CA2008192C - Process of using an improved flue in a titanium dioxide process - Google Patents

Process of using an improved flue in a titanium dioxide process

Info

Publication number
CA2008192C
CA2008192C CA002008192A CA2008192A CA2008192C CA 2008192 C CA2008192 C CA 2008192C CA 002008192 A CA002008192 A CA 002008192A CA 2008192 A CA2008192 A CA 2008192A CA 2008192 C CA2008192 C CA 2008192C
Authority
CA
Canada
Prior art keywords
conduit
protuberances
flue
titanium dioxide
substantially longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002008192A
Other languages
French (fr)
Other versions
CA2008192A1 (en
Inventor
Raul A. Gonzalez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to CA002008192A priority Critical patent/CA2008192C/en
Publication of CA2008192A1 publication Critical patent/CA2008192A1/en
Application granted granted Critical
Publication of CA2008192C publication Critical patent/CA2008192C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

In the process for producing titanium dioxide by (a) reacting titanium tetrachloride and oxygen in the vapor phase to produce titanium dioxide, and (b) subsequently cooling the titanium dioxide in a flue, an improvement comprising utilizing for all or a portion of the flue a conduit having a plurality of internal, substantially longitudinal protuberances, depressions or both.

Description

TITLE
PROCESS FOR USING AN IMPROVED FLUE
IN A TITANIUM DIOXIDE PROCESS

Background of the Invention Substantial quantities of titanium dioxide pigment are produced commercially by reacting titanium tetrachloride with oxygen in the vapor phase.
Immediately after such reaction, the titanium dioxide reaction mass is cooled by passing it through a conduit, i.e., flue, where growth of the titanium dioxide pigment particles takes place and agglomeration of such particles takes place.
It is desirable to cool the titanium dioxide rapidly because this will r~ult in pigment having higher carbon black undertone ("CBU"). CBU is described in U.S. Patent 2,488,440. However, when a smaller diameter flue is used to permit more rapid cooling, it has been found that while CBU is increased, turbulence can be increased, which increased agglomeration of the pigment particles and thereby decreases pigment gloss.
Also, it would be desirable to operate titanium dioxide processes at higher pressures to minimize equipment expenditures, but this can decrease CBU. Moreover, it is desirable to increase TiO2 output, but higher product can decrease CBU (due to the increased pressure) and decrease gloss (due to the increased turbulence).
The following information is disclosed which may be of interest to this invention.

20~81~

U.S. Patent 3,273,599 discloses an internally finned condenser tube.
U.S. Patent 2,833,627 discloses a method forcooling TiO2 by passing it through a water-cooled conduit.
U.S. Patent 4,462,979 discloses a method for cooling and producing Tio2 having improved agglomerating properties, which comprises first increasing the cross-sectional area of the flue and then decreasing the cross-sectional area of the flue.
Summary of the Invention In a process for producing titanium dioxide by (a) reacting titanium tetrachloride and oxygen in the vapor phase to produce titanium dioxide, and (b) subsequently cooling the titanium dioxide in a flue, the improvement comprising utilizing for all or a portion of the flue a conduit having a plurality of substantially longitudinal protuberances, depressions or both.
It has been found that at a qiven production rate the process of this invention can improve gloss and CBU or either of such properties. Also, use of the process of this invention can permit operation at higher pressures (which can permit decreased equipment expenditures and increased titanium dioxide pigment output) while still maintaininq satisfactory pigment gloss and CBU.
Detailed Description of the Invention The process for producing titanium dioxide pigment by reacting oxygen and titanium tetrachloride in the vapor phase is disclosed, for example, in U.S.
Patents 2,488,439, 2,488,440, 2,559,638, 2,833,627, ~081 92 3,208,866, and 3,505,091.

