CA1206354A - Method for the production of high resistance and cross-strength improved of al-zn-mg-cu type alloy drawn wires - Google Patents

Method for the production of high resistance and cross-strength improved of al-zn-mg-cu type alloy drawn wires

Info

Publication number
CA1206354A
CA1206354A CA000416870A CA416870A CA1206354A CA 1206354 A CA1206354 A CA 1206354A CA 000416870 A CA000416870 A CA 000416870A CA 416870 A CA416870 A CA 416870A CA 1206354 A CA1206354 A CA 1206354A
Authority
CA
Canada
Prior art keywords
degrees
charac
alloy
type
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000416870A
Other languages
French (fr)
Inventor
Roger Develay
Marc Anagnostidis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallurgigue de Gerzat
Original Assignee
Metallurgigue de Gerzat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9264805&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA1206354(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallurgigue de Gerzat filed Critical Metallurgigue de Gerzat
Application granted granted Critical
Publication of CA1206354A publication Critical patent/CA1206354A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Extrusion Of Metal (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Conductive Materials (AREA)

Abstract

1. A method of producing hot extruded products of the type Al-Zn-Mg-Cu, which, in the treated state, has improved transverse characteristics, characterised by casting an alloy of the following composition (% by weight) : Si =< 0.08 Cu 1.0 to 2.0 Mg 2.1 to 3.5 Zn 7.2 to 9.5 Cr 0.07 to 0.17 Mn 0.15 to 0.25 Zr 0.08 to 0.14 Ti =< 0.10 Others each =< 0.05 Others total =< 0.15 Balance = Al and iron homogenizing the cast product in the range of temperatures of from 460 degrees C to the initial melting temperature of the alloy, hot extruding the product at a temperature of the order of 400 degrees C, optionally hot drawing the hot extruded product, putting the product into solution in the range of temperatures of from 460 to 490 degrees C, quenching the product in cold water (omicron =< 40 degrees C), cold working with a level of deformation (S - s/s) =< 10%, and a tempering operation : type T6 : that is to say, from 6 to 50 hours at from 115 to 150 degrees C, or type T7 : that is to say, from 3 to 24 hours at from 100 to 120 degrees C + 8 to 20 hours at from 150 to 170 degrees C, the longest periods of time generally being associated with the lowest temperatures.

Description

-~LZ~3~

La présente invention concerne un procedé d'obten-tion de produits files en alliage d'Al type Al-Zn-Mg Cu à
haute resistance qui possedent ~ l'etat traite Itype T6 ou T7) une ductilite et une tenacite elevees, en particulier dans le sens travers, ainsi qu'une bonne resistance a la corrosion sous tension.
On connait dejà des produits files ~ haute resis-tance presentant des caracteristiques de ductilite et de tenacite elevees dans le sens long (voir par exemple ceux decrits dans la demande de brevet français publiee sous le n~ 2.457.908) Cependant pour certaines applications, en parti-culier dans les domaines ou les materiaux sont tres forte-ment sollicites et doivent presenter de grandes fiabilite et securite d'emploi (par exemple dans l'aeronautique, l'armement, etc...) les proprietés dans le sens travers sont encore insuffisantes, notamment dans les parties des pieces relativement peu corroyees.
Cette méthode consis~e a:
- couler un alliage dont la composition est la suivant~ (%
en poids3 Fe < 0,10 Si < 0,08 Cu 1,0 à 2,0 Mg 2,1 a 3,5 Zn 7,2 a 9,5 Cr 17 a o,l?
Mn 0,15 a 0,25 Zr 0,08 a 0,14 Ti < 0,10 autres chacun < 0,05 autres total < 0,15 reste = Al - a homogéneiser le produit coule dans le domaine de tempe-ratures compris entre 460C et la température de fusion . ~

3S~

commençante de l'alliage - à filer a chaud le produit à une température de l'ordre de 400C
- à étirer éventuellement le produit file à chaud a une température de l'ordre de 380C.
- à le mettre en solution dans le domaine de températures compris entre 460 et 480C
- a le tremper à l'eau froide (~ < 40C) - a l'étirer éventuellement a froid avec une déformation 1~ (5 ~ 5) < 10%
- à pratiquer un revenu:
. t~pe T6 soit de 6 a 50 h entre 115 et 150C
ou . type T7 soit de 3 à 24 h entre 100 et 120C
+ 8 à 20 h entre 150 et 170C
les temps les plus longs étant generalement associés aux temperatures les plus basses.
Les proprietes optimales sont atteintes lorsque chacune des conditions suivantes sont, de préference, xéunies:
Analyse = Fe < 0,10 (~ en poids) Si < 0,08 Cu : 1,35 à 1,85 Mg : 2,4 a 3,0 2S Zn : 7,~ ci 8,9 Cr : 0,10 à 0,17 Mn : 0,15 ~ 0,25 Zr : 0,Q8 ~ 0,14 Ti < 0,10 3(1 Autres chacun ~ 0,05 " Total ~ 0,15 Reste Al Homogeneisation vers 470C + 5C
Mise en solution entre 465 et 480C

