthmatics, hormones, diuretics, anti-hypotensives, anti-hypertensives, bronchodilators, antibiotics, antivirals, antihemorrhoidals, steroids, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, and stimulants.
46. The formulation of claim 44, wherein said water-insoluble acrylic polymer comprises a mixture of copolymers of acrylic and methacrylic esters having a molar ratio of ammonium groups to (meth)acrylic esters from about 1:20 to about 1:40.
47. The formulation of claim 44, which provides a stable dissolution of said active agent which is unchanged after exposure to accelerated storage conditions of a temperature of 40°C, and a relative humidity of 75% for 3 months.
48. The formulation of claim 45, wherein said active agent is an opioid analgesic selected from the group consisting of hydromorphone, oxycodone, morphine, levorphanol, methadone, meperidine, heroin, dihydrocodeine, codeine, hydrocodone, tramadol, dihydromorphine, buprenorphine, mixed opiate receptor agonist-antagonists, salts, hydrates and solvents of any of the foregoing, and mixtures of any of the foregoing.
49. The formulation of claim 44, wherein said substrate is a pharmaceutically acceptable bead, and a plurality of said coated, cured beads are placed in a capsule in an amount sufficient to provide an effective controlled release dose when said capsule is orally administered.
50. The formulation of claim 48, wherein a portion of the amount of said active agent included in said formulation is incorporated into a coating on said substrate.
51. A solid controlled release oral dosage formulation, comprising a substrate containing a systemically active therapeutic agent in an amount sufficient to provide a desired therapeutic effect when said formulation is orally administered, said substrate being coated with an aqueous dispersion consisting essentially of a plasticized copolymer of acrylic and methacrylic acid esters having a permeability which is unaffected by the pH conditions prevailing in the digestive tract, to a weight gain sufficient to obtain a controlled release of said active agent when measured by the USP Paddle or Basket Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37°C, from about 0% to about 42.5% (by wt) active agent released after 1 hour, from about 5% to about 60% (by wt) active agent released after 2 hours, from about 15% to about 75% (by wt) active gent released after 4 hours and from about 20% to about 90% (by wt) active agent released after 8 hours, said coated substrate being cured at a temperature greater than the glass transition temperature of said aqueous dispersion of the plasticized acrylic polymer for a time period of about 20 to about 60 hours, said coated substrate when subjected to accelerated storage conditions of at least one month at 40°C/75% RH
releasing an amount of said therapeutically active agent upon in-vitro dissolution which does not vary at any given time point by more than about 15% of the total amount of therapeutically active agent released when compared to in-vitro dissolution conducted prior to storage, and when administered orally providing effective blood levels of said systemically active therapeutic agent for about 24 hours.
52. The formulation of claim 51, wherein said systemically active therapeutic agent is selected from the group consisting of antihistamines, analgesics, non-steroidal anti-inflammatory agents, gastro-intestinals, anti-emetics, anti-epileptics, vasodilators, anti-tussive agents, expectorants, anti-asthmatics, hormones, diuretics, anti-hypotensives, anti-hypertensives, bronchodilators, antibiotics, antivirals, antihemorrhoidals, steroids, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, and stimulants.
53. The formulation of claim 51, wherein said water-insoluble acrylic polymer comprises a mixture of copolymers of acrylic and methacrylic esters having a molar ratio of ammonium groups to (meth)acrylic esters from about 1:20 to about 1:40.
54. The formulation of claim 51, which provides a stable dissolution of said active agent which is unchanged after exposure to accelerated storage conditions of a temperature of 40°C, and a relative humidity of 75% for 3 months.
55. The formulation of claim 52, wherein said agent is an opioid analgesic selected from the group consisting of hydromorphone, oxycodone, morphine, levorphanol, methadone, meperidine, heroin, dihydrocodeine, codeine, hydrocodone, tramadol, dihydromorphine, buprenorphine, mixed opiate receptor agonist-antagonists, salts, hydrates and solvents of any of the foregoing, and mixtures of any of the foregoing.
56. The formulation of claim 51, wherein said substrate is a pharmaceutically acceptable bead, and a plurality of said coated, cured beads are placed in a capsule in an amount sufficient to provide an effective dose when said capsule is orally administered.
57. The formulation of claim 51, wherein a portion of the amount of said active agent included in said formulation is incorporated into a coating on said substrate.
58. A solid controlled release formulation, comprising a substrate containing an active agent in an amount sufficient to provide a desired effect in an environment of use, said substrate coated with an aqueous dispersion consisting essentially of a plasticized water-insoluble acrylic polymer comprised of monomers selected from the group consisting of an ester of acrylic acid, an ester of methacrylic acid, an alkyl ester of acrylic acid, an alkyl ester of methacrylic acid, and mixtures of any of the foregoing, in an amount sufficient to obtain a controlled release of said active agent when said formulation is exposed to an environmental fluid, said coated substrate including at least one passageway through said coating through which said active agent is released, said coated substrate being cured at a temperature greater than the glass transition temperature of the plasticized aqueous dispersion for a time period of about 20 to about 60 hours until an endpoint is reached at which said cured coated substrate, when subjected to in-vitro dissolution, releases said active agent in amounts which do not vary at any time point along the dissolution curve by more than about 15% of the total amount of active agent released, when compared to the in-vitro dissolution of said coated substrate prior to curing.
59. A controlled release dosage form, comprising a solid substrate comprising an effective amount of a therapeutically active agent, said solid substrate coated with an aqueous dispersion consisting essentially of a copolymer of acrylic and methacrylic acid esters having a low content of quaternary ammonium groups, in an amount effective to provide a controlled release of said therapeutically active agent when said coated substrate is exposed to gastrointestinal fluid, said coated substrate being cured at a temperature greater than the glass transition temperature of said aqueous dispersion of the plasticized acrylic polymer for a time period of about 20 to about 60 hours, said coated substrate when subjected to in-vitro dissolution after exposure to accelerated storage conditions of at least one month at 40-C/75% RH releasing an amount of said therapeutically active agent which does not vary at any given dissolution time point by more than about 15% of the total amount of therapeutically active agent released when compared to in-vitro dissolution conducted prior to storage.
60. The controlled release dosage form of claim 51 which is administered once a day.
61. The controlled release dosage form of claim 59 which is administered twice a day.
62. The controlled release dosage form of claim 59 wherein said substrate comprises a pharmaceutically acceptable inert bead upon which said therapeutically active agent is coated and a plurality of said coated beads are placed in a capsule to provide said effective amount of said therapeutically active agent.
63. The controlled release dosage form of claim 59, which is a coated tablet.
64. The controlled release dosage form of claim 59, wherein said therapeutically active agent is an opioid analgesic selected from the group consisting of hydromorphone, oxycodone, morphine, levorphanol, methadone, meperidine, heroin, dihydrocodeine, codeine, dihydromorphine, buprenorphine, salts thereof, and mixtures thereof.
65. A method for obtaining a controlled release formulation of an active agent, comprising:
preparing a solid substrate comprising an active agent;
coating said substrate with a sufficient amount of a plasticized aqueous dispersion consisting essentially of ammoniomethacrylate copolymers which are copolymerizates of acrylic and methacrylic esters having a low content of quaternary ammonium groups to obtain a predetermined controlled release of said active agent when said coated substrate is exposed to an environmental fluid, and curing said coated substrate at a temperature greater than the glass transition temperature of the aqueous dispersion of said plasticized water-insoluble acrylic polymer for about 24 to about 60 hours, until a curing endpoint is reached at which said cured coated substrate provides a stabilized dissolution of said active agent which is unchanged after exposure to accelerated storage conditions, said endpoint being determined by comparing the dissolution profile of the formulation immediately after curing to the dissolution profile of the formulation after exposure to accelerated storage conditions of at least one month at a temperature of 37°C and at a relative humidity of 80%.
66. The method of claim 65, wherein said active agent is selected from the group consisting of a systemically active therapeutic agent, a locally active therapeutic agent, a disinfecting agent, a cleansing agent, a fragrance, a fertilizing agent, a deodorant, a dye, an animal repellant, an insect repellant, a pesticide, a herbicide, a fungicide, and a plant growth stimulant.
67. The method of claim 66, wherein said locally active therapeutic agent is selected from the group consisting of an antifungal agent, an antibiotic, an antiviral agent, a breath freshener, an antitussive agent, an anti-cariogenic agent, an analgesic agent, a local anesthetic, an antiseptic, an anti-flammatory agent, a hormonal agent, an antiplaque agent, an acidity reducing agent, and a tooth desensitizer.
68. The method of claims 65 to 67, characterized in that said substrate comprises pharmaceutically acceptable inert beads, further comprising coating said therapeutically active agent onto the surface of said inert beads, and preparing said oral dosage form by placing a sufficient quantity of cured coated beads into a capsule.
69. The method of claims 65 to 67, further comprising preparing said substrate for oral administration by incorporating said therapeutically active agent into a tablet.
70. The method of claims 65 to 67, wherein said coated substrate is cured for about 24 to about 48 hours, until said endpoint is reached.
71. The method of claims 65 to 67, further comprising coating said substrate to a weight gain from about 2% to about 25%.
72. The method of claims 65 to 67, wherein said active agent is selected from the group consisting of antihistamines, analgesics, non-steroidal anti-inflammatory agents, gastro-intestinals, anti-emetics, anti-epileptics, vasodilators, anti-tussive agents, expectorants, anti-asthmatics, hormones, diuretics, anti-hypotensives, bronchodilators, antibiotics, antivirals, antihemorrhoidals, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, and stimulants.
73. The method of claims 65 to 67, wherein said active agent is an opioid analgesic selected from the group consisting of hydromorphone, oxycodone, morphine, dihydrocodeine, codeine, dihydromorphine, buprenorphine, salts thereof, and mixtures thereof.
74. The method of claims 65 to 73, which provides a release of said active agent for at least about 24 hours.
75. The method of claims 65 to 67, further comprising incorporating a permeability-enhancing compound in said aqueous dispersion of ethylcellulose in an amount effective to modify the rate of release of said active agent from said cured, coated substrate.
76. Use of the product of claim 37, for the treatment of a human patient.
CA002128591A 1993-07-27 1994-07-21 Controlled release formulations coated with aqueous dispersions of acrylic polymers Expired - Lifetime CA2128591C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US097,558 1993-07-27
US08/097,558 US5580578A (en) 1992-01-27 1993-07-27 Controlled release formulations coated with aqueous dispersions of acrylic polymers

Publications (2)

Publication Number Publication Date
CA2128591A1 CA2128591A1 (en) 1995-01-28
CA2128591C true CA2128591C (en) 1999-03-23

Family

ID=22264016

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002128591A Expired - Lifetime CA2128591C (en) 1993-07-27 1994-07-21 Controlled release formulations coated with aqueous dispersions of acrylic polymers

Country Status (4)

Country Link
US (3) US5580578A (en)
EP (1) EP0636366A3 (en)
AU (1) AU686168B2 (en)
CA (1) CA2128591C (en)

Families Citing this family (1212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968551A (en) 1991-12-24 1999-10-19 Purdue Pharma L.P. Orally administrable opioid formulations having extended duration of effect
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US5958459A (en) * 1991-12-24 1999-09-28 Purdue Pharma L.P. Opioid formulations having extended controlled released
US5681585A (en) 1991-12-24 1997-10-28 Euro-Celtique, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US7070806B2 (en) 1992-01-27 2006-07-04 Purdue Pharma Lp Controlled release formulations coated with aqueous dispersions of acrylic polymers
IL109460A (en) * 1993-05-10 1998-03-10 Euro Celtique Sa Controlled release formulation comprising tramadol
IL110014A (en) * 1993-07-01 1999-11-30 Euro Celtique Sa Solid controlled-release oral dosage forms of opioid analgesics
US7740881B1 (en) 1993-07-01 2010-06-22 Purdue Pharma Lp Method of treating humans with opioid formulations having extended controlled release
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
HU218673B (en) 1993-10-07 2000-10-28 Euroceltique S.A. An extended release oral pharmaceutical composition and method comprising an opioid analgesic
US6210714B1 (en) 1993-11-23 2001-04-03 Euro-Celtique S.A. Immediate release tablet cores of acetaminophen having sustained-release coating
KR100354702B1 (en) * 1993-11-23 2002-12-28 유로-셀티크 소시에떼 아노뉨 Manufacturing method and sustained release composition of pharmaceutical composition
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US5965161A (en) * 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
US20020006438A1 (en) * 1998-09-25 2002-01-17 Benjamin Oshlack Sustained release hydromorphone formulations exhibiting bimodal characteristics
US6429221B1 (en) * 1994-12-30 2002-08-06 Celgene Corporation Substituted imides
US6348469B1 (en) 1995-04-14 2002-02-19 Pharma Pass Llc Solid compositions containing glipizide and polyethylene oxide
GB9519363D0 (en) 1995-09-22 1995-11-22 Euro Celtique Sa Pharmaceutical formulation
US5922736A (en) * 1995-12-04 1999-07-13 Celegene Corporation Chronic, bolus administration of D-threo methylphenidate
US5837284A (en) 1995-12-04 1998-11-17 Mehta; Atul M. Delivery of multiple doses of medications
US6486177B2 (en) * 1995-12-04 2002-11-26 Celgene Corporation Methods for treatment of cognitive and menopausal disorders with D-threo methylphenidate
US6858589B2 (en) 1996-01-25 2005-02-22 Pharmacy And Therapeutic Advisory Consultancy Pty Ltd Methods of and compositions for potentiating the action of agents active on cell wall sites of the susceptible bacteria
US6245351B1 (en) * 1996-03-07 2001-06-12 Takeda Chemical Industries, Ltd. Controlled-release composition
US5834472A (en) * 1996-05-24 1998-11-10 Schering Corporation Antifungal composition with enhanced bioavailability
SK177598A3 (en) * 1996-06-28 1999-07-12 Schering Corp Oral composition comprising a triazole antifungal compound
US5846971A (en) * 1996-06-28 1998-12-08 Schering Corporation Oral antifungal composition
GB9614902D0 (en) * 1996-07-16 1996-09-04 Rhodes John Sustained release composition
JP4214537B2 (en) * 1996-08-12 2009-01-28 セルジーン コーポレーション A novel immunotherapeutic and how to use this drug to reduce cytokine levels
US5776856A (en) * 1997-02-04 1998-07-07 Isp Investments Inc. Soluble polymer based matrix for chemically active water insoluble components
US6962997B1 (en) * 1997-05-22 2005-11-08 Celgene Corporation Process and intermediates for resolving piperidyl acetamide steroisomers
DK1009387T3 (en) * 1997-07-02 2006-08-14 Euro Celtique Sa Long-release stabilized tramadol formulations
MY125849A (en) * 1997-07-25 2006-08-30 Alza Corp Osmotic delivery system, osmotic delivery system semipermeable body assembly, and method for controlling delivery rate of beneficial agents from osmotic delivery systems
RS49982B (en) * 1997-09-17 2008-09-29 Euro-Celtique S.A., SYNERGISTIC ANALGETIC COMBINATION OF ANALGETIC OPIATE AND CYCLOOOXYGENASE-2 INHIBITOR
IN186245B (en) 1997-09-19 2001-07-14 Ranbaxy Lab Ltd
GB9724186D0 (en) 1997-11-14 1998-01-14 British Tech Group Low temperature coatings
RU2241458C2 (en) 1997-12-22 2004-12-10 Эро-Селтик, С.А. Combinations of agonist/antagonist for opioid
TR200001828T2 (en) * 1997-12-22 2000-11-21 Euro-Celtique, S.A. A method to prevent abuse of opioid dosage forms.
US6375957B1 (en) 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
FR2774910B1 (en) * 1998-02-16 2001-09-07 Ethypharm Lab Prod Ethiques MORPHINE SULFATE MICROGRANULES, METHOD OF MANUFACTURE AND PHARMACEUTICAL PREPARATIONS
US7354596B1 (en) 1998-05-01 2008-04-08 3M Innovative Properties Company Anti-microbial agent delivery system
US6471975B1 (en) 1998-05-01 2002-10-29 3M Innovative Properties Company Microspheres as a delivery vehicle for bio-active agents useful in agricultural applications
US6156342A (en) * 1998-05-26 2000-12-05 Andex Pharmaceuticals, Inc. Controlled release oral dosage form
SI1089733T1 (en) * 1998-06-15 2005-06-30 Sepracor Inc. Use of optically pure (+)-norcisapride for treating irritable bowel syndrome
HUP0102026A3 (en) 1998-06-15 2002-12-28 Sepracor Inc Marlborough Use of optically pure (-) norcisapride for producing pharmaceutical compositions suitable for treating apnea, bulimis, and other disorders
DE19831869A1 (en) * 1998-07-16 2000-01-20 Merck Patent Gmbh Use of pigments based on lamellar substrate for coloring food and pharmaceutical products
US6476078B2 (en) * 1999-08-11 2002-11-05 Sepracor, Inc. Methods of using sibutramine metabolites in combination with a phosphodiesterase inhibitor to treat sexual dysfunction
US6974838B2 (en) * 1998-08-24 2005-12-13 Sepracor Inc. Methods of treating or preventing pain using sibutramine metabolites
US6331571B1 (en) 1998-08-24 2001-12-18 Sepracor, Inc. Methods of treating and preventing attention deficit disorders
US6339106B1 (en) 1999-08-11 2002-01-15 Sepracor, Inc. Methods and compositions for the treatment and prevention of sexual dysfunction
US6596298B2 (en) * 1998-09-25 2003-07-22 Warner-Lambert Company Fast dissolving orally comsumable films
US6806294B2 (en) 1998-10-15 2004-10-19 Euro-Celtique S.A. Opioid analgesic
US20090297597A1 (en) * 1998-11-02 2009-12-03 Gary Liversidge Modified Release Ticlopidine Compositions
US20060240105A1 (en) * 1998-11-02 2006-10-26 Elan Corporation, Plc Multiparticulate modified release composition
US20070122481A1 (en) * 1998-11-02 2007-05-31 Elan Corporation Plc Modified Release Compositions Comprising a Fluorocytidine Derivative for the Treatment of Cancer
DK1126826T6 (en) * 1998-11-02 2019-06-24 Alkermes Pharma Ireland Ltd Multiparticulate modified release of methylphenidate
US20080118556A1 (en) * 1998-11-02 2008-05-22 Elan Corporation, Plc Modified Release of Compositions Containing a Combination of Carbidopa, Levodopa and Entacapone
US20090149479A1 (en) * 1998-11-02 2009-06-11 Elan Pharma International Limited Dosing regimen
US6342533B1 (en) 1998-12-01 2002-01-29 Sepracor, Inc. Derivatives of (−)-venlafaxine and methods of preparing and using the same
US6673367B1 (en) 1998-12-17 2004-01-06 Euro-Celtique, S.A. Controlled/modified release oral methylphenidate formulations
US6419960B1 (en) 1998-12-17 2002-07-16 Euro-Celtique S.A. Controlled release formulations having rapid onset and rapid decline of effective plasma drug concentrations
US7083808B2 (en) * 1998-12-17 2006-08-01 Euro-Celtique S.A. Controlled/modified release oral methylphenidate formulations
US6733789B1 (en) * 1999-01-21 2004-05-11 Biovail Laboratories, Inc. Multiparticulate bisoprolol formulation
US6800329B2 (en) * 1999-02-12 2004-10-05 Lts Lohmann Therapie-Systeme Ag Method for producing film-type dosage
US6337328B1 (en) 1999-03-01 2002-01-08 Sepracor, Inc. Bupropion metabolites and methods of use
CA2371822A1 (en) * 1999-03-01 2000-09-08 Sepracor Inc. Methods for treating apnea and apnea disorders using optically pure r(+)ondansetron
US6353005B1 (en) 1999-03-02 2002-03-05 Sepracor, Inc. Method and compositions using (+) norcisapride in combination with proton pump inhibitors or H2 receptor antagonist
US6362202B1 (en) 1999-03-02 2002-03-26 Sepracor Inc. Methods and compositions using (−) norcisapride in combination with proton pump inhibitors or H2 receptor antagonists
US6410052B1 (en) 1999-03-30 2002-06-25 Purdue Research Foundation Tea catechins in sustained release formulations as cancer specific proliferation inhibitors
US6428818B1 (en) 1999-03-30 2002-08-06 Purdue Research Foundation Tea catechin formulations and processes for making same
EP1466889B1 (en) * 1999-04-06 2008-06-04 Sepracor Inc. O-Desmethylvenlafaxine succinate
US6951873B1 (en) 1999-04-27 2005-10-04 Pfizer Inc. Methods for treating age-related behavioral disorders in companion animals
FR2794646B1 (en) 1999-06-09 2001-09-21 Ethypharm Lab Prod Ethiques MORPHINE SULFATE MICROGRANULES, METHOD OF PREPARATION AND COMPOSITION CONTAINING THEM
IN191239B (en) 1999-06-11 2003-10-11 Ranbaxy Lab Ltd
US6399826B1 (en) 1999-08-11 2002-06-04 Sepracor Inc. Salts of sibutramine metabolites, methods of making sibutramine metabolites and intermediates useful in the same, and methods of treating pain
EE05315B1 (en) 1999-09-03 2010-08-16 Eli Lilly And Company Use of dapoxetine or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating or influencing sexual function in a mammal
GB2361928A (en) * 2000-05-03 2001-11-07 Procter & Gamble Elastic packaging or binder material
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
ES2374717T3 (en) 1999-10-29 2012-02-21 Euro-Celtique S.A. FORMULATIONS OF CONTROLLED RELEASE HYDROCODONE.
WO2001036604A2 (en) 1999-11-18 2001-05-25 Corvas International, Inc. Nucleic acids encoding endotheliases, endotheliases and uses thereof
US7182953B2 (en) 1999-12-15 2007-02-27 Celgene Corporation Methods and compositions for the prevention and treatment of atherosclerosis restenosis and related disorders
US20040185099A1 (en) * 2000-01-20 2004-09-23 Biovail Laboratories, Inc. Multiparticulate bisoprolol formulation
US7700341B2 (en) 2000-02-03 2010-04-20 Dendreon Corporation Nucleic acid molecules encoding transmembrane serine proteases, the encoded proteins and methods based thereon
ES2539904T3 (en) * 2000-02-08 2015-07-07 Euro-Celtique S.A. Oral formulations of opioid agonists resistant to improper manipulations
SE0001151D0 (en) 2000-03-31 2000-03-31 Amarin Dev Ab Method of producing a controlled-release composition
NZ521937A (en) * 2000-03-31 2004-08-27 Celgene Corp Inhibition of cyclooxygenase-2 activity
US6368628B1 (en) 2000-05-26 2002-04-09 Pharma Pass Llc Sustained release pharmaceutical composition free of food effect
US6338857B1 (en) 2000-05-26 2002-01-15 Pharma Pass Llc Sustained release carbamazepine pharmaceutical composition free of food effect and a method for alleviating food effect in drug release
US7259152B2 (en) 2000-06-07 2007-08-21 Alfa Wasserman, Inc. Methods and compositions using sulodexide for the treatment of diabetic nephropathy
US6663686B1 (en) 2000-06-27 2003-12-16 Agrium, Inc. Controlled release fertilizer and method for production thereof
US6858634B2 (en) * 2000-09-15 2005-02-22 Monsanto Technology Llc Controlled release formulations and methods for their production and use
US7198795B2 (en) * 2000-09-21 2007-04-03 Elan Pharma International Ltd. In vitro methods for evaluating the in vivo effectiveness of dosage forms of microparticulate of nanoparticulate active agent compositions
EP1330250B1 (en) * 2000-10-30 2004-05-12 Lupin Limited Rapidly disintegrating sustained release cefuroxime axetil composition
JP2004512354A (en) 2000-10-30 2004-04-22 ユーロ−セルティーク,エス.エイ. Hydrocodone controlled release formulation
US20070208087A1 (en) 2001-11-02 2007-09-06 Sanders Virginia J Compounds, compositions and methods for the treatment of inflammatory diseases
EP2324861A1 (en) * 2000-11-20 2011-05-25 Sorbent Therapeutics, Inc. In vivo use of water absorbent polymers
CA2359812C (en) 2000-11-20 2004-02-10 The Procter & Gamble Company Pharmaceutical dosage form with multiple coatings for reduced impact of coating fractures
US6749867B2 (en) 2000-11-29 2004-06-15 Joseph R. Robinson Delivery system for omeprazole and its salts
PT1353672E (en) * 2000-11-30 2008-01-11 Childrens Medical Center Synthesis of 4-amino-thalidomide enantiomers
US20030167524A1 (en) * 2000-12-19 2003-09-04 Rooijen Gijs Van Methods for the production of multimeric protein complexes, and related compositions
US20040112838A1 (en) * 2001-02-09 2004-06-17 United States Filter Corporation System and method for optimized control of multiple oxidizers
EA011451B1 (en) * 2001-02-12 2009-04-28 Уайт Novel succinate salt of o-desmethyl-venlafaxine
EP1386251A4 (en) * 2001-03-02 2005-11-23 Euro Celtique Sa Method and apparatus for compounding individualized dosage forms
WO2002072786A2 (en) 2001-03-13 2002-09-19 Corvas International, Inc. Nucleic acid molecules encoding a transmembrane serine protease 7, the encoded polypeptides and methods based thereon
US20030143272A1 (en) * 2001-03-14 2003-07-31 Waterman Kenneth C. Pharmaceutical tablet and process for making thereof
US7172892B2 (en) 2001-03-22 2007-02-06 Dendreon Corporation Nucleic acid molecules encoding serine protease CVSP14, the encoded polypeptides and methods based thereon
WO2002077267A2 (en) 2001-03-27 2002-10-03 Dendreon San Diego Llc Nucleic acid molecules encoding a transmembran serine protease 9, the encoded polypeptides and methods based thereon
US6610887B2 (en) * 2001-04-13 2003-08-26 Sepracor Inc. Methods of preparing didesmethylsibutramine and other sibutramine derivatives
UA81224C2 (en) 2001-05-02 2007-12-25 Euro Celtic S A Dosage form of oxycodone and use thereof
US20110104214A1 (en) 2004-04-15 2011-05-05 Purdue Pharma L.P. Once-a-day oxycodone formulations
AU2002305559B2 (en) 2001-05-11 2008-04-03 Mundipharma Pty Limited Abuse-resistant controlled-release opioid dosage form
WO2002092841A2 (en) 2001-05-14 2002-11-21 Dendreon San Diego Llc Nucleic acid molecules encoding a transmembrane serine protease 10, the encoded polypeptides and methods based thereon
US6623785B2 (en) * 2001-06-07 2003-09-23 Hewlett-Packard Development Company, L.P. Pharmaceutical dispensing apparatus and method
AU2002314968B2 (en) * 2001-06-08 2006-12-07 Endo Pharmaceuticals, Inc. Controlled release dosage forms using acrylic polymer, and process for making the same
AU2002346065A1 (en) * 2001-07-05 2003-01-21 Marantech Holding, Llc Methods of using electron active compounds for managing conditions afflicting mammals
WO2003004032A1 (en) * 2001-07-06 2003-01-16 Endo Pharmaceuticals, Inc. Oral administration of 6-hydroxy-oxymorphone for use as an analgesic
PL207748B1 (en) * 2001-07-06 2011-01-31 Penwest Pharmaceuticals Company Sustained release formulations of oxymorphone
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
ES2312593T3 (en) * 2001-07-09 2009-03-01 Repros Therapeutics Inc. PROCEDURES AND MATERIALS FOR THE TREATMENT OF THE DEFICIENCY OF TESTOSTERONE IN MEN.
