BR112023016994A2 - Chapa de aço laminada a quente para uma chapa de aço elétrico não orientada, e, método de produção da chapa de aço laminada a quente para a chapa de aço elétrico não orientada - Google Patents

Chapa de aço laminada a quente para uma chapa de aço elétrico não orientada, e, método de produção da chapa de aço laminada a quente para a chapa de aço elétrico não orientada

Info

Publication number
BR112023016994A2
BR112023016994A2 BR112023016994A BR112023016994A BR112023016994A2 BR 112023016994 A2 BR112023016994 A2 BR 112023016994A2 BR 112023016994 A BR112023016994 A BR 112023016994A BR 112023016994 A BR112023016994 A BR 112023016994A BR 112023016994 A2 BR112023016994 A2 BR 112023016994A2
Authority
BR
Brazil
Prior art keywords
steel sheet
hot
rolled steel
oriented electric
production method
Prior art date
Application number
BR112023016994A
Other languages
English (en)
Inventor
Yoshihiro Arita
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of BR112023016994A2 publication Critical patent/BR112023016994A2/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

chapa de aço laminada a quente para uma chapa de aço elétrico não orientada, e, método de produção da chapa de aço laminada a quente para a chapa de aço elétrico não orientada. esta chapa de aço laminada a quente para uma chapa de aço elétrico não orientada tem uma quantidade de ti em solução sólida de 0,0005% ou menos e inclui carbonetos de ti com um diâmetro de círculo equivalente de 10 a 50 nm na fronteira do grão ou dentro dos grãos de ferrita. na chapa de aço laminada a quente, 10 a 100% em termos do número de carbonetos de ti presentes nos grãos de ferrita formam um depósito complexo com um sulfeto de mn, e a densidade numérica dos carbonetos de ti que existe na fronteira do grão é de 0,1 peças/µm ou menos.
BR112023016994A 2021-04-14 2021-04-14 Chapa de aço laminada a quente para uma chapa de aço elétrico não orientada, e, método de produção da chapa de aço laminada a quente para a chapa de aço elétrico não orientada BR112023016994A2 (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015433 WO2022219742A1 (ja) 2021-04-14 2021-04-14 無方向性電磁鋼板用熱延鋼板及びその製造方法

Publications (1)

Publication Number Publication Date
BR112023016994A2 true BR112023016994A2 (pt) 2023-10-24

Family

ID=83639889

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112023016994A BR112023016994A2 (pt) 2021-04-14 2021-04-14 Chapa de aço laminada a quente para uma chapa de aço elétrico não orientada, e, método de produção da chapa de aço laminada a quente para a chapa de aço elétrico não orientada

Country Status (7)

Country Link
US (1) US20240170190A1 (pt)
EP (1) EP4324942A4 (pt)
JP (1) JPWO2022219742A1 (pt)
KR (1) KR20230136755A (pt)
CN (1) CN116940702A (pt)
BR (1) BR112023016994A2 (pt)
WO (1) WO2022219742A1 (pt)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920731B2 (ja) 1978-06-16 1984-05-15 新日本製鐵株式会社 磁気特性の優れた電気鉄板の製造法
JPH0742557B2 (ja) 1987-02-10 1995-05-10 新日本製鐵株式会社 磁性焼鈍後の鉄損の少ない無方向性電磁鋼板
JPH03104844A (ja) 1989-09-18 1991-05-01 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH1046245A (ja) * 1996-07-29 1998-02-17 Nkk Corp 磁性焼鈍後の鉄損の低い無方向性電磁鋼板の製造方法
JP4019566B2 (ja) * 1999-08-25 2007-12-12 Jfeスチール株式会社 電動パワーステアリングモータコア
JP4542306B2 (ja) 2002-04-05 2010-09-15 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP3931842B2 (ja) * 2003-06-11 2007-06-20 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP4267437B2 (ja) * 2003-12-17 2009-05-27 新日本製鐵株式会社 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
TWI290958B (en) 2004-04-16 2007-12-11 Nippon Steel Corp A non-oriented electrical steel sheet having excellent punchability and magnetic property after stress-relief annealing and a method of production of the same
JP4267559B2 (ja) * 2004-11-01 2009-05-27 新日本製鐵株式会社 無方向性電磁鋼板とその製造方法
CN101914732B (zh) * 2010-09-10 2012-08-08 攀钢集团钢铁钒钛股份有限公司 低牌号含钒含钛无取向电工钢的制备方法
CN105779731A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 提高低牌号无取向电工钢电磁性能的热轧板常化工艺
KR101705235B1 (ko) * 2015-12-11 2017-02-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Also Published As

