CA1084052A - Process for preparing 4-substituted imidazole compounds - Google Patents

Process for preparing 4-substituted imidazole compounds

Info

Publication number
CA1084052A
CA1084052A CA276,559A CA276559A CA1084052A CA 1084052 A CA1084052 A CA 1084052A CA 276559 A CA276559 A CA 276559A CA 1084052 A CA1084052 A CA 1084052A
Authority
CA
Canada
Prior art keywords
methyl
process according
mole
aminoethyl
thiomethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA276,559A
Other languages
French (fr)
Inventor
Robert L. Webb
Joseph J. Lewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Inc
Original Assignee
Smith Kline and French Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/771,044 external-priority patent/US4119781A/en
Application filed by Smith Kline and French Canada Ltd filed Critical Smith Kline and French Canada Ltd
Application granted granted Critical
Publication of CA1084052A publication Critical patent/CA1084052A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/84Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/88Nitrogen atoms, e.g. allantoin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/6506Five-membered rings having the nitrogen atoms in positions 1 and 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
A process for preparing 4-(oxy, thio or amino)methyl-imidazole compounds via displacement of the trisubstituted phosphonium group from 4-(trisubstituted phosphonium)-methylimidazole compounds is disclosed. The process provides an efficient and high yield method of producing these imidazoles which are useful as intermediates in the preparation of pharmacologically active compounds such as histamine H2-antagonists.

Description

1 This invention relates to a process for preparing substituted imidazole compounds which are useful intermediates in the preparation of compounds having pharmacological activity. In particular, the invention relates to a process for preparing 4-(oxy, thio or amino)-methylimidazoles via displacement of the trisubstituted phosphonium group from a 4-(trisubstituted phosphonium)-methylimidazole compound which is represented as follows:

Rl ~H2P (R ) 3 Rl CH2R2 ~N R2H ~ ~\ 5 ~/ H ~ ~ H + P ~R ) 3 I II

in which Rl is hydrogen or lower alkyl, preferably methyl;
R2 is methoxy, ethoxy, n-propoxy, n-butoxy, i-butoxy, NCN
2 t-butoxy~ -ScH2cH2NH2' -SCH2CH2NHC~ or -NR R

where R and R are each hydrogen, lower alkyl or together with the nitrogen atom to which they are attached form a piperidine, pyrrolidine or morpholine ring; R3 is hydrogen, lower alkyl, trifluoromethyl, benzyl, amino or -SR4 where R4 is lower alkyl, preferably methyl, phenyl, benzyl or chlorobenzyl; R5 is lower alkyl or, preferably, phenyl and X
is halo, preferably chloro or bromo. Preferably, R2 is ~, .

1 ~NCN
-SCH2CH2NH2 or -SCH2CH2NHC

The 4-(trisubstituted phosphonium)methyl-imidazole compounds of Fsrmula I are also objects of this invention.
As used herein, the term "lower alkyl" refers to groups containing from one to four carbon atoms.
According to the above process, the displacement ~ 5 of a trisubstituted phosphonium group [-P(R )3] of a compound of formula I is effected by reaction of a compound of formula I with R2H under basic conditions, that is with R2H in the form of its anion R2 ~. The anion may be formed from in situ reaction of a compound of the formula R2H and a strong base. Among the bases which may be used in the process of this invention are those which are cap~ble of removing the proton from a compound of the formula R2H to form the anion R2 ~ where R2 is defined as above. Such bases are those having a pKa greater than 12, for example the alkali metal alkoxides such as sodium methoxide or ethoxide or the metal hydrides such as sodium hydride which are preferred. When R2H is itself sufficiently basic, for example when R2H is piperidine, no additional base need be used. In those cases where R2H is extremely volatile, such as when R2 is -NR6R7 and one or both of R6 and R7 are hydrogen, it is preferable that R2H be in the form of a metalate, for example sodium or lithium metalate, such as sodium amide. Preferably, a slight excess of R2H is present.
3~

iO84052 The reaction is carried out in an organic solvent with solvents such as methanol, ethanol, propanol, butanol, acetone, acetonitrile, dimethylformamide and dimethylsulfoxide being preferred. Preferably, the reaction is carried out at a temperature ranging from about ambient temperature to the reflux temperature of the solvent used in the reaction, viz. from about 25C. to about 200C., about 65C. to about 100C. being advantageous, for from about 20 minutes to about 24 hours, advantageously from about 20 minutes to about 3 hours.
Preferably, the reaction mixture is worked up by dilution with water and removal of the trialkyl- or triphenylphosphine by-product by filtration. Extraction of the filtrate when necessary followed by evaporation gives the compounds of formula II. It is often desirable to convert the compounds of formula II to the corresponding salts, preferably hydrochloride salts. Such salts are prepared by treating a solution of the imidazole of formula II with an acid or acid solution, for example with an ethereal or ethanolic solution of hydrochloric acid, and crystallizing the salt produced from an appropriate solvent.
The 4-(trisubstituted phosphonium)-methylimidazoles of formula I are prepared from reaction of a trisubstituted ~-acylvinylphosphonium halide, preferably bromide or chloride, of the formula .
(R5)3P ~ Rl where Rl, R5 and X are defined as ~) , above with a compound of the formula ~0t34052 H2N ~ NH where R3 is defined as above other than hydrogen, according to the procedure described by Zbiral, S Synthesis 11:775 (1974) and Zbiral and Hugl, Phosphorus 2:29 (1972). When R3 is hydrogen, the corresponding 4-(trisubstituted phosphonium)methylimidazoles of formula I are also prepared by reaction of trichloroacetamidine or formamidine sulfinic acid with a triphenyl ~-acylvinylphosphonium halide. In the formamidine sulfinic acid process a base is used, preferably a non-nucleophilic base such as a tertiary amine.
To prepare the trisubstituted ~-acylvinylphos-phonium halides not known to the art, a halovinyl alkyl ketone such as chlorovinyl methyl ketone is treated with a trialkyl- or triphenylphosphine. When Rl is hydrogen, the trisubstituted ~-formylvinylphosphonium halides are prepared by oxidation of a ~-haloallyl alcohol such as ~-chloroallyl alcohol and treatment of the product thus formed with a trialkyl- or triphenylphosphine.