US7737185B2 (en) * 2001-07-09 2010-06-15 Repros Therapeutics Inc. Methods and compositions with trans-clomiphene
US7173064B2 (en) * 2001-07-09 2007-02-06 Repros Therapeutics Inc. Methods and compositions with trans-clomiphene for treating wasting and lipodystrophy
JP4256259B2 (en) * 2001-07-18 2009-04-22 ユーロ−セルティーク エス.エイ. Pharmaceutical formulation of oxycodone and naloxone
US20030157168A1 (en) * 2001-08-06 2003-08-21 Christopher Breder Sequestered antagonist formulations
US20030044458A1 (en) 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
PL367427A1 (en) 2001-08-06 2005-02-21 Euro-Celtique S.A. Opioid agonist formulations with releasable and sequestered antagonist
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US6776926B2 (en) * 2001-08-09 2004-08-17 United States Filter Corporation Calcium hypochlorite of reduced reactivity
GB0120835D0 (en) * 2001-08-28 2001-10-17 Smithkline Beecham Plc Process
EP1429728A1 (en) * 2001-08-29 2004-06-23 SRL Technologies, Inc. Sustained release preparations
US20030087963A1 (en) 2001-09-13 2003-05-08 Senanayake Chris H. Methods of preparing and using 2-hydroxy derivatives of sibutramine and its metabolites
EP1429730A4 (en) * 2001-09-26 2010-06-16 Penwest Pharmaceuticals Compan Opioid formulations having reduced potential for abuse
US6786223B2 (en) * 2001-10-11 2004-09-07 S. C. Johnson & Son, Inc. Hard surface cleaners which provide improved fragrance retention properties to hard surfaces
JP2005508372A (en) * 2001-11-02 2005-03-31 エラン コーポレーシヨン ピーエルシー Pharmaceutical composition
US20030118652A1 (en) * 2001-11-15 2003-06-26 John Kelly Methods and compositions for use of (S)-bisoprolol
US20030091633A1 (en) * 2001-11-15 2003-05-15 John Kelly Methods and compositions for use of (S)-bisoprolol
WO2003044179A2 (en) * 2001-11-20 2003-05-30 Dendreon San Diego Llc Nucleic acid molecules encoding serine protease 17, the encoded polypeptides and methods based thereon
AU2002348131A1 (en) 2001-12-05 2003-06-23 Baylor College Of Medicine Methods and compositions for control of bone formation via modulation of sympathetic tone
US20040009953A1 (en) * 2002-01-10 2004-01-15 Comper Wayne D. Antimicrobial charged polymers that exhibit resistance to lysosomal degradation during kidney filtration and renal passage, compositions and method of use thereof
US20030181416A1 (en) * 2002-01-10 2003-09-25 Comper Wayne D. Antimicrobial charged polymers that exhibit resistance to lysosomal degradation during kidney filtration and renal passage, compositions and method of use thereof
DK1472225T3 (en) 2002-02-01 2010-08-09 Euro Celtique Sa 2-Piperazine pyridines useful for the treatment of pain
US7790905B2 (en) * 2002-02-15 2010-09-07 Mcneil-Ppc, Inc. Pharmaceutical propylene glycol solvate compositions
US7446107B2 (en) * 2002-02-15 2008-11-04 Transform Pharmaceuticals, Inc. Crystalline forms of conazoles and methods of making and using the same
US7078526B2 (en) * 2002-05-31 2006-07-18 Transform Pharmaceuticals, Inc. CIS-itraconazole crystalline forms and related processes, pharmaceutical compositions and methods
US7927613B2 (en) 2002-02-15 2011-04-19 University Of South Florida Pharmaceutical co-crystal compositions
US20100311701A1 (en) * 2002-02-15 2010-12-09 Transform Pharmaceuticals, Inc Pharmaceutical Co-Crystal Compositions
MXPA04008164A (en) * 2002-02-21 2005-05-17 Biovail Lab Inc Controlled release dosage forms.
US8323692B2 (en) 2002-02-21 2012-12-04 Valeant International Bermuda Controlled release dosage forms
US8128957B1 (en) * 2002-02-21 2012-03-06 Valeant International (Barbados) Srl Modified release compositions of at least one form of tramadol
US20050182056A9 (en) * 2002-02-21 2005-08-18 Seth Pawan Modified release formulations of at least one form of tramadol
US7108781B2 (en) * 2002-02-26 2006-09-19 Usfilter Corporation Enhanced air and water purification using continuous breakpoint halogenation with free oxygen radicals
US6991735B2 (en) * 2002-02-26 2006-01-31 Usfilter Corporation Free radical generator and method
AU2003213719A1 (en) * 2002-03-01 2003-09-16 Regents Of The University Of Michigan Multiple-component solid phases containing at least one active pharmaceutical ingredient
US7893101B2 (en) 2002-03-20 2011-02-22 Celgene Corporation Solid forms comprising (+)-2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione, compositions thereof, and uses thereof
US6962940B2 (en) 2002-03-20 2005-11-08 Celgene Corporation (+)-2-[1-(3-Ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione: methods of using and compositions thereof
US7790215B2 (en) * 2002-03-26 2010-09-07 Purdue Pharma Lp Sustained-release gel coated compositions
DE60325567D1 (en) 2002-04-05 2009-02-12 Euro Celtique Sa MATRIX FOR THE MODIFIED RELEASE OF ACTIVE SUBSTANCES
US7205413B2 (en) * 2002-05-03 2007-04-17 Transform Pharmaceuticals, Inc. Solvates and polymorphs of ritonavir and methods of making and using the same
US7323479B2 (en) * 2002-05-17 2008-01-29 Celgene Corporation Methods for treatment and management of brain cancer using 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline
US7968569B2 (en) 2002-05-17 2011-06-28 Celgene Corporation Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
US20100129363A1 (en) * 2002-05-17 2010-05-27 Zeldis Jerome B Methods and compositions using pde4 inhibitors for the treatment and management of cancers
US7393862B2 (en) 2002-05-17 2008-07-01 Celgene Corporation Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
EP1556033A4 (en) * 2002-05-17 2006-05-31 Celgene Corp Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases
ATE459357T1 (en) 2002-05-17 2010-03-15 Celgene Corp COMBINATIONS FOR TREATING MULTIPLE MYELOMA
USRE48890E1 (en) 2002-05-17 2022-01-11 Celgene Corporation Methods for treating multiple myeloma with 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione after stem cell transplantation
US8829198B2 (en) * 2007-10-31 2014-09-09 Proteotech Inc Compounds, compositions and methods for the treatment of beta-amyloid diseases and synucleinopathies
US20070059356A1 (en) * 2002-05-31 2007-03-15 Almarsson Oern Pharmaceutical co-crystal compositions of drugs such as carbamazepine, celecoxib, olanzapine, itraconazole, topiramate, modafinil, 5-fluorouracil, hydrochlorothiazide, acetaminophen, aspirin, flurbiprofen, phenytoin and ibuprofen
DK2527315T3 (en) * 2002-05-31 2014-06-02 Proteotech Inc Compounds, compositions and methods for the treatment of amyloid diseases and synucleinopathies such as Alzheimer's disease, type 2 diabetes and Parkinson's disease
US6995168B2 (en) 2002-05-31 2006-02-07 Euro-Celtique S.A. Triazaspiro compounds useful for treating or preventing pain
DK2561860T3 (en) 2002-05-31 2018-04-30 Titan Pharmaceuticals Inc Implantable polymer device for prolonged release of buprenorphine
JP2006500377A (en) 2002-06-21 2006-01-05 トランスフォーム・ファーマシューティカルズ・インコーポレイテッド Pharmaceutical composition having improved solubility
MXPA05000224A (en) * 2002-06-26 2005-06-03 Alza Corp Minimally compliant, volume efficient piston for osmotic drug delivery systems.
AU2003256372A1 (en) * 2002-07-03 2004-01-23 Centro Internacional De Mejoramiento De Maiz Y Trigo A slow-release agrochemicals dispenser and method of use
US10004729B2 (en) 2002-07-05 2018-06-26 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US8840928B2 (en) 2002-07-05 2014-09-23 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
WO2004009558A2 (en) 2002-07-24 2004-01-29 Ptc Therapeutics, Inc. Ureido substituted benzoic acid compounds, their use for nonsense suppression and the treatment of diseases caused by such mutations
US20040016276A1 (en) * 2002-07-26 2004-01-29 Wynnyk Nick P. Controlled release fertilizer having improved mechanical handling durability and method for production thereof
US20050266072A1 (en) 2002-08-15 2005-12-01 Euro-Celtique S.A. Pharmaceutical compositions
ZA200501508B (en) * 2002-09-03 2006-10-25 Biovail Lab Inc Pharmaceuticals formulations and methods for modified release of statin drugs
CA2499550C (en) 2002-09-20 2013-10-15 Alpharma, Inc. Sequestering subunit and related compositions and methods
US20050020613A1 (en) * 2002-09-20 2005-01-27 Alpharma, Inc. Sustained release opioid formulations and method of use
WO2004026262A2 (en) * 2002-09-23 2004-04-01 Verion, Inc. Abuse-resistant pharmaceutical compositions
NZ538726A (en) 2002-09-25 2006-11-30 Euro Celtique S N-substituted hydromorphones and the use thereof
WO2004029025A2 (en) * 2002-09-27 2004-04-08 Bioenvision, Inc. Methods and compositions for the treatment of autoimmune disorders using clofarabine
CA2500091A1 (en) * 2002-09-27 2004-04-08 Bioenvision, Inc. Methods and compositions for the treatment of lupus using clofarabine
US20080220074A1 (en) * 2002-10-04 2008-09-11 Elan Corporation Plc Gamma radiation sterilized nanoparticulate docetaxel compositions and methods of making same
EP1554270A2 (en) * 2002-10-11 2005-07-20 Proteotech, Inc. Isolation, purification and synthesis of procyanidin b2 and uses thereof
US11116782B2 (en) 2002-10-15 2021-09-14 Celgene Corporation Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine
EP1900369A1 (en) 2002-10-15 2008-03-19 Celgene Corporation Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myelodysplastic syndromes
US8404716B2 (en) 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine
US7189740B2 (en) * 2002-10-15 2007-03-13 Celgene Corporation Methods of using 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myelodysplastic syndromes
CA2501936A1 (en) * 2002-10-15 2004-04-29 Celgene Corporation Selective cytokine inhibitory drugs for treating myelodysplastic syndrome
US8404717B2 (en) * 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes using lenalidomide
US20040081689A1 (en) * 2002-10-24 2004-04-29 Dunfield John Stephen Pharmaceutical dosage form and method of making
US20040087558A1 (en) 2002-10-24 2004-05-06 Zeldis Jerome B. Methods of using and compositions comprising selective cytokine inhibitory drugs for treatment, modification and management of pain
US20050203142A1 (en) * 2002-10-24 2005-09-15 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for treatment, modification and management of pain
US6786591B2 (en) * 2002-10-24 2004-09-07 Hewlett-Packard Development Company, L.P. Fluid ejector apparatus and methods
US8487002B2 (en) 2002-10-25 2013-07-16 Paladin Labs Inc. Controlled-release compositions
TWI319713B (en) 2002-10-25 2010-01-21 Sustained-release tramadol formulations with 24-hour efficacy
US7776907B2 (en) 2002-10-31 2010-08-17 Celgene Corporation Methods for the treatment and management of macular degeneration using cyclopropyl-N-{2-[(1S)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-3-oxoisoindoline-4-yl}carboxamide
US7563810B2 (en) 2002-11-06 2009-07-21 Celgene Corporation Methods of using 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myeloproliferative diseases
NZ540384A (en) * 2002-11-06 2008-06-30 Celgene Corp Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myeloproliferative diseases
NZ540383A (en) 2002-11-06 2008-03-28 Celgene Corp Methods and compositions using selective cytokine inhibitory drugs for treatment and management of chronic uveitis
US7202259B2 (en) * 2002-11-18 2007-04-10 Euro-Celtique S.A. Therapeutic agents useful for treating pain
KR20050075435A (en) * 2002-11-18 2005-07-20 셀진 코포레이션 Methods of using and compositions comprising (+)-3-(3,4-dimethoxy-phenyl)-3-(1-oxo-1,3-dihydro-isoindol-2-yl)-propionamide
CN1738614A (en) * 2002-11-18 2006-02-22 细胞基因公司 Compositions comprising (-)-3-(3,4-dimethoxy-phenyl)-3-(1-oxo-1,3-dihydro-isoindol-2-yl)-propionamide and how to use it
ES2553136T3 (en) 2002-12-13 2015-12-04 Durect Corporation Oral drug delivery system comprising high viscosity liquid vehicle materials
EP2298874A1 (en) 2002-12-16 2011-03-23 Halozyme, Inc. Human chondroitinase glycoprotein (CHASEGP), process for preparing the same, and pharmaceutical compositions comprising thereof
US7731947B2 (en) 2003-11-17 2010-06-08 Intarcia Therapeutics, Inc. Composition and dosage form comprising an interferon particle formulation and suspending vehicle
US7582635B2 (en) 2002-12-24 2009-09-01 Purdue Pharma, L.P. Therapeutic agents useful for treating pain
EP2339328A3 (en) 2002-12-30 2011-07-13 Transform Pharmaceuticals, Inc. Pharmaceutical co-crystal compositions of celecoxib
US8183290B2 (en) 2002-12-30 2012-05-22 Mcneil-Ppc, Inc. Pharmaceutically acceptable propylene glycol solvate of naproxen
ATE550022T1 (en) 2003-02-28 2012-04-15 Mcneil Ppc Inc PHARMACEUTICAL MIXED CRYSTALS OF CELECOXIB-NICOTINAMIDE
US20090123367A1 (en) * 2003-03-05 2009-05-14 Delfmems Soluble Glycosaminoglycanases and Methods of Preparing and Using Soluble Glycosaminoglycanases
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
CN102943067B (en) * 2003-03-05 2016-06-22 海洋酶公司 Soluble hyaluronidase glycoprotein (sHASEGP), prepare their method, their purposes and the pharmaceutical composition comprising them
DE602004031512D1 (en) 2003-03-31 2011-04-07 Titan Pharmaceuticals Inc POLYMERIC IMPLANT FOR DELAYED RELEASE OF DOPAMINE ANTAGONISTS
US20040202717A1 (en) 2003-04-08 2004-10-14 Mehta Atul M. Abuse-resistant oral dosage forms and method of use thereof
WO2004091278A2 (en) * 2003-04-11 2004-10-28 Transform Pharmaceuticals, Inc. Gabapentin compositions
HUE031794T2 (en) 2003-04-11 2017-08-28 Ptc Therapeutics Inc 1,2,4-oxadiazole benzoic acid compounds and their use for nonsense suppression and the treatment of disease
TWI347201B (en) 2003-04-21 2011-08-21 Euro Celtique Sa Pharmaceutical products,uses thereof and methods for preparing the same
AU2004265226A1 (en) * 2003-05-16 2005-02-24 Receptor Biologix, Inc. Intron fusion proteins, and methods of identifying and using same
US7186863B2 (en) * 2003-05-23 2007-03-06 Transform Pharmaceuticals, Inc. Sertraline compositions
US20090227647A1 (en) * 2008-03-05 2009-09-10 Thomas Lake Compounds, Compositions and Methods for the Treatment of Islet Amyloid Polypeptide (IAPP) Accumulation in Diabetes
US8916598B2 (en) 2003-05-30 2014-12-23 Proteotech Inc Compounds, compositions, and methods for the treatment of β-amyloid diseases and synucleinopathies
US20100331380A1 (en) * 2009-06-29 2010-12-30 Esposito Luke A Compounds, Compositions, and Methods for the Treatment of Beta-Amyloid Diseases and Synucleinopathies
US7438903B2 (en) * 2003-06-06 2008-10-21 Nbty, Inc. Methods and compositions that enhance bioavailability of coenzyme-Q10
AR044688A1 (en) 2003-06-12 2005-09-21 Euro Celtique Sa USEFUL THERAPEUTIC AGENTS FOR THE TREATMENT OF PAIN
WO2005003192A1 (en) 2003-06-26 2005-01-13 Symyx Technologies, Inc. Synthesis of photoresist polymers
US20060165790A1 (en) * 2003-06-27 2006-07-27 Malcolm Walden Multiparticulates
DK1641775T3 (en) * 2003-07-03 2009-04-20 Euro Celtique Sa 2-pyridinal pine derivatives useful for the treatment of pain
WO2005004882A1 (en) * 2003-07-09 2005-01-20 Monash University Antiviral charged polymers that exhibit resistance to lysosomal degradation during kidney filtration and renal passage, compositions and methods of use thereof
CA2533594C (en) * 2003-07-23 2013-04-02 Synta Pharmaceuticals, Corp. Compounds for inflammation and immune-related uses
ES2326979T3 (en) 2003-07-24 2009-10-22 Euro-Celtique S.A. PIPERIDINE COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEMSELVES.
CN101935315A (en) 2003-07-24 2011-01-05 欧洲凯尔蒂克公司 Heteroaryl-tetrahydropiperidyl compounds useful for treating or preventing pain
EP1867644B1 (en) 2003-07-24 2009-05-20 Euro-Celtique S.A. Heteroaryl-tetrahydropiperidyl compounds useful for treating or preventing pain
DK1942106T3 (en) 2003-08-01 2011-12-19 Euro Celtique Sa Therapeutic agents that can be used to treat pain
JP2007504261A (en) * 2003-09-03 2007-03-01 エイジーアイ・セラピューティクス・リサーチ・リミテッド Proton Pump Inhibitor Formulation, and Method-Related Application for Manufacturing and Using the Formulation
UA83504C2 (en) * 2003-09-04 2008-07-25 Селджин Корпорейшн Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)-piperidine-2,6-dione
EP1667645A1 (en) * 2003-09-19 2006-06-14 Symyx Technologies Materials for enhanced delivery of hydrophilic active agents in personal care formulations
WO2005030753A2 (en) * 2003-09-22 2005-04-07 Euro-Celtique S.A. Therapeutic agents useful for treating pain
DK1664041T3 (en) * 2003-09-22 2008-10-27 Euro Celtique Sa Phenylcarboxamide compounds suitable for the treatment of pain
US20080031901A1 (en) * 2004-09-24 2008-02-07 Abbott Laboratories Sustained release monoeximic formulations of opioid and nonopioid analgesics
US20060172006A1 (en) * 2003-10-10 2006-08-03 Vincent Lenaerts Sustained-release tramadol formulations with 24-hour clinical efficacy
US7612096B2 (en) * 2003-10-23 2009-11-03 Celgene Corporation Methods for treatment, modification and management of radiculopathy using 1-oxo-2-(2,6-dioxopiperidin-3yl)-4-aminoisoindoline
US20050113410A1 (en) * 2003-11-03 2005-05-26 Mark Tawa Pharmaceutical salts of zafirlukast
ZA200603718B (en) 2003-11-06 2007-09-26 Celgene Corp Methods and compositions using thalidomide for the treatment and management of cancers and other diseases
EP1689383B1 (en) 2003-11-19 2012-10-31 Metabasis Therapeutics, Inc. Novel phosphorus-containing thyromimetics
JP2007511618A (en) 2003-11-19 2007-05-10 シグナル ファーマシューティカルズ,エルエルシー Indazole compounds and methods of use as protein kinase inhibitors
US8883204B2 (en) 2003-12-09 2014-11-11 Purdue Pharma L.P. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
ES2322907T3 (en) * 2003-12-30 2009-07-01 Euro-Celtique S.A. USEFUL PIPERAZINAS FOR THE TREATMENT OF PAIN.
WO2005067980A2 (en) * 2004-01-12 2005-07-28 Pointilliste, Inc. Design of therapeutics and therapeutics
DE102004005095A1 (en) * 2004-01-27 2005-09-22 Coty B.V. Cosmetic composition useful in sun care products, antiperspirants comprises fragrance and fragrance fixing complexes comprising hydrophobic, alcohol soluble, carboxylated acrylates/octylacrylamide copolymer and hydrolyzed jojoba ester
US20050181050A1 (en) * 2004-01-28 2005-08-18 Collegium Pharmaceutical, Inc. Dosage forms using drug-loaded ion exchange resins
EP2292213A1 (en) 2004-02-06 2011-03-09 Cephalon, Inc. Compositions comprising a polymorphic form of armodafinil
EP1722758A1 (en) * 2004-02-11 2006-11-22 Athpharma Limited Chronotherapeutic compositions and methods of their use
PT1720540E (en) 2004-02-18 2008-09-10 Gpc Biotech Ag Satraplatin for treating resistant or refractory tumors
WO2005091991A2 (en) 2004-03-22 2005-10-06 Celgene Corporation Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of skin diseases or disorders
US20060004037A1 (en) * 2004-03-25 2006-01-05 Transform Pharmaceuticals, Inc. Novel tricyclic compounds and related methods of treatment
ATE378042T1 (en) * 2004-04-12 2007-11-15 Pfizer Prod Inc DRUGS WITH DISCOVERED TASTE IN BRUSHING MULTIPARTICLES
BRPI0418742A (en) * 2004-04-14 2007-09-11 Celgene Corp methods of treating, preventing or controlling a myelodysplastic syndrome, reducing or preventing an adverse effect associated with the administration of a second active ingredient in a patient suffering from a myelodysplastic syndrome, pharmaceutical composition, single unit dosage form, and kit
WO2005110085A2 (en) * 2004-04-14 2005-11-24 Celgene Corporation Use of selective cytokine inhibitory drugs in myelodysplastic syndromes
EP1737473A4 (en) * 2004-04-19 2009-08-26 Noven Therapeutics Llc Lithium combinations, and uses related thereto
SE0401031D0 (en) * 2004-04-22 2004-04-22 Duocort Ab A new glucocorticoid replacement therapy
EP2468266A3 (en) * 2004-04-22 2012-10-24 AcuCort AB Pharmaceutical compositions for acute glucocorticoid therapy
CA2563377A1 (en) * 2004-04-23 2005-11-03 Celgene Corporation Methods of using and compositions comprising pde4 modulators for the treatment and management of pulmonary hypertension
US20050239830A1 (en) * 2004-04-26 2005-10-27 Vikram Khetani Methods of diminishing co-abuse potential
US7351739B2 (en) * 2004-04-30 2008-04-01 Wellgen, Inc. Bioactive compounds and methods of uses thereof
US7803366B2 (en) * 2004-05-07 2010-09-28 Nbty, Inc. Methods and compositions that enhance bioavailability of coenzyme-Q10
WO2005113596A2 (en) * 2004-05-14 2005-12-01 Receptor Biologix, Inc. Cell surface receptor isoforms and methods of identifying and using the same
US20050265955A1 (en) * 2004-05-28 2005-12-01 Mallinckrodt Inc. Sustained release preparations
DE602005023986D1 (en) 2004-05-28 2010-11-18 Transform Pharmaceuticals Inc MIXED CRYSTALS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEY
WO2005120584A2 (en) * 2004-06-03 2005-12-22 The Trustees Of Columbia University In The City Of New York Radiolabeled arylsulfonyl compounds and uses thereof
EP1604666A1 (en) 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD)
SI1765292T1 (en) 2004-06-12 2018-04-30 Collegium Pharmaceutical, Inc. Abuse-deterrent drug formulations
AU2005264864B2 (en) 2004-06-16 2011-08-11 Takeda Pharmaceutical Company Limited Multiple PPI dosage form
EP1765379A4 (en) * 2004-06-17 2009-05-27 Transform Pharmaceuticals Inc CO-CRISTAL PHARMACEUTICAL COMPOSITIONS AND METHODS OF USE THEREOF
BRPI0513129A (en) * 2004-07-14 2008-04-29 Repros Therapeutics Inc Method of treating a condition selected from the group consisting of benign prostate hypertrophy, prostate cancer, elevated triglycerides, high cholesterol, and hypogonadism.