E;3~i~

Ecrouissage a froid ( S 5 s ) compris entre 1,5 et 5%
Revenu type T6- 25 à 35 h entre 115 et 130C
ou type T7: 5 a 10 h entre 100 et 110C
+ 8 a 12 h entre 155 et 165C
Il a été remarqué que les teneurs en élements dlalliages principaux doivent être suffisantes pour obtenir les caractéristi~ues mécaniques recherchées, mais limitées supérieurement pour ne pas induire une fragilite excessive.
La ductilité travers est également fortement influencée par les teneurs en Fe et Si qui doivent, de préférence, ~tre tenues aussi basses que possible, dans les limites suivantes:
Fe < 0,05%
Si < 0,05~
Fe + Si < 0.06%
Les exemples suivants illustrent les propriétés obtenues dans le cas d'un corps creux filé et d'une barre filée; lesdits exemples faisant référence aux dessins suivants dans lesquels:
- la figure 1 represente le detail du prelevement des eprouvettes; et - la figure 2 represente le dessins de l'eprouvette de determination du facteur K - dimensions en mm, On a coule deux alliages A et B dont les composi.-tions sont les suivantes l'alllage A, hors invention, cons-tituant le témoin.
(% en poids) A B
Fe 0,14 0,05 Si 0,06 0,04 Cu 1,63 1,60 Zn 8,13 8,00 Mg 2,69 2,46 Mn 0,18 0,20 Cr 0,13 0,12 ~635~

Zr 0,11 d,l3 Ti ~0,05 ~0~05 L ' alliage A, coule en semi-continu sous forme de /

- 3a -billettes de 170 mm de diametre a subi un traitement d'homogeneisation de 24 h a 460C, a ete file par filage inverse à 400C + 10C sous Eorme d'etuis de dimensions 0 107 x 141 mm. Ces etuis ont ete etires a chaud a 380C +
20C aux dimensions 0 105,5 x 132 mm, usines exterieurem~nt par tournage au diamètre de 127,2 mm, decapes, mis en so~u-tion à 460C, trempes a l'eau froide, etires à froid sur trempe fraîche avec un taux d'ecrouissage (5 5 5~ de 4 % et revenus 30 h a 120C.
L'alliage B, conforme a 1' invention, a ete partage en quatre lots: Bl, B2, B3, B4:
- le lot Bl a ete transforme d'une façon identique au lot A, l'exception du taux dlecrouissage (S s s) qui a ete de 10 % ~u lieu de 4 %
lS - la lot B2 a ete transforme d'une façon identique au lot A.
- le lot B3 a ete transforme d'une facon identique au lot B2, sauf que le traitement d'homogeneisation a eté réalisé
à 470C (au lieu de 460C) et que la mise en solution a eté effectuee à 470C ( au lieu de 460C); ce lot B3 correspond donc au domaine préfërentiel de l'invention;
- le lot B4 a eté transforme d'une façon identique au lot B2, sauf ~n ce qui concerne le revenu final pratique: 6 h à 105C + 10 h à 150C, 155C, 160C et 165C (cas B41, B42, B43, B44, respectivement~ ou a 120C pendant 30 h
-~ LZ ~ 3 ~

The present invention relates to a process for obtaining tion of Al alloy products of the Al-Zn-Mg Cu type to high resistance which have ~ itype T6 treated state or T7) high ductility and tenacity, in particular in the cross direction, as well as good resistance to corrosion under stress.
There are already known products files ~ high resis-tance having characteristics of ductility and high tenacity in the long sense (see for example those described in the French patent application published under n ~ 2,457,908) However for certain applications, in particular especially in areas where materials are very strong-solicited and must have great reliability and job security (for example in aeronautics, the armament, etc ...) the properties in the cross direction are still insufficient, especially in the parts of the relatively little corrected pieces.
This method consis ~ ea:
- pour an alloy whose composition is as follows ~ (%
by weight3 Fe <0.10 If <0.08 Cu 1.0 to 2.0 Mg 2.1 to 3.5 Zn 7.2 to 9.5 Cr 17 ao, l?
Mn 0.15 to 0.25 Zr 0.08 to 0.14 Ti <0.10 others each <0.05 other total <0.15 rest = Al - to homogenize the product flowing in the temperature range -erasures between 460C and the melting temperature . ~

3S ~

beginning of the alloy - hot spinning the product at a temperature of the order from 400C
- optionally stretching the hot file product to a temperature of the order of 380C.
- to put it in solution in the temperature range between 460 and 480C
- soak it in cold water (~ <40C) - to stretch it possibly cold with a deformation 1 ~ (5 ~ 5) <10%
- to practice an income:
. t ~ pe T6 is from 6 to 50 h between 115 and 150C
or . type T7 from 3 to 24 h between 100 and 120C
+ 8 to 8 p.m. between 150 and 170C
the longest times are generally associated with lowest temperatures.
Optimal properties are achieved when each of the following conditions are, preferably, xéunies:
Analysis = Fe <0.10 (~ by weight) If <0.08 Cu: 1.35 to 1.85 Mg: 2.4 to 3.0 2S Zn: 7, ~ ci 8.9 Cr: 0.10 to 0.17 Mn: 0.15 ~ 0.25 Zr: 0, Q8 ~ 0.14 Ti <0.10 3 (1 Others each ~ 0.05 "Total ~ 0.15 Rest Al Homogenization around 470C + 5C
Dissolution between 465 and 480C

E; 3 ~ i ~

Cold work hardening (S 5 s) between 1.5 and 5%
Standard income T6- 25 to 35 h between 115 and 130C
or type T7: 5 to 10 h between 100 and 110C
+ 8 a 12 h between 155 and 165C
It has been noticed that the element contents main alloys must be sufficient to obtain the mechanical characteristics sought, but limited superiorly so as not to induce excessive fragility.
The cross ductility is also strongly influenced by the Fe and Si contents which should preferably be ~ be kept as low as possible, within limits following:
Fe <0.05%
If <0.05 ~
Fe + Si <0.06%
The following examples illustrate the properties obtained in the case of a spun hollow body and a bar spun; said examples referring to the drawings in which:
- Figure 1 shows the detail of the sample test tubes; and - Figure 2 shows the drawings of the test tube determining the K factor - dimensions in mm, We poured two alloys A and B whose composites.
The following are alllage A, outside the invention, cons-calling the witness.
(% by weight) AB
Fe 0.14 0.05 If 0.06 0.04 Cu 1.63 1.60 Zn 8.13 8.00 Mg 2.69 2.46 Mn 0.18 0.20 Cr 0.13 0.12 ~ 635 ~