The process of this invention provides an inexpensive, efficient and high yield method for preparing certain imidazoles useful as intermediates in the preparation of pharmacologically active compounds. A
further advantage of this process for the conversion of 2.5 compounds of formula I to those of formula II is that the trisubstituted phosphines, P(R5)3, formed during the course of the reaction may be easily removed from the reaction mixture and recycled or otherwise reused.
The imidazole compounds of formula II prepared by the process of this invention are useful as intermediates for the production of pharmacologically active compounds 1 in particular histamine H2-antagonists, for example N-cyano-N'-methyl-N"-[2-(5-Rl-imidazolylmethylthio)ethyl]-guanidine and N-methyl-N'-[2-(5-Rl-imidazolylmethylthio)-ethyl]thiourea compounds. Histamine H2-antagonists act at histamine H2-receptors which as described by Black et al.
[Nature 236:385 (1972)] may be defined as those histamine receptors which are not blocked by "antihistamines" such as mepyramine but are blocked by burimamide. Blockade of histamine ~2-receptors is of utility in inhibiting the biological actions of histamine which are not inhibited by "antihistamines". Histamine H2-antagonists are useful, for example, as inhibitors of gastric acid secretion.
Conversion of the compounds of formula II to the pharmacologically active guanidine and thiourea products can be accomplished in a variety of ways. When R2 is -SCH2CH2NH2 and R3 is hydrogen, lower alkyl, trifluoro-methyl, benzyl or amino, the 4-(2-aminoethyl)thiomethyl-imidazole compound of formula II is treated with methyl isothiocyanate to give the corresponding N-methyl-N'-[2-(5-Rl-imidazolylmethylthio~ethyl]thioureas. Reaction of the same 4-(2-aminoethyl)thiomethylimidazole compound with N-cyano-N',S-dimethylisothiourea gives the corresponding N-cyano-N'-methyl-N"-[2-(5-Rl-imidazolyl-methylthio)ethyl]guanidines. The guanidine products ~ are also prepared by reaction of the 4-(2-aminoethyl)-_5 thiomethylimidazole with dimethyl-N-cyanoimidodithio-carbonate and subsequently reacting the resulting N-cyano-N'-[2-(5-Rl-imidazolylmethylthio)ethyl]-S-methylisothiourea with methylamine. When R2 is 3~

1 ~NCN
SCH2C~2NHC~ , the guanidine products are prepared directly by the process of this invention.
When R2 is -SCH2CH2NH2 and R3 is -SR4 where R4 is defined as above, the compounds of formula II are treated with a reducing agent, for example, with Raney nickel, to give the corresponding 4-(2-aminoethyl)thio-methylimidazoles where R3 is hydrogen which are then converted to the guanidine and thiourea products as NCN
described above. When R2 is -SCH2CH2NHC \ and R3 is -SR4, treatment with a reducing agent gives the guanidine product directly.
When R2 is methoxy, ethoxy, n-propoxy, n-butoxy, i-butoxy, t-butoxy or -NR R and R3 is -SR4 where R4 is defined as above, the -SR4 group of the compounds of formula II is removed as described above and the products thus formed are then treated with cysteamine to give the
4-(2-aminoethyl)thiomethylimidazole compounds where R3 is hydrogen which are converted to the guanidine and thiourea products as previously described.
When R is methoxy, ethoxy, n-propoxy, n-butoxy, i-butoxy, t-butoxy or -NR6R7 and R3 is hydrogen, the compounds of formula II are treated with cysteamine to give the 4-(2-aminoethyl)thiomethylimidazoles which are then converted to the guanidine and thiourea products as previously described.

1 These thiourea and cyanoguanidine products prepared from the compounds of formula II are described in U.S. Patents 3,950,333 and 3,950,353.
The following examples illustrate the invention but are not intended to limit the scope thereof.
Temperatures are in degrees Centigrade (C.) unless otherwise indicated.

Sodium metal (25.3 g., 1.1 mole) was dissolved in ethanol (2 L). 2-Methylpseudothiourea sulfate (278.3 g., 1.0 mole) was added and the mixture was stirred for O.S
hour. Then 411 g. (1.0 mole) of triphenyl B-acetyl-vinylphosphonium bromide was added and the mixture was heated at reflux for 18 hours, cooled and filtered. The filter cake was washed with 200 ml. of ethanol. The filtrate and ethanol wash were combined and evaporated under reduced pressure to leave a brown residue. Chloroform (500 ml.) was added to the residue and the mixture was stirred for a few minutes, then filtered. The filter cake was washed three times with 150 ml. portions of chloroform and dried to give 364 g. (75%) of [(2-methylthio-5-methyl-imidazolyl)-4-methyl]triphenylphosphonium bromide.
Cysteamine (12.23 g., 0.13 mole) was dissolved in 100 ml. methanol and 46.5 ml. of 25% wt/v sodium methoxide solution added. After stirring at ambient temperature for 10 minutes, the solid phosphonium salt was added and the mixture was refluxed for 20 minutes. The solution was diluted with twice its volume of ice water and stirred.
The precipitated triphenyl phosphine was removed by filtration. The filtrate was extracted with three 100 ml.