Such reaction usually takes place in a pipe or conduit, wherein oxygen and titanium tetrachloride are introduced at a suitable temperature and pressure for production o~ the titanium dioxide. In such reaction, a flame generally is produced.
Downstream from the flame, the titanium dioxide produced is fed through an additional length of conduit wherein cooling takes place. For the purposes herein, such conduit will be referred to as the flue. The flue should be as long as necessary to accomplish the desired cooling. Typically, the flue is water cooled and can be about 50-3000, preferably about 100-1500, and most preferably about 200-1200 feet long.
The improved flue used in this invention can be any suitable shape which does not cause excessive turbulence. Preferably, the flue will be round, i.e., in the form of a pipe.
~ he improved flue used in this invention has substantially longitudinal internal protuberances, depressions or both. Examples of suitable protuberances include ridges and/or fins. Examples of depressions include grooves and/or cuts. Examples of both protuberances and depressions include a conduit having similar shaped protuberances and depressions such as a pipe having a corruqated surface. Preferred is a flue with protuberances; especially preferred is a flue with internal fins. Another preferred embodiment is a flue with internal, hollow fins.
Because the improved flue used in this invention can be more expensive than an ordinary flue, typically, only a portion of the flue will have protuberances, depressions or both. Also, because 2~8~9~

most of the cooling of the ~iO2 will take place in close proximity to the flame of the titanium dioxide reaction, preferably, the improved flue used in this invention will be used substantially immediately downs~ream of the reaction flame, and continue thereafter until the point is reached where substantially all or most of the growth and/or agglomeration of the pigment particles ceases.
- Typically, the length of the improved flue used in this invention will be about 5-500, more preferably about 5-300, and most preferably about 5-100 feet. If desired, however, all or most of the flue can be the improved flue used in this invention; and, if so, this can decrease the required length because of the more efficient cooling it provides.
The following additional considerations should be taken into account in designing the improved flue used in this invention:
o To enhance cooling, there generally should be as many protuberances and/or depressions as possible, provided, however, that (1) there are not too many which would cause close spacing and consequently adherence between them of pigment or the particles of any material which are injected to scour the flue, and (2) the protuberances are not so thin that they substantially erode or corrode. Preferably, the spacings between the protuberances and/or depressions will be equal.
o Generally, the protuberances and/or depressions should be substantially longitudinal, i.e., located alonq the length of the flue. By the term ~substantially longitudinal~ is meant that the protuberances and/or depressions should be substantially parallel (i.e., parallel to the axis of the conduit) or somewhat angled, (i.e., similar to the -2008i92 grooves in a rifle barrel). Preferably, the protuberances and/or depressions will be substantially parallel.
o ~n regard to the height of the protuberances, they preferably should be as high as possible to enhance cooling, but not so high that they seriously erode (due to a hi~h tip temperature) or cause increased turbulence.
o The composition of the improved flue used in this invention should be any material which is chlorine resistant and has good heat transfer properties; preferred is nickel or a nickel alloy such as alloys commercially available as Nickel 200 or Nickel 201. Nickel 200 is commercially pure wrought nickel having a minimum of 99% nickel. Nickel 201 is the low carbon version of Nickel 200.
o Preferably, the tips of the protuberances should be thinner than the base of the protuberances;
preferred are protuberances of a trapezoidal shape where the spaces between the protuberances are depressions which are rounded.
o Preferably, the protuberances are tapered, i.e., the inlet and outlet portions of the flue will have a protuberance height less than that at the highest point of the protuberances; especially preferred are protuberances which are tapered and flush with the interior of the flue at its inlet and outlet.
o The interior diameter of the improved flue of this invention should be that which does not in itself cause substantial turbulence with the velocity and other conditions for the Tio2 and other materials in the flue. Typical interior diameters are about 2-50 inches, preferably about 5-30 inches, and most preferably about 6-20 inches. Preferably, the improved flue of this invention will have a conduit interior diameter which is greater than that of the ordinary flue which is located upstream from the improved flue of this invention. In the foregoing and as elsewhere used herein, (a) ~interior diameter"
means the distance between the two lowest points in the flue which are opposite each other, and (b) nupstream~ or ndownstreamn are in reference to the flow of titanium dioxide pigment through the flue.
Preferably, the diameter of the improved flue of this invention, when measured from tip to tip of protuberances which are opposite each other, will be greater than or approximately equal to the diameter of the ordinary flue which is located upstream from the improved flue of this invention.
o If it is desired to optimize the gloss properties of the Tio2 pigment, the protuberances and/or depressions should be designed to reduce turbulence without reducing the cooling rate.
Conversely, if it is desired to optimize the CBU of the Tio2 pigment, the cooling rate should be improved without increasing turbulence.
o Preferably, the interior diameter of the ordinary flue which is located downstream from the improved flue of this invention will be greater than that of the improved flue of this invention.
The following example illustrates thie invention:
Example A 32-foot section of conduit pipe, comprised of Nickel 200, was inserted approximately 12 feet from the flame base which oxidizes TiC14 to Tio2 in a continuous Tio2 reactor. The conduit had an interior diameter of 11.5 inches and had 30 trapezoidal-~haped protuberances which were approximately 1 inch high.