Zr 0.11 d, l3 Ti ~ 0.05 ~ 0 ~ 05 Alloy A, flows semi-continuously in the form of /

- 3a -170 mm diameter billets underwent processing of homogenization of 24 ha 460C, was spun by spinning reverse to 400C + 10C under Eorme of dimensional boxes 0 107 x 141 mm. These cases were hot drawn at 380C +
20C with dimensions 0 105.5 x 132 mm, external factories by turning to the diameter of 127.2 mm, decapes, put in so ~ u-tion at 460C, cold water quenching, cold drawing on fresh quenching with a work hardening rate (5 5 5 ~ of 4% and income 30 ha 120C.
Alloy B, according to the invention, was shared in four lots: Bl, B2, B3, B4:
- lot B1 has been transformed in the same way as lot A, the exception of the hardening rate (S ss) which was 10% ~ instead of 4%
lS - lot B2 has been transformed in the same way as lot A.
- lot B3 has been transformed in an identical way to lot B2, except that the homogenization treatment has been carried out at 470C (instead of 460C) and that the dissolution has was performed at 470C (instead of 460C); this lot B3 therefore corresponds to the preferential field of the invention;
- lot B4 has been transformed in an identical way to lot B2, except ~ n for practical final income: 6 h at 105C + 10h at 150C, 155C, 160C and 165C (case B41, B42, B43, B44, respectively ~ or at 120C for 30 h

2$ (cas B40).
On a usine dans les etuis ainsi obtenus (voir figure 1).
- des eprouvettes de traction lisses (1) prelevees soit dans le corps de l'etui en dist:inguant le sens long (L) et le sens travers lsens tangentiel (T)l soit dans le fond de lletui dans le sens travers (T) (sens tangentiel~.
Ces eprouvettes ont servi,lors d'un essai de traction,à la determination des caracteristiques mecaniques classiques, à savoir-3S~

. limi-te elastique RO,2 . charge de rupture Rm . allongements a la rupture A ~ mesures sur une longueur initiale utile egale a 5,65 ~ ~o etant la section de l'eprouvette avant traction.
- des eprouvettes de traction entaillees 12) avec un coeffi-cient de concentration de contrainte KT = 6,5 (rayon a fond d'e~taille 0,025 mm) et prelevees dans le sens long du corps de l'etui. Ces eprou~ettes ont été rompues par traction, ce qui a permis de determiner leur charge de rupture Re. Le rapport Re/RO,2 de la charge de rupture sur éprouvette entaillée a la limite elastique sur eprou-vette lisse a ete retenu comme critere d'appréciation.
- des éprouvettes de résilience (3) type Charpy V (entaille en V à 45, de profondeur 2 mm, de ra~on à fond d'entaille egal à 0,25 mm). Les eprouvettes ont ete prelevées dans le sens long du corps des etuis, de façon que la fissure de rupture se propage dans le sens épaisseur du corps de l'etui (sens normalise L-R~. Elles ont été utilisées pour déterminer les caractéristiques Enc (énergie de rupture sur éprouvette non pré-~issuree) et Eco (energie de rup-ture sur eprouvette pré-fissurée par fatique sur appareil Physmet (marque de commerce)).
- des éprouvettes (4) pour mesure cle facteur de -tenacite ~:
2S les conditions de determination de ce facteur K sont decrites ci-après:
L'éprouvette d'essai est representée en ~ig~lre 2 Se5 dimensions sont les suivantes:
- epaisseur : B = 8 mm - largeur : W = 8 mm - longueur : 55 mm - entaille usinee : a = 2 mm, rayon à fond d'entaille < 0108 mm Une fissure de fatigue esJc initiee sur l'eprou-31L2~3~

vette definie ci-dessus, prelevee dans le sens L-R, dans le corps, dans les condi-tions de la norme ASTM E399 (0,~5 < a/W < 0,55, propagation en fatigue d'au moins 1~3 mm, charge inferieure a 60 % du Pq).
L'eprouvette, fissuree en fatique, est ensuite soumise à un essai de flexion lente en trois points. Pen-dant l'essai, on enregistxe la courbe: effort en fonction de la vitesse de deroulement du papier de l'enregistreur (vitesse constante).
Le facteur K a ete calcule suivant la formule donnee par la norme ASTM E399 (Bend Specimen) qui est:
p S . f (a/W) B . W /
(en MPa avec P : charge maximum mesuree sur le graphique en newtons S : distance entre appuis en m W : largeur de l'eprouvette en m B : epaisseur de l'eprouvette en m a : longueur de la crique en m Remarque: Mesure de la longueur a de la crique L'eprouvette, après rupture, est projetee sur un verre depoli a l'aide d'un profiloscope ~g = 20).
La partie de la cassure qui correspond ~ la crique initiale en~endree par fatique est ensuite decalquee sur un papier transparent. On mesure alors les longueurs des :Eissures au quart, moitie et trois quarts de l'epaisseur de l'eprouvette.
La valeur de a utilisee dans la formule est la valeur mo~erlne des trois mesures.
- des eprouvettes pour essais de corrosion sous forme - d`anneau~ C preleves dans le corps ayant 40 mm de largeur.
Ces eprouvettes ont ete testees en corrosion sous tension ~LZ~63S~

suivant la norme AFNOR A 05-301.
Les resultats (valeurs moyennes) sont donnes dans le tableau suivanto - - ~