1 portions of chloroform and the chloroform extracts were dried and evaporated to dryness to yield 19 g. (86%) of 4-(2-aminoethyl)thiomethyl-5-methyl-2-methylthioimidazole as a viscous oil.
Treatment of 4-(2-aminoethyl)thiomethyl-5-methyl-2-methylthioimidazole with ethanolic hydrochloric acid ga~e the corresponding dihydrochloride salt, m.p. 165 (ethanol-ethyl acetate).

A solution of 48.3 g. (0.1 mole) of [t5-methyl-2-methylthioimidazolyl)-4-methyl]triphenylphosphonium bromide in 250 ml. of methanol was added rapidly at ambient temperature to a stirred solution of 35 ml. of 25~ sodium methoxide i~ methanol in 250 ml. of methanol. The mixture was refluxed for 20 minutes then concentrated to half the volume. After dilution with 900 ml. of water, the tri-phenyl phosphine was removed ~y filtration. The aqueous solution was extracted twice with 150 ml. portions of benzene and then three times with 250 ml. portions of chloroform. The chloroform extracts were dried (MgSO4) and evaporated to dryness to give 13 g. (76%) of 4-methoxymethyl-5-methyl-2-methylthioimidazole.

Sodium metal (2.3 g., 0.1 mole) was dissolved in ethanol and 9.5 g. (0.1 mole) of acetamidine hydrochloride was added with stirring. After 10 minutes 41.1 g. (0.1 mole) of triphenyl ~-acetylvinylphosphonium bromide was added and the mixture was refluxed for 17 hours. The mixture was filtered and the filtrate evaporated to dryness to give a tan solid which was digested with 300 ml. of _g_ 1 chloroform. Ethyl acetate (100 ml.) was added and the precipitate was collected by filtration and washed with 100 ml. of acetone to give 36 g. (80~) of [(2,5-dimethyl-imidazolyl)-4-methyl]triphenylphosphonium bromide.
When an equivalent amount of [(2,5-dimethyl-imidazolyl)-4-methyl]triphenylphosphonium bromide is substituted into the procedures of Examples 1 and 2 for [(2-methylthio-5-methylimidazolyl)-4-methyl]triphenyl-phosphonium bromide, 4-(2-aminoethyl)thiomethyl-2,5-dimethylimidazole and 2,5-dimethyl-4-methoxymethylimidazole are prepared, respectively.

(a) Trichloroacetamidine (1.62 g., 0.1 mole) was dissolved in 20 ml. of dry dimethylsulfoxide and 4.1 g.
(0.1 mole) of triphenyl ~-acetylvinylphosphonium bromide in 40 ml. of dimethylsulfoxide was added in one portion with stirring. The exothermic reaction mixture gradually lightened in color and was heated at 100 for 10 minutes.
Evaporation of the solvent gave [(5-methylimidazolyl)-4-methyl]triphenylphosphonium bromide.
Alternatively, and preferably, the phosphonium bromide is prepared using trichloroacetamidine by the following procedures:
Triphenyl ~-acetylvinylphosphonium bromide (8.0 g., 0.019 mole) was dissolved in a minimum amount of dry acetonitrile (about 100 ml.) and trichloroacetamidine 14.0 g., 0.25 mole) was added in one portion. The resulting mixture was stirred at room temperature and the material which crystallized out was filtered off to give [(2-trichloromethyl-
5-methylimidazolyl)-4-methyl]triphenylphosphonium bromide.

1 This phosphonium salt (15.0 g., 0.027 mole) was added to 150 ml. of methanol and the resulting mixture was refluxed for three hours. The mixture was concentrated to about 15 ml. and the solid material was filtered off to give [(2-methoxycarbonyl-5-methylimidazolyl)-4-methyl]triphenyl-phosphonium bromide.
The above prepared phosphonium salt is heated to its melt1ng point (approximately 170) and held at this temperature until the evolution of gas is complete. On cooling, the solid product is triturated with chloroform to give ~(5-methylimidazolyl)-4-methyl]triphenylphosphonium bromide.
Triphenyl ~-acetylvinylphosphonium chloride t36 g., 0.01 mole) and trichloroacetamidine (16.1 g., 0.1 mole) were stirred in 200 ml. of methanol for one hour. The solution was heated to reflux, cooled and the methanol evaporated to leave [(2-methoxycarbonyl-5~methylimidazolyl)-4-methyl]-triphenylphosphonium chloride. Heating this phosphonium chloride salt at 170 until evolution of gas is complete, then cooling and triturating with chloroform gives [(5-methylimidazolyl)-4-me_hyl]triphenylphosphonium chloride.
(b) Formamidine sulfinic acid (11.0 g., 0.1 mole) was suspended in 250 ml. of dry dimethylsulfoxide and 2.4 g. (0.1 mole) of sodium hydride was added. After cessation of hydrogen gas evolution 36.5 g. (0.1 mole) of triphenyl 3-acetylvinylphosphonium chloride was added and the mixture was stirred for one hour at ambient temperature, then heated at 100 for 10 minutes. After cooling, the dimethylsulfoxide was evaporated and the 3~ residue was dissolved in 300 ml. of 1:1 chloroform-methanol 1 and the solution filtered. The filtrate was evaporated to dryness and the residue was recrystallized from chloroform-acetone to give 20 g. (50%) of [(5-methylimidazolyl)-4-methyl]triphenylphosphonium chloride, m.p. 223-225.
Alternatively, and preferably, [(5-methylimidazolyl)-4-methyl]triphenylphosphonium chloride and bromide are prepared using formamidine sulfinic acid by the following procedures:
Triphenyl ~-acetylvinylphosphonium chloride (3.65 g., 0.01 mole) and formamidine sulfinic acid (1.1 g., 0.01 mole) were dissolved in 50 ml. of dimethylsulfoxide. 1,8-bis-(nimethylamino)naphthalene ("proton sponge") (Z.14 g., 0.01 mole) was added and the mixture warmed to 80. After cooling, evaporating the dimethylsulfoxide, precipitating the inorganic salts with chloroform, filtering, evaporating to dryness and recrystallizing the residue from chloroform-acetone, an essentially quantitative yield of [(5-methylimidazolyl)-4-methyl]triphenylphosphonium chloride was obtained.