US20080126195A1 (en) 2004-07-22 2008-05-29 Ritter Andrew J Methods and Compositions for Treating Lactose Intolerance
DE102004035938A1 (en) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Process for the preparation of coated drug forms with stable drug release profile
NZ552389A (en) * 2004-08-06 2009-05-31 Transform Pharmaceuticals Inc Statin pharmaceutical compositions and related methods of treatment
US20090042979A1 (en) * 2004-08-06 2009-02-12 Transform Pharmaceuticals Inc. Novel Statin Pharmaceutical Compositions and Related Methods of Treatment
WO2006017692A2 (en) * 2004-08-06 2006-02-16 Transform Pharmaceuticals, Inc. Novel fenofibrate formulations and related methods of treatment
GB2418854B (en) 2004-08-31 2009-12-23 Euro Celtique Sa Multiparticulates
CN101010072A (en) * 2004-09-01 2007-08-01 欧洲凯尔特公司 Opioid dosage forms with dose-proportional steady-state Cave and AUC less than dose-proportional single-dose CMAX
CN102379872A (en) 2004-09-17 2012-03-21 怀特黑德生物医学研究院 Compounds, compositions and methods of inhibiting a-synuclein toxicity
JP2008513508A (en) 2004-09-21 2008-05-01 シンタ ファーマシューティカルズ コーポレーション Compounds used for inflammation and immunity related applications
CN101309585A (en) * 2004-10-28 2008-11-19 细胞基因公司 Methods and compositions for treating and managing central nervous system injury using PDE4 modulators
WO2006053184A2 (en) * 2004-11-10 2006-05-18 The Trustees Of Columbia University In The City Of New York Methods for treating or preventing a vascular disease
DK1817295T3 (en) 2004-11-18 2013-02-18 Synta Pharmaceuticals Corp Triazole compounds that modulate HSP90 activity
US20060121112A1 (en) * 2004-12-08 2006-06-08 Elan Corporation, Plc Topiramate pharmaceutical composition
KR20070087643A (en) * 2004-12-09 2007-08-28 셀진 코포레이션 Treatment with D-Threo Methylphenidate
GB0427455D0 (en) * 2004-12-15 2005-01-19 Jagotec Ag Dosage forms
ES2401285T3 (en) 2004-12-16 2013-04-18 The Regents Of The University Of California Drugs with lung as target
PT1824482E (en) 2004-12-17 2014-05-13 Anadys Pharmaceuticals Inc 3, 5-disubstituted and 3,5,7-trisubstituted-3h-oxazolo and 3h-thiazolo [4,5-d]pyrimidin-2-one compounds and prodrugs thereof
US7390399B2 (en) * 2004-12-21 2008-06-24 Siemens Water Technologies Holding Corp. Water treatment control systems and methods of use
ATE432921T1 (en) 2004-12-23 2009-06-15 Gpc Biotech Ag SQUARE ACID DERIVATIVES WITH ANTIPROLIFERATIVE EFFECT
US20060160783A1 (en) * 2004-12-30 2006-07-20 Transform Pharmaceuticals, Inc. Novel omeprazole forms and related methods
KR20100017599A (en) * 2005-01-04 2010-02-16 테이코쿠 팔마 유에스에이, 인코포레이티드 Cooling topical patch preparation
MX2007008290A (en) 2005-01-07 2008-02-15 Synta Pharmaceuticals Corp Compounds for inflammation and immune-related uses.
EP1848435B1 (en) 2005-01-25 2016-01-20 Synta Pharmaceuticals Corp. Compounds against inflammations and immune-related uses
WO2006081518A2 (en) * 2005-01-28 2006-08-03 Collegium Pharmaceutical, Inc. Non-ionic non-aqueous vehicles for topical and oral administration of carrier-complexed active agents
FR2881350B1 (en) * 2005-02-02 2007-04-06 Merck Generiques Soc En Comman NEW ORAL GALENIC FORM OF TIANEPTINE
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
WO2006083761A2 (en) 2005-02-03 2006-08-10 Alza Corporation Solvent/polymer solutions as suspension vehicles
US8299025B2 (en) 2005-02-03 2012-10-30 Intarcia Therapeutics, Inc. Suspension formulations of insulinotropic peptides and uses thereof
US20060169646A1 (en) * 2005-02-03 2006-08-03 Usfilter Corporation Method and system for treating water
WO2006084153A2 (en) 2005-02-04 2006-08-10 Repros Therapeutics Inc. Methods and materials with trans-clomiphene for the treatment of male infertility
US20070298098A1 (en) * 2005-02-16 2007-12-27 Elan Pharma International Limited Controlled Release Compositions Comprising Levetiracetam
EP1702558A1 (en) 2005-02-28 2006-09-20 Euro-Celtique S.A. Method and device for the assessment of bowel function
MX2007010659A (en) * 2005-03-22 2007-11-08 Repros Therapeutics Inc Dosing regimes for trans-clomiphene.
EP1877461B1 (en) * 2005-03-24 2009-05-06 Medtronic, Inc. Modification of thermoplastic polymers
ATE534652T1 (en) 2005-04-01 2011-12-15 Univ California PHOSPHONO-PENT-2-EN-1-YL NUCLEOSIDES AND ANALOGS
US20090156545A1 (en) * 2005-04-01 2009-06-18 Hostetler Karl Y Substituted Phosphate Esters of Nucleoside Phosphonates
EA200702221A1 (en) * 2005-04-12 2008-04-28 Элан Фарма Интернэшнл Лимитед CONTROLLED SHIPPING COMPOSITIONS FOR THE TREATMENT OF BACTERIAL INFECTIONS CONTAINING CEFALOSPORIN
CA2607256A1 (en) 2005-05-02 2006-11-09 Cold Spring Harbor Laboratory Composition and methods for cancer diagnosis utilizing the mir 17-92 cluster
US20070087406A1 (en) * 2005-05-04 2007-04-19 Pei Jin Isoforms of receptor for advanced glycation end products (RAGE) and methods of identifying and using same
US20070041944A1 (en) * 2005-05-05 2007-02-22 The Trustees Of Columbia University In The City Of New York Treating tumors by ENH dislocation of ID proteins
US20090170769A1 (en) * 2005-05-13 2009-07-02 Pei Jin Cell surface receptor isoforms and methods of identifying and using the same
US20060270707A1 (en) * 2005-05-24 2006-11-30 Zeldis Jerome B Methods and compositions using 4-[(cyclopropanecarbonylamino)methyl]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione for the treatment or prevention of cutaneous lupus
US20100136106A1 (en) * 2005-06-08 2010-06-03 Gary Liversidge Modified Release Famciclovir Compositions
US20070054868A1 (en) * 2005-06-20 2007-03-08 The Trustees Of Columbia University In The City Of New York Synergistic polyphenol compounds, compositions thereof, and uses thereof
WO2007002109A2 (en) * 2005-06-20 2007-01-04 The Regents Of The University Of California Multidentate pyrone-derived chelators for medicinal imaging and chelation
CN101257898A (en) * 2005-07-06 2008-09-03 塞普拉科公司 Combination of eszopiclone and O-desmethylvenlafaxine and method of treatment for menopause and mood, anxiety and cognitive disorders
DE102005032806A1 (en) * 2005-07-12 2007-01-18 Röhm Gmbh Use of a partially neutralized, anionic (meth) acrylate copolymer as a coating for the preparation of a dosage form with a release of active ingredient at reduced pH values
EP1907357A1 (en) 2005-07-22 2008-04-09 Amgen Inc. Aniline sulfonamide derivatives and their uses
US20080058282A1 (en) 2005-08-30 2008-03-06 Fallon Joan M Use of lactulose in the treatment of autism
CN101291924A (en) 2005-08-31 2008-10-22 细胞基因公司 Isoindole-imide compounds and compositions comprising them and methods of use thereof
ES2389666T3 (en) * 2005-09-09 2012-10-30 Angelini Labopharm, Llc Trazodone composition for once-daily administration
BRPI0615860B8 (en) 2005-09-09 2021-05-25 Labopharm Barbados Ltd solid monolithic extended release pharmaceutical composition
US20080138295A1 (en) * 2005-09-12 2008-06-12 Celgene Coporation Bechet's disease using cyclopropyl-N-carboxamide
US20070066512A1 (en) 2005-09-12 2007-03-22 Dominique Verhelle Methods and compositions using immunomodulatory compounds for the treatment of disorders associated with low plasma leptin levels
WO2008051197A2 (en) * 2005-09-20 2008-05-02 Mayo Foundation For Medical Education And Research Small-molecule botulinum toxin inhibitors
US7905245B2 (en) * 2005-09-30 2011-03-15 Siemens Water Technologies Corp. Dosing control system and method
BRPI0613067A2 (en) * 2005-10-24 2010-12-21 Teikoku Pharma Usa Inc n, 2,3-trimethyl-2-isopropylbutamide pain relief topical compositions and methods of using them
EP2298770A1 (en) 2005-11-03 2011-03-23 ChemBridge Corporation Heterocyclic compounds as TrkA modulators
US20070104788A1 (en) 2005-11-10 2007-05-10 Seamus Mulligan Once-daily administration of central nervous system drugs
AU2006315825A1 (en) * 2005-11-10 2007-05-24 Receptor Biologix, Inc. Hepatocyte growth factor intron fusion proteins
DK1951718T3 (en) * 2005-11-21 2012-05-14 Purdue Pharma Lp 4-Oxadiazolyl-piperidine Compounds and Their Use
WO2007076160A2 (en) * 2005-12-28 2007-07-05 Acidophil Llc C-10 carbamates of taxanes
US20070155791A1 (en) * 2005-12-29 2007-07-05 Zeldis Jerome B Methods for treating cutaneous lupus using aminoisoindoline compounds
EP1981525B1 (en) 2005-12-30 2015-01-21 Zensun (Shanghai) Science and Technology Limited Extended release of neuregulin for improved cardiac function
WO2007087443A2 (en) 2006-01-25 2007-08-02 Synta Pharmaceuticals Corp. Vinyl-phenyl derivatives for inflammation and immune-related uses
TWI444370B (en) * 2006-01-25 2014-07-11 Synta Pharmaceuticals Corp Thiazole and thiadiazole compounds for inflammation and immune-related uses
TW200806290A (en) 2006-01-25 2008-02-01 Synta Pharmaceuticals Corp Substituted biaryl compounds for inflammation and immune-related uses
AU2007211276B2 (en) * 2006-01-31 2013-06-06 Synta Pharmaceuticals Corp. Pyridylphenyl compounds for inflammation and immune-related uses
US7829148B2 (en) * 2006-02-07 2010-11-09 Fmc Corporation Coating process to produce controlled release coatings
US20070190141A1 (en) * 2006-02-16 2007-08-16 Aaron Dely Extended release opiate composition
US7518017B2 (en) 2006-02-17 2009-04-14 Idexx Laboratories Fenicol compounds and methods synthesizing 2-trifluoroacetamido-3-substituted propiophenone compounds
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
CA2645376C (en) * 2006-03-13 2017-06-20 Activx Biosciences, Inc. Aminoquinolones as gsk-3 inhibitors
WO2007106494A2 (en) * 2006-03-13 2007-09-20 Encysive Pharmaceuticals, Inc. Methods and compositions for treatment of diastolic heart failure
CN101400339A (en) * 2006-03-13 2009-04-01 恩希赛弗制药公司 Formulations of sitaxsentan sodium
JP5479086B2 (en) 2006-03-16 2014-04-23 トリス・フアルマ・インコーポレーテツド Controlled release formulation containing drug-ion exchange resin complex
US20100273776A1 (en) * 2006-03-29 2010-10-28 FOLDRx PHARMACEUTICALS, INC Inhibition of alpha-synuclein toxicity
WO2007123883A2 (en) * 2006-04-17 2007-11-01 Actavis Group Ptc Ehf Oral dosage formulations and methods of preparing the same
US20070243245A1 (en) * 2006-04-17 2007-10-18 Actavis Group Ptc Hf Oral Dosage Formulations, Methods of Preparing the Same, and Methods of Reducing Food Effects on Drug Release
EP2020990B1 (en) 2006-05-30 2010-09-22 Intarcia Therapeutics, Inc Two-piece, internal-channel osmotic delivery system flow modulator
WO2007146671A2 (en) 2006-06-06 2007-12-21 Fluid Lines Ultaviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US12103874B2 (en) 2006-06-06 2024-10-01 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
ES2349887T3 (en) * 2006-06-08 2011-01-12 Amgen Inc. DERIVATIVES OF BENZAMIDA AND USES RELATED TO THE SAME.
TW200808695A (en) * 2006-06-08 2008-02-16 Amgen Inc Benzamide derivatives and uses related thereto
BRPI0713272A2 (en) * 2006-06-12 2017-05-02 Receptor Biologix Inc receptor-specific therapeutic products on the surface of pan cells
US20080069891A1 (en) * 2006-09-15 2008-03-20 Cima Labs, Inc. Abuse resistant drug formulation
EP2719378B1 (en) 2006-06-19 2016-08-31 Alpharma Pharmaceuticals LLC Pharmaceutical compositions
US20080026061A1 (en) * 2006-06-22 2008-01-31 Reichwein John F Crystalline N-(4-chloro-3-methyl-5-isoxazolyl)-2-[2-methyl-4.5-(methylenedioxy)phenylacetyl]-thiophene-3-sulfonamide
WO2007150001A1 (en) 2006-06-22 2007-12-27 Anadys Pharmaceuticals, Inc. Pyrro[1,2-b]pyridazinone compounds
JP5345527B2 (en) 2006-06-22 2013-11-20 アナディス ファーマシューティカルズ インク Prodrug 5-amino-3- (3'-deoxy-β-D-ribofuranosyl) -thiazolo [4,5-d] pyrimidine-2,7-dione
MX2009000035A (en) * 2006-06-26 2009-05-28 Mutual Pharmaceutical Co Active agent formulations, methods of making, and methods of use.
EP2402437B1 (en) 2006-07-05 2016-06-01 Catalyst Biosciences, Inc. Protease screening methods and proteases identified thereby
US8637469B2 (en) 2006-07-11 2014-01-28 Roy C. Levitt Rhinosinusitis prevention and therapy with proinflammatory cytokine inhibitors
EP2040712B1 (en) 2006-07-18 2011-03-02 Anadys Pharmaceuticals, Inc. Carbonate and carbamate prodrugs of thiazolo [4,5-d] pyrimidines
CL2007002218A1 (en) * 2006-08-03 2008-03-14 Celgene Corp Soc Organizada Ba USE OF 3- (4-AMINO-1-OXO-1,3-DIHIDRO-ISOINDOL-2-IL) -PIPERIDINE 2,6-DIONA FOR THE PREPARATION OF A USEFUL MEDICINAL PRODUCT FOR THE TREATMENT OF LAYER CELL LYMPHOMA.
CA2659037A1 (en) * 2006-08-04 2008-03-13 Agi Therapeutics Research Limited Methods for treating at least one condition having mt1 receptor, 5ht2b receptor, and l-type calcium channel activity
ES2422864T3 (en) 2006-08-09 2013-09-16 Intarcia Therapeutics, Inc Osmotic release systems and piston units
US8063225B2 (en) 2006-08-14 2011-11-22 Chembridge Corporation Tricyclic compound derivatives useful in the treatment of neoplastic diseases, inflammatory disorders and immunomodulatory disorders
SA07280459B1 (en) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic
US9114133B2 (en) 2006-08-25 2015-08-25 U.S. Dept. Of Veterans Affairs Method of improving diastolic dysfunction
US8877780B2 (en) 2006-08-30 2014-11-04 Celgene Corporation 5-substituted isoindoline compounds
WO2008027542A2 (en) 2006-08-30 2008-03-06 Celgene Corporation 5-substituted isoindoline compounds
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
AU2007297597B2 (en) 2006-09-21 2013-02-21 Kyorin Pharmaceuticals Co., Ltd. Serine hydrolase inhibitors
US8779154B2 (en) 2006-09-26 2014-07-15 Qinglin Che Fused ring compounds for inflammation and immune-related uses
CN107445940A (en) 2006-09-26 2017-12-08 细胞基因公司 Quinzolone derivatives as 5 substitutions of antitumor agent
SI2124556T1 (en) 2006-10-09 2015-01-30 Charleston Laboratories, Inc. Pharmaceutical compositions
EP1914234A1 (en) * 2006-10-16 2008-04-23 GPC Biotech Inc. Pyrido[2,3-d]pyrimidines and their use as kinase inhibitors
PT2076268E (en) 2006-10-19 2013-03-07 Genzyme Corp Roscovitine for the treatment of certain cystic diseases
CN101687788A (en) 2006-10-19 2010-03-31 奥斯拜客斯制药有限公司 Substituted indoles
US8733274B2 (en) * 2006-10-20 2014-05-27 Hewlett-Packard Development Company, L.P. Tube mounted inkjet printhead die
US7867548B2 (en) * 2006-10-27 2011-01-11 Hewlett-Packard Development Company, L.P. Thermal ejection of solution having solute onto device medium
US20100137421A1 (en) * 2006-11-08 2010-06-03 Emmanuel Theodorakis Small molecule therapeutics, synthesis of analogues and derivatives and methods of use
US20080207641A1 (en) 2006-11-13 2008-08-28 Synta Pharmaceuticals Corp. Cyclohexenyl-aryl compounds for inflammation and immune-related uses
WO2008061226A2 (en) 2006-11-17 2008-05-22 Supernus Pharmaceuticals Inc. Sustained-release formulations of topiramate
CN101621931A (en) 2006-11-27 2010-01-06 H.隆德贝克有限公司 Heteroaryl amide derivatives
WO2008065504A1 (en) * 2006-11-30 2008-06-05 Pfizer Products Inc. Multiparticulates of spray-coated drug and polymer on a meltable core
US11116728B2 (en) 2006-11-30 2021-09-14 Bend Research, Inc. Multiparticulates of spray-coated drug and polymer on a meltable core
CA2671426C (en) 2006-12-13 2015-05-26 Temple University - Of The Commonwealth System Of Higher Education Sulfide, sulfoxide and sulfone chalcone analogues useful in the treatment of cancer and other proliferative disorders
CN101611008A (en) * 2006-12-22 2009-12-23 恩希赛弗制药公司 C3A receptor modulators and methods of use thereof
AU2007343726A1 (en) * 2006-12-26 2008-07-24 Amgen Inc. N-cyclohexyl benzamides and benzeneacetamides as inhibitors of 11-beta-hydroxysteroid dehydrogenases
DE602008002690D1 (en) * 2007-01-16 2010-11-04 Purdue Pharma Lp Heterocyclic Substituted Piperidines as ORL-1 Ligands
KR20180099916A (en) 2007-02-09 2018-09-05 메타베이시스 테라퓨틱스, 인크. Novel antagonists of the glucagon receptor
AU2008218997B2 (en) 2007-02-21 2013-06-20 Sunovion Pharmaceuticals Inc. Solid forms comprising (-) O-desmethylvenlafaxine and uses thereof
PT2144604E (en) * 2007-02-28 2011-10-19 Conatus Pharmaceuticals Inc Methods for the treatment of chronic viral hepatitis c using ro 113-0830
WO2008106167A1 (en) * 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Combination therapy comprising matrix metalloproteinase inhibitors and caspase inhibitors for the treatment of liver diseases
AU2008223091B2 (en) * 2007-03-02 2014-04-24 Farnam Companies, Inc. Sustained release pellets comprising wax-like material
PT2125698T (en) 2007-03-15 2016-12-12 Auspex Pharmaceuticals Inc Deuterated d9-venlafaxine
US7879747B2 (en) * 2007-03-30 2011-02-01 Kimberly-Clark Worldwide, Inc. Elastic laminates having fragrance releasing properties and methods of making the same
US9365436B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Method of irradiating a liquid
US9365435B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Actinic radiation reactor
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US8753522B2 (en) 2007-04-03 2014-06-17 Evoqua Water Technologies Llc System for controlling introduction of a reducing agent to a liquid stream
US20080245737A1 (en) * 2007-04-03 2008-10-09 Siemens Water Technologies Corp. Method and system for providing ultrapure water
US8741155B2 (en) 2007-04-03 2014-06-03 Evoqua Water Technologies Llc Method and system for providing ultrapure water
EP2380564B1 (en) 2007-04-04 2014-10-22 Sigmoid Pharma Limited An oral pharmaceutical composition
CA2685118C (en) 2007-04-26 2016-11-01 Sigmoid Pharma Limited Manufacture of multiple minicapsules
MX2009011601A (en) * 2007-04-27 2009-11-10 Purdue Pharma Lp Therapeutic agents useful for treating pain.
TWI362930B (en) 2007-04-27 2012-05-01 Purdue Pharma Lp Trpv1 antagonists and uses thereof
US7892776B2 (en) 2007-05-04 2011-02-22 The Regents Of The University Of California Screening assay to identify modulators of protein kinase A
DK2152250T3 (en) * 2007-05-07 2019-12-09 Evonik Degussa Gmbh FIXED DOSAGE FORMS CONCERNING AN ENTERIC COATING, WITH ACCELERATED PHARMACEUTICAL RELEASE
US8007707B1 (en) 2007-05-15 2011-08-30 Fresh Products, Inc. Method of manufacture air freshening article
EP2019101A1 (en) * 2007-07-26 2009-01-28 GPC Biotech AG Pyrazol[3,4-d]pyrimidin-4-one useful as Kinase Inhibitor
CN101686672A (en) 2007-05-31 2010-03-31 塞普拉柯公司 Phenyl substituted cycloalkamines as monoamine reuptake inhibitors
IN2009KN04568A (en) 2007-06-01 2015-08-28 Univ Princeton
US8415294B2 (en) * 2007-06-05 2013-04-09 Arizona Board Of Regents Cyclodepsipeptides with antineoplastic activity and methods of using to inhibit cancer and microbial growth
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
KR20100047860A (en) * 2007-07-06 2010-05-10 누온 테라피우틱스, 아이엔씨. Treatment of neuropathic pain
WO2009009778A1 (en) * 2007-07-12 2009-01-15 Tragara Pharmaceuticals, Inc. Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders
WO2009012263A2 (en) * 2007-07-18 2009-01-22 The Trustees Of Columbia University In The City Of New York Tissue-specific micrornas and compositions and uses thereof
EP2185514A4 (en) 2007-08-01 2011-05-18 Synta Pharmaceuticals Corp Vinyl-aryl derivatives for inflammation and immune-related uses
ES2440267T3 (en) 2007-08-01 2014-01-28 Synta Pharmaceuticals Corporation Heterocyclo-aryl compounds for inflammation and immunorelated uses
WO2009020590A1 (en) * 2007-08-07 2009-02-12 Celgene Corporation Methods for treating lymphomas in certain patient populations and screening patients for said therapy
EP2185570B1 (en) 2007-08-13 2014-03-19 Metabasis Therapeutics, Inc. Novel activators of glucokinase
ES2692437T3 (en) * 2007-08-13 2018-12-03 Abuse Deterrent Pharmaceutical Llc Abuse-resistant drugs, method of use and method of preparation
US20090062242A1 (en) * 2007-08-28 2009-03-05 Agi Therapeutics Plc Methods and compositions for treating gastrointestinal conditions
CN101878208B (en) 2007-08-31 2014-10-15 普渡制药公司 Substituted-quinoxaline-type-piperidine compounds and the uses thereof
WO2009035634A2 (en) * 2007-09-11 2009-03-19 Activx Biosciences, Inc. Cyanoaminoquinolones and tetrazoloaminoquinolones as gsk-3 inhibitors
EP2203459B1 (en) 2007-09-12 2016-03-16 Kyorin Pharmaceutical Co., Ltd. Spirocyclic aminoquinolones as gsk-3 inhibitors
KR101593242B1 (en) 2007-09-26 2016-02-11 셀진 코포레이션 6-, 7-, or 8-substituted quinazolinone derivatives and compositions comprising and methods of using the same
US20090264421A1 (en) * 2007-10-05 2009-10-22 Bible Keith C Methods and Compositions for Treating Cancer
KR100946553B1 (en) * 2007-10-11 2010-03-11 주식회사 엘지생활건강 Film Decontamination Agent
BRPI0818286A2 (en) 2007-10-12 2020-08-11 Takeda Pharmaceuticals North America, Inc. methods of treating gastrointestinal disorders regardless of food intake.