20~981~

The base of the protuberances were .77 inch across, and the tips of the protuberances were .19 inch across. The spaces between the protuberances were depressed and rounded. The protuberances were tapered so that at the inlet and outlet of the conduit they were flush with the interior surface of ~he conduit.
An ordinary flue with a smooth interior surface was attached to the dounstream end of the conduit and had an interior diameter of 11.5 inches which tapered to 12.25 inches interior diameter.
The 32-foot section of conduit pipe was comprised of two identical 16-foot sections of conduit which were bolted together. One of the 16-foot sections is illustrated in Figures 1 and 2. Figure 1 is an end view of such 16-foot section of conduit and Figure 2 is a section taken on line 2-2 of Figure 1.
In the drawings, item 1 shows the trapezoidal-shaped protuberances, item 2 shows the taper of the protuberanes, and item 3 shows the flanges which are used to bolt the conduits together.
The rate of Tio2 production was about 1~
tons per hour, the pressure was about 47 psig, the TiC14 temperature was about 420-C, the ~2 temperature was about 1530-C, excess oxygen was about 7%, chlorine purge was about 3000 pounds per hour, and sodium chloride scrub of about 6 pounds per 100 pounds of Tio2 was used to prevent Tio2 buildup on the interior surface of the flue.
For the Tio2 produced, the CBU was about 10 and the 30-J gloss was about 76. The 30-J gloss is a standard test which is performed by making an alkyd resin paint having about 16 percent Tio2 pigment volume concentration (i.e., the volume of pigment occupied by the total volume of the dried paint film).
The paint was sprayed on a smooth aluminum substrate, 2 0 ~

dried, and the gloss measured at a 20~ angle by a gloss meter such as the Hunter Lab D-4~ Glossmeter.

* trade mark

Claims (15)

1. In the process for producing titanium dioxide by (a) reacting titanium tetrachloride and oxygen in the vapor phase to produce titanium dioxide, and (b) subsequently cooling the titanium dioxide in a flue, the improvement comprising utilizing for all or a portion of the flue a conduit having a plurality of internal, substantially longitudinal protuberances, depressions or both.
2. The process of claim 1 wherein the conduit is a pipe.
3. The process of claim 1 wherein the conduit has a plurality of substantially longitudinal protuberances having tips and bases, and wherein the tips of the protuberances are thinner than the bases of the protuberances.
4. The process of claim 3 wherein the protuberances are trapezoidal in shape, there are spaces between the protuberances, and the spaces between such protuberances are rounded depressions.
5. The process of claim 1 wherein the interior diameter of the conduit is about 2-50 inches.
6. The process of claim 1 wherein (a) the conduit has a plurality of substantially longitudinal protuberances, and (b) wherein one or more protuberances at the inlet and outlet portion of the conduit are tapered so that said protuberances are flush with the interior of the conduit at its inlet and outlet.
7. The process of claim 1 wherein (a) a portion of the flue is said conduit, (b) the conduit has a plurality of substantially longitudinal protuberances, and (c) the interior diameter of the conduit is greater than that of the portion of the flue which is not said conduit and is located upstream from the conduit.
8. The process of claim 1 wherein (a) a portion of the flue is said conduit, (b) the conduit has a plurality of internal, substantially longitudinal protuberances, and (c) the diameter of the conduit, when measured from tip to tip of protuberances which are opposite each other, is greater than or approximately equal to the interior diameter of the flue which is not the conduit and is located upstream from the conduit.
9. The process of claim 1 wherein (a) the conduit has a plurality of internal, substantially longitudinal protuberances having tips and bases, (b) the tips of the protuberances are thinner than the bases of the protuberances, and (c) one or more protuberances at the inlet and outlet portion of the conduit are tapered so that said protuberanes are flush with the interior of the conduit at its inlet and outlet.
10. The process of claim 9 wherein (a) a portion of the flue is said conduit, and (b) the interior diameter of the conduit is greater than that of the portion of the flue which is not the conduit and is located upstream from the conduit.
11. The process of claim 9 wherein (a) a portion of the flue is said conduit, and (b) the diameter of the conduit, when measured from tip to tip of protuberances which are opposite each other, is greater than or approximately equal to the interior diameter of the flue which is not the conduit and is located upstream from the conduit.
12. The process of any one of claims 1-11 wherein the conduit having protuberances, depressions or both comprises nickel or a nickel alloy.
13. The process of any one of claims 1-11 wherein the protuberances are fins.
14. The process of any one of claims 1-11 wherein the protruberances are hollow fins.
15. The process of any one of claims 1-11 wherein (a) a portion of the flue is said conduit, and (b) the portion of the flue which is not the conduit and is located downstream from the conduit has a diameter greater than or equal to said conduit.
CA002008192A 1987-11-09 1990-01-19 Process of using an improved flue in a titanium dioxide process Expired - Lifetime CA2008192C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002008192A CA2008192C (en) 1987-11-09 1990-01-19 Process of using an improved flue in a titanium dioxide process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11867287A 1987-11-09 1987-11-09
CA002008192A CA2008192C (en) 1987-11-09 1990-01-19 Process of using an improved flue in a titanium dioxide process