Triphenyl ~-acetylvinylphosphonium bromide (20.6 g., 0.05 mole) and formamidine sulfinic acid (6.0 g., slight excess over 0.05 mole) were dissolved in 100 ml. of dimethylsulfoxide.
1,5-DiazabicyclolS.4.0]undec-5-ene (DBU)(7.6 g., 0.05 mole) was added dropwise with stirring. The mixture was maintained 2 at 80 for 20 minutes and the dimethylsulfoxide was evaporated off. The residue was taken up in chloroform and inorganic salts were removed by filtration. The filtrate was evaporated to dryness and the residue was recrystallized from chloroform-acetone to give 1(5-methylimidazolyl)-4-methyl3triphenyl-phosphonium bromide in 80% yield.

~08405Z

1 To a sclution of 39~3 g. (0.1 mole) of [(5-methylimidazolyl)-4-methyl]triphenylphosphonium chloride in 200 ml. of methanol was added 22 ml. of 25% sodium methoxide in methanol and the re~ction mixture was refluxed for 1 hour. After cooling, the solution was diluted with three times its volume of water and filtered to remove triphenyl phosphine. The filtrate was extracted with four 125 ml.
portions of chloroform and the extracts were dried (MgSO4) and evaporated to dryness to yield 10.1 g. (80~) of 4-methoxymethyl-5-methylimidazole which was converted to the corresponding hydrochloride salt as described in Example 1, m.p. 150.
EXAMPLE S
- Triphenyl ~-acetylvinylphosphonium bromide (4.11 g., 0.01 mole) was added in one portion to a stirred suspension of 1.1 g. (0.01 mole) of formamidine sulfinic acid in 20 ml. of dimethylsulfoxide containing 0.25 g. of sodium hydride. The mixture was stirred at ambient temperature for 1 hour then at 80 for an additional hour. A solution of 0.99 g. (0.01 mole) of the sodium salt of cysteamine, prepared by addition of two equivalents of sodium methoxide to cysteamine dihydrochloride, in 10 ml.
of methanol was added and the resulting mixture was heated at 70-80 for 4 hours. The mixture was diluted with twice its volume of water and the triphenyl phosphine was removed by filtration. The filtrate was extracted with 100 ml. of toluene and with two 100 ml. ~ortions of chloroform. The chloroform extracts were combined, dried (MgSO4) and evaporated to dryness to give 4-(2-aminoethyl)thiomethyl-5-methylimidazole.

~08~1~5Z

1 Alternatively, and preferably, the above described reaction of triphenyl ~-acetylvinylphosphonium bromide and formamidine sulfinic acid is carried out using 1,8-bis-(dimethylamino)naphthalene or 1,5-diazabicyclo[5.4.0]undec-5-ene by the procedures described in Example 4~b).

When an equivalent amount of triphenyl ~-ethylcarbonylvinylphosphonium bromide or triphenyl ~-isopropylcarbonylvinylphosphonium bromide is allowed to react with formamidine sulfinic acid as described in the procedure of Example 4, [(5-ethylimidazolyl)-4-methyl]-triphenylphosphonium bromide and [(5-isopropylimidazolyl)-4-methyl]triphenylphosphonium bromide are prepared, respectively.
Reaction of [(5-ethylimidazolyl)-4-methyl]-triphenylphosphonium bromide and [(5-isopropylimidazolyl)-4-methyl]triphenylphosphonium bromide with cysteamine in the presence of sodium methoxide or sodium hydride as described above gives 4-(2-aminoethyl)thiomethyl-5-ethylimidazole and 4-~2-aminoethyl)thiomethyl-5-isopropylimidazole, respectively.
In a similar manner, the triphenylphosphonium group of [(5-ethylimidazolyl)-4-methyl]triphenylphosphonium bromide and r(5-isopropylimidazolyl)-4-methyl]triphenyl-phosphonium bromide is displaced by reaction with other nucleophiles by procedures described herein.

When [(5-methylimidazolyl-4-methyl]triphenyl-phosphonium bromide is allowed to react with sodium ethoxide in ethanol, sodium n-propoxide in n-propanol or sodium t-butoxide in t-butanol according to thQ procedure described in Example 4(b), the following imidazole compounds are ~084052 obtained:
4-ethoxymethyl-5-methylimidazole 5-methyl-4-n-propoxymethylimidazole 4-t-butoxymethyl-5-methylimidazole.