rl O ~ 11~ Itl ~ O rd ra r~
U~ ~
O ~ O O O 00 ~ Ll~ Lr) Lt~
S~ O ~ ~ ~r O U~ ~ ~ ~
O_ A ~ ~ Al~l~l a) t~ 'a~
1~ ~ -~ In ~
~ ¦O ~ O O r~
~> r~ _ I o r X ~ ~ I
~ ~ ~ U~
~
~I ~ O
_ t) O
~: î, o~ In O~~ ~I ~ ~ C
_ 1 U~ Lr .
~0 lV) ~ U~
t~ ~i ~i r-l __ _ r~ 1 Ln o o ~ ~ ~ oo ~ ~ O ~ o ~
~ co oo ~ ~ ~ ~ cs~ n ~ ~ oo ~ r-l r~ i r-l ~ h r-l r~l r-l r-l r~ r-l t~
. .. _ __ ~-~
n o o Ln n n ~ n o o o Ln r~l --1~ ~ r 5 n ~ , 1 ~ o n n ,~ ~ ~D ~ ~ o oD ~ ~
~; ~ ~ D ~9 ~ ~ D ~D ~D ~:) ~ n ~ P~
_ _ O Ln n o o o o o o Ln o co o oo oo ~ ~ ~ P~
~ ~ (~ 0 ~\ d~ ~ D 1~) 0 ~0 r~ 9 d~ ~ ; ~ O
Pi ~ ~ n n n ~D n n ~ ~D n ~ n n n Ln ~1 J o u~
_ _ _ . . _ r~ Q r-l ~ P~ ~; O u~
a~ ~:1 E~ I E-l ~ E~ ~ E~ ~1 E I r` I 1~ O ~
U~ ~ 1:l a~n rl _S
_ _ __~1 r~
~ '1/U (a u~
r ~ U7 U~ U~ U7 .,L~ rl rl n~ r h ~: Qlr R.l r .IJ.rl U~
r~ O O O O O O O O O-rl 1:l ~1 O
P. O Ll_l C) L~ O L~l t_) Il-! r-l S~l (~1 _ _ _ rn o r~ r (~ r_l r-l (~i ~f) ~r ~ ~ ~r ~r S_l ~ ~: m m m m m m m m ,~ ~
_ ~

~2~ S~

On observe pour les etuis A1, Bl, ~2 et B3, traites en T6, que les lots Bl, B2 et B3 conformes à l'in-vention, presentent des allongements à la rup~ure, dans le sens travers de la partie peu corroyee du fond, nettement superieurs a ceux du lot temoin Al. Par ailleurs, le lot B2, ayant subi un ecrouissage apres trempe et avant revenu situe dans le domaine preferentiel de l'invention (>1,5% et <5~) presente un ensemble de caracteristiques de traction plus performant que celui du lot BL pour lequel l'ecrouis-sage a ete de 10 ~.
De plus, le lot B3, dont les conditions d'homo-geneisation de mise en solution, d'ecrouissage entre trempe et revenu sont situees dans le domaine preferentiel de l'invention, apparalt comme particulièrement performant en particulier en ce qui concerne les allongements a la ruptuxe dans le sens iravers du fond de l'etui qui sont plus de quatre fois plus eleves que ceu.~ du lot temoin A.
Enfin les lots B4x montrent que pour un traitement du type T7 avec deux paliers, il est permis de conf~rer aux alliages conformes a l'invention une resistance a la corro-sion sous tension particulierement elevee.
EXEMPI.E 2 On a coule en semi-continu, sous forme de biellettes de diametre 200 mm, trois alliages C, D et E de composition ~S ci-après:
(~ en poids) C D E
Fe 0,16 0,09 0,02 Si 0,10 0,05 0,02 Cu 1,45 1,~5 1,~5 ~0 Mg 2,65 2,65 2,65 Zn 8,10 8,10 8,10 Mn 0,22 0,21 0,22 Cr 0,15 0,10 0,16 Zr 0,11 0,12 0,11 Ti 0,05 0,05 0,05 _ 9 .

~2~i3S~

l'alliage C, hors invention, constituant le témoin.
Chacun des alliages a ete homogeneise durant 24 h à 475C, ecroute au diametre de 170 mm et transforme par filage à chaud inverse a la temperature de 350-400C sous forme de barre de diametre 50 mm. Les barres ont ete mises en solution l h a 478C, trempees a l'eau froide et revenues 24 h a 120C.
Il a ete preleve dans les barres pour essais:
- des eprouvettes de traction lisses dans les sens long et trav~rs pour mesure des caracteristi~ues R0,2, Rm et A %
\ ~
(sur 5,65 VSo).
- des eprouvettes de traction entaillees avec un coefficient de concentration de contrainte egal a 8, dans le sens travers, pour mesure de Re et determination du rapport Re/R0,2.
- des eprouvettes d'essai de tenacite (format : 30 x 31~2SJ
epaisseur 12,5 mm) dans les sens L-R et C-R (designation ASTM). Les conditions d'essais correspondant a la spé-cification ASTM E399 ont permis de determiner le facteur de concentration de contrainte ~c~
Les resultats (valeurs moyennes) sont donnes dans le tableau 2 ci-apres.
$ 2 (case B40).
We factory in the cases thus obtained (see figure 1).
- smooth tensile specimens (1) taken either in the body of the remote case: ingestion of the long direction (L) and the direction across tangential sense (T) l be in the bottom of lletui in the cross direction (T) (tangential direction ~.
These test pieces were used, during a tensile test, to determination of classical mechanical characteristics, to know-3S ~