CA2806526C (en) 2007-10-16 2014-12-30 Repros Therapeutics Inc. Trans-clomiphen for type 2 diabetes
TW200932257A (en) * 2007-10-16 2009-08-01 Receptor Biologix Inc Compositions comprising optimized Her1 and Her3 multimers and methods of use thereof
US20110009463A1 (en) * 2007-10-17 2011-01-13 Yuri Karl Petersson Geranylgeranyl transferase inhibitors and methods of making and using the same
EP2959917A3 (en) 2007-10-19 2016-02-24 The Regents of The University of California Compositions and methods for ameliorating cns inflammation, psychosis, delirium, ptsd or ptss
EP2219622A1 (en) 2007-12-06 2010-08-25 Durect Corporation Methods useful for the treatment of pain, arthritic conditions, or inflammation associated with a chronic condition
US20110223248A1 (en) * 2007-12-12 2011-09-15 Ritter Pharmaceuticals, Inc. Methods and compositions for treating lactose intolerance
BRPI0821247A2 (en) 2007-12-14 2015-06-16 Univ Georgetown Histone Deacetylase Inhibitors
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
CA2710515A1 (en) * 2007-12-28 2009-07-09 Khashayar Kevin Neshat Controlled release local anesthetic for post dental surgery and method of use
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
JP5236748B2 (en) 2008-01-08 2013-07-17 パーデュー、ファーマ、リミテッド、パートナーシップ Proline analogs as ligands for cannabinoid receptors for the treatment of pain
EP3090743A1 (en) 2008-01-09 2016-11-09 Charleston Laboratories, Inc. Pharmaceutical compositions for treating headache and eliminating nausea
DK2240155T3 (en) 2008-02-13 2012-09-17 Intarcia Therapeutics Inc Devices, formulations and methods for the delivery of several beneficial agents
WO2009105256A2 (en) * 2008-02-20 2009-08-27 Celgene Corporation Method of treating cancer by administering an immunomodulatory compound in combination with a cd40 antibody or cd40 ligand
TWI395593B (en) 2008-03-06 2013-05-11 Halozyme Inc In vivo temporal control of activatable matrix-degrading enzymes
US8658163B2 (en) 2008-03-13 2014-02-25 Curemark Llc Compositions and use thereof for treating symptoms of preeclampsia
EP3147281A1 (en) 2008-03-17 2017-03-29 Ambit Biosciences Corporation Quinazoline derivatives as raf kinase modulators and methods of use thereof
CN102036990B (en) 2008-03-19 2015-09-30 凯姆桥公司 Novel tyrosine kinase inhibitors
US9249147B2 (en) 2008-03-19 2016-02-02 Chembridge Corporation Tyrosine kinase inhibitors
US8822500B2 (en) 2008-03-19 2014-09-02 Chembridge Corporation Tyrosine kinase inhibitors
JP5474043B2 (en) 2008-03-27 2014-04-16 セルジーン コーポレイション (+)-2- [1- (3-Ethoxy-4-methoxyphenyl) -2-methylsulfonylethyl] -4-acetylaminoisoindoline-1,3-dione, its composition and its use
EP2687213B1 (en) 2008-03-27 2019-01-23 Celgene Corporation Solid forms comprising (+)-2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione, compositions thereof, and uses thereof
SG187427A1 (en) 2008-04-14 2013-02-28 Halozyme Inc Modified hyaluronidases and uses in treating hyaluronan-associated diseases and conditions
US8084025B2 (en) 2008-04-18 2011-12-27 Curemark Llc Method for the treatment of the symptoms of drug and alcohol addiction
EP2112150B1 (en) 2008-04-22 2013-10-16 Forma Therapeutics, Inc. Improved raf inhibitors
EP2112152A1 (en) 2008-04-22 2009-10-28 GPC Biotech AG Dihydropteridinones as Plk Inhibitors
DE102008021473A1 (en) * 2008-04-29 2009-11-12 Heraeus Kulzer Gmbh Dental materials equipped with antiplaque agent (s)
US9314469B2 (en) 2008-05-05 2016-04-19 Tonix Pharma Holdings Limited Method for treating neurocognitive dysfunction
WO2009139880A1 (en) * 2008-05-13 2009-11-19 Celgene Corporation Thioxoisoindoline compounds and compositions and methods of using the same
BRPI0912842A8 (en) * 2008-05-20 2019-01-29 Cerenis Therapeutics Holding pharmaceutical composition, methods to prevent or treat niacin-induced flushing in an individual, to reduce at least one niacin therapy-related flushing symptom in an individual, to decrease protaglandin-related side effects in an individual, to decrease a rate of discontinuation of niacin treatment by an individual, to increase patient compliance with niacin treatment, to treat atherosclerosis in a patient, to treat a disease related to a low hdl profile in a patient, nicotinic acid formulation of modified dispensing, pharmaceutical composition use, and aspirin microcapsule
ES2732453T3 (en) 2008-07-01 2019-11-22 Curemark Llc Methods and compositions for the treatment of symptoms of neurological and mental health disorders
EP2476690A1 (en) 2008-07-02 2012-07-18 IDENIX Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US20100003322A1 (en) * 2008-07-03 2010-01-07 Lai Felix S Enteric coated hydrophobic matrix formulation
IT1393244B1 (en) 2008-07-18 2012-04-12 Universita' Degli Studi Di Milano SYSTEM FOR THE RELEASE TO COLON OF SUSCEPTIBLE DRUGS OF ENZYMATIC DEGRADATION AND / OR SHORTLY ABSORBED IN THE GASTROINTESTINAL TRACT
PT2324013E (en) 2008-07-21 2012-12-24 Purdue Pharma Lp Substituted-quinoxaline-type bridged-piperidine compounds and the uses thereof
US8530494B2 (en) 2008-07-30 2013-09-10 Purdue Pharma Lp Buprenophine analogs
EP3153501B1 (en) 2008-08-13 2018-11-28 Metabasis Therapeutics, Inc. Glucagon antagonists
EP2348863A4 (en) 2008-09-04 2012-03-07 Anacor Pharmaceuticals Inc SMALL MOLECULES CONTAINING BORON
EP2340254B8 (en) 2008-09-15 2014-05-21 Biovista, Inc. Compositions and methods for treating epilepsy
EP2350064A1 (en) * 2008-10-01 2011-08-03 Synta Pharmaceuticals Corp. Compounds for inflammation and immune-related uses
US20110229438A1 (en) 2008-10-09 2011-09-22 Anadys Pharmaceuticals, Inc. Method of inhibiting hepatitus c virus by combination of a 5,6-dihydro-1h-pyridin-2-one and one or more additional antiviral compounds
JP2012505241A (en) * 2008-10-10 2012-03-01 パーデュー・リサーチ・ファウンデーション Composition for treating Alzheimer's disease
US8546388B2 (en) * 2008-10-24 2013-10-01 Purdue Pharma L.P. Heterocyclic TRPV1 receptor ligands
US8703962B2 (en) * 2008-10-24 2014-04-22 Purdue Pharma L.P. Monocyclic compounds and their use as TRPV1 ligands
US8759362B2 (en) * 2008-10-24 2014-06-24 Purdue Pharma L.P. Bicycloheteroaryl compounds and their use as TRPV1 ligands
CA2741299C (en) 2008-10-29 2017-03-28 Celgene Corporation Isoindoline compounds for use in the treatment of cancer
US20100260844A1 (en) 2008-11-03 2010-10-14 Scicinski Jan J Oral pharmaceutical dosage forms
CA2744425A1 (en) * 2008-11-20 2010-05-27 Purdue Research Foundation Quinazoline inhibitors of bace 1 and methods of using
US8859590B2 (en) 2008-12-05 2014-10-14 Purdue Research Foundation Inhibitors of BACE1 and methods for treating Alzheimer's disease
DK3037529T3 (en) 2008-12-09 2019-05-20 Halozyme Inc EXTENDED SOLUBLE PH20 POLYPEPTIDES AND USE THEREOF
US8592608B2 (en) 2008-12-16 2013-11-26 Sunovion Pharmaceuticals Inc. Triple reuptake inhibitors and methods of their use
WO2010075255A2 (en) 2008-12-22 2010-07-01 Sloan-Kettering Institute For Cancer Research Methods for treating or preventing cancer and neurodegenerative diseases
CA2747811A1 (en) 2008-12-22 2010-07-01 Sloan-Kettering Institute For Cancer Research Coumarin-based compounds
AU2009332963B2 (en) 2008-12-31 2015-02-05 Upsher-Smith Laboratories, Llc Opioid-containing oral pharmaceutical compositions and methods
JP5780969B2 (en) 2008-12-31 2015-09-16 サイネクシス,インコーポレーテッド Cyclosporine A derivative
JP5684725B2 (en) 2009-01-06 2015-03-18 キュレロン リミテッド ライアビリティ カンパニー Compositions and methods for the treatment or prevention of S. aureus infections and compositions and methods for the eradication or reduction of S. aureus on the surface
AU2010203714C1 (en) 2009-01-06 2013-12-12 Galenagen, Llc Compositions and methods for the treatment or the prevention of infections by e. coli
DE102009004368A1 (en) 2009-01-08 2010-07-15 Heraeus Kulzer Gmbh Dental materials containing antimicrobial agents for the prevention of plaque accumulation
WO2010088450A2 (en) 2009-01-30 2010-08-05 Celladon Corporation Methods for treating diseases associated with the modulation of serca
EP2393357B1 (en) 2009-02-09 2015-08-26 Sunovion Pharmaceuticals Inc. Pyrrolidine triple reuptake inhibitors
PE20120580A1 (en) 2009-02-10 2012-05-23 Celgene Corp METHODS TO USE AND COMPOSITIONS INCLUDING PDE4 MODULATORS FOR TREATMENT, PREVENTION AND CONTROL OF TUBERCULOSIS
US8568793B2 (en) 2009-02-11 2013-10-29 Hope Medical Enterprises, Inc. Sodium nitrite-containing pharmaceutical compositions
EP2396327A1 (en) 2009-02-11 2011-12-21 Sunovion Pharmaceuticals Inc. Histamine h3 inverse agonists and antagonists and methods of use thereof
WO2010093434A1 (en) 2009-02-11 2010-08-19 Celgene Corporation Isotopologues of lenalidomide
EP2400839B1 (en) 2009-02-24 2016-09-07 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
EP3045043B1 (en) * 2009-02-26 2020-04-29 Relmada Therapeutics, Inc. Extended release oral pharmaceutical compositions of 3-hydroxy-n-methylmorphinan and method of use
HRP20140174T1 (en) * 2009-02-27 2014-04-25 Ambit Biosciences Corporation KINASOLINE DERIVATIVES AS STRENGTHS OF STRENGTH KINASE AND PROCEDURES FOR THEIR USE
WO2010101967A2 (en) 2009-03-04 2010-09-10 Idenix Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole hcv polymerase inhibitors
CA2754461A1 (en) * 2009-03-06 2010-09-10 Halozyme, Inc. Temperature sensitive mutants of matrix metalloprotease 1 and uses thereof
ES2706407T3 (en) 2009-03-10 2019-03-28 Euro Celtique Sa Immediate-release pharmaceutical compositions comprising oxycodone and naloxone
MX2011009413A (en) 2009-03-11 2011-10-21 Ambit Biosciences Corp Combination of an indazolylaminopyrrolotriazine and taxane for cancer treatment.
AU2010221990B2 (en) * 2009-03-11 2015-06-04 Kyorin Pharmaceutical Co., Ltd. 7-cycloalkylaminoquinolones as GSK-3 inhibitors
US8811578B2 (en) * 2009-03-23 2014-08-19 Telemanager Technologies, Inc. System and method for providing local interactive voice response services
SG174527A1 (en) 2009-03-27 2011-11-28 Pathway Therapeutics Inc Pyrimidinyl and 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
WO2010110686A1 (en) 2009-03-27 2010-09-30 Pathway Therapeutics Limited Pyrimidinyl and 1,3,5 triazinyl benzimidazoles and their use in cancer therapy
US8772184B2 (en) 2009-03-31 2014-07-08 Illinois Tool Works Inc. Reversible color-changing sanitizer-indicating nonwoven wipe
US9056050B2 (en) 2009-04-13 2015-06-16 Curemark Llc Enzyme delivery systems and methods of preparation and use
US8828953B2 (en) * 2009-04-20 2014-09-09 NaZura BioHealth, Inc. Chemosensory receptor ligand-based therapies
CN102481276A (en) 2009-04-20 2012-05-30 埃尔舍利克斯治疗公司 Chemosensory receptor ligand-based therapies
US9901551B2 (en) 2009-04-20 2018-02-27 Ambra Bioscience Llc Chemosensory receptor ligand-based therapies
PL2421829T3 (en) 2009-04-22 2016-03-31 Axikin Pharmaceuticals Inc 2,5-disubstituted arylsulfonamide ccr3 antagonists
MX2011011141A (en) 2009-04-22 2012-02-13 Axikin Pharmaceuticals Inc Arylsulfonamide ccr3 antagonists.
MX357611B (en) 2009-04-22 2018-07-17 Axikin Pharmaceuticals Inc 2,5-disubstituted arylsulfonamide ccr3 antagonists.
CA2761298A1 (en) * 2009-05-15 2010-11-18 The University Of Kentucky Research Foundation Treatment of mci and alzheimer's disease
US9968574B2 (en) * 2009-05-15 2018-05-15 The University Of Kentucky Research Foundation Treatment of MCI and Alzheimer's disease
DK2432455T3 (en) 2009-05-18 2015-02-16 Sigmoid Pharma Ltd A composition comprising oil droplets
EP2436387B1 (en) 2009-05-25 2018-07-25 Celgene Corporation Pharmaceutical composition comprising crbn for use in treating a disease of the cerebral cortex
AU2010258785A1 (en) 2009-06-10 2012-01-19 Sunovion Pharmaceuticals Inc. Histamine H3 inverse agonists and antagonists and methods of use thereof
US9050276B2 (en) 2009-06-16 2015-06-09 The Trustees Of Columbia University In The City Of New York Autism-associated biomarkers and uses thereof
US8741267B1 (en) * 2009-06-26 2014-06-03 Joseph P. Trovato Method for treating periodontal disease
WO2011003870A2 (en) 2009-07-06 2011-01-13 Creabilis S.A. Mini-pegylated corticosteroids, compositions including same, and methods of making and using same
US8486939B2 (en) 2009-07-07 2013-07-16 Pathway Therapeutics Inc. Pyrimidinyl and 1,3,5-triazinyl benzimidazoles and their use in cancer therapy
EP3311667A1 (en) 2009-07-08 2018-04-25 Charleston Laboratories, Inc. Pharmaceutical compositions
EP4538227A3 (en) 2009-07-08 2025-06-25 Hope Medical Enterprises, Inc. d.b.a. Hope Pharmaceuticals Sodium thiosulfate-containing pharmaceutical compositions
US20110020272A1 (en) 2009-07-24 2011-01-27 Ulrich Schubert Combination therapy for treating hepatitis viral infection
US8404728B2 (en) 2009-07-30 2013-03-26 Mayo Foundation For Medical Education And Research Small-molecule botulinum toxin inhibitors
US8591730B2 (en) 2009-07-30 2013-11-26 Siemens Pte. Ltd. Baffle plates for an ultraviolet reactor
US20130017188A1 (en) 2009-07-31 2013-01-17 The Brigham And Women's Hospital, Inc. Modulation of sgk1 expression in th17 cells to modulate th17-mediated immune responses
JP2013501068A (en) 2009-08-05 2013-01-10 アイディニックス ファーマシューティカルズ インコーポレイテッド Macrocyclic serine protease inhibitor
WO2011018504A2 (en) 2009-08-12 2011-02-17 Sigmoid Pharma Limited Immunomodulatory compositions comprising a polymer matrix and an oil phase
JP2013502429A (en) 2009-08-19 2013-01-24 アムビト ビオスシエンセス コルポラチオン Biaryl compounds and methods of use thereof
WO2011029099A1 (en) 2009-09-04 2011-03-10 United Paragon Associates Inc. Compounds for treating disorders or diseases associated with neurokinin 2 receptor activity
CA2772522A1 (en) 2009-09-11 2011-03-17 Sunovion Pharmaceuticals Inc. Histamine h3 inverse agonists and antagonists and methods of use thereof
EP2477610A1 (en) 2009-09-17 2012-07-25 Upsher-Smith Laboratories, Inc. A sustained-release product comprising a combination of a non-opioid amine and a non-steroidal anti -inflammatory drug
CN104323981B (en) 2009-09-28 2019-03-12 精达制药公司 Rapid establishment and/or termination of substantially steady state drug delivery
US20110136751A1 (en) 2009-10-06 2011-06-09 Green Molecular Use of Polyphenols in the Treatment of Cancer
EP2490688B1 (en) 2009-10-19 2014-10-08 Synta Pharmaceuticals Corp. Combination cancer therapy with hsp90 inhibitory compounds
TW201120037A (en) 2009-10-26 2011-06-16 Sunesis Pharmaceuticals Inc Compounds and methods for treatment of cancer
EP2325185A1 (en) 2009-10-28 2011-05-25 GPC Biotech AG Plk inhibitor
WO2011056764A1 (en) 2009-11-05 2011-05-12 Ambit Biosciences Corp. Isotopically enriched or fluorinated imidazo[2,1-b][1,3]benzothiazoles
JP2013511536A (en) 2009-11-19 2013-04-04 セルジーン コーポレイション How to treat sarcoidosis
US20110117055A1 (en) 2009-11-19 2011-05-19 Macdonald James E Methods of Treating Hepatitis C Virus with Oxoacetamide Compounds
LT2501234T (en) * 2009-11-20 2017-12-11 Tonix Pharma Holdings Limited Methods and compositions for treating symptoms associated with post-traumatic stress disorder using cyclobenzaprine
WO2011064769A1 (en) 2009-11-24 2011-06-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Methods and pharmaceutical compositions for the treatment of hot flashes
WO2011069002A1 (en) 2009-12-02 2011-06-09 Alquest Therapeutics, Inc. Organoselenium compounds and uses thereof
US8957114B2 (en) 2009-12-04 2015-02-17 Sunovion Pharmaceuticals Inc. Formulations, salts and polymorphs of transnorsertraline and uses thereof
WO2011069063A2 (en) 2009-12-04 2011-06-09 Sunovion Pharmaceuticals, Inc. Multicyclic compounds and methods of use thereof
CN102869367A (en) 2009-12-09 2013-01-09 西尼克斯公司 Novel cyclic peptides
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
CN102822175A (en) 2009-12-18 2012-12-12 埃迪尼克斯医药公司 5,5-fused arylene or heteroarylene hepatitis C virus inhibitors
RU2012131164A (en) 2009-12-22 2014-01-27 Селджин Корпорейшн (Methylsulfonyl) Ethyl-Benzene-Isoindole Derivatives and Their Therapeutic Use
SG181896A1 (en) * 2009-12-23 2012-07-30 Map Pharmaceuticals Inc Novel ergoline analogs
KR20120125610A (en) 2009-12-30 2012-11-16 싸이넥시스, 인크. Cyclosporine analogues
USRE49251E1 (en) 2010-01-04 2022-10-18 Mapi Pharma Ltd. Depot systems comprising glatiramer or pharmacologically acceptable salt thereof
TR201818858T4 (en) 2010-01-04 2019-01-21 Mapi Pharma Ltd WAREHOUSE SYSTEM CONTAINING GLATIRAMER ACETATE.
US9226913B2 (en) 2010-01-05 2016-01-05 Celgene Corporation Methods of treating cancer using a combination of an immunomodulatory compound and an artemisinin or a derivative thereof
WO2011089167A1 (en) 2010-01-19 2011-07-28 Virologik Gmbh Kombination of proteasome inhibitors and anti -hepatitis medication for treating retroviral diseases
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
US9120815B2 (en) 2010-02-05 2015-09-01 Tragara Pharmaceuticals, Inc. Solid state forms of macrocyclic kinase inhibitors
SG183257A1 (en) 2010-02-11 2012-09-27 Celgene Corp Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
DK2542542T3 (en) 2010-03-02 2015-07-20 Axikin Pharmaceuticals Inc ISOTOPIC ENRICHED ARYL SULPHONAMIDE CCR3 ANTAGONISTS
WO2011112689A2 (en) 2010-03-11 2011-09-15 Ambit Biosciences Corp. Saltz of an indazolylpyrrolotriazine
MX2012010367A (en) 2010-03-12 2012-11-23 Celgene Corp METHODS FOR THE TREATMENT OF NON-HODGKIN LYMPHOMES THAT USE LENALIDOMIDE AND BIOMARCATORS OF GENES AND PROTEINS AS A PREDICTOR.
AU2011227232B2 (en) 2010-03-17 2015-07-09 Axikin Pharmaceuticals Inc. Arylsulfonamide CCR3 antagonists
EP2547203A4 (en) 2010-03-19 2013-12-25 Purdue Research Foundation CCR5 MODULATORS FOR HIV TREATMENT
CA2794096A1 (en) 2010-04-07 2011-10-13 Celgene Corporation Methods for treating respiratory viral infection
WO2011127232A2 (en) 2010-04-08 2011-10-13 Emory University Substituted androst-4-ene diones
US20130156755A1 (en) 2010-04-19 2013-06-20 Synta Pharmaceuticals Corp. Cancer therapy using a combination of a hsp90 inhibitory compounds and a vegf inhibitor
US9205086B2 (en) 2010-04-19 2015-12-08 Synta Pharmaceuticals Corp. Cancer therapy using a combination of a Hsp90 inhibitory compounds and a EGFR inhibitor
EP3202406A1 (en) 2010-04-28 2017-08-09 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US9993793B2 (en) 2010-04-28 2018-06-12 The Procter & Gamble Company Delivery particles
WO2011140360A1 (en) 2010-05-05 2011-11-10 The Trustees Of Columbia University In The City Of New York Radiolabeled compounds and uses thereof
CA2798702A1 (en) 2010-05-11 2011-11-17 Cima Labs Inc. Alcoholresistant metoprolol-containing extended-release oral dosage forms
WO2011146803A1 (en) 2010-05-20 2011-11-24 Synta Pharmaceuticals Corp. Method of treating lung adenocarcinoma with hsp90 inhibitory compounds
US20130171105A1 (en) 2010-05-24 2013-07-04 Synta Pharmaceuticals Corp. Cancer therapy using a combination of a hsp90 inhibitory compound and a topoisomerase ii inhibitor
AU2011258217B2 (en) 2010-05-26 2016-12-15 Sunovion Pharmaceuticals Inc. Heteroaryl compounds and methods of use thereof
US9296722B2 (en) 2010-05-27 2016-03-29 Ambit Biosciences Corporation Azolyl urea compounds and methods of use thereof
WO2011150201A2 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl amide compounds and methods of use thereof
JP2013528180A (en) 2010-05-28 2013-07-08 ジーイー・ヘルスケア・リミテッド Radiolabeled compound and method for producing the same
MX2012013879A (en) 2010-06-01 2013-04-03 Biotheryx Inc Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating proliferative diseases.
CN103153309A (en) 2010-06-01 2013-06-12 拜欧赛里克斯公司 Methods of treating hematologic malignancies using 6-cyclohexyl-1-hydroxy-4-methyl-2(1h)-pyridone
WO2011156321A1 (en) 2010-06-07 2011-12-15 Novomedix, Llc Furanyl compounds and the use thereof
US20110319389A1 (en) 2010-06-24 2011-12-29 Tonix Pharmaceuticals, Inc. Methods and compositions for treating fatigue associated with disordered sleep using very low dose cyclobenzaprine
US8529914B2 (en) * 2010-06-28 2013-09-10 Richard C. Fuisz Bioactive dose having containing a material for modulating pH of a bodily fluid to help or hinder absorption of a bioactive
EP2590636A1 (en) 2010-07-06 2013-05-15 Grünenthal GmbH Novel gastro- retentive dosage forms comprising a gaba analog and an opioid
CN101987083B (en) * 2010-07-16 2012-12-12 钟术光 Preparation method for controlled release preparation, especial for zero-order release controlled release preparation
MX347927B (en) 2010-07-19 2017-05-19 Summa Health System VITAMIN C AND VITAMIN K FREE OF CHROME, AND COMPOSITIONS OF THESE TO TREAT A STATE OR DISEASE IN WHICH NFKB INTERvenes.
DK2608782T3 (en) 2010-08-24 2016-09-05 Algiax Pharmaceuticals Gmbh New use of leflunomide malononitrilamider
US8703943B2 (en) 2010-09-01 2014-04-22 Ambit Biosciences Corporation Optically active pyrazolylaminoquinazoline, and pharmaceutical compositions and methods of use thereof
US20130296363A1 (en) 2010-09-01 2013-11-07 Ambit Biosciences Corporation Quinoline and isoquinoline derivatives for use as jak modulators
US20130225614A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 4-azolylaminoquinazoline derivatives and methods of use thereof
JP5901634B2 (en) 2010-09-01 2016-04-13 アムビト ビオスシエンセス コルポラチオン Quinazoline compounds and methods of use thereof
WO2012030918A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation Adenosine a3 receptor modulating compounds and methods of use thereof
US20130303533A1 (en) 2010-09-01 2013-11-14 Ambit Biosciences Corporation Azolopyridine and azolopyrimidine compounds and methods of use thereof
EP2611793A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation 2-cycloquinazoline derivatives and methods of use thereof
AU2011296046B2 (en) 2010-09-01 2015-05-14 Ambit Biosciences Corporation Hydrobromide salts of a pyrazolylaminoquinazoline
EP2611812A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Thienopyridine and thienopyrimidine compounds and methods of use thereof
US20130225578A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 7-cyclylquinazoline derivatives and methods of use thereof
WO2012037072A1 (en) 2010-09-13 2012-03-22 Synta Pharmaceuticals Corporation Hsp90 inhibitors for treating non-small cell lung cancers in wild-type egfr and/or kras patients
WO2012044641A1 (en) 2010-09-29 2012-04-05 Pathway Therapeutics Inc. 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
US20120088769A1 (en) 2010-10-11 2012-04-12 Axikin Pharmaceuticals, Inc. Salts of arylsulfonamide ccr3 antagonists
US8772185B2 (en) 2010-10-15 2014-07-08 Illinois Tool Works Inc. Reversible color-changing ink formulations and nonwoven wipes
BR112013009196A2 (en) 2010-10-15 2020-08-25 The Trustees Of Columbia University In The City Of New York uses of polypeptide to reduce fatty acid acquisition and food intake, as well as promoting satiety related to obesity
KR101823615B1 (en) 2010-10-18 2018-01-30 세레니스 쎄라퓨틱스 홀딩 에스에이 Compounds, compositions and methods useful for cholesterol mobilisation
CN104220875A (en) 2010-10-19 2014-12-17 埃尔舍利克斯治疗公司 Chemosensory receptor ligand-based therapies
US8623409B1 (en) 2010-10-20 2014-01-07 Tris Pharma Inc. Clonidine formulation
CA2814371C (en) 2010-10-29 2019-03-19 Algiax Pharmaceuticals Gmbh Use of malononitrilamides in neuropathic pain
WO2012064808A1 (en) 2010-11-09 2012-05-18 Synta Pharmaceuticals Corp Tetrazolyl - tetrahydropyridine compounds for inflammation and immune - related uses
EP2637669A4 (en) 2010-11-10 2014-04-02 Infinity Pharmaceuticals Inc Heterocyclic compounds and uses thereof
GB201020032D0 (en) 2010-11-25 2011-01-12 Sigmoid Pharma Ltd Composition
JP2014500275A (en) 2010-12-06 2014-01-09 フォリカ,インコーポレイテッド Methods for treating baldness and for promoting hair growth
US20140031325A1 (en) 2010-12-06 2014-01-30 Celgene Corporation Combination therapy with lenalidomide and a cdk inhibitor for treating multiple myeloma
US20140005145A1 (en) 2010-12-08 2014-01-02 Synta Pharmaceuticals Corp. Combination breast cancer therapy with hsp90 inhibitory compounds
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
US9532977B2 (en) 2010-12-16 2017-01-03 Celgene Corporation Controlled release oral dosage forms of poorly soluble drugs and uses thereof
MX354210B (en) 2010-12-16 2018-02-16 Celgene Corp Controlled release oral dosage forms of poorly soluble drugs and uses thereof.
