BR112019021862B1 - Método e queimador para aquecer um forno para o processamento de metal - Google Patents

Método e queimador para aquecer um forno para o processamento de metal Download PDF

Info

Publication number
BR112019021862B1
BR112019021862B1 BR112019021862-9A BR112019021862A BR112019021862B1 BR 112019021862 B1 BR112019021862 B1 BR 112019021862B1 BR 112019021862 A BR112019021862 A BR 112019021862A BR 112019021862 B1 BR112019021862 B1 BR 112019021862B1
Authority
BR
Brazil
Prior art keywords
fuel
flow
supply line
gas
central
Prior art date
Application number
BR112019021862-9A
Other languages
English (en)
Other versions
BR112019021862A2 (pt
Inventor
Martin Adendorff
Joachim Von Scheele
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Publication of BR112019021862A2 publication Critical patent/BR112019021862A2/pt
Publication of BR112019021862B1 publication Critical patent/BR112019021862B1/pt

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/21Burners specially adapted for a particular use
    • F23D2900/21001Burners specially adapted for a particular use for use in blast furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources

Abstract

A presente invenção refere-se a um método para aquecer um forno (40) usado para o processamento de metal por meio da combustão de um combustível no forno (40) com o suprimento de um gás oxidante através de uma linha de suprimento de gás oxidante (20) no forno (40) e com o suprimento de um combustível através de uma linha de suprimento de combustível (30) no forno (40), onde o gás oxidante é suprido na forma de um fluxo de gás oxidante central (24) juntamente com um primeiro de fluxo de gás de cobertura (25), e/ou o combustível é suprido na forma de um fluxo de combustível central (34) juntamente com um segundo fluxo de gás de cobertura (35), e em um queimador correspondente (10).

Description

CAMPO DA INVENÇÃO
[0001] A presente invenção refere-se a um método e a um quei mador para aquecer um forno para o processamento de metal por meio da combustão de um combustível no forno com o fornecimento de um gás oxidante através de uma linha de fornecimento de gás oxidante no forno e o fornecimento de um combustível através de uma linha de fornecimento de combustível no forno.
ANTECEDENTES DA INVENÇÃO
[0002] Na indústria de produção de metal, os processos de opera ção de fusão, rosqueamento e fundição precisam ser otimizados com relação aos seguintes aspectos. O pré-aquecimento e o aquecimento de conchas no forno nas temperaturas requeridas têm que ser executados de forma eficiente enquanto a perda de calor através dos gases de combustão deve ser reduzida tanto quanto possível. Com processos de aquecimento convencionais, pode ser difícil controlar a forma da chama da temperatura, a janela de aquecimento e a razão estequi- ométrica. As condições desfavoráveis resultantes podem encurtar a vida útil de materiais refratários. Além disso, a fumaça e a poluição, bem como as emissões de gases nocivos, como NOx, devem ser evitadas. A tecnologia existente de queimadores sem chama e semi sem chama oferece um meio eficaz de otimizar os processos de pré- aquecimento e aquecimento do forno