Substitution of a salt of a 2-substituted pseudothiourea listed below:
2-ethylpseudothiourea 2-butylpseudothiourea 2-benzylpseudothiourea 2-phenylpseudothiourea 2-(4-chlorobenzyl)pseudothiourea in the procedure of Example l in place of 2-methylpseudo-thiourea sulfate gives the following triphenylphosphonium bromide compounds:
[(2-ethylthio-5-methylimidazolyl)-4-methyl]-triphenylphosphonium bromide l(2-butylthio-5-methylimidazolyl)-4-methyl]-triphenylphosphonium bromide [(2-benzylthio-5-methylimidazolyl)-4-methyl]-triphenylphosphonium bromide [(5-methyl-2-phenylthioimidazolyl)-4-methyl]-triphenylphosphonium bromide [(2-(4-chlorobenzyl)thio-5-methylimidazolyl)-4-methyl]triphenylphosphonium bromide.
Reaction of a triphenylphosphonium bromide listed above with cysteamine as described in Example 1 gives the imidazole compounds listed below:
4-(2-aminoethyl)thiomethyl-2-ethylthio-5-methylimidazole 1084~52 1 4-(2-aminoethyl)thiomethyl-2-butylthio-5-methylimidazole 4-(2-aminoethyl)thiomethyl-2-benæylthio-5-methylimidazole 4-(2-aminoethyl)thiomethyl-5-methyl-2-phenylthioimidazole 4-(2-aminoethyl)thiomethyl-2-(4-chlorobenzyl)-thio-5-methylimidazole.

Substitution of a salt of a substituted amidine listed below:
guanidine propionamidine valeramidine 2,2,2-trifluoroacetamidine 2-phenylacetamidine in the procedure of Example 3 for acetamidine hydrochloride gives the triphenylphosphonium bromides listed below:
[(2-amino-5-methylimidazolyl)-4-methyl]triphenyl-phosphonium bromide [(2-ethyl-5-methylimidazolyl)-4-methyl]triphenyl-phosphonium bromide [(2-butyl-5-methylimidazolyl)-4-methyl]triphenyl-phosphonium bromide [(5-methyl-2-trifluoromethylimidazolyl)-4-methyl]-triphenylphosphonium bromide ~(2-benzyl-5-methylimidazolyl)-4-methyl]triphenyl-phosphonium bromide.
Reaction of a triphenylphosphonium bromide listed above with cysteamine as described in the procedure of Example 1 gives the following imidazole compounds:

1 2-amino-4-(2-aminoethyl)thiomethyl-5-methyl-imidazole 4-(2-aminoethyl)thiomethyl-2-ethyl-5-methyl-imidazole 4-(2-aminoethyl)thiomethyl-2-butyl-5-methyl-imidazole 4-(2-aminoethyl)thiomethyl-5-methyl-2-trifluoro-methylimidazole 4-(2-aminoethyl)thiomethyl-2-benzyl-5-methyl-imidazole.

To a solution of 9.25 g. (0.1 mole) of B-chloroallyl alcohol in 100 ml. of benzene is added an equivalent amount of an aqueous solution of chromic acid-sulfuric acid (Jones reagent) and the mixture is stirred at ambient temperature for 1 hour. After filtering, the layers are separated and the organic phase is washed with water. Triphenyl phosphine (26.2 g., 0.1 mole) is added to the benzene solution and it is heated to reflux. The precipitate which forms upon cooling is collected by filtration and dried to give B-formylvinylphosphonium chloride.
When an equivalent amount of B-formylvinyl-phosphonium chloride is allowed to react with formamidine sulfinic acid as described in the procedure of Example 4, (imidazolyl-4-methyl)triphenylphosphonium chloride is prepared.
Reaction of (imidazolyl-4-methyl)triphenyl-phosphonium chloride with cysteamine in the presence of sodium methoxide or sodium hydride as described hereinabove gives 4-(2-aminoethyl)thiomethylimidazole.

~(~84~52 1 I~ a similar manner, the triphenylphosphonium group of (imidazolyl-4-methyl)triphenylphosphonium chloride is displaced by reaction with other nucleophiles by procedures described herein.
EXAMPLE ll Tri-n-butylphosphine (20.2 g., 0.1 mole) is added to a solution of 10.4 g. (0.1 mole) of chlorovinyl methyl ketone in 250 ml. of benzene and the mixture is refluxed for l hour. The mixture is cooled and the precipitated material is collected by filtration and dried to give tri-n-butyl ~-acetylvinylphosphonium chloride.
Triethyl ~-acetylvinylphosphonium chloride is prepared as described above by use of triethylphosphine in place of tri-n-butylphosphine.
Reaction of an equivalent amount of tri-n-butyl ~-acetylvinylphosphonium chloride or triethyl ~-acetylvinylphosphonium chloride with formamidine sulfinic acid as described in the procedure of Example 4 gives [(5-methylimidazolyl)-4-methyl]tri-n-butylphosphonium chloride and [(5-methylimidazolyl)-4-methyl]triethylphos-phonium chloride, respectively.
Reaction of [(5-methylimidazolyl)-4-methyl]tri-n-butylphosphonium chloride or [(5-methylimidazolyl)-4-methyl~triethylphosphonium chloride with cysteamine in the presence of sodium methoxide or sodium hydride as described hereinabove gives 4-(2-aminoethyl)thiomethyl-5-methyl-imidazole.

Sodium amide (0.39 g., 0.01 mole) was dissolved in 40 ml. of liquid ammonia and 4.11 g. (0.01 mole) of 3~

1 [(5-methylimidazolyl)-4-methyl]triphenylphosphonium bromide was added. The suspension was stirred at -40C. for one hour and then allowed to warm to room temperature as the ammonia evaporated. The triphenyl phosphine was extracted from the residue with benzene and the remaining solids were taken up in water and extracted with chloroform. The chloroform extracts were dried and evaporated to give 4-aminomethyl-5-methylimidazole in 70% yield. This amine was refluxed with a molar equivalent of cysteamine in acetic acid and treated with hydrochloric acid to give 4-(2-amino-ethyl)thiomethyl-5-methylimidazole dihydrochloride.