. elastic band RO, 2 . breaking load Rm . elongations at break A ~ measurements over a length useful initial equal to 5.65 ~ ~ o being the section of the test piece before traction.
- notched tensile specimens 12) with a coefficient stress concentration KT = 6.5 (radius a background size 0.025 mm) and drawn in the long direction the body of the case. These tests were broken by traction, which made it possible to determine their load of rupture Re. The ratio Re / RO, 2 of the breaking load on notched test specimen at the elastic limit on test piece This smooth was retained as an assessment criterion.
- Charpy V type resilience test pieces (3) in V at 45, depth 2 mm, from ra ~ on to bottom of notch equal to 0.25 mm). The test pieces were taken from the long direction of the body of the cases, so that the crack of rupture propagates in the thickness direction of the body of the case (meaning normalizes LR ~. They were used to determine the characteristics Enc (breaking energy on test tube not pre-issured) and Eco (energy of rup-ture on pre-cracked specimen by fatigue on device Physmet (trademark)).
- test pieces (4) for measurement of the -tenacity factor ~:
2S the conditions for determining this K factor are described below:
The test specimen is represented in ~ ig ~ lre 2 Se5 dimensions are as follows:
- thickness: B = 8 mm - width: W = 8 mm - length: 55 mm - factory cut: a = 2 mm, notch radius <0108 mm A fatigue crack esJc initiated on the test-31L2 ~ 3 ~

vette defined above, taken in the LR direction, in the body, under the conditions of ASTM E399 (0, ~ 5 <a / W <0.55, fatigue propagation of at least 1 ~ 3 mm, load less than 60% of the Pq).
The specimen, cracked in boredom, is then subjected to a three-point slow bending test. Pen-during the test, the curve is recorded: effort as a function the speed of the unwinding of the recorder paper (constant speed).
The K factor was calculated using the formula given by standard ASTM E399 (Bend Specimen) which is:
p S. f (a / W) B. W /
(in MPa with P: maximum load measured on the graph in newtons S: distance between supports in m W: width of test piece in m B: thickness of test piece in m a: length of the cove in m Note: Measurement of the length a of the crack The test piece, after rupture, is projected onto a frosted glass using a profiloscope ~ g = 20).
The part of the break that corresponds to the crack initial in ~ endree by fatique is then transferred to a transparent paper. We then measure the lengths of : Eissures at quarter, half and three quarters of the thickness of the test tube.
The value of a used in the formula is lower value of the three measurements.
- specimens for corrosion tests in the form - ring ~ C taken from the body 40 mm wide.
These test pieces were tested in corrosion under tension ~ LZ ~ 63S ~

according to AFNOR A 05-301 standard.
The results (average values) are given in the following table - - ~

rl O ~ 11 ~ Itl ~ O rd ra r ~
U ~ ~
O ~ OOO 00 ~ Ll ~ Lr) Lt ~
S ~ O ~ ~ ~ r OR ~ ~ ~ ~
O_ A ~ ~ Al ~ l ~ la) t ~ 'a ~
1 ~ ~ - ~ In ~
~ ¦O ~ OO r ~
~> r ~ _ I o r X ~ ~ I
~ ~ ~ U ~
~
~ I ~ O
_ t) O
~: î, o ~ In O ~~ ~ I ~ ~ C
_ 1 U ~ Lr.
~ 0 lV) ~ U ~
t ~ ~ i ~ i rl __ _ r ~ 1 Ln oo ~ ~ ~ oo ~ ~ O ~ o ~
~ co oo ~ ~ ~ ~ cs ~ n ~ ~ oo ~ rl r ~ i rl ~ h rl r ~ l rl rl r ~ rl t ~
. .. _ __ ~ - ~
noo Ln nn ~ nooo Ln r ~ l --1 ~ ~ r 5 n ~, 1 ~ onn, ~ ~ ~ D ~ ~ o oD ~ ~
~; ~ ~ D ~ 9 ~ ~ D ~ D ~ D ~ :) ~ n ~ P ~
_ _ O Ln noooooo Ln o co o oo oo ~ ~ ~ P ~
~ ~ (~ 0 ~ \ d ~ ~ D 1 ~) 0 ~ 0 r ~ 9 d ~ ~; ~ O
Pi ~ ~ nnn ~ D nn ~ ~ D n ~ nnn Ln ~ 1 J or ~
_ _ _. . _ r ~ Q rl ~ P ~ ~; Where a ~ ~: 1 E ~ I El ~ E ~ ~ E ~ ~ 1 EI r` I 1 ~ O ~
U ~ ~ 1: la ~ n rl _S
_ _ __ ~ 1 r ~
~ '1 / U (at ~
r ~ U7 U ~ U ~ U7., L ~ rl rl n ~ rh ~: Qlr Rl r .IJ.rl U ~
r ~ OOOOOOOO O-rl 1: l ~ 1 O
P. O Ll_l C) L ~ OL ~ l t_) Il-! rl S ~ l (~ 1 _ _ _ rn or ~ r (~ r_l rl (~ i ~ f) ~ r ~ ~ ~ r ~ r S_l ~ ~: mmmmmmmm, ~ ~
_ ~

~ 2 ~ S ~

We observe for cases A1, Bl, ~ 2 and B3, milked in T6, that lots Bl, B2 and B3 conform to the vention, present elongations at the rup ~ ure, in the crosswise from the slightly corrected part of the bottom, clearly superior to those of the witness batch Al. Furthermore, the batch B2, having undergone hardening after quenching and before tempering located in the preferential field of the invention (> 1.5% and <5 ~) has a set of traction characteristics more efficient than that of the BL batch for which the nut wise was 10 ~.
In addition, lot B3, whose homogeneous conditions geneization of dissolution, work hardening between quenching and income are located in the preferential area of the invention appears to be particularly effective in particularly with regard to lengthening at ruptuxe in the direction iravers from the bottom of the case which are over four times higher than that of the witness batch A.
Finally, lots B4x show that for a treatment type T7 with two bearings, it is permissible to confer alloys according to the invention resistance to corrosion particularly high voltage.
EXEMPI.E 2 We poured semi-continuously, in the form of rods 200 mm in diameter, three alloys C, D and E of composition ~ S below:
(~ by weight) CDE
Fe 0.16 0.09 0.02 If 0.10 0.05 0.02 Cu 1.45 1, ~ 5 1, ~ 5 ~ 0 Mg 2.65 2.65 2.65 Zn 8.10 8.10 8.10 Mn 0.22 0.21 0.22 Cr 0.15 0.10 0.16 Zr 0.11 0.12 0.11 Ti 0.05 0.05 0.05 _ 9.