Publications (2)

Publication Number Publication Date
CA2008192A1 CA2008192A1 (en) 1991-07-19
CA2008192C true CA2008192C (en) 1999-02-23

Family

ID=25673896

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002008192A Expired - Lifetime CA2008192C (en) 1987-11-09 1990-01-19 Process of using an improved flue in a titanium dioxide process

Country Status (1)

Country Link
CA (1) CA2008192C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2427715A2 (en) * 2009-05-08 2012-03-14 E. I. du Pont de Nemours and Company Process of using an improved flue in a titanium dioxide process

Also Published As

Publication number Publication date
CA2008192A1 (en) 1991-07-19

Similar Documents

Publication Publication Date Title
US4937064A (en) Process of using an improved flue in a titanium dioxide process
JP3577101B2 (en) Waste heat boiler
KR100525879B1 (en) Pyrolysis furnace with an internally finned u-shaped radiant coil
US6207131B1 (en) Method and apparatus for producing titanium dioxide
US3361525A (en) Manufacture of oxides of the elements titanium, zirconium, iron, aluminum and silicon
JP3274740B2 (en) Apparatus and method for producing fine metal and ceramic powders
US6419893B1 (en) Process for producing and cooling titanium dioxide
CA2559805A1 (en) Process for improving raw pigment grindability
AU716808B2 (en) Method and apparatus for producing titanium dioxide
US4633935A (en) Method for the cooling of hot gaseous solids suspensions of titanium dioxide
JP3071533B2 (en) Method and apparatus for producing carbon black
US3615202A (en) Process for the manufacture of titanium dioxide
AU2001295046A1 (en) Process for producing and cooling titanium dioxide
CA2008192C (en) Process of using an improved flue in a titanium dioxide process
US5538708A (en) Expansion section as the inlet to the flue in a titanium dioxide process
WO1997037189A1 (en) Improved heat exchanger
US3519389A (en) Process for removing titanium dioxide scale from reactor walls
CN1104625C (en) Apparatus for cooling solids laden hot gases
JP3090935B2 (en) Method for producing titanium dioxide
US4018262A (en) Heat exchange with gas/solids mixtures
FI97376B (en) Process for preparing titanium dioxide
US20120058044A1 (en) Process of using an improved flue in a titanium dioxide process
MXPA97004153A (en) Use of an improved section of expansion as lainned to the channel of smoke in a process of dioxide deproduction of tita
US3012864A (en) Apparatus for making carbon black
JPH09217068A (en) Pipe for thermally cracking hydrocarbon

Legal Events

Date Code Title Description
EEER Examination request
FZDC Discontinued application reinstated
MKEX Expiry