[(5-Methyl-2-methylthioimidazolyl)-4-methyl]-triphenylphosphonium bromide (4.83 g., 0.01 mole) was stirred in 20 ml. of piperidine at room temperature for 30 minutes, then refluxed for one hour, cooled and filtered. The filtrate was evaporated under reduced pressure and chromatographed on a silica gel column using chloroform/methanol as eluant to yield 5-methyl-2-methylthio-4-piperidinomethylimidazole.
Treating with hydrochloric acid and refluxing the resulting dihydrochloride salt with one molar equivalent of cysteamine in acetic acid gave 4-(2-aminoethyl)thiomethyl-5-methyl-2-methylthioimidazole dihydrochloride.
By the same procedure, using pyrrolidine in place of piperidine, 5-methyl-2-methylthio-4-pyrrolidinomethyl-imidazole is prepared.
Similarly, using morpholine in place of piperidine, 5-methyl-2-methylthio-4-morpholinomethylimidazole is prepared.
Converting these pyrrolidine and morpholine compounds to the dihydrochloride salts and treating with 1 cysteamine in acetic acid gives 4-(2-aminoethyl)thiomethyl-5-methyl-2-methylthioimidazole dihydrochloride.

Dimethylamine (0.5 g., 0.01 mole) was dissolved in 35 ml. of tetrahydrofuran, stirred and cooled in an ice bath while 5 ml. (0.01 mole) of 2M butyl lithium in hexane was added dropwise with stirring. After stirring the mixture for 15 minutes in the cold, 3.93 g. (0.01 mole) of [(5-methyl-imidazolyl)-4-methyl]triphenylphosphonium chloride was added and the solution allowed to warm to room temperature. After stirring for two hours at room temperature, the solvents were evaporated and the residue treated with 50 ml. of water.
Filtration yielded diphenyl phosphine. The aqueous filtrate was extracted with chloroform, dried and evaporated to afford 4-(N,N-dimethylaminomethyl)-5-methylimidazole. This amine was then refluxed with a molar equivalent of cysteamine in acetic acid and treated with hydrochloric acid to give 4-(2-aminoethyl)thiomethyl-S-methylimidazole dihydrochloride.
By the same procedure, using methylamine in place of dimethylamine, 4-(N-methylaminomethyl)-5-methylimidazole is prepared. In the same way, using butylamine and dibutylamine, 4-(N-butylaminomethyl)-5-methylimidazole and 4-(N,N-dibutylaminomethyl)-5-methylimidazole are prepared.
Refluxing these intermediates with cysteamine by the above 2 procedure and treating with hydrochloric acid gives 4-(2-aminoethyl)thiomethyl-5-methylimidazole dihydrochloxide.

N-Cyano-N'-methyl-N"-mercaptoethylguanidine (1.58 g., 0.01 mole) was dissolved in 15 ml. of methanol and 2.3 ml. of sodium methoxide in methanol was added. After ~o8405Z

1 stirring at room temperature for five minutes, a suspension of 3.93 g. of [(5-methylimidazolyl)-4-methyl]triphenyl-phosphonium chloride in 10 ml. of methanol was added. The solution was heated to reflux. An equal volume of water was added and most of the methanol was removed by evaporation.
Filtration and water washing afforded triphenylphosphine. The filtrate was treated with charcoal, filtered and concentrated.
Filtration gave N-cyano-N'-methyl-N"-[2-(5-methyl-4-imidazolylmethylthio)ethyl]guanidine.

A mixture of 6.6 g. (0.03 mole) of 4-(2-amino-ethyl)thiomethyl-5-methyl-2-methylthioimidazole and 6.6.g.
of 50:50 nickel-aluminum alloy in 50 ml. of formic acid was refluxed for 3 hours. The metals were removed by L5 filtration and the filtrate was evaporated to dryness. The residue was dissolved in ethanol and the ethanolic solution was saturated with hydrogen sulfide then filtered. The filtrate was saturated with hydrogen chloride. Addition of ethyl acetate caused precipitation of 4-(2-aminoethyl)-thiomethyl-5-methylimidazole as the dihydrochloride salt.
In a similar manner, the 2-substituted thio group is removed from the other imidazole compounds in which R3 is a substituted thio group prepared hereinabove.
Potassium carbonate (7.75 g.) was added to a solution of 14.6 g. of 4-(2-aminoethyl)thiomethyl-5-methylimidaæole dihydrochloride in 120 ml. of water. The solution was maintained at ambient temperature for 15 mi~utes and 5.15 g. of methyl isothiocyanate was added.
After heating under reflux for 0.5 hour, the solution was slowly cooled to 5. The product was collected and 1 recrystallized from water to give N-methyl-N'-[2-(5-methyl-4-imidazolylmethylthio)ethyl]thiourea, m.p. 150-152.