SG191288A1 (en) 2010-12-22 2013-07-31 Purdue Pharma Lp Encased tamper resistant controlled release dosage forms
WO2012085648A1 (en) 2010-12-22 2012-06-28 Purdue Pharma L.P. Phosphorus-substituted quinoxaline-type piperidine compounds and uses thereof
PH12013501345A1 (en) 2010-12-23 2022-10-24 Purdue Pharma Lp Tamper resistant solid oral dosage forms
SG191855A1 (en) 2011-01-07 2013-08-30 Elcelyx Therapeutics Inc Chemosensory receptor ligand-based therapies
EP3238722B1 (en) 2011-01-10 2019-03-13 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones
CN103391770A (en) 2011-01-10 2013-11-13 细胞基因公司 Oral dosage forms of cyclopropanecarboxylic acid {2-[(1s)-1-(3-ethoxy-4-methoxy-phenyl]-2-methanesulfonyl-ethyl]-3-oxo-2,3-dihydro-1h-isoindol-4-yl}-amide
JP6132773B2 (en) 2011-01-10 2017-05-24 セルジーン コーポレイション Phenethylsulfone isoindoline derivatives as inhibitors of PDE4 and / or cytokines
CA2824047C (en) 2011-01-11 2019-06-18 Sunovion Pharmaceuticals Inc. Heteroaryl compounds and methods of use thereof
US20130331357A1 (en) 2011-01-11 2013-12-12 Synta Pharmaceuticals Corp. Combination therapy of hsp90 inhibitory compounds with proteasome inhibitors
WO2012097116A2 (en) 2011-01-14 2012-07-19 Celgene Corporation Isotopologues of isoindole derivatives
CA2825152A1 (en) 2011-01-31 2012-08-09 Celgene Corporation Pharmaceutical compositions of cytidine analogs and methods of use thereof
EP2670426B1 (en) 2011-01-31 2017-05-10 The General Hospital Corporation Multimodal trail molecules and uses in cellular therapies
AR085352A1 (en) 2011-02-10 2013-09-25 Idenix Pharmaceuticals Inc MACROCICLIC INHIBITORS OF SERINA PROTEASA, ITS PHARMACEUTICAL COMPOSITIONS AND ITS USE TO TREAT HCV INFECTIONS
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
EP2678013A1 (en) 2011-02-23 2014-01-01 Synta Pharmaceuticals Corp. Combination therapy of hsp90 inhibitory compounds with radiotherapy
CN103502224A (en) 2011-02-23 2014-01-08 克鲁莱斯有限公司 Flumazenil complexes, compositions comprising same and uses thereof
US20140051665A1 (en) 2011-02-24 2014-02-20 Synta Pharmaceuticals Corp. Prostate cancer therapy with hsp90 inhibitory compounds
US9795792B2 (en) 2011-02-25 2017-10-24 Medtronic, Inc. Emergency mode switching for non-pacing modes
US20140045908A1 (en) 2011-02-25 2014-02-13 Synta Pharmaceuticals Corp. Hsp90 inhibitory compounds in treating jak/stat signaling-mediated cancers
US11998516B2 (en) 2011-03-07 2024-06-04 Tonix Pharma Holdings Limited Methods and compositions for treating depression using cyclobenzaprine
EP2683376B1 (en) 2011-03-07 2018-11-28 Celgene Corporation Methods for treating diseases using isoindoline compounds
AU2012229316B2 (en) 2011-03-11 2017-05-11 Celgene Corporation Use of 3-(5-amino-2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2-6-dione in treatment of immune-related and inflammatory diseases
EA026100B1 (en) 2011-03-11 2017-03-31 Селджин Корпорейшн Solid forms of 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)piperidine-2,6-dione and their pharmaceutical compositions and uses
WO2012123353A1 (en) 2011-03-17 2012-09-20 Algiax Pharmaceuticals Gmbh Novel use of benzofuranylsulfonates
EP2685983B1 (en) 2011-03-17 2016-05-18 Algiax Pharmaceuticals GmbH Novel use of imidazotriazinones
CA2830069C (en) 2011-03-20 2019-11-12 The University Of British Columbia Therapeutic agent for emphysema and copd
SG193982A1 (en) 2011-03-28 2013-11-29 Mei Pharma Inc (alpha- substituted aralkylamino and heteroarylalkylamino) pyrimidinyl and 1,3,5 -triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in treating proliferative diseases
BR112013024909A2 (en) 2011-03-28 2019-09-24 Mei Pharma Inc compound, pharmaceutical composition, method for treating, preventing or ameliorating one or more symptoms of pi3k-mediated disorder, disease, or condition, and method for modulating pi3k enzymatic activity
AU2012236655B2 (en) 2011-03-28 2016-09-22 Deuterx, Llc, 2',6'-dioxo-3'-deutero-piperdin-3-yl-isoindoline compounds
US20140088103A1 (en) 2011-03-28 2014-03-27 Mei Pharma, Inc. (fused ring arylamino and heterocyclylamino) pyrimidinyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions thereof, and their use in treating proliferative diseases
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
CN103842369A (en) 2011-03-31 2014-06-04 埃迪尼克斯医药公司 Compounds and pharmaceutical compositions for the treatment of viral infections
WO2012158271A1 (en) 2011-04-06 2012-11-22 Anadys Pharmaceuticals, Inc. Bridged polycyclic compounds as antiviral agents
CN103458859A (en) 2011-04-07 2013-12-18 宝洁公司 Personal cleansing compositions with increased deposition of polyacrylate microcapsules
WO2012138690A2 (en) 2011-04-07 2012-10-11 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
MX2013010983A (en) 2011-04-07 2013-10-30 Procter & Gamble SHAMPOO COMPOSITIONS WITH IMPROVED DEPOSIT OF POLYACRYLATE MICROCAPSULES.
EP2699317B1 (en) 2011-04-21 2016-08-10 Mapi Pharma Limited Random pentapolymer for treatment of autoimmune diseases
GB2503852B (en) 2011-04-21 2018-12-12 Curemark Llc Compounds for the treatment of neuropsychiatric disorders
ES2661583T3 (en) 2011-04-28 2018-04-02 Celgene Corporation  Methods and compositions using PDE4 inhibitors for the treatment and management of autoimmune and inflammatory diseases
CN103688176A (en) 2011-04-29 2014-03-26 细胞基因公司 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
ES2660996T3 (en) 2011-05-03 2018-03-27 PRCL Research Inc. Compounds for inflammation and uses related to the immune system
US9480696B2 (en) 2011-05-04 2016-11-01 Trustees Of Boston University Proton-motive force stimulation to potentiate aminoglycoside antibiotics against persistent bacteria
EP2714038A1 (en) 2011-05-24 2014-04-09 Synta Pharmaceuticals Corp. Combination therapy of hsp90 inhibitory compounds with mtor/pi3k inhibitors
EP2527301B1 (en) 2011-05-26 2016-04-27 Evoqua Water Technologies GmbH Method and arrangement for a water treatment
JP2014522396A (en) 2011-05-27 2014-09-04 テンプル・ユニバーシティ−オブ・ザ・コモンウェルス・システム・オブ・ハイアー・エデュケイション Substituted 2-benzylidene-2H-benzo [b] [1,4] thiazin-3 (4H) -one, derivatives thereof and therapeutic use thereof
CN103827100B (en) 2011-06-07 2015-08-12 安那迪斯药品股份有限公司 For reducing [1,2,4] thiadiazine 1,1-dioxide compound of serum uric acid
RU2011122942A (en) 2011-06-08 2012-12-20 Общество С Ограниченной Ответственностью "Асинэкс Медхим" NEW KINAZ INHIBITORS
SI2723732T1 (en) 2011-06-22 2017-05-31 Purdue Pharma Lp One Stamford Forum Trpv1 antagonists including dihydroxy substituent and uses thereof
US20140221427A1 (en) 2011-06-22 2014-08-07 Celgene Corporation Isotopologues of pomalidomide
WO2012177962A1 (en) 2011-06-23 2012-12-27 Map Pharmaceuticals, Inc. Novel fluoroergoline analogs
US20140227293A1 (en) 2011-06-30 2014-08-14 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
JP2014520808A (en) 2011-07-07 2014-08-25 シンタ ファーマシューティカルズ コーポレーション Treatment of cancer using HSP90 inhibitor compounds
US10702485B2 (en) 2011-07-09 2020-07-07 Syntrix Biosystems Inc. Compositions and methods for overcoming resistance to tramadol
CA2842190A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
JP6027610B2 (en) 2011-07-19 2016-11-16 インフィニティー ファーマシューティカルズ, インコーポレイテッド Heterocyclic compounds and uses thereof
GB201112987D0 (en) 2011-07-28 2011-09-14 Ge Healthcare Ltd Novel compound
UA113291C2 (en) 2011-08-04 2017-01-10 TRANSCLOMYPHENE METABOLITES AND THEIR APPLICATIONS
AU2012293417A1 (en) 2011-08-10 2013-05-02 Purdue Pharma L.P. TRPV1 antagonists including dihydroxy substituent and uses thereof
WO2013022872A1 (en) 2011-08-10 2013-02-14 Celgene Corporation Gene methylation biomarkers and methods of use thereof
EP2741760A2 (en) 2011-08-12 2014-06-18 B.S.R.C. "Alexander Fleming" Tnf superfamily trimerization inhibitors
WO2013028505A1 (en) 2011-08-19 2013-02-28 Synta Pharmaceuticals Corp. Combination cancer therapy of hsp90 inhibitor with antimetabolite
DK2959899T3 (en) 2011-08-23 2017-05-01 Cornerstone Therapeutics Inc Use of zileuton for the treatment of nasal polyps in patients with cystic fibrosis
CN103998442B (en) 2011-08-29 2016-09-14 无限药品股份有限公司 Heterocyclic compound and application thereof
AU2012308900A1 (en) 2011-09-12 2013-05-09 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US9403863B2 (en) 2011-09-12 2016-08-02 Idenix Pharmaceuticals Llc Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
US20130071394A1 (en) 2011-09-16 2013-03-21 John K. Troyer Compositions and combinations of organophosphorus bioscavengers and hyaluronan-degrading enzymes, and methods of use
US9243394B2 (en) 2011-09-20 2016-01-26 Fresh Products, Inc. Replaceable restroom urinal assemblies, including urinal screens
EP2758067A1 (en) 2011-09-23 2014-07-30 Celgene Corporation Romidepsin and 5 - azacitidine for use in treating lymphoma
US20130244950A1 (en) 2011-09-26 2013-09-19 Celgene Corporation Combination therapy for chemoresistant cancers
WO2013049332A1 (en) 2011-09-29 2013-04-04 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
WO2013051001A1 (en) 2011-10-06 2013-04-11 Yeda Research And Development Co. Ltd. Combination therapy with erbb ligands binding molecules
WO2013052776A1 (en) 2011-10-07 2013-04-11 Cedars-Sinai Medical Center Compositions and methods for tumor imaging and targeting by a class of organic heptamethine cyanine dyes that possess dual nuclear and near-infrared properties
US20140271657A1 (en) 2011-10-12 2014-09-18 Children's Medical Center Corporation Combinatorial compositions and methods of treating hemoglobinopathies
TW201331221A (en) 2011-10-14 2013-08-01 Idenix Pharmaceuticals Inc Substituted 3',5'-cyclic phosphates of purine nucleotide compounds and pharmaceutical compositions for the treatment of viral infections
ES2586527T3 (en) 2011-10-14 2016-10-17 Ambit Biosciences Corporation Heterocyclic compounds and use thereof as type III tyrosine kinase receptor modulators
BR112014010417A2 (en) 2011-11-01 2014-11-18 Celgene Corp METHODS FOR CANCER TREATMENT USING ORAL FORMULATIONS OF CITIDINE ANALOGS
WO2013067165A1 (en) 2011-11-02 2013-05-10 Synta Pharmaceuticals Corp. Combination therapy of hsp90 inhibitors with platinum-containing agents
US9439899B2 (en) 2011-11-02 2016-09-13 Synta Pharmaceuticals Corp. Cancer therapy using a combination of HSP90 inhibitors with topoisomerase I inhibitors
WO2013071049A1 (en) 2011-11-10 2013-05-16 Trustees Of Boston College Gramicidin a mutants that function as antibiotics with improved solubility and reduced toxicity
US9402831B2 (en) 2011-11-14 2016-08-02 Synta Pharmaceutical Corp. Combination therapy of HSP90 inhibitors with BRAF inhibitors
EP2797912B1 (en) 2011-12-01 2016-05-25 Purdue Pharma L.P. Azetidine-substituted quinoxaline-type piperidine compounds and uses thereof
WO2013085902A1 (en) 2011-12-05 2013-06-13 The University Of Texas M.D. Combination therapy methods for treating an inflammatory breast cancer
JP5946921B2 (en) 2011-12-08 2016-07-06 パーデュー、ファーマ、リミテッド、パートナーシップ Quaternized buprenorphine analogues
CA2859173A1 (en) 2011-12-19 2013-06-27 Map Pharmaceuticals, Inc. Novel iso-ergoline derivatives
SG10201506202RA (en) 2011-12-21 2015-09-29 Map Pharmaceuticals Inc Novel neuromodulatory compounds
HUE047849T2 (en) 2011-12-30 2020-05-28 Halozyme Inc PH20 polypeptide variants, compositions, and uses thereof
WO2013103811A2 (en) 2012-01-05 2013-07-11 Boston Medical Center Corporation Slit-robo signaling for diagnosis and treatment of kidney disease
NZ626578A (en) 2012-01-06 2016-11-25 Elcelyx Therapeutics Inc Compositions and methods for treating metabolic disorders
ES2832773T3 (en) 2012-01-06 2021-06-11 Anji Pharma Us Llc Biguanide compositions and methods of treatment of metabolic disorders
AU2013216935C1 (en) 2012-02-08 2017-12-14 John Emmerson Campbell Heteroaryl compounds and methods of use thereof
WO2013126394A1 (en) 2012-02-21 2013-08-29 Celgene Corporation Solid forms of 3-(4-nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione
US20150018362A1 (en) 2012-02-27 2015-01-15 Biovista, Inc. Compositions and methods for treating mitochondrial diseases
US9611253B2 (en) 2012-02-29 2017-04-04 Ambit Biosciences Corporation Solid forms comprising optically active pyrazolylaminoquinazoline, compositions thereof, and uses therewith
WO2013133708A1 (en) 2012-03-07 2013-09-12 Stichting Vu-Vumc Compositions and methods for diagnosing and treating intellectual disability syndrome, autism and autism related disorders
WO2013138617A1 (en) 2012-03-16 2013-09-19 Axikin Pharmaceuticals, Inc. 3,5-diaminopyrazole kinase inhibitors
JP6124986B2 (en) 2012-03-19 2017-05-10 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. Growth and differentiation factor (GDF) for treating diastolic heart failure
US10039777B2 (en) 2012-03-20 2018-08-07 Neuro-Lm Sas Methods and pharmaceutical compositions of the treatment of autistic syndrome disorders
US20140350087A9 (en) 2012-03-22 2014-11-27 Halozyme, Inc. Oncovector Nucleic Acid Molecules and Methods of Use
JP2015514712A (en) 2012-03-27 2015-05-21 インクロン エルエルシー Curaxin used in breast cancer treatment and method for identifying patients with potential response
US20150051203A1 (en) 2012-03-28 2015-02-19 Synta Pharmaceuticals Corp. Triazole derivatives as hsp90 inhibitors
WO2013152206A1 (en) 2012-04-04 2013-10-10 Synta Pharmaceuticals Corp. Novel triazole compounds that modulate hsp90 activity
LT2833905T (en) 2012-04-04 2018-07-10 Halozyme, Inc. Combination therapy with hyaluronidase and a tumor-targeted taxane
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2013156231A1 (en) 2012-04-16 2013-10-24 Algiax Pharmaceuticals Gmbh Use of imidazotriazinones in neuropathic pain
WO2013156232A1 (en) 2012-04-16 2013-10-24 Algiax Pharmaceuticals Gmbh Use of benzofuranylsulfonates in neuropathic pain
CA2868413C (en) 2012-04-17 2021-07-20 Purdue Pharma L.P. Systems and methods for treating an opioid-induced adverse pharmacodynamic response
WO2013158928A2 (en) 2012-04-18 2013-10-24 Elcelyx Therapeutics, Inc. Chemosensory receptor ligand-based therapies
EP3338776A1 (en) 2012-05-01 2018-06-27 Translatum Medicus Inc. Methods for treating and diagnosing blinding eye diseases
US20150099721A1 (en) 2012-05-10 2015-04-09 Synta Pharmaceuticals Corp. Treating cancer with hsp90 inhibitory compounds
GB201208315D0 (en) 2012-05-11 2012-06-27 Numedicus Ltd Pharmaceutical methods and compositions
JP6114382B2 (en) 2012-05-11 2017-04-12 パーデュー、ファーマ、リミテッド、パートナーシップ Benzomorphan compounds as opioid receptor modulators
EP2852604B1 (en) 2012-05-22 2017-04-12 Idenix Pharmaceuticals LLC 3',5'-cyclic phosphoramidate prodrugs for hcv infection
US9296778B2 (en) 2012-05-22 2016-03-29 Idenix Pharmaceuticals, Inc. 3′,5′-cyclic phosphate prodrugs for HCV infection
HK1203514A1 (en) 2012-05-22 2015-10-30 Idenix Pharmaceuticals Llc D-amino acid compounds for liver disease
US10350278B2 (en) 2012-05-30 2019-07-16 Curemark, Llc Methods of treating Celiac disease
WO2013187965A1 (en) 2012-06-14 2013-12-19 Mayo Foundation For Medical Education And Research Pyrazole derivatives as inhibitors of stat3
CN104582732A (en) 2012-06-15 2015-04-29 布里格姆及妇女医院股份有限公司 Compositions for treating cancer and methods for making the same
US9012640B2 (en) 2012-06-22 2015-04-21 Map Pharmaceuticals, Inc. Cabergoline derivatives
WO2014004990A2 (en) 2012-06-29 2014-01-03 Celgene Corporation Methods for determining drug efficacy using cereblon-associated proteins
GB201212010D0 (en) 2012-07-05 2012-08-22 Sigmoid Pharma Ltd Formulations
EP2872127A1 (en) 2012-07-11 2015-05-20 Elcelyx Therapeutics, Inc. Compositions comprising statins, biguanides and further agents for reducing cardiometabolic risk
CA2877774C (en) 2012-07-12 2017-07-18 Mallinckrodt Llc Extended release, abuse deterrent pharmaceutical compositions
US9034870B2 (en) 2012-07-13 2015-05-19 Purdue Research Foundation Azaindenoisoquinoline topoisomerase I inhibitors
US9085561B2 (en) 2012-07-30 2015-07-21 Purdue Pharma L.P. Cyclic urea- or lactam-substituted quinoxaline-type piperidines as ORL-1 modulators
EP3698809A1 (en) 2012-07-31 2020-08-26 The Brigham & Women's Hospital, Inc. Modulation of the immune response using agents binding tim-3 and ceacam-1
KR20210073616A (en) 2012-08-09 2021-06-18 셀진 코포레이션 Treatment of immune-related and inflammatory diseases
PL2882442T3 (en) 2012-08-09 2021-12-13 Celgene Corporation Methods of treating cancer using 3-(4-((4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione
PE20150617A1 (en) 2012-08-09 2015-05-21 Celgene Corp SOLID FORMS OF 3- (4 - ((4- (MORPHOLINOMETIL) BENZYL) OXY) -1-OXOISOINDOLIN-2-IL) PIPERIDIN-2,6-DIONA OR A STEREOISOMER OF THE SAME, OF ITS SALTS, AND COMPOSITIONS THAT INCLUDE THE SAME
US9587281B2 (en) 2012-08-14 2017-03-07 Celgene Corporation Cereblon isoforms and their use as biomarkers for therapeutic treatment
US10624859B2 (en) 2012-08-20 2020-04-21 Rhodes Technologies Systems and methods for increasing stability of dronabinol compositions
US9315514B2 (en) 2012-08-27 2016-04-19 Rhodes Technologies 1,3-dioxanomorphides and 1,3-dioxanocodides
EP2890720B1 (en) 2012-08-30 2019-07-17 The General Hospital Corporation Compositions and methods for treating cancer
US9750705B2 (en) 2012-08-31 2017-09-05 The Regents Of The University Of California Agents useful for treating obesity, diabetes and related disorders
CA2881129A1 (en) 2012-09-07 2014-03-13 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide ccr3 antagonists
US9694015B2 (en) 2012-09-10 2017-07-04 Celgene Corporation Methods for the treatment of locally advanced breast cancer
WO2014055647A1 (en) 2012-10-03 2014-04-10 Mei Pharma, Inc. (sulfinyl and sulfonyl benzimidazolyl) pyrimidines and triazines, pharmaceutical compositions thereof, and their use for treating proliferative diseases
CN104936970A (en) 2012-10-08 2015-09-23 埃迪尼克斯医药公司 2'-chloronucleoside analogues for HCV infection
EP3679950A1 (en) 2012-10-12 2020-07-15 The Brigham and Women's Hospital, Inc. Enhancement of the immune response
WO2014062856A1 (en) 2012-10-16 2014-04-24 Halozyme, Inc. Hypoxia and hyaluronan and markers thereof for diagnosis and monitoring of diseases and conditions and related methods
EP2909223B1 (en) 2012-10-19 2017-03-22 Idenix Pharmaceuticals LLC Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
EP2914296B2 (en) 2012-11-01 2021-09-29 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
CN104994877A (en) 2012-11-02 2015-10-21 利普生物药剂公司 Trans-clomiphene for use in cancer therapy
EP2916830A2 (en) 2012-11-08 2015-09-16 Summa Health System Vitamin c, vitamin k, a polyphenol, and combinations thereof for wound healing
US20150290171A1 (en) 2012-11-09 2015-10-15 Celgene Corporation Methods for the treatment of bone loss
US10138207B2 (en) 2012-11-09 2018-11-27 Purdue Pharma, L.P. Benzomorphan analogs and the use thereof
EP2920195A1 (en) 2012-11-14 2015-09-23 IDENIX Pharmaceuticals, Inc. D-alanine ester of rp-nucleoside analog
EP2938624A1 (en) 2012-11-14 2015-11-04 IDENIX Pharmaceuticals, Inc. D-alanine ester of sp-nucleoside analog
CA2889906A1 (en) 2012-11-29 2014-06-05 Sunovion Pharmaceuticals Inc. Triazolo-pyrazine derivatives useful in the treatment of disorders of the central nervous system
JP6313779B2 (en) 2012-11-30 2018-04-18 ノボメディックス, エルエルシーNovomedix, Llc Substituted biarylsulfonamides and uses thereof
US9175000B2 (en) 2012-12-07 2015-11-03 Purdue Pharma L.P. Buprenorphine analogs
TW201434836A (en) 2012-12-14 2014-09-16 Purdue Pharma Lp Nitrogen containing morphinan derivatives and the use thereof
ES2621305T3 (en) 2012-12-14 2017-07-03 Purdue Pharma Lp Spirocyclic morphinans and their use
EP2931724B1 (en) 2012-12-14 2017-01-25 Purdue Pharma LP Pyridonemorphinan analogs and biological activity on opioid receptors
WO2014099941A1 (en) 2012-12-19 2014-06-26 Idenix Pharmaceuticals, Inc. 4'-fluoro nucleosides for the treatment of hcv
AU2013361340A1 (en) 2012-12-21 2015-07-09 Map Pharmaceuticals, Inc. Novel methysergide derivatives
WO2014102594A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Substituted benzimidazole-type piperidine compounds and uses thereof
WO2014102590A1 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Substituted piperidin-4-amino-type compounds and uses thereof
US9963458B2 (en) 2012-12-27 2018-05-08 Purdue Pharma L.P. Indole and indoline-type piperidine compounds and uses thereof