~ 2 ~ i3S ~

alloy C, outside the invention, constituting the control.
Each of the alloys was homogenized for 24 h at 475C, catches with a diameter of 170 mm and transforms by reverse hot spinning at a temperature of 350-400C under bar shape with a diameter of 50 mm. Bars have been set in solution lha 478C, soaked in cold water and returned 24 ha 120C.
It was taken from the bars for testing:
- smooth tensile specimens in the long directions and trav ~ rs for measurement of characteristics R0,2, Rm and A%
\ ~
(on 5.65 VSo).
- notched tensile specimens with a coefficient of stress concentration equal to 8, in the direction cross, for measurement of Re and determination of the ratio Re / R0.2.
- tenacity test specimens (format: 30 x 31 ~ 2SJ
thickness 12.5 mm) in the LR and CR directions (designation ASTM). The test conditions corresponding to the specific ASTM E399 specifications were used to determine the factor stress concentration ~ c ~
The results (average values) are given in Table 2 below.

3~

Sens* Alliage C Alliage D Alliage E
R0,2 (MPa) LT 630 690 685 Rm (MPa) LT 605 ~10 610 A (%) L T 4,9 _ 56',5 6,6 Re/R0,2 T 0,90 1,20 1,30 KIC ~Mpa ~ C-R 22 24 29 KI 2 L 0,215 0,255 0,310 _ R0,2 (ml T 0,163 0,19~ 0,290 * L : long T : travers C : circonferentiel R : radial A remarquer, en particulier, llamelioration des proprietés dans le sens travers concernant plus particu-lièrement la plasticité (A ~) et la ténacité (Re/R0,2 etKIC) dans le cas des alliages D et E conformes ~ l'inven-tion, l'alliage E correspondant au domaine de composition privilégié de l'invention, présentant le meilleur compoxte-ment à cet egard. Il est à noter que la valeur du rappor-t `(-R0 2) ~ui est representatif de la longueur cr1-tique d'une issure entralnant la rupture catastrophique de la pièce correspondante est presque egale dans les sens travers et long pour ce dernier alliage.
3 ~

Direction * Alloy C Alloy D Alloy E
R0.2 (MPa) LT 630 690 685 Rm (MPa) LT 605 ~ 10,610 A (%) LT 4.9 _ 56 ', 5 6.6 Re / R0.2 T 0.90 1.20 1.30 KIC ~ Mpa ~ CR 22 24 29 KI 2 L 0.215 0.255 0.310 _ R0.2 (ml T 0.163 0.19 ~ 0.290 * L: long T: cross C: circumferential R: radial Note, in particular, the improvement of properties in the cross direction concerning more particularly The plasticity (A ~) and the toughness (Re / R0.2 and KIC) in the case of alloys D and E conforming to the invention tion, alloy E corresponding to the composition range privileged of the invention, having the best compo-lie in this regard. It should be noted that the value of the report `(-R0 2) ~ ui is representative of the cr1-tick length of a issure causing catastrophic failure of the part corresponding is almost equal in the cross directions and long for this last alloy.

Claims (8)