4-Methoxymethyl-5-methyl-2-methylthioimidazole (13.46 g., 0.078 mole) and ca. 25 g. of Raney nickel were added to 400 ml. of ethanol and the mixture was refluxed for 3 hours. The mixture was filtered and the filter cake was washed with 25 ml. of ethanol. The filtrate and washings were combined and hydrogen sulfide gas was passed into the solution for 10 minutes. The mixture was filtered and the filtrate was evaporated to dryness to give 8.63 g.
(88%) of 4-methoxymethyl-5-methylimidazole.
4-Methoxymethyl-5-methylimidazole was converted to the corresponding hydrochloride salt as described above.
4-Methoxymethyl-5-methylimidazole hydrochloride (4.9 g., 0.03 mole) an~ 3.4 g. (0.03 mole) of cysteamine hydrochloride were dissolved in a minimum amount of acetic acid and the mixture was refluxed for 18 hours. After cooling in an ice bath, the mixture was filtered to give 5.8 g. (80~) of 4-(2-aminoethyl)thiomethyl-5-methyl-imidazole dihydrochloride salt.
Similarly, the other imidazoles prepared hereinabove in which R2 is an alkoxy group and R3 is a substituted thio group are reacted with Raney nickel followed by treatment of the product thus formed with cysteamine in acetic acid to give the corresponding 4-(2-aminoethyl)thiomethyl imidazoles.
(a) A solution of 17.0 g. of 4-(2-a~inoethyl)-thiomethyl-5-methylimidazole and 11.2 g. of N-cyano-N',S-dimethylisothiourea in 500 ml. of acetonitrile was refluxed 1084~Z

for 24 hours. The mixture was concentrated and the residue was chromatographed on a column of silica gel with acetonitrile as eluant. The product obtained was recrystallized from acetonitrile-ether to give N-cyano-N'-methyl-N"- [2-(5-methyl-4-imidazolylmethylthio)ethyl]-guanidine, m.p. 141-142.
(b) A solution of 23.4 g. of 4- (2-aminoethyl)-thiomethyl-5-methylimidazole in ethanol was added slowly to a solution of 20.0 g. of dimethyl-N-cyanoimidodithiocar-bonate in ethanol, with stirring at ambient temperature.
Filtration afforded N-cyano-N'-[2-(5-methyl-4-imidazolyl-methylthio)ethyl]-S-methylisothiourea, m.p. 148-150.
The filtrate was concentrated under reduced pressure and the mixture was triturated with cold water to give a solid material which was collected by filtration and recrystallized twice from isopropanol-ether, m.p. 148-150.
A solution of 75 ml. of 33% methylamine in ethanol was added to a solution of 10.1 g. of N-cyano-N'-[2- (5-methyl-4-imidazolylmethylthio)ethyl]-S-methylisothiourea in 30 ml. of ethanol. The reaction mixture was set aside at ambient temperature for 2.5 hours. Following concentration under reduced pressure, the residue was recrystallized twice from isopropanol-petroleum ether to give N-cyano-N'-methyl-N"-[2-(5-methyl-4-imidazolylmethylthio)ethyl]guanidine, m.p.
141-143.

Using [(2-methylthio-5-methylimidazolyl)-4-methyl]triphenylphosphonium bromide in place of the phosphonium compound in the procedure of Example 15 1 gives N-cyano-N'-methyl-N"-[2-(2-methylthio-5-methyl-4-imidazolylmethylthio)ethyl3guanidine. The 2-methylthio group is removed by refluxing a mixture of the compound and 50:50 nickel-aluminum alloy in formic acid and working up by the procedure of Example 16 to give N-cyano-N'-methyl-N"-[2-(5-methyl-4-imidazolylmethylthio)ethyl]-guanidine.

Claims (15)

What is claimed is:
1. A process for preparing a compound of the formula:
in which:
R1 is hydrogen or lower alkyl;
R2 is methoxy, ethoxy, n-propoxy, n-butoxy, i-butoxy, t-butoxy, -SCH2CH2NH2, or -NR6R7 where R6 and R7 are each hydrogen, lower alkyl or together with the nitrogen atom to which they are attached form a piperidine, pyrrolidine or morpholine ring; and R3 is hydrogen, lower alkyl, trifluoromethyl, benzyl, amino or -SR4 where R4 is lower alkyl, phenyl, benzyl or chlorobenzyl, comprising reacting a compound of the formula:

in which:
R1 and R3 are defined as above;
R5 is lower alkyl or phenyl; and X is halo, with a compound of the formula R2-H where R2 is defined as above in an organic solvent under basic conditions.
2. A process according to claim 1 in which R2 is methoxy, ethoxy, n-propoxy, n-butoxy, i-butoxy, t-butoxy or -SCH2CH2NH2.
3. A process according to claim 1 in which R5 is phenyl.
4. A process according to claim 1 in which R2 is -SCH2CH2NH2 or .
5. A process according to claim 4 in which R5 is phenyl.
6. A process according to claim 1 in which R2 is or NR6R7.
7. A process according to claim 3 in which R2 is -SCH2CH2NH2 and R3 is -SR4 where R4 is methyl.
8. A process according to claim 3 in which R2 is -SCH2CH2NH2 and R3 is hydrogen.
9. A process according to claim 3 in which R2 is and R3 is hydrogen.
10. A process according to claim 7 for preparing 4-(2-aminoethyl)thiomethyl-5-methyl-2-methylthioimidazole.
11. A process according to claim 8 for preparing 4-(2-aminoethyl)thiomethyl-5-methylimidazole.
12. A process according to claim 1 in which sodium methoxide or sodium hydride are used to provide the basic conditions.
13. A process according to claim 1 in which the solvent is methanol, ethanol, propanol, butanol, acetone, acetonitrile, dimethylformamide or dimethylsulfoxide.
14. A process according to claim 1 in which the reaction is carried out at a temperature of from about 25°C. to about 200°C. for from about 20 minutes to about 24 hours.
15. A process according to claim 14 in which the reaction is carried out at a temperature of about 65°C. to about 100°C. for from about 20 minutes to about 3 hours.
CA276,559A 1977-02-22 1977-04-20 Process for preparing 4-substituted imidazole compounds Expired CA1084052A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US771,044 1977-02-22
US05/771,044 US4119781A (en) 1975-10-29 1977-02-22 Process for preparing 4-substituted imidazole compounds