US9040533B2 (en) 2012-12-27 2015-05-26 Purdue Pharma L.P. Oxime-substituted-quinoxaline-type piperidine compounds as ORL-1 modulators
US9951038B2 (en) 2012-12-27 2018-04-24 Purdue Pharma L.P. Quinazolin-4(3H)-one-type piperidine compounds and uses thereof
US8957084B2 (en) 2012-12-28 2015-02-17 Purdue Pharma L.P. 7,8-cyclicmorphinan analogs
TW201441199A (en) 2012-12-28 2014-11-01 Purdue Pharma Lp Substituted morphinans and the use thereof
JP6359560B2 (en) 2012-12-31 2018-07-18 サノビオン ファーマシューティカルズ インクSunovion Pharmaceuticals Inc. Heterocyclic compounds and methods of use thereof
EP2941245B1 (en) 2013-01-05 2024-06-26 Anji Pharmaceuticals Inc. Delayed-release composition comprising biguanide
WO2014107745A1 (en) 2013-01-07 2014-07-10 Halozyme, Inc. Metal sensitive mutants of matrix metalloproteases and uses thereof
US9617607B2 (en) 2013-01-08 2017-04-11 Enzo Biochem, Inc. Diagnosis and treatment of viral diseases
WO2014110127A1 (en) 2013-01-08 2014-07-17 Enzo Biochem, Inc. Diagnosis and treatment of viral diseases
WO2014110305A1 (en) 2013-01-11 2014-07-17 Mayo Foundation For Medical Education And Research Vitamins c and k for treating polycystic diseases
JP6359563B2 (en) 2013-01-14 2018-07-18 デュートルクス・リミテッド・ライアビリティ・カンパニーDeuteRx, LLC 3- (5-substituted-4-oxoquinazolin-3 (4H) -yl) -3-deuteropiperidine-2,6-dione derivatives
US9695145B2 (en) 2013-01-22 2017-07-04 Celgene Corporation Processes for the preparation of isotopologues of 3-(4-((4- morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione and pharmaceutically acceptable salts thereof
CN104955483A (en) 2013-01-30 2015-09-30 法莫斯医疗公司 Treatments for depression and other diseases with a low dose agent
JP6182620B2 (en) 2013-01-31 2017-08-16 パーデュー、ファーマ、リミテッド、パートナーシップ Benzomorphan analogs and uses thereof
JP6208261B2 (en) 2013-02-05 2017-10-04 パーデュー、ファーマ、リミテッド、パートナーシップPurdue Pharma L.P. Tampering resistant pharmaceutical preparation
US20150366890A1 (en) 2013-02-25 2015-12-24 Trustees Of Boston University Compositions and methods for treating fungal infections
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
EP2970358B1 (en) 2013-03-04 2021-06-30 Idenix Pharmaceuticals LLC 3'-deoxy nucleosides for the treatment of hcv
BR112015020584A2 (en) 2013-03-14 2017-07-18 Celgene Corp Methods for treating psoriatic arthritis using apremilast
JP2016515523A (en) 2013-03-15 2016-05-30 デュレクト コーポレーション Compositions having rheology modifiers to reduce dissolution variability
PL3650081T3 (en) 2013-03-15 2024-06-24 Tonix Pharma Holdings Limited Eutectic formulations of cyclobenzaprine hydrochloride and mannitol
US20140275149A1 (en) 2013-03-15 2014-09-18 Inspirion Delivery Technologies, Llc Abuse deterrent compositions and methods of use
LT2970346T (en) 2013-03-15 2018-11-26 The Regents Of The University Of California Acyclic nucleoside phosphonate diesters
US20160024051A1 (en) 2013-03-15 2016-01-28 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US8969358B2 (en) 2013-03-15 2015-03-03 Purdue Pharma L.P. Buprenorphine analogs
WO2014165542A1 (en) 2013-04-01 2014-10-09 Idenix Pharmaceuticals, Inc. 2',4'-fluoro nucleosides for the treatment of hcv
EP2981262A1 (en) 2013-04-02 2016-02-10 Celgene Corporation Methods and compositions using 4-amino-2-(2,6-dioxo-piperidine-3-yl)-isoindoline-1,3-dione for treatment and management of central nervous system cancers
US10092627B2 (en) 2013-04-08 2018-10-09 President And Fellows Of Harvard College Methods and compositions for rejuvenating skeletal muscle stem cells
DE102013009114A1 (en) 2013-05-29 2014-12-04 Franz Gerstheimer Pharmaceutical composition to overcome metabolic problems
AU2014273946B2 (en) 2013-05-30 2020-03-12 Infinity Pharmaceuticals, Inc. Treatment of cancers using PI3 kinase isoform modulators
US10005779B2 (en) 2013-06-05 2018-06-26 Idenix Pharmaceuticals Llc 1′,4′-thio nucleosides for the treatment of HCV
US20160113911A1 (en) 2013-06-06 2016-04-28 The General Hospital Corporation Methods and compositions for the treatment of cancer
WO2014201143A1 (en) 2013-06-11 2014-12-18 President And Fellows Of Harvard College Methods and compositions for increasing neurogenesis and angiogenesis
AU2014278011B2 (en) 2013-06-14 2020-03-19 Alyssum Therapeutics, Inc. Lipid-based platinum compounds and nanoparticles
CA2952867C (en) 2013-06-18 2022-05-03 Chemgreen Innovation Inc. An antimicrobial polymer wherein an aromatic moiety is covalently incorporated into the polymer backbone through loss of aromaticity
EP2815749A1 (en) 2013-06-20 2014-12-24 IP Gesellschaft für Management mbH Solid form of 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione having specified X-ray diffraction pattern
EP3013344B1 (en) 2013-06-28 2018-10-24 Purdue Pharma L.P. Opioid antagonists for use in the treatment of an opioid analgesic-induced arrhythmia
TW201534726A (en) 2013-07-03 2015-09-16 Halozyme Inc Thermally stable PH20 hyaluronidase variants and uses thereof
EA201600033A1 (en) 2013-07-23 2016-10-31 Еуро-Селтик С.А. COMBINATION OF OXYCODON AND NALOXONE FOR THE TREATMENT OF PATIENTS IN PATIENTS SUFFERING FROM PAIN AND DISEASE THROUGH THE INTESTINAL DYSBIOSIS AND / OR INCREASING THE RISK OF INTESTINAL MICROROSOLCATION
WO2015017713A1 (en) 2013-08-01 2015-02-05 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
CA2924141C (en) 2013-08-22 2022-06-07 The General Hospital Corporation 5-amino 4-cyano substituted oxazole and thiazole derivatives as inhibitors of human 12/15-lipoxygenase
US11382883B2 (en) 2013-08-29 2022-07-12 Trustees Of Boston University Intermediate metabolism products to potentiate aminoglycoside antibiotics in bacterial infections
RU2016111675A (en) 2013-08-30 2017-10-04 Эмбит Байосайенсиз Корпорейшн COMPOUNDS OF BIARILACETAMIDE AND METHODS OF USE
NZ631142A (en) 2013-09-18 2016-03-31 Axikin Pharmaceuticals Inc Pharmaceutically acceptable salts of 3,5-diaminopyrazole kinase inhibitors
EP3046924A1 (en) 2013-09-20 2016-07-27 IDENIX Pharmaceuticals, Inc. Hepatitis c virus inhibitors
EP3049082B1 (en) 2013-09-24 2019-05-22 Purdue Pharma L.P. Treatment of burn pain by trpv1 modulators
US9700549B2 (en) 2013-10-03 2017-07-11 David Wise Compositions and methods for treating pelvic pain and other conditions
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
UA121104C2 (en) 2013-10-04 2020-04-10 Інфініті Фармасьютикалз, Інк. HETEROCYCLIC COMPOUNDS AND THEIR APPLICATIONS
WO2015061204A1 (en) 2013-10-21 2015-04-30 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
JP2016536303A (en) 2013-10-21 2016-11-24 ザ ジェネラル ホスピタル コーポレイション Peripheral circulating tumor cell clusters and methods for cancer treatment
WO2015061683A1 (en) 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
WO2015065876A1 (en) 2013-10-29 2015-05-07 Thomas Jefferson University Methods of prevention or treatment for pathologic thrombosis or inflammation
WO2015065547A1 (en) 2013-10-31 2015-05-07 Cima Labs Inc. Immediate release abuse-deterrent granulated dosage forms
EP3063165A1 (en) 2013-11-01 2016-09-07 Idenix Pharmaceuticals LLC D-alanine phosphoramidate pronucleotides of 2'-methyl 2'-fluoro guanosine nucleoside compounds for the treatment of hcv
GB201319792D0 (en) 2013-11-08 2013-12-25 Sigmoid Pharma Ltd Formulations
NZ719268A (en) 2013-11-11 2021-07-30 Naturex Dbs Llc Compositions and methods useful in treatment of lower urinary tract symptoms, benign prostatic hyperplasia, erectile dysfunction
CA2966352A1 (en) 2013-11-26 2015-06-04 The Brigham And Women's Hospital, Inc. Compositions and methods for modulating an immune response
BR112016011949A8 (pt) 2013-11-27 2020-04-28 Idenix Pharmaceuticals Llc composto, composição farmacêutica, e, uso dos mesmos”
EP3074399A1 (en) 2013-11-27 2016-10-05 Idenix Pharmaceuticals LLC 2'-dichloro and 2'-fluoro-2'-chloro nucleoside analogues for hcv infection
EP3079712B1 (en) 2013-12-11 2022-02-02 The General Hospital Corporation Use of mullerian inhibiting substance (mis) proteins for contraception and ovarian reserve preservation
WO2015095419A1 (en) 2013-12-18 2015-06-25 Idenix Pharmaceuticals, Inc. 4'-or nucleosides for the treatment of hcv
AU2014364520B2 (en) 2013-12-20 2020-01-02 The General Hospital Corporation Methods and assays relating to circulating tumor cells
US9682123B2 (en) 2013-12-20 2017-06-20 The Trustees Of Columbia University In The City Of New York Methods of treating metabolic disease
WO2015097547A1 (en) 2013-12-26 2015-07-02 Purdue Pharma L.P. 10-substituted morphinan hydantoins
EP3087079B1 (en) 2013-12-26 2019-04-03 Purdue Pharma LP Opioid receptor modulating oxabicyclo[2.2.2]octane morphinans
WO2015097548A1 (en) 2013-12-26 2015-07-02 Purdue Pharma L.P. 7-beta-alkyl analogs of orvinols
WO2015097546A1 (en) 2013-12-26 2015-07-02 Purdue Pharma L.P. Propellane-based compounds and their use as opioid receptor modulators
EP3086790A4 (en) 2013-12-27 2017-07-19 Purdue Pharma LP 6-substituted and 7-substituted morphinan analogs and the use thereof
EP3089978B1 (en) 2013-12-30 2018-08-29 Purdue Pharma L.P. Pyridone-sulfone morphinan analogs as opioid receptor ligands
EP3094328B1 (en) 2014-01-15 2020-08-19 Poxel SA Methods of treating neurological, metabolic, and other disorders using enantiopure deuterium-enriched pioglitazone
PL3096839T3 (en) * 2014-01-23 2022-02-07 Maori S.C. Ltd. Scented body compositions
US10328015B2 (en) 2014-01-23 2019-06-25 Amkiri Ltd. Fragrance releasing compositions
EP3096749B1 (en) 2014-01-24 2019-05-15 Celgene Corporation Methods for the treatment of obesity using apremilast
WO2015134560A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid forms of a flaviviridae virus inhibitor compound and salts thereof
ES2883146T3 (en) 2014-03-10 2021-12-07 Kadmon Corp Llc Compounds for the oral treatment of brain tumors
WO2015140081A1 (en) 2014-03-18 2015-09-24 Algiax Pharmaceuticals Gmbh 2-cyano-3-cyclopropyl-3-hydroxy-n-aryl-thioacrylamide derivatives
NZ724368A (en) 2014-03-19 2023-07-28 Infinity Pharmaceuticals Inc Heterocyclic compounds for use in the treatment of pi3k-gamma mediated disorders
US11369588B2 (en) 2014-03-20 2022-06-28 The Trustees Of Princeton University NADPH production by the 10-formyl-THF pathway, and its use in the diagnosis and treatment of disease
CA3175724C (en) 2014-03-20 2024-01-09 Capella Therapeutics, Inc. Benzimidazole derivatives, and pharmaceutical compositions and methods of use thereof
TWI705967B (en) 2014-03-20 2020-10-01 美商卡佩拉醫療公司 Benzimidazole derivatives, and pharmaceutical compositions and methods of use thereof
WO2015143343A2 (en) 2014-03-21 2015-09-24 The Brigham And Women's Hospital, Inc. Methods and compositions for treatment of immune-related diseases or disorders and/or therapy monitoring
RU2016140160A (en) 2014-04-03 2018-05-07 Инвиктус Онколоджи Пвт. Лтд. SUPRAMOLECULAR COMBINATOR MEDICINES
US20170216328A1 (en) 2014-04-04 2017-08-03 Ritter Pharmaceuticals, Inc. Methods and compositions for microbiome alteration
WO2015157559A2 (en) 2014-04-09 2015-10-15 Siteone Therapeutics, Inc. 10',11'-modified saxitoxins for the treatment of pain
WO2015161137A1 (en) 2014-04-16 2015-10-22 Idenix Pharmaceuticals, Inc. 3'-substituted methyl or alkynyl nucleosides for the treatment of hcv
EP3804745A1 (en) 2014-04-25 2021-04-14 The Brigham and Women's Hospital, Inc. Methods to manipulate alpha-fetoprotein (afp)
ES2830849T3 (en) 2014-04-25 2021-06-04 Brigham & Womens Hospital Inc Assay and method for treating subjects with immune-mediated diseases
WO2015168079A1 (en) 2014-04-29 2015-11-05 Infinity Pharmaceuticals, Inc. Pyrimidine or pyridine derivatives useful as pi3k inhibitors
WO2015175381A1 (en) 2014-05-12 2015-11-19 Conatus Pharmaceuticals, Inc. Treatment of the complications of chronic liver disease with caspase inhibitors
EP3142748B1 (en) 2014-05-15 2019-09-11 Celgene Corporation Use of pde4 inhibitors and combinations thereof for the treatment of cystic fibrosis
US20170087129A1 (en) 2014-05-16 2017-03-30 Celgene Corporation Compositions and methods for the treatment of atherosclerotic cardiovascular diseases with pde4 modulators
CN106573872B (en) 2014-05-19 2021-07-20 东北大学 Serotonin receptor targeting compounds and methods
EP3145500A1 (en) 2014-05-23 2017-03-29 Sigmoid Pharma Limited Celecoxib formulations useful for treating colorectal cancer
KR20170005492A (en) 2014-05-28 2017-01-13 아이데닉스 파마슈티칼스 엘엘씨 Nucleoside derivatives for the treatment of cancer
JP2017518307A (en) 2014-06-02 2017-07-06 チルドレンズ メディカル センター コーポレーション Methods and compositions for immunomodulation
JP2017519000A (en) 2014-06-12 2017-07-13 リガンド・ファーマシューティカルズ・インコーポレイテッド Glucagon antagonist
WO2015195634A1 (en) 2014-06-17 2015-12-23 Celgne Corporation Methods for treating epstein-barr virus (ebv) associated cancers using oral formulations of 5-azacytidine
WO2015195474A1 (en) 2014-06-18 2015-12-23 Biotheryx, Inc. Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating inflammatory, neurodegenerative, or immune-mediated diseases
BR112016029662B1 (en) 2014-06-19 2023-10-24 Takeda Pharmaceutical Company Limited COMPOUND OF FORMULA Bf OR A PHARMACEUTICALLY ACCEPTABLE FORM THEREOF, PHARMACEUTICAL COMPOSITION COMPRISING THE SAME AND ITS USE
MX2016014384A (en) 2014-06-23 2017-01-20 Celgene Corp Apremilast for the treatment of a liver disease or a liver function abnormality.
EP3827836A1 (en) 2014-06-27 2021-06-02 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other e3 ubiquitin ligases
US9499514B2 (en) 2014-07-11 2016-11-22 Celgene Corporation Antiproliferative compounds and methods of use thereof
WO2016019368A1 (en) 2014-08-01 2016-02-04 The Brigham And Women's Hospital, Inc. Methods and compositions relating to treatment of pulmonary arterial hypertension
US10092541B2 (en) 2014-08-15 2018-10-09 Celgene Corporation Methods for the treatment of diseases ameliorated by PDE4 inhibition using dosage titration of apremilast
LT3182996T (en) 2014-08-22 2023-03-10 Celgene Corporation Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies
PT3186281T (en) 2014-08-28 2019-07-10 Halozyme Inc Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
CA2959386C (en) 2014-08-29 2024-06-04 Lee Adam Wheeler Methods and compositions for the treatment of cancer
US9132096B1 (en) 2014-09-12 2015-09-15 Alkermes Pharma Ireland Limited Abuse resistant pharmaceutical compositions
AU2015314830B2 (en) 2014-09-12 2021-01-07 Tobira Therapeutics, Inc. Cenicriviroc combination therapy for the treatment of fibrosis
CA2961200C (en) 2014-09-15 2023-09-05 The Regents Of The University Of California Nucleotide analogs
US10729685B2 (en) 2014-09-15 2020-08-04 Ohemo Life Sciences Inc. Orally administrable compositions and methods of deterring abuse by intranasal administration
WO2016044707A1 (en) 2014-09-18 2016-03-24 Cedars-Sinai Medical Center Compositions and methods for treating fibrosis
MY186047A (en) 2014-09-18 2021-06-17 Tonix Pharma Holdings Ltd Eutectic formulations of cyclobenzaprine hydrochloride
EP3193845A1 (en) 2014-09-19 2017-07-26 The Procter and Gamble Company Pulsed release phenylephrine dosage forms
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
WO2016054491A1 (en) 2014-10-03 2016-04-07 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
BR112017007765B1 (en) 2014-10-14 2023-10-03 Halozyme, Inc COMPOSITIONS OF ADENOSINE DEAMINASE-2 (ADA2), VARIANTS THEREOF AND METHODS OF USING THE SAME
US10183056B2 (en) 2014-10-16 2019-01-22 Cleveland Biolabs, Inc. Methods and compositions for the treatment of radiation-related disorders
US9849124B2 (en) 2014-10-17 2017-12-26 Purdue Pharma L.P. Systems and methods for treating an opioid-induced adverse pharmacodynamic response
HRP20201343T1 (en) 2014-10-21 2020-11-27 Ariad Pharmaceuticals, Inc. Crystalline forms of 5-chloro-n4-[-2-(dimethylphosphoryl) phenyl]-n2-{2-methoxy-4-[4-(4-methylpiperazin-1-yl) piperidin-1-yl]pyrimidine-2,4-diamine
EP3209658A1 (en) 2014-10-24 2017-08-30 Biogen MA Inc. Diterpenoid derivatives and methods of use thereof
CA2936746C (en) 2014-10-31 2017-06-27 Purdue Pharma Methods and compositions particularly for treatment of attention deficit disorder
DE202015102279U1 (en) 2014-11-05 2015-08-14 Fresh Products, Inc. urinal
USD778411S1 (en) 2014-11-05 2017-02-07 Fresh Products, Inc. Urinal screen
EP3881829A1 (en) 2014-11-07 2021-09-22 Sublimity Therapeutics Limited Compositions comprising cyclosporin
USD778412S1 (en) 2014-11-10 2017-02-07 Fresh Products, Inc. Urinal screen
JP6830437B2 (en) 2014-12-10 2021-02-17 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Genetically modified cells, tissues and organs to treat the disease
TW201702218A (en) 2014-12-12 2017-01-16 美國杰克森實驗室 Compositions and methods relating to the treatment of cancer, autoimmune disease, and neurodegenerative disease
US20190100512A1 (en) 2014-12-16 2019-04-04 Celgene Corporation Solid forms comprising (1e, 4e)-2-amino-n,n-dipropyl-8-(4-(pyrrolidine-1-carbonyl)phenyl)-3h-benzo[b]azepine-4-carboxamide, compositions thereof, and uses thereof
JP6450010B2 (en) 2014-12-23 2019-01-09 アクシキン ファーマシューティカルズ インコーポレーテッド 3,5-diaminopyrazole kinase inhibitor
US9676793B2 (en) 2014-12-23 2017-06-13 Hoffmann-Laroche Inc. Co-crystals of 5-amino-2-oxothiazolo[4,5-d]pyrimidin-3(2H)-yl-5-hydroxymethyl tetrahydrofuran-3-yl acetate and methods for preparing and using the same
CN107530423B (en) 2015-01-14 2022-04-05 布里格姆及妇女医院股份有限公司 Treatment of cancer with anti-LAP monoclonal antibodies
BR112017015487A2 (en) 2015-01-20 2018-01-30 Xoc Pharmaceuticals Inc COMPOUND; COMPOSITION; METHOD OF TREATMENT AND / OR PREVENTION OF MIGRAINE, ALS, ALZHEIMER'S DISEASE, PARKINSON'S DISEASE, EXTRAPYRIMIDAL DISORDERS, DEPRESSION, NAUSEA, AEMESIS, SYNDROME OF THE WASTE LEGS, INSOMENESS, HYGERNESS, AGING , ANXIETY, DRUG DEPENDENCIES, DYSTONIA, PARASSONIA OR HYPERLACTINEMIA IN AN INDIVIDUAL; AGONIZATION METHODS OF D2, 5-HT1D, 5-HT1A AND 5-HT2C RECEPTORS, IN AN INDIVIDUAL; ANTAGONIZATION METHOD OF THE D3 RECEPTOR IN AN INDIVIDUAL; METHODS OF SELECTIVE AGONIZATION OF RECEPTORS 5 -HT1D, AND 5-HT2C, METHOD OF PROVIDING FUNCTIONAL ANTAGONIST ACTIVITY IN RECEPTOR 5 -HT2B OR IN RECEIVER 5-HT7, OR IN BOTH, IN AN INDIVIDUAL; METHOD OF PROVIDING FUNCTIONAL ANTAGONIST ACTIVITY IN ADRENERGIC RECEPTORS IN AN INDIVIDUAL
MX2017009406A (en) 2015-01-20 2018-01-18 Xoc Pharmaceuticals Inc Isoergoline compounds and uses thereof.
US10494281B2 (en) 2015-01-21 2019-12-03 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
KR20170113664A (en) 2015-02-09 2017-10-12 마드리갈 파마슈티칼스 인코포레이티드 Combination of HSP90 inhibitor and PD-1 inhibitor for cancer treatment
CA2977732C (en) 2015-03-10 2021-02-23 Rhodes Technologies Acetate salt of buprenorphine and methods for preparing buprenorphine
TW201642857A (en) 2015-04-06 2016-12-16 西建公司 Treatment of hepatocellular carcinoma using combination therapy
CN114366802A (en) 2015-04-22 2022-04-19 西达-赛奈医疗中心 Enterally delivered bitter oligopeptides for the treatment of type 2 diabetes
CA2983992A1 (en) 2015-04-30 2016-11-03 The Regents Of The University Of Colorado, A Body Corporate Polycyclic indoline and indolenine compounds
CN108368147A (en) 2015-05-27 2018-08-03 南方研究院 Nucleotide for treating cancer
WO2016196664A1 (en) 2015-06-01 2016-12-08 Cedars-Sinai Medical Center Methods and use of compounds that bind to rela of nf-kb
EP4278996A3 (en) 2015-06-03 2024-01-24 i2o Therapeutics, Inc. Implant placement systems
WO2016202721A1 (en) 2015-06-16 2016-12-22 F. Hoffmann-La Roche Ag Salts of (s)-4-[(r)-6-(2-chloro-4-fluoro-phenyl)-5-methoxycarbonyl-2-thiazol-2-yl-3,6- dihydro-pyrimidin-4-ylmethyl]-morpholine-3-carboxylic acid, salt former and methods for preparing and using the same
MX390795B (en) 2015-06-23 2025-03-21 Neurocrine Biosciences Inc VESICULAR MONOAMINE TRANSPORTER TYPE 2 (VMAT2) INHIBITORS FOR TREATMENT OF NEUROLOGICAL DISEASES OR DISORDERS.
WO2016210262A1 (en) 2015-06-26 2016-12-29 Celgene Corporation Methods for the treatment of kaposi's sarcoma or kshv-induced lymphoma using immunomodulatory compounds, and uses of biomarkers
BR112017028530A2 (en) 2015-07-02 2018-08-28 Celgene Corp combination therapy for treatment of haematological cancers and solid tumors
MX2018001075A (en) 2015-07-28 2019-04-15 Vyome Therapeutics Ltd Antibacterial therapeutics and prophylactics.