Les réalisations de l'invention, au sujet des-quelles un droit exclusif de propriété ou de privilège est revendiqué, sont définies comme il suit: The embodiments of the invention, concerning the-what an exclusive property right or lien is claimed, are defined as follows: 1. Méthode d'obtention de produits files du type Al-Zn-Mg-Cu qui possède à l'état traité des caractéristiques travers améliorées, caractérisée en ce que l'on coule un alliage de composition suivante (% en poids) Fe ? 0,10 Si ? 0,08 Cu 1,0 à 2,0 Mg 2,1 à 3,5 Zn 7,2 à 9,5 Cr 0,07 à 0,17 Mn 0,15 à 0,25 Zr 0,08 à 0,14 Ti ? 0,10 Autres chacun ? 0,05 total ? 0,15 Reste = Al l'on homogénéise le produit coulé dans le domaine de tempé-ratures compris entre 460°C et la température de fusion commençante de l'alliage, l'on file à chaud à une température de l'ordre de 400°C, l'on étire ou l'on étire pas à chaud le produit filé, l'on met en solution dans le domaine de température compris entre 460 et 480°C, l'on trempe à l'eau froide (? ? 40°C), l'on écroui à froid avec une déformation ? 10 %, et ou bien l'on pratique un revenu type T6 : soit de 6 à 50 h entre 115 et 150°C, ou bien l'on pratique un revenu type T7 : soit de 3 à 24 h entre 100 et 120°C + 8 à 20 h entre 150 et 170°C, les temps les plus longs étant généralement associés aux températures les plus basses. 1. Method of obtaining file products of the type Al-Zn-Mg-Cu which has characteristics in the treated state improved cross, characterized in that a alloy of the following composition (% by weight) Fe? 0.10 Yes ? 0.08 Cu 1.0 to 2.0 Mg 2.1 to 3.5 Zn 7.2 to 9.5 Cr 0.07 to 0.17 Mn 0.15 to 0.25 Zr 0.08 to 0.14 Ti? 0.10 Others each? 0.05 total? 0.15 Rest = Al the cast product is homogenized in the temperature range erasures between 460 ° C and the melting temperature beginning of the alloy, one spins hot at a temperature of the order of 400 ° C., the spun product is stretched or not drawn hot, one puts in solution in the temperature range understood between 460 and 480 ° C, soak in cold water (?? 40 ° C), cold work cold with a deformation ? 10%, and or we practice a T6 type income: either from 6 to 50 h between 115 and 150 ° C, or we practice a T7 type income: either 3 to 24 hours between 100 and 120 ° C + 8 to 20 h between 150 and 170 ° C, the longest times are generally associated with lowest temperatures. 2. Méthode selon la revendication l, caractéri-sée en ce que l'alliage a la composition suivante (% en poids):
Fe ? 0,10 Si ? 0,08 Cu 1,35 à 1,85 Mg 2,4 à 3,0 Zn 7,6 à 8,9 Cr 0,10 à 0,17 Mn 0,15 à 0,25 Zr 0,08 à 0,14 Ti ? 0,10 Autres chacun ? 0,05 Autres total ? 0,15
2. Method according to claim l, character-in that the alloy has the following composition (% in weight):
Fe? 0.10 Yes ? 0.08 Cu 1.35 to 1.85 2.4 to 3.0 mg Zn 7.6 to 8.9 Cr 0.10 to 0.17 Mn 0.15 to 0.25 Zr 0.08 to 0.14 Ti? 0.10 Others each? 0.05 Other total? 0.15
3. Méthode selon la revendication 1 ou 2, carac-térisée en ce que les teneurs en Fe et Si sont limitées à
(% en poids):
Fe ? 0,05 Si ? 0,05 Fe + Si ? 0,06
3. Method according to claim 1 or 2, charac-terized in that the contents of Fe and Si are limited to (% in weight):
Fe? 0.05 Yes ? 0.05 Fe + If? 0.06
4. Méthode selon la revendication 1 ou 2, carac-térisée en ce que l'homogénéisation est effectuée entre 465 et 475°C. 4. Method according to claim 1 or 2, charac-terized in that the homogenization is carried out between 465 and 475 ° C. 5. Méthode selon la revendication l ou 2, carac-térisée en ce que la mise en solution est effectuée entre 465 et 480°C. 5. Method according to claim l or 2, charac-in that the dissolution is carried out between 465 and 480 ° C. 6. Méthode selon la revendication l ou 2, carac-térisée en ce que l'écrouissage à froid est compris entre 1,5 et 5 %. 6. Method according to claim l or 2, charac-terrified in that cold work hardening is understood between 1.5 and 5%. 7. Méthode selon la revendication 1 ou 2, carac-térisée en ce que le revenu est effectué dans le domaine de températures compris entre 115 à 130°C durant 25 à 35 heures. 7. Method according to claim 1 or 2, charac-terrified in that the income is made in the area of temperatures between 115 to 130 ° C for 25 to 35 hours. 8. Méthode selon la revendication 1 ou 2, carac-térisée en ce que le revenu comporte un séjour de 5 à 10 h entre 100 et 110°C et un séjour de 8 à 12 h entre 155 et 165°C. 8. Method according to claim 1 or 2, charac-in that the income includes a stay of 5 to 10 h between 100 and 110 ° C and an 8 to 12 hour stay between 155 and 165 ° C.
CA000416870A 1981-12-03 1982-12-02 Method for the production of high resistance and cross-strength improved of al-zn-mg-cu type alloy drawn wires Expired CA1206354A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8122969 1981-12-03
FR8122969A FR2517702B1 (en) 1981-12-03 1981-12-03

Publications (1)

Publication Number Publication Date
CA1206354A true CA1206354A (en) 1986-06-24

Family

ID=9264805

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000416870A Expired CA1206354A (en) 1981-12-03 1982-12-02 Method for the production of high resistance and cross-strength improved of al-zn-mg-cu type alloy drawn wires

Country Status (10)

Country Link
EP (1) EP0081441B1 (en)
JP (1) JPS58113358A (en)
AT (1) ATE16292T1 (en)
CA (1) CA1206354A (en)
DE (1) DE3267187D1 (en)
DK (1) DK158317C (en)
FR (1) FR2517702B1 (en)
IE (1) IE54132B1 (en)
NO (1) NO155629C (en)
ZA (1) ZA828873B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
US5284327A (en) * 1992-04-29 1994-02-08 Aluminum Company Of America Extrusion quenching apparatus and related method
AU670114B2 (en) * 1992-09-22 1996-07-04 Luxfer Gas Cylinders Sas Aluminium alloy for hollow bodies under pressure
US5560789A (en) * 1994-03-02 1996-10-01 Pechiney Recherche 7000 Alloy having high mechanical strength and a process for obtaining it