Publications (1)

Publication Number Publication Date
CA1084052A true CA1084052A (en) 1980-08-19

Family

ID=25090518

Family Applications (1)

Application Number Title Priority Date Filing Date
CA276,559A Expired CA1084052A (en) 1977-02-22 1977-04-20 Process for preparing 4-substituted imidazole compounds

Country Status (22)

Country Link
AR (1) AR217073A1 (en)
AT (1) AT355015B (en)
BE (1) BE853954R (en)
CA (1) CA1084052A (en)
CH (2) CH631167A5 (en)
DE (1) DE2718715A1 (en)
DK (1) DK168277A (en)
ES (1) ES458153A1 (en)
FI (1) FI73208C (en)
FR (1) FR2381031A2 (en)
GB (1) GB1582865A (en)
HU (1) HU174840B (en)
IE (1) IE45035B1 (en)
IL (1) IL51898A (en)
IN (1) IN148285B (en)
IT (1) IT1078449B (en)
LU (1) LU77200A1 (en)
MX (1) MX4663E (en)
NL (1) NL7704617A (en)
NO (1) NO152903C (en)
PT (1) PT66446B (en)
SE (2) SE442199B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL57415A (en) * 1978-05-30 1984-08-31 Smith Kline French Lab Nitropyrrole compounds,process for preparing them and pharmaceutical compositions containing them

Also Published As

Publication number Publication date
IL51898A (en) 1980-07-31
GB1582865A (en) 1981-01-14
NL7704617A (en) 1978-08-24
FR2381031B2 (en) 1982-09-17
FI73208B (en) 1987-05-29
FI73208C (en) 1987-09-10
NO152903C (en) 1985-12-11
AR217073A1 (en) 1980-02-29
NO771453L (en) 1978-08-23
LU77200A1 (en) 1977-08-17
ES458153A1 (en) 1978-04-01
NO152903B (en) 1985-09-02
IT1078449B (en) 1985-05-08
IE45035B1 (en) 1982-06-02
FR2381031A2 (en) 1978-09-15
SE7704870L (en) 1978-08-23
IN148285B (en) 1981-01-03
DK168277A (en) 1978-08-23
CH631167A5 (en) 1982-07-30
SE442199B (en) 1985-12-09
IE45035L (en) 1978-08-22
CH631168A5 (en) 1982-07-30
MX4663E (en) 1982-07-21
AT355015B (en) 1980-02-11
DE2718715A1 (en) 1978-08-31
IL51898A0 (en) 1977-06-30
FI771291A (en) 1978-08-23
ATA289577A (en) 1979-07-15
PT66446A (en) 1977-05-01
HU174840B (en) 1980-03-28
SE8008935L (en) 1980-12-18
SE452887B (en) 1987-12-21
BE853954R (en) 1977-10-26
PT66446B (en) 1978-09-22

Similar Documents

Publication Publication Date Title
JP2016006099A (en) Ergothioneine and the like synthesis method
US4119781A (en) Process for preparing 4-substituted imidazole compounds
CN101412733B (en) Preparation of N-alkyl thiophosphoryl triamide by one-pot method
US4215217A (en) Process for preparing 4-substituted imidazole compounds
US6018049A (en) Process for the preparation of carbamoylated imidazole derivatives
CS208770B2 (en) Method of making the quanidine derivatives
CA1084052A (en) Process for preparing 4-substituted imidazole compounds
US4267337A (en) Imidazolemethylphosphonium salts
FI79301B (en) FOERFARANDE FOER FRAMSTAELLNING AV 4-METHYL-5- ALKYLTIOMETYLIMIDAZOLER.
US4049669A (en) Process for preparing 5-(alkoxy- and aminoethyl thio)methylthiazole compounds
CS203054B2 (en) Method of preparing imidazolyl compounds
IL33925A (en) Phenyl-acetyl-guanidine derivatives,their preparation and pharmaceutical compositions containing them
CA1064940A (en) Reduction process for the preparation of 4-(hydroxymethyl) imidazole compounds
US4063023A (en) Process for preparing 4-(hydroxymethyl)imidazole compounds
CA1121363A (en) Process to prepare n-cyano-n'-methyl-n''-(2-¬(4- methyl-5-imidazolyl)-methylthio|-ethyl) guanidine
CS261232B2 (en) Method of 1(2-/5-dimethylamino methyl-2(furylmethylthio)ethyl/)amino-1-methylamino-2-nitroethylene production
JPS5910345B2 (en) Production method of thiourea compound
HU195782B (en) Process for production of n-cyan-n'-methil-n''-/2///-5-methil-1h-imidasole-4-il/-methil/-tio/-ethil/-guanidine
CA1154023A (en) Process for preparing imidazole derivative
US2479525A (en) Oxazolidines and a method of preparing the same
JP3727088B2 (en) Process for producing substituted isothioureas
HU181097B (en) Method and sheeting device for constructing linear reinforced concrete construction of closed section particularly public tunnel
JPH0344071B2 (en)
JPH0637478B2 (en) Process for producing substituted imidazole compound
NO150118B (en) ANALOGUE PROCEDURE FOR PREPARING A THERAPEUTIC ACTIVE IMIDAZOLIDINE DERIVATE.

Legal Events

Date Code Title Description
MKEX Expiry