Publication number Publication date
CN116940702A (zh) 2023-10-24
EP4324942A4 (en) 2024-05-22
US20240170190A1 (en) 2024-05-23
KR20230136755A (ko) 2023-09-26
EP4324942A1 (en) 2024-02-21
JPWO2022219742A1 (pt) 2022-10-20
WO2022219742A1 (ja) 2022-10-20

Similar Documents

Publication Publication Date Title
Thompson et al. Comparison of the effects of an organic and an inorganic form of selenium on a mammary carcinoma cell line
BR112017025366A2 (pt) ?chapa de aço, método para fabricação de uma chapa laminada a frio e recozida e uso de chapas de aço?
BR112012022573A2 (pt) chapa de aço laminada a quente de alta resistência e método de produção da mesma.
Naderi et al. Cathodic disbondment of epoxy coating with zinc aluminum polyphosphate as a modified zinc phosphate anticorrosion pigment
BR112015005440A2 (pt) chapa de aço laminada a quente e método para fabricar a mesma
WO2009084849A3 (en) Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same
BR112019001581A2 (pt) chapa de aço laminada a quente para chapa de aço elétrico de grão orientado e método de produzir a mesma, e método para produzir chapa de aço elétrico de grão orientado
BR112018068033A2 (pt) método de produção de chapa de aço elétrica de grão orientado.
BR112013001052A2 (pt) chapa de aço elétrica orientada por grão
Petrov et al. Entropic analysis of dynamics of road safety system organization in the largest Russian cities
Li et al. Effects of deformation on the microstructures and mechanical properties of carbide–free bainitic steel for railway crossing and its hydrogen embrittlement characteristics
Reddy et al. Corrosion inhibition of mild steel by Capsicum annuum fruit paste
BR112012029698A2 (pt) método de produção de uma chapa de aço de alta resistência para uma estrutura soldada
BR112015015191A2 (pt) chapa de aço galvanizada e recozida e método de produção da mesma
Li et al. Microstructure dependent fatigue crack growth in Al–Mg–Sc alloy
BR112023016994A2 (pt) Chapa de aço laminada a quente para uma chapa de aço elétrico não orientada, e, método de produção da chapa de aço laminada a quente para a chapa de aço elétrico não orientada
Fouda et al. Corrosion inhibition and adsorption properties of cefixime on carbon steel in acidic medium
DE69823771D1 (de) Verfahren zum herstellen von kornorientierten elektrostahlblechen insbesondere für magnetkerne von transformatoren
Xiao An empirical test of the pollution haven hypothesis for China: intra-host country analysis
BR112014015780A2 (pt) chapa de aço grossa de alta resistência para construção tendo excelentes características de prevenção da difusão de fraturas frágeis e método para sua produção
Yang et al. Effect of one-step laser processed biomimetic coupling units' degrees on rolling contact fatigue wear resistance of train track alloy steel
MX2020009524A (es) Reduccion a temperatura elevada de aceros recubiertos que contienen austenita metastable.
Rusănescu et al. Variation of mechanical properties with temperature for an ecomaterial
Sun et al. Effect of Cr Content on Impact and Abrasion Properties and Mechanisms of Low Carbon Alloy Steel at Corrosive Condition
Kurokawa et al. A Study on Cosmetic and Perforation Corrosion Test Procedures for Automotive Steel Sheets