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263641A (en) * 1985-09-14 1987-03-20 Showa Alum Corp High-strength aluminum-alloy extruded material excellent in low-cycle fatigue characteristics
FR2601967B1 (en) * 1986-07-24 1992-04-03 Cerzat Ste Metallurg AL-BASED ALLOY FOR HOLLOW BODIES UNDER PRESSURE.
US4861391A (en) * 1987-12-14 1989-08-29 Aluminum Company Of America Aluminum alloy two-step aging method and article
FR2645546B1 (en) * 1989-04-05 1994-03-25 Pechiney Recherche HIGH MODULATED AL MECHANICAL ALLOY WITH HIGH MECHANICAL RESISTANCE AND METHOD FOR OBTAINING SAME
JP2982172B2 (en) * 1989-04-14 1999-11-22 日本鋼管株式会社 Heat treatment method for high strength aluminum alloy material
FR2676462B1 (en) * 1991-05-14 1995-01-13 Pechiney Rhenalu PROCESS FOR IMPROVING ISOTROPY THROUGH THICK PRODUCTS OF AL ALLOYS.
EP0694084B1 (en) * 1993-04-15 2001-09-19 Luxfer Group Limited Method of making hollow bodies
JPH09151714A (en) * 1995-12-04 1997-06-10 Fuji Oozx Inc Aluminum alloy made spring retainer for internal combustion engine
US6322647B1 (en) * 1998-10-09 2001-11-27 Reynolds Metals Company Methods of improving hot working productivity and corrosion resistance in AA7000 series aluminum alloys and products therefrom
CN1489637A (en) 2000-12-21 2004-04-14 �Ƹ��� Aluminum alloy products and artificial aging method
FR2838135B1 (en) 2002-04-05 2005-01-28 Pechiney Rhenalu CORROSIVE ALLOY PRODUCTS A1-Zn-Mg-Cu WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
FR2838136B1 (en) * 2002-04-05 2005-01-28 Pechiney Rhenalu ALLOY PRODUCTS A1-Zn-Mg-Cu HAS COMPROMISED STATISTICAL CHARACTERISTICS / DAMAGE TOLERANCE IMPROVED
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
GB2426979B (en) 2003-04-10 2007-05-23 Corus Aluminium Walzprod Gmbh An Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
DE502005001724D1 (en) 2005-01-19 2007-11-29 Fuchs Kg Otto Quench-resistant aluminum alloy and method for producing a semifinished product from this alloy
FR2907796B1 (en) 2006-07-07 2011-06-10 Aleris Aluminum Koblenz Gmbh ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
EP2038447B1 (en) 2006-07-07 2017-07-19 Aleris Aluminum Koblenz GmbH Method of manufacturing aa2000-series aluminium alloy products
JP5083816B2 (en) * 2007-11-08 2012-11-28 住友軽金属工業株式会社 Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material
SI3265595T1 (en) 2015-10-30 2019-05-31 Novelis, Inc. High strength 7xxx aluminum alloys and methods of making the same
CN109402539B (en) * 2018-11-29 2020-02-11 四川航天长征装备制造有限公司 Method for improving radial elongation of aluminum alloy bar

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881966A (en) * 1971-03-04 1975-05-06 Aluminum Co Of America Method for making aluminum alloy product
FR2222450A1 (en) * 1973-03-21 1974-10-18 Aluminum Co Of America Aluminium alloy forgings - from material cast heat treated and worked under particular conditions to obtain improved mechanical properties
CA1047901A (en) * 1973-10-26 1979-02-06 Melvin H. Brown Rapid high temperature aging of al-zn-mg-cu alloys
SE414193B (en) * 1973-10-26 1980-07-14 Aluminum Co Of America SETTING THERMALLY TREAT AN ARTICLE OF AN ALUMINUM ALLOY TO GIVE THIS HIGH TEMPORARILY AND GOOD RESISTANCE TO TENSION CORROSION
US3945861A (en) * 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
FR2457908A1 (en) * 1979-06-01 1980-12-26 Gerzat Metallurg PROCESS FOR PRODUCING HOLLOW BODIES OF ALUMINUM ALLOY AND PRODUCTS THUS OBTAINED

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
US5284327A (en) * 1992-04-29 1994-02-08 Aluminum Company Of America Extrusion quenching apparatus and related method
US5447583A (en) * 1992-04-29 1995-09-05 Aluminum Company Of America Extrusion quenching apparatus and related method
AU670114B2 (en) * 1992-09-22 1996-07-04 Luxfer Gas Cylinders Sas Aluminium alloy for hollow bodies under pressure
US5560789A (en) * 1994-03-02 1996-10-01 Pechiney Recherche 7000 Alloy having high mechanical strength and a process for obtaining it

Also Published As

Publication number Publication date
DE3267187D1 (en) 1985-12-05
DK158317C (en) 1990-10-01
FR2517702A1 (en) 1983-06-10
ATE16292T1 (en) 1985-11-15
EP0081441A1 (en) 1983-06-15
NO155629C (en) 1987-04-29
EP0081441B1 (en) 1985-10-30
DK534982A (en) 1983-06-04
IE822870L (en) 1983-06-03
JPS58113358A (en) 1983-07-06
FR2517702B1 (en) 1985-11-15
DK158317B (en) 1990-04-30
ZA828873B (en) 1983-09-28
NO155629B (en) 1987-01-19
IE54132B1 (en) 1989-06-21
JPS6127458B2 (en) 1986-06-25
NO824043L (en) 1983-06-06

Similar Documents

Publication Publication Date Title
CA1206354A (en) Method for the production of high resistance and cross-strength improved of al-zn-mg-cu type alloy drawn wires
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
EP1114877A1 (en) Al-Cu-Mg alloy aircraft structural element
FR2784119A1 (en) High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents
NO20025562L (en) Corrosion resistant aluminum alloy
WO2003080884A2 (en) Al-mg alloy products for a welded construction
CA2244148C (en) Thick alznmgcu alloy products having improved properties
CA2907854A1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
CA2961712A1 (en) Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
CA2942426A1 (en) Extruded 6xxx alloy product that is suitable for turning and has low roughness after anodisation
Lu et al. A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs
FR2478675A1 (en) STAINLESS STEEL WITH SPRING, TYPING TYPE BY PRECIPITATION
KR20240115781A (en) Substantially pb-free aluminum alloy composition
EP0227563B1 (en) Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation
GB2065516A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
FR2664907A1 (en) Process for the manufacture of a metal sheet or strip made of zircalloy with good formability and strips obtained
GB2130941A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
CA2130766A1 (en) Process of desensitization to intercrystalline corrosion of aluminium alloys from 2000 and 6000 series and related products
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
FR2960003A1 (en) SUPERELASTIC MATERIAL WITH HIGH DUCTILITY
GB2128914A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
CA2014776A1 (en) Al-li-cu-mg alloy with good cold deformability and good shock resistance
JP7259262B2 (en) Extruded material for impeller and manufacturing method thereof
BE494414A (en)
FR3132306A1 (en) Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet

Legal Events

Date Code Title Description
MKEX Expiry