US10383831B2 (en) 2015-08-03 2019-08-20 Temple University—Of the Commonwealth System of Higher Education 2,4,6-trialkoxystryl aryl sulfones, sulfonamides and carboxamides, and methods of preparation and use
SG10202101740QA (en) 2015-08-17 2021-04-29 Kura Oncology Inc Methods of treating cancer patients with farnesyl transferase inhibitors
WO2017035507A1 (en) 2015-08-27 2017-03-02 President And Fellows Of Harvard College Compositions and methods for treatment of pain
US11590228B1 (en) 2015-09-08 2023-02-28 Tris Pharma, Inc Extended release amphetamine compositions
EP3702470A3 (en) 2015-09-09 2020-10-07 The Trustees of Columbia University in the City of New York Reduction of er-mam-localized app-c99 and methods of treating alzheimer's disease
CN114230571B (en) 2015-09-14 2025-07-08 无限药品股份有限公司 Solid forms of isoquinolinones, methods of making, compositions comprising, and methods of using the same
US10702586B2 (en) 2015-09-28 2020-07-07 Children's Hospital Los Angeles Methods for treating diseases mediated by ErbB4-positive pro-inflammatory macrophages
WO2017059385A1 (en) 2015-09-30 2017-04-06 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
IL316210A (en) 2015-10-01 2024-12-01 Heat Biologics Inc Compositions and methods for adjoining type i and type ii extracellular domains as heterologous chimeric proteins
WO2017069958A2 (en) 2015-10-09 2017-04-27 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
EP3362458A1 (en) 2015-10-16 2018-08-22 Invictus Oncology Pvt. Ltd. Fluorescent anticancer platinum drugs
PL3368534T3 (en) 2015-10-30 2021-07-12 Neurocrine Biosciences, Inc. Valbenazine ditosylate and its polymorphs
WO2017079566A1 (en) 2015-11-05 2017-05-11 Conatus Pharmaceuticals, Inc. Caspase inhibitors for use in the treatment of liver cancer
WO2017077382A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
WO2017083348A1 (en) 2015-11-11 2017-05-18 Celgene Corporation Controlled release oral dosage forms of poorly soluble drugs and uses thereof
US10112924B2 (en) 2015-12-02 2018-10-30 Astraea Therapeutics, Inc. Piperdinyl nociceptin receptor compounds
JP7011596B2 (en) 2015-12-02 2022-02-10 アストライア セラピューティクス, エルエルシー Piperidinyl nociceptin receptor compound
CN121045173A (en) 2015-12-23 2025-12-02 纽罗克里生物科学有限公司 Method for preparing salts of 3-isobutyl-9,10-dimethoxy-hexahydro-1H-pyrido[2,1-a]isoquinoline-2-yl-2-amino-3-methylbutyrate
WO2017117118A1 (en) 2015-12-28 2017-07-06 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other e3 ubiquitin ligases
KR20180101418A (en) 2015-12-31 2018-09-12 코나터스 파마슈티칼스, 인크. Methods of using caspase inhibitors in the treatment of liver disease
AU2017205170B2 (en) 2016-01-08 2021-06-24 Celgene Corporation Methods for treating cancer and the use of biomarkers as a predictor of clinical sensitivity to therapies
HRP20201789T1 (en) 2016-01-08 2021-01-22 Celgene Corporation ANTIPROLIFERATIVE COMPOUNDS, AND THEIR PHARMACEUTICAL PREPARATIONS AND USES
ES2959267T3 (en) 2016-01-08 2024-02-22 Celgene Corp Solid forms of 2-(4-chlorophenyl)-n-((2-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide and their pharmaceutical compositions and uses
CA3013558C (en) 2016-02-05 2024-11-12 Universiteit Gent Cd8 binding agents
CA3055170A1 (en) 2016-03-04 2017-09-08 Charleston Laboratories, Inc. Pharmaceutical compositions
WO2017153402A1 (en) 2016-03-07 2017-09-14 Vib Vzw Cd20 binding single domain antibodies
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
JP2019513707A (en) 2016-04-11 2019-05-30 クレキシオ バイオサイエンシーズ エルティーディー. Deuterated ketamine derivative
US20190119758A1 (en) 2016-04-22 2019-04-25 Kura Oncology, Inc. Methods of selecting cancer patients for treatment with farnesyltransferase inhibitors
EP3448851B8 (en) 2016-04-29 2022-04-27 FGH BioTech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
CN109071518A (en) 2016-05-04 2018-12-21 普渡制药公司 Oxazoline vacation dimer, medical composition and its use
EP3455245A2 (en) 2016-05-13 2019-03-20 Orionis Biosciences NV Therapeutic targeting of non-cellular structures
WO2017194783A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Targeted mutant interferon-beta and uses thereof
TWI753910B (en) 2016-05-16 2022-02-01 美商拜歐斯瑞克斯公司 Pyridinethiones, pharmaceutical compositions thereof, and their therapeutic use for treating a proliferative, inflammatory, neurodegenerative, or immune-mediated disease
WO2017200943A1 (en) 2016-05-16 2017-11-23 Intarcia Therapeutics, Inc. Glucagon-receptor selective polypeptides and methods of use thereof
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2017222575A1 (en) * 2016-06-23 2017-12-28 Collegium Pharmaceutical, Inc. Process of making more stable abuse-deterrent oral formulations
CN120617214A (en) 2016-07-06 2025-09-12 度瑞公司 Oral dosage form having a pharmaceutical composition, a barrier layer and a pharmaceutical layer
JP2019521160A (en) 2016-07-18 2019-07-25 ファルメナ エスエー 1-Methylnicotinamide for the treatment of C-reactive protein related diseases
JOP20190008A1 (en) 2016-07-26 2019-01-24 Purdue Pharma Lp Treatment and prevention of sleep disorders
CA3032141A1 (en) 2016-07-29 2018-02-01 Vadim ALEXANDROV Compounds and compositions and uses thereof
AU2017301769B2 (en) 2016-07-29 2022-07-28 Pgi Drug Discovery Llc Compounds and compositions and uses thereof
US12097292B2 (en) 2016-08-28 2024-09-24 Mapi Pharma Ltd. Process for preparing microparticles containing glatiramer acetate
SMT202300251T1 (en) 2016-08-31 2023-09-06 Mapi Pharma Ltd Depot systems comprising glatiramer acetate
EP3510027B1 (en) 2016-09-07 2022-11-02 FGH BioTech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
AU2017324510B2 (en) 2016-09-07 2023-08-31 Temple University - Of The Commonwealth System Of Higher Education Compositions and methods for treatment of insulin resistance
EP3515414B1 (en) 2016-09-19 2022-11-30 MEI Pharma, Inc. Combination therapy
WO2018067991A1 (en) 2016-10-07 2018-04-12 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
EP3525788B1 (en) 2016-10-11 2022-05-25 Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE) Treatment of synucleinopathies
US11154591B2 (en) 2016-10-14 2021-10-26 The Trustees Of Columbia University In The City Of New York Methods of treating alcohol abuse disorder
US11878000B2 (en) 2016-10-21 2024-01-23 Da Zen Theranostics, Inc. Compounds and methods to sensitize cancer cells to tyrosine kinase inhibitors
WO2018077893A1 (en) 2016-10-24 2018-05-03 Orionis Biosciences Nv Targeted mutant interferon-gamma and uses thereof
SMT202100207T1 (en) 2016-11-03 2021-07-12 Kura Oncology Inc Farnesyltransferase inhibitors for use in treating cancer
CN110167542A (en) 2016-11-09 2019-08-23 诺沃梅迪科斯有限公司 Nitrite salts of 1,1-metformin, pharmaceutical compositions and methods of use
US10106521B2 (en) 2016-11-09 2018-10-23 Phloronol, Inc. Eckol derivatives, methods of synthesis and uses thereof
JP7105774B2 (en) 2016-12-01 2022-07-25 イグナイタ インコーポレイテッド Methods for treating cancer
TW202515564A (en) 2016-12-02 2025-04-16 美商紐羅克里生物科學有限公司 Use of valbenazine for treating schizophrenia or schizoaffective disorder
EP3565580B1 (en) 2017-01-03 2024-03-06 i2o Therapeutics, Inc. Continuous administration of exenatide and co-adminstration of acetaminophen, ethinylestradiol or levonorgestrel
JP7062010B2 (en) 2017-01-27 2022-05-02 セルジーン コーポレイション 3- (1-oxo-4-((4-((3-oxomorpholino) methyl) benzyl) oxy) isoindoline-2-yl) piperidine-2,6-dione and its isotopolog
MX393077B (en) 2017-01-27 2025-03-24 Neurocrine Biosciences Inc METHODS FOR THE ADMINISTRATION OF CERTAIN TRANSPORT PROTEIN INHIBITORS VESICULAR MONOAMINE TRANSPORTER (VMAT2).
KR102642385B1 (en) 2017-02-06 2024-03-04 오리오니스 바이오사이언시스 엔브이 Targeted chimeric proteins and uses thereof
CN110573172A (en) 2017-02-06 2019-12-13 奥里尼斯生物科学有限公司 Targeted engineered interferon and uses thereof
CN117551102A (en) 2017-02-06 2024-02-13 斯派尔治疗有限公司 Crystalline forms of telbipenem and pivoxate, compositions containing the same, methods of making and methods of use
CA3050601A1 (en) 2017-02-07 2018-08-16 Vib Vzm Immune-cell targeted bispecific chimeric proteins and uses thereof
WO2018151861A1 (en) 2017-02-16 2018-08-23 Sunovion Pharamaceuticials Inc. Methods of treating schizophrenia
SG11201907594TA (en) 2017-02-21 2019-09-27 Kura Oncology Inc Methods of treating cancer with farnesyltransferase inhibitors
US10137121B2 (en) 2017-02-21 2018-11-27 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
AU2018224852B2 (en) 2017-02-27 2025-03-06 Shattuck Labs, Inc. VSIG8-based chimeric proteins
WO2018164996A1 (en) 2017-03-06 2018-09-13 Neurocrine Biosciences, Inc. Dosing regimen for valbenazine
US20180258064A1 (en) 2017-03-07 2018-09-13 Celgene Corporation Solid forms of 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione, and their pharmaceutical compositions and uses
US10278930B2 (en) 2017-03-16 2019-05-07 The Procter & Gamble Company Method for relieving sinus congestion
US11555031B2 (en) 2017-03-20 2023-01-17 The Broad Institute, Inc. Compounds and methods for regulating insulin secretion
BR112019017724A2 (en) 2017-03-26 2020-03-31 Mapi Pharma Ltd. GLATIRAMER DEPOT SYSTEMS TO TREAT PROGRESSIVE FORMS OF MULTIPLE SCLEROSIS
MX2019010060A (en) 2017-03-27 2019-10-21 Univ California Compositions and method of treating cancer.
AU2018243463C1 (en) 2017-03-29 2022-12-01 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
WO2018183782A1 (en) 2017-03-29 2018-10-04 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
AU2018250823A1 (en) 2017-04-10 2019-10-17 Curemark, Llc Compositions for treating addiction
WO2018200605A1 (en) 2017-04-26 2018-11-01 Neurocrine Biosciences, Inc. Use of valbenazine for treating levodopa-induced dyskinesia
JOP20190219A1 (en) 2017-05-09 2019-09-22 Cardix Therapeutics LLC Pharmaceutical compositions and methods of treating cardiovascular diseases
US10085999B1 (en) 2017-05-10 2018-10-02 Arixa Pharmaceuticals, Inc. Beta-lactamase inhibitors and uses thereof
JP7237941B2 (en) 2017-05-19 2023-03-13 エヌフレクション セラピューティクス インコーポレイテッド Fused heterocyclic aromatic aniline compounds for the treatment of skin disorders
MA49141A (en) 2017-05-19 2020-03-25 Nflection Therapeutics Inc PYRROLOPYRIDINE-ANILINE COMPOUNDS FOR THE TREATMENT OF SKIN CONDITIONS
EP3630079A4 (en) 2017-05-31 2021-02-24 The Children's Medical Center Corporation TARGETING LYSINE DEMETHYLASES (KDMs) AS A THERAPEUTIC STRATEGY FOR DIFFUSE LARGE B-CELL LYMPHOMA
MX2019014272A (en) 2017-06-01 2020-12-11 Xoc Pharmaceuticals Inc Ergoline derivatives for use in medicine.
US11400136B2 (en) 2017-06-19 2022-08-02 President And Fellows Of Harvard College Methods and compositions for treating a microbial infection
WO2019005874A1 (en) 2017-06-26 2019-01-03 The Trustees Of Columbia University In The City Of New York Cholinergic agonism for the treatment of pancreatic cancer
WO2019006404A1 (en) 2017-06-30 2019-01-03 Purdue Pharma L.P. Method of treatment and dosage forms thereof
JP7097438B2 (en) 2017-07-11 2022-07-07 アクティム・セラピューティクス・インコーポレイテッド Genetically engineered immunostimulatory bacterial strains and their use
EP3651751A4 (en) 2017-07-13 2021-03-31 Tonix Pharmaceuticals Holding Corp. CYCLOBENZAPRINE ANALOGA AND AMITRYPTILES
WO2019018247A1 (en) 2017-07-16 2019-01-24 Neuere, Llc Ambroxol to improve and/or extend healthspan, lifespan and/or mental acuity
EA202090414A1 (en) 2017-08-02 2020-05-28 Суновион Фармасьютикалз Инк. COMPOUNDS AND THEIR APPLICATION
CA3071854A1 (en) 2017-08-07 2019-02-14 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
US10806730B2 (en) 2017-08-07 2020-10-20 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
IL301770B2 (en) 2017-09-21 2024-06-01 Neurocrine Biosciences Inc High dosage valbenazine formulation and compositions, methods, and kits related thereto
US11590081B1 (en) 2017-09-24 2023-02-28 Tris Pharma, Inc Extended release amphetamine tablets
US12458592B1 (en) 2017-09-24 2025-11-04 Tris Pharma, Inc. Extended release amphetamine tablets
WO2019071021A2 (en) 2017-10-04 2019-04-11 The Regents Of The University Of California Immunomodulatory oligosaccharides
KR20250070134A (en) 2017-10-10 2025-05-20 뉴로크린 바이오사이언시즈 인코퍼레이티드 Methods for the administration of certain vmat2 inhibitors
SG11202003194YA (en) 2017-10-10 2020-05-28 Neurocrine Biosciences Inc Methods for the administration of certain vmat2 inhibitors
WO2019097080A1 (en) 2017-11-20 2019-05-23 Kiakos Konstantinos 3,5-diarylidenyl-n-substituted-piperid-4-one-derived inhibitors of stat3 pathway acitivty and uses therof
WO2019113269A1 (en) 2017-12-08 2019-06-13 Kura Oncology, Inc. Methods of treating cancer patients with farnesyltransferase inhibitors
CN118267382A (en) 2017-12-11 2024-07-02 通尼克斯制药控股有限公司 Cyclobenzaprine treatment for agitation, psychosis and cognitive decline in dementia and neurodegenerative conditions
WO2019118984A2 (en) 2017-12-15 2019-06-20 Solarea Bio, Inc. Microbial compositions and methods for treating type 2 diabetes, obesity, and metabolic syndrome
CA3085593A1 (en) 2017-12-18 2019-06-27 Sterngreene, Inc. Pyrimidine compounds useful as tyrosine kinase inhibitors
MX2020006545A (en) 2017-12-20 2020-09-14 Fresh Prod Inc Urinal screens.
EP3727384A4 (en) 2017-12-20 2021-11-03 Purdue Pharma L.P. Abuse deterrent morphine sulfate dosage forms
US20190210973A1 (en) 2018-01-05 2019-07-11 The Curators Of The University Of Missouri Compounds and methods for treatment of cystic fibrosis
TW202406538A (en) 2018-01-10 2024-02-16 美商克拉治療有限責任公司 Pharmaceutical compositions comprising phenylsulfonamides, and their therapeutic applications
US20210052529A1 (en) 2018-01-10 2021-02-25 Cura Therapeutics, Llc Pharmaceutical compositions comprising dicarboxylic acids and their therapeutic applications
KR20230149877A (en) 2018-01-24 2023-10-27 퍼듀 퍼머 엘피 Sleep disorder treatment and prevention
WO2019148089A1 (en) 2018-01-26 2019-08-01 Orionis Biosciences Inc. Xcr1 binding agents and uses thereof
JP2021513361A (en) 2018-02-05 2021-05-27 オリオニス バイオサイエンシーズ,インコーポレイテッド Fibroblast binding substances and their use
CA3090322A1 (en) 2018-02-12 2019-08-15 Diabetes-Free, Inc. Improved antagonistic anti-human cd40 monoclonal antibodies
TW202003453A (en) 2018-02-13 2020-01-16 美商利根德製藥公司 Glucagon receptor antagonists
WO2019161236A1 (en) 2018-02-16 2019-08-22 Sunovion Pharmaceuticals Inc. Methods of treating social function disorders
JP7354123B2 (en) 2018-02-21 2023-10-02 エイアイ・セラピューティクス・インコーポレーテッド Combination therapy with apilimod and glutamate agonists
CA3094391A1 (en) 2018-03-22 2019-09-26 The Children's Medical Center Corporation Methods and compositions relating to lung repair
WO2019222435A1 (en) 2018-05-16 2019-11-21 Halozyme, Inc. Methods of selecting subjects for combination cancer therapy with a polymer-conjugated soluble ph20
BR112020024018A2 (en) 2018-06-14 2021-02-23 Neurocrine Biosciences Inc. vmat2 inhibitor compounds, compositions and methods related to them
EP3814327A1 (en) 2018-06-29 2021-05-05 Histogen, Inc. (s)-3-(2-(4-(benzyl)-3-oxopiperazin-1-yl)acetamido)-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid derivatives and related compounds as caspase inhibitors for treating cardiovascular diseases
AU2019301699C1 (en) 2018-07-11 2024-10-10 Actym Therapeutics, Inc. Engineered immunostimulatory bacterial strains and uses thereof
US20210299233A1 (en) 2018-07-12 2021-09-30 The Children's Medical Center Corporation Method for treating cancer
CN112867491A (en) 2018-08-15 2021-05-28 纽罗克里生物科学有限公司 Methods of administering certain VMAT2 inhibitors
US11242528B2 (en) 2018-08-28 2022-02-08 Actym Therapeutics, Inc. Engineered immunostimulatory bacterial strains and uses thereof
WO2020047328A1 (en) 2018-08-29 2020-03-05 Shattuck Labs, Inc. Combination therapies comprising pd-1-based chimeric proteins
US11980647B2 (en) 2018-09-05 2024-05-14 Solarea Bio, Inc. Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause
EP3846830A4 (en) 2018-09-05 2022-07-06 Solarea Bio, Inc. METHODS AND COMPOSITIONS FOR THE TREATMENT OF MUSCULOSKELETAL DISEASES
EP3860714B1 (en) 2018-10-03 2023-09-06 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
USD925009S1 (en) 2018-10-25 2021-07-13 Fresh Products, Inc. Urinal screen
CN113286591A (en) 2018-11-01 2021-08-20 库拉肿瘤学公司 Methods of treating cancer with farnesyltransferase inhibitors
US12410225B2 (en) 2018-11-08 2025-09-09 Orionis Biosciences, Inc Modulation of dendritic cell lineages
WO2020097437A1 (en) 2018-11-09 2020-05-14 The Children's Medical Center Corporation Methods and compositions for treating or preventing the development of food allergies
WO2020102454A1 (en) 2018-11-13 2020-05-22 Regents Of The University Of Minnesota Cd40 targeted peptides and uses thereof
US10722473B2 (en) 2018-11-19 2020-07-28 Purdue Pharma L.P. Methods and compositions particularly for treatment of attention deficit disorder
US12378240B2 (en) 2018-11-20 2025-08-05 Nflection Therapeutics, Inc. Naphthyridinone-aniline compounds for treatment of dermal disorders
WO2020106303A1 (en) 2018-11-20 2020-05-28 Nflection Therapeutics, Inc. Aryl-aniline and heteroaryl-aniline compounds for treatment of skin cancers
WO2020106306A1 (en) 2018-11-20 2020-05-28 Nflection Therapeutics, Inc. Cyanoaryl-aniline compounds for treatment of dermal disorders
EP3883554A4 (en) 2018-11-20 2022-11-23 NFlection Therapeutics, Inc. ARYL ANILINE AND HETEROARYL ANILINE COMPOUNDS FOR THE TREATMENT OF NEGAL MARKS
JP7407461B2 (en) 2018-12-19 2024-01-04 シャイ・セラピューティクス・エルエルシー Compounds that interact with the RAS superfamily for the treatment of cancer, inflammatory diseases, RAS diseases, and fibrotic diseases
WO2020132700A1 (en) 2018-12-21 2020-06-25 Fgh Biotech Inc. Methods of using inhibitors of srebp in combination with niclosamide and analogs thereof
AU2019403379A1 (en) 2018-12-21 2021-07-15 Kura Oncology, Inc. Therapies for squamous cell carcinomas
TWI839461B (en) 2019-02-06 2024-04-21 美商戴斯阿爾法股份有限公司 Il-17a modulators and uses thereof
CN113573708A (en) 2019-02-07 2021-10-29 阿尔萨泰克公司 Emoxipine Multivalent Derivatives
CN113748124A (en) 2019-02-27 2021-12-03 阿克蒂姆治疗有限公司 Immunostimulatory bacteria engineered to colonize tumors, tumor resident immune cells, and tumor microenvironment
US12024709B2 (en) 2019-02-27 2024-07-02 Actym Therapeutics, Inc. Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment
US20220142983A1 (en) 2019-03-01 2022-05-12 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
US11597703B2 (en) 2019-03-07 2023-03-07 Histogen, Inc. Caspase inhibitors and methods of use thereof
EP3938045A1 (en) 2019-03-14 2022-01-19 Sunovion Pharmaceuticals Inc. Salts of a isochromanyl compound and crystalline forms, processes for preparing, therapeutic uses, and pharmaceutical compositions thereof
WO2020190604A1 (en) 2019-03-15 2020-09-24 Kura Oncology, Inc. Methods of treating cancer patients with farnesyltransferase inhibitors
EP3712127A1 (en) 2019-03-22 2020-09-23 Deutsches Krebsforschungszentrum Novel inhibitors of histone deacetylase 10
US11000488B2 (en) 2019-03-22 2021-05-11 Syntrix Biosystems Inc. Treating pain using desmetramadol
WO2020193431A1 (en) 2019-03-22 2020-10-01 Deutsches Krebsforschungszentrum Novel inhibitors of histone deacetylase 10
AU2020254492A1 (en) 2019-03-29 2021-11-11 Kura Oncology, Inc. Methods of treating Squamous Cell Carcinomas with farnesyltransferase inhibitors
TW202102218A (en) 2019-04-01 2021-01-16 美商庫拉腫瘤技術股份有限公司 Methods of treating cancer with farnesyltransferase inhibitors
KR20220004066A (en) 2019-04-03 2022-01-11 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Ionic liquids for drug delivery
WO2020223583A1 (en) 2019-05-02 2020-11-05 Kura Oncology, Inc. Methods of treating acute myeloid leukemia with farnesyltransferase inhibitors
WO2020227437A1 (en) * 2019-05-06 2020-11-12 Axial Biotherapeutics, Inc. Sustained release solid dosage forms for modulating the colonic microbiome
US11324707B2 (en) 2019-05-07 2022-05-10 Clexio Biosciences Ltd. Abuse-deterrent dosage forms containing esketamine
US20220062200A1 (en) 2019-05-07 2022-03-03 Clexio Biosciences Ltd. Abuse-deterrent dosage forms containing esketamine
US12310955B2 (en) 2019-06-03 2025-05-27 Irimajiri Therapeutics Inc. Cyclic amide compounds for rabies treatment and method thereof
CA3143713A1 (en) 2019-06-19 2020-12-24 Solarea Bio, Inc. Microbial compositions and methods for producing upgraded probiotic assemblages
EP3996813A1 (en) 2019-07-11 2022-05-18 Cura Therapeutics, LLC Phenyl compounds and pharmaceutical compositions thereof, and their therapeutic applications
WO2021007478A1 (en) 2019-07-11 2021-01-14 Cura Therapeutics, Llc Sulfone compounds and pharmaceutical compositions thereof, and their therapeutic applications for the treatment of neurodegenerative diseases
IL289919B2 (en) 2019-07-26 2025-10-01 Espervita Therapeutics Inc Functionalized long-chain hydrocarbon mono- and di-carboxylic acids useful for the prevention or treatment of disease
US10792262B1 (en) 2019-07-29 2020-10-06 Saol International Limited Stabilized formulations of 4-amino-3-substituted butanoic acid derivatives
US11654124B2 (en) 2019-07-29 2023-05-23 Amneal Pharmaceuticals Llc Stabilized formulations of 4-amino-3-substituted butanoic acid derivatives
US10940141B1 (en) 2019-08-23 2021-03-09 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
WO2021038296A2 (en) 2019-08-27 2021-03-04 Tonix Pharma Holdings Limited Modified tff2 polypeptides
JP7566889B2 (en) 2019-09-16 2024-10-15 ダイス・アルファ・インコーポレイテッド IL-17A MODULATORS AND USES THEREOF
WO2021059023A1 (en) 2019-09-26 2021-04-01 Abionyx Pharma Sa Compounds useful for treating liver diseases
AU2020359526A1 (en) 2019-10-01 2022-04-21 Molecular Skin Therapeutics, Inc. Benzoxazinone compounds as KLK5/7 dual inhibitors
CA3161450A1 (en) 2019-11-12 2021-05-20 Actym Therapeutics, Inc. Immunostimulatory bacteria delivery platforms and their use for delivery of therapeutic products
AU2020388387A1 (en) 2019-11-22 2022-06-02 President And Fellows Of Harvard College Ionic liquids for drug delivery
CN115315260A (en) 2019-12-02 2022-11-08 新基公司 Therapies to treat cancer
WO2021183318A2 (en) 2020-03-09 2021-09-16 President And Fellows Of Harvard College Methods and compositions relating to improved combination therapies
TW202206062A (en) 2020-04-24 2022-02-16 美國坦普大學 高等教育聯邦系統 Methods for treatment of non-alcoholic steatohepatitis
WO2021222196A1 (en) 2020-04-28 2021-11-04 President And Fellows Of Harvard College Methods and compositions relating to ionic liquid adjuvants
WO2021226033A1 (en) 2020-05-07 2021-11-11 President And Fellows Of Harvard College Hyaluronic acid drug conjugates
EP4157271A1 (en) 2020-05-29 2023-04-05 Boulder Bioscience LLC Methods for improved endovascular thrombectomy using 3,3'-diindolylmethane
US20230173095A1 (en) 2020-05-29 2023-06-08 President And Fellows Of Harvard College Living cells engineered with polyphenol-functionalized biologically active nanocomplexes
WO2021257828A1 (en) 2020-06-18 2021-12-23 Shy Therapeutics, Llc Substituted thienopyrimidines that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US20230102840A1 (en) 2020-06-23 2023-03-30 President And Fellows Of Harvard College Compositions and methods relating to combinatorial hyaluronic acid conjugates
US11319313B2 (en) 2020-06-30 2022-05-03 Poxel Sa Crystalline forms of deuterium-enriched pioglitazone
US12024521B2 (en) 2020-06-30 2024-07-02 Prosetta Biosciences, Inc. Isoquinoline derivatives, methods of synthesis and uses thereof
US20230241171A1 (en) 2020-07-10 2023-08-03 Institut Pasteur Use of gdf11 to diagnose and treat anxiety and depression
US11918689B1 (en) 2020-07-28 2024-03-05 Tris Pharma Inc Liquid clonidine extended release composition
JP2023539454A (en) 2020-08-12 2023-09-14 アクティム・セラピューティクス・インコーポレイテッド Immunostimulatory bacterial-based vaccines, therapeutics and RNA delivery platforms
CA3188924A1 (en) 2020-08-14 2022-02-17 Hassan Pajouhesh Non-hydrated ketone inhibitors of nav1.7 for the treatment of pain
US11541009B2 (en) 2020-09-10 2023-01-03 Curemark, Llc Methods of prophylaxis of coronavirus infection and treatment of coronaviruses
US12398348B2 (en) 2020-10-16 2025-08-26 The Procter & Gamble Company Consumer product compositions comprising a population of encapsulates
EP4229164A1 (en) 2020-10-16 2023-08-23 The Procter & Gamble Company Consumer product compositions with at least two encapsulate populations
US12486478B2 (en) 2020-10-16 2025-12-02 The Procter & Gamble Company Consumer products comprising delivery particles with high core:wall ratios
US20220133669A1 (en) 2020-10-30 2022-05-05 Ds Biopharma Limited Pharmaceutical compositions comprising 15-hetre and methods of use thereof
US20240117033A1 (en) 2021-01-15 2024-04-11 President And Fellows Of Harvard College Methods and compositions relating to anti-mfsd2a antibodies
JP2024504728A (en) 2021-01-26 2024-02-01 サイトケアズ (シャンハイ) インコーポレイテッド Chimeric antigen receptor (CAR) constructs and NK cells expressing CAR constructs
US20240124483A1 (en) 2021-01-27 2024-04-18 Shy Therapeutics, Llc Methods for the Treatment of Fibrotic Disease
WO2022165000A1 (en) 2021-01-27 2022-08-04 Shy Therapeutics, Llc Methods for the treatment of fibrotic disease
WO2022187573A1 (en) 2021-03-05 2022-09-09 President And Fellows Of Harvard College Methods and compositions relating to cell membrane hybridization and camouflaging
WO2022189010A1 (en) 2021-03-07 2022-09-15 Givaudan Sa Methods and compositions for treating and preventing urinary tract infections
WO2022189856A1 (en) 2021-03-08 2022-09-15 Abionyx Pharma Sa Compounds useful for treating liver diseases
CA3211505A1 (en) 2021-03-10 2022-09-15 Lalit Kumar Sharma Alpha v beta 6 and alpha v beta 1 integrin inhibitors and uses thereof
IL319926A (en) 2021-03-19 2025-05-01 Tiba Biotech Llc Artificial alphavirus-derived rna repliconexpression systems
WO2022226166A1 (en) 2021-04-22 2022-10-27 Protego Biopharma, Inc. Spirocyclic imidazolidinones and imidazolidinediones for treatment of light chain amyloidosis
US20240269133A1 (en) 2021-05-21 2024-08-15 Purdue Pharma L.P. Methods of treating interstitial cystitis/bladder pain syndrome
EP4347568A1 (en) 2021-05-27 2024-04-10 Protego Biopharma, Inc. Heteroaryl diamide ire1/xbp1s activators
WO2022265880A1 (en) 2021-06-16 2022-12-22 President And Fellows Of Harvard College Improved methods and compositions for drug delivery relating to ionic liquids
WO2022271537A1 (en) 2021-06-25 2022-12-29 President And Fellows Of Harvard College Compositions and methods relating to injectable microemulsions
CN117980309A (en) 2021-08-05 2024-05-03 百时美施贵宝公司 Tricyclic fused pyrimidine compounds as HER2 inhibitors
US20230144855A1 (en) 2021-09-01 2023-05-11 Flagship Pioneering Innovations Vi, Llc Methods and compositions for inducing fetal hemoglobin
US20240360411A1 (en) 2021-09-01 2024-10-31 Flagship Pioneering Innovations Vi, Llc Methods and compositions for inducing fetal hemoglobin, modulating erythroid cell lineages, and perturbing megakaryocyte lineages
EP4396578A1 (en) 2021-09-01 2024-07-10 Flagship Pioneering Innovations VI, LLC Methods and compositions for promoting adipocyte beiging
EP4396380A1 (en) 2021-09-01 2024-07-10 Flagship Pioneering Innovations VI, LLC In vivo and ex vivo methods of modulating t cell exhaustion/de-exhaustion
WO2023039164A2 (en) 2021-09-09 2023-03-16 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating goblet cells and for muco-obstructive diseases
WO2023039162A1 (en) 2021-09-09 2023-03-16 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating enteroendocrine cells
EP4402281A2 (en) 2021-09-14 2024-07-24 Flagship Pioneering Innovations VI, LLC Methods and compositions for perturbing monocyte and neutrophil lineages
WO2023055457A1 (en) 2021-09-29 2023-04-06 Amneal Pharmaceuticals Llc Baclofen-containing granule formulations and reduced patient exposure to metabolite variations
EP4162933A1 (en) 2021-10-08 2023-04-12 Algiax Pharmaceuticals GmbH Compound for treating non-alcoholic fatty liver disease and related diseases
EP4412587A1 (en) 2021-10-08 2024-08-14 President And Fellows Of Harvard College Ionic liquids for drug delivery
EP4402124A4 (en) 2021-10-22 2025-07-16 Prosetta Biosciences Inc NEW HOST-TARGETED PAN-RESPIRATORY ANTIVIRAL SMALL MOLECULE THERAPEUTICS
CA3235692A1 (en) 2021-10-28 2023-05-04 Zywie, Llc Modified forms of ambroxol for therapeutic use
JP2024544920A (en) 2021-11-10 2024-12-05 アイ2オー セラピューティクス,インク. Ionic liquid composition
CA3238788A1 (en) 2021-11-22 2023-05-25 Eric Michael Schott Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause
EP4441038A1 (en) 2021-11-30 2024-10-09 Kura Oncology, Inc. Macrocyclic compounds having farnesyltransferase inhibitory activity
US20230190834A1 (en) 2021-12-21 2023-06-22 Solarea Bio, Inc. Immunomodulatory compositions comprising microbial entities
JP2025501308A (en) 2022-01-03 2025-01-17 ライラック セラピューティクス, インク. Acyclic Thiol Prodrugs
US11932665B2 (en) 2022-01-03 2024-03-19 Lilac Therapeutics, Inc. Cyclic thiol prodrugs
JP2025507621A (en) 2022-03-02 2025-03-21 ミトパワー, インク. Novel prodrugs derived from nicotinic acid and ribose.
WO2023168426A1 (en) 2022-03-03 2023-09-07 Enosi Therapeutics Corporation Compositions and cells containing mixtures of oligo-trap fusion proteins (ofps) and uses thereof
CA3255313A1 (en) 2022-03-28 2023-10-05 Isosterix, Inc. Inhibitors of the myst family of lysine acetyl transferases
CA3254863A1 (en) 2022-03-30 2023-10-05 Biomarin Pharmaceutical Inc. Dystrophin exon skipping oligonucleotides
GB2619907A (en) 2022-04-01 2023-12-27 Kanna Health Ltd Novel crystalline salt forms of mesembrine
AR129053A1 (en) 2022-04-14 2024-07-10 Bristol Myers Squibb Co NEW GSPT1 COMPOUNDS AND METHODS OF USING THE NEW COMPOUNDS
WO2023201348A1 (en) 2022-04-15 2023-10-19 Celgene Corporation Methods for predicting responsiveness of lymphoma to drug and methods for treating lymphoma
GEAP202516637A (en) 2022-04-25 2025-03-25 Siteone Therapeutics Inc Bicyclic heterocyclic amide inhibitors of na v1.8 for the treatment of pain
EP4519439A1 (en) 2022-05-05 2025-03-12 BioMarin Pharmaceutical Inc. Method of treating duchenne muscular dystrophy
WO2023230524A1 (en) 2022-05-25 2023-11-30 Flagship Pioneering Innovations Vi, Llc Compositions of secretory and/or catalytic cells and methods using the same
USD1078945S1 (en) 2022-07-13 2025-06-10 Fresh Products, Inc. Urinal screen
EP4584259A1 (en) 2022-09-09 2025-07-16 Innovo Therapeutics, Inc. Ck1alpha and dual ck1alpha / gspt1 degrading compounds
EP4578856A1 (en) 2022-09-30 2025-07-02 Ubience Inc. Heterocyclic compound
CA3268510A1 (en) 2022-09-30 2024-04-04 Boulder Bioscience Llc Compositions comprising 3,3'-diindolylmethane for treating non-hemorrhagic closed head injury
WO2024086246A2 (en) 2022-10-18 2024-04-25 Eluciderm Inc. 2-substituted 3,4 a, 5, 7, 8, 8 a-hexahydro-4h-thiop yrano [4,3- djpyrimidin-4-ones for wound treatment
EP4608388A1 (en) 2022-10-25 2025-09-03 Starrock Pharma Inc. Combinatorial, and rotational combinatorial therapies for obesity and other diseases
US20240174672A1 (en) 2022-10-26 2024-05-30 Protego Biopharma, Inc. Spirocycle Containing Pyridone Compounds
EP4608834A1 (en) 2022-10-26 2025-09-03 Protego Biopharma, Inc. Spirocycle containing pyridine compounds
WO2024092040A1 (en) 2022-10-26 2024-05-02 Protego Biopharma, Inc. Spirocycle containing bicyclic heteroaryl compounds
TW202434251A (en) 2022-11-04 2024-09-01 美商必治妥美雅史谷比公司 Therapy for the treatment of cancer
WO2024118810A1 (en) 2022-11-30 2024-06-06 Protego Biopharma, Inc. Cyclic pyrazole diamide ire1/xbp1s activators
WO2024118801A1 (en) 2022-11-30 2024-06-06 Protego Biopharma, Inc. Linear heteroaryl diamide ire1/xbp1s activators
WO2024145662A1 (en) 2022-12-30 2024-07-04 Altay Therapeutics, Inc. 2-substituted thiazole and benzothiazole compositions and methods as dux4 inhibitors
WO2024186690A2 (en) 2023-03-03 2024-09-12 Enosi Therapeutics Corporation Oligo-trap fusion proteins (ofps) and uses thereof
AU2024245246A1 (en) 2023-03-27 2025-10-30 Tonix Pharma Limited (s)-tianeptine and use in treating disorders and conditions associated with peroxisome proliferator-activated receptor
WO2024226471A2 (en) 2023-04-24 2024-10-31 Biomarin Pharmaceutical Inc. Compositions and methods for treating stxbp1 disorders
WO2024229096A1 (en) 2023-05-02 2024-11-07 Zywie, Llc Modified forms of ambroxol for therapeutic use
TW202448485A (en) 2023-05-05 2024-12-16 美商拜奧馬林製藥公司 Dystrophin exon skipping oligonucleotides
WO2025063888A1 (en) 2023-09-19 2025-03-27 Kancure Pte. Ltd. Survivin-targeted compounds
WO2025072423A1 (en) 2023-09-27 2025-04-03 Isosterix, Inc. Myst inhibitors
WO2025072489A2 (en) 2023-09-27 2025-04-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Analogues of n-lactoyl-phenylalanine, methods of synthesis, and methods of use
WO2025078239A1 (en) 2023-10-09 2025-04-17 Givaudan Sa Compositions
WO2025085416A1 (en) 2023-10-16 2025-04-24 Bristol-Myers Squibb Company Gspt1 compounds and methods of use of the compounds
WO2025085818A1 (en) 2023-10-19 2025-04-24 Purdue Pharma L.P. Sunobinop for use in method of treating alcohol use disorder
WO2025085878A1 (en) 2023-10-20 2025-04-24 Altay Therapeutics, Inc. N-phenyl-3-(2,5-dioxopyrrolidin-1-yl)propanamide derivatives and similar compounds as dux4 inhibitors for the treatment of e.g. neuromuscular disorders
WO2025102082A1 (en) 2023-11-10 2025-05-15 Altay Therapeutics, Inc. Carbocyclic and heterocyclic stat3 inhibitor compositions and methods
GB2636969A (en) 2023-11-24 2025-07-09 Ontrack Therapeutics Ltd Novel crystalline salt forms
TW202532072A (en) 2023-12-08 2025-08-16 美商西建公司 Therapy for the treatment of multiple myeloma
WO2025147691A1 (en) 2024-01-04 2025-07-10 Innovo Therapeutics, Inc. Compositions and methods for degrading aryl hydrocarbon receptor nuclear translocator protein
WO2025160286A1 (en) 2024-01-24 2025-07-31 Siteone Therapeutics, Inc. 2-aryl cycloalkyl and heterocycloalkyl inhibitors of nav1.8 for the treatment of pain
WO2025179161A1 (en) 2024-02-21 2025-08-28 Innovo Therapeutics, Inc. Protein degrading compounds
WO2025221809A1 (en) 2024-04-16 2025-10-23 Eluciderm Inc. 2-aryl-quinazolin-4(3h)-one inhibitors for the treatment of diseases
WO2025227129A2 (en) 2024-04-25 2025-10-30 Starrock Pharma Llc Delivery vehicles comprising proglucagon derived polypeptides and anabolic polypeptides and uses thereof
WO2025240895A1 (en) 2024-05-17 2025-11-20 Siteone Therapeutics, Inc. SUBSTITUTED CYCLOALKYL AND HETEROCYCLOALKYL INHIBITORS OF NAv1.8 FOR THE TREATMENT OF PAIN
WO2025255341A1 (en) 2024-06-05 2025-12-11 Protego Biopharma, Inc. Tetrahydrofuranyl ire1/xbp1s activators

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935326A (en) * 1967-06-28 1976-01-27 Boehringer Mannheim G.M.B.H. Process for coating tablets with aqueous resin dispersions
US4060598A (en) * 1967-06-28 1977-11-29 Boehringer Mannheim G.M.B.H. Tablets coated with aqueous resin dispersions
US3901969A (en) * 1973-09-10 1975-08-26 Union Corp Sustained release of methantheline
US3901968A (en) * 1973-09-10 1975-08-26 Union Corp Sustained release of methantheline
JPS517116A (en) * 1974-06-11 1976-01-21 Shinetsu Chemical Co Choyoseihifukuyakuzaino seizohoho
US4088798A (en) * 1975-11-11 1978-05-09 Sandoz, Inc. Methods for the preparation of controlled gastric residence time medicament formulations
US4026932A (en) * 1975-12-11 1977-05-31 The Dow Chemical Company Method for converting alkenoic acid copolymer latexes into water solutions
JPS5911563B2 (en) * 1980-02-27 1984-03-16 日本原子力研究所 Method for manufacturing multilayer sustained release composites
JPS57120518A (en) * 1981-01-19 1982-07-27 Tanabe Seiyaku Co Ltd Preparation of microcapsule
DE3208791A1 (en) * 1982-03-11 1983-09-22 Röhm GmbH, 6100 Darmstadt METHOD FOR COATING MEDICINAL PRODUCTS BY MEANS OF A COATING AGENT DISPERSED IN WATER
US4553973A (en) * 1982-07-12 1985-11-19 Alza Corporation Process for preparing osmotic device
US4548990A (en) * 1983-08-15 1985-10-22 Ciba-Geigy Corporation Crosslinked, porous polymers for controlled drug delivery
IE56999B1 (en) * 1983-12-22 1992-03-11 Elan Corp Plc Pharmaceutical formulation
JPS60166608A (en) * 1984-02-08 1985-08-29 Japan Atom Energy Res Inst Slow-releasing composite having sandwich structure and its preparation
EP0153105B1 (en) * 1984-02-10 1992-09-09 Benzon Pharma A/S Diffusion coated multiple-units dosage form
EP0164669B1 (en) * 1984-06-13 1991-01-23 Röhm Gmbh Process for coating pharmaceutical forms
US4600645A (en) * 1985-01-31 1986-07-15 Warner-Lambert Company Process for treating dosage forms
CH666405A5 (en) * 1985-06-24 1988-07-29 Ciba Geigy Ag SOLID, DURABLE PHARMACEUTICAL FORMS WITH ELASTIC FILM COVER.
GB8519310D0 (en) * 1985-07-31 1985-09-04 Zyma Sa Granular active substances
IT1214629B (en) * 1985-08-29 1990-01-18 Formenti Farmaceutici Spa MICRO-ENCAPSULATION PROCEDURE OF A MEDICATION, MEDICATION SO PREPARED, AND PHARMACEUTICAL COMPOSITIONS THAT INCLUDE IT
GB8521494D0 (en) * 1985-08-29 1985-10-02 Zyma Sa Controlled release tablet
US4837004A (en) * 1985-10-18 1989-06-06 Eastman Kodak Company Rumen-stable pellets
IT1204294B (en) * 1986-03-11 1989-03-01 Gentili Ist Spa METHOD OF MANUFACTURE OF GRANULARS SUITABLE FOR THE PRODUCTION OF COATED TABLETS, FOR ORAL USE, WITH CONTROLLED RELEASE
GB2189699A (en) * 1986-04-30 1987-11-04 Haessle Ab Coated acid-labile medicaments
GB2189698A (en) * 1986-04-30 1987-11-04 Haessle Ab Coated omeprazole tablets
GB8707416D0 (en) * 1987-03-27 1987-04-29 Wellcome Found Pharmaceutical formulations
JP2668880B2 (en) * 1987-06-23 1997-10-27 日本油脂株式会社 Method for producing coated amino acids
US5068110A (en) * 1987-09-29 1991-11-26 Warner-Lambert Company Stabilization of enteric coated dosage form
US5219621A (en) * 1987-10-16 1993-06-15 Elan Corporation, Plc Methods of treatment with diltiazem formulations
FR2624732B1 (en) * 1987-12-21 1991-02-15 Synthelabo SUSTAINED RELEASE PHARMACEUTICAL FORMULATION
EP0327295A3 (en) * 1988-02-01 1989-09-06 F.H. FAULDING & CO. LTD. Tetracycline dosage form
US5019397A (en) * 1988-04-21 1991-05-28 Alza Corporation Aqueous emulsion for pharmaceutical dosage form
US5024842A (en) * 1988-04-28 1991-06-18 Alza Corporation Annealed coats
US5160743A (en) * 1988-04-28 1992-11-03 Alza Corporation Annealed composition for pharmaceutically acceptable drug
IT1230576B (en) * 1988-10-20 1991-10-28 Angeli Inst Spa ORAL PHARMACEUTICAL FORMULATIONS WITH SELECTIVE LIBERATION IN THE COLON
US5085866A (en) * 1988-12-02 1992-02-04 Southern Research Institute Method of producing zero-order controlled-released devices
FR2643572A1 (en) * 1988-12-22 1990-08-31 Rhone Poulenc Chimie METHOD FOR ENCAPSULATING PARTICLES BY FILMING USING A THERMOPLASTIC SILICONE COPOLYMER
CA2007055A1 (en) * 1989-01-06 1990-07-06 Garth Boehm Theophylline dosage form
CA2007181C (en) * 1989-01-06 1998-11-24 Angelo Mario Morella Sustained release pharmaceutical composition
US5202128A (en) * 1989-01-06 1993-04-13 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
US5133974A (en) * 1989-05-05 1992-07-28 Kv Pharmaceutical Company Extended release pharmaceutical formulations
US5084278A (en) * 1989-06-02 1992-01-28 Nortec Development Associates, Inc. Taste-masked pharmaceutical compositions
CA2020654A1 (en) * 1989-07-07 1991-01-08 Yohko Akiyama Stabilized fgf composition and production thereof
US5047258A (en) * 1989-07-14 1991-09-10 Sterling Drug Inc. Aqueous spray-coating process
PH27186A (en) * 1989-09-07 1993-04-16 Ciba Geigy Ag Double-coated granules of disodium pamidronate
US5158777A (en) * 1990-02-16 1992-10-27 E. R. Squibb & Sons, Inc. Captopril formulation providing increased duration of activity
CA2036907C (en) * 1990-02-28 1996-10-22 Yuzo Miura 3-(substituted phenyl) pyrazole derivatives, a process for producing the same, herbicidal composition containing the same and method of controlling weeds using said composition
US5178866A (en) * 1990-03-23 1993-01-12 Alza Corporation Dosage form for delivering drug to the intestine
DE69111287T2 (en) * 1990-04-18 1995-12-21 Asahi Chemical Ind Spherical nuclei, spherical granules and processes for their production.
US5091175A (en) * 1990-05-14 1992-02-25 Erbamont Inc. Pharmaceutical composition containing bile acid sequestrant enclosed in a size-exclusion membrane
JP2558396B2 (en) * 1990-06-28 1996-11-27 田辺製薬株式会社 Controlled release formulation
JPH04230625A (en) * 1990-12-27 1992-08-19 Standard Chem & Pharmaceut Corp Ltd Method for production of finely dispersed tablet composition consisting of microcapsule containing sprayed and dried sodium dichlofenac and having enteric coating
ZA923474B (en) * 1991-05-20 1993-01-27 Marion Merrell Dow Inc Diltiazem formulation
US5288505A (en) * 1991-06-26 1994-02-22 Galephar P.R., Inc., Ltd. Extended release form of diltiazem
JP3142919B2 (en) * 1991-11-06 2001-03-07 旭化成株式会社 Cellulose derivative latex and method for producing the same
EP0613373B1 (en) * 1991-11-22 2000-08-02 THE PROCTER & GAMBLE PHARMACEUTICALS, INC. Risedronate delayed-release compositions
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5286493A (en) * 1992-01-27 1994-02-15 Euroceltique, S.A. Stabilized controlled release formulations having acrylic polymer coating
US5472712A (en) * 1991-12-24 1995-12-05 Euroceltique, S.A. Controlled-release formulations coated with aqueous dispersions of ethylcellulose
US5273760A (en) * 1991-12-24 1993-12-28 Euroceltigue, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5160742A (en) * 1991-12-31 1992-11-03 Abbott Laboratories System for delivering an active substance for sustained release
AU677220B2 (en) * 1992-08-04 1997-04-17 James M. Dunn Controlled release pharmaceutical formulations of 3'azido-3'-deoxythymidine and methods of use
IL110014A (en) * 1993-07-01 1999-11-30 Euro Celtique Sa Solid controlled-release oral dosage forms of opioid analgesics
US5560930A (en) * 1993-12-27 1996-10-01 Shin-Etsu Chemical Co., Ltd. Method for preparing aqueous emulsion for coating solid pharmaceutical preparations
JPH07223970A (en) * 1994-02-10 1995-08-22 Tanabe Seiyaku Co Ltd Release product in place in digestive tract

Also Published As

Publication number Publication date
US5639476A (en) 1997-06-17
EP0636366A2 (en) 1995-02-01
AU6868994A (en) 1995-02-09
AU686168B2 (en) 1998-02-05
CA2128591A1 (en) 1995-01-28
US5580578A (en) 1996-12-03
EP0636366A3 (en) 1998-02-04
US6143353A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
CA2128591C (en) Controlled release formulations coated with aqueous dispersions of acrylic polymers
US7070806B2 (en) Controlled release formulations coated with aqueous dispersions of acrylic polymers
CA2125904C (en) Controlled release formulations coated with aqueous dispersions of ethylcellulose
EP0553392B1 (en) Stabilized controlled release formulations having acrylic polymer coating
FI103475B (en) Process for the preparation of a controlled release preparation
JPH08175977A (en) Release control type pharmaceutical preparation coated with aqueous dispersion of acrylic polymer and its preparation
JP5146859B2 (en) Controlled release formulation coated with aqueous dispersion of acrylic polymer and method thereof
JP2008024708A (en) Controlled release type preparation coated with aqueous dispersion of acrylic polymer and method therefor
HK1073251A (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1075398A (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1073602A (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1072189A (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1129834A (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1072190A1 (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1072190B (en) Controlled-release formulations coated with aqueous dispersions of ethylcellulose
HK1005687B (en) Stabilized controlled release formulations having acrylic polymer coating
HK1005687C (en) Stabilized controlled release formulations having acrylic polymer coating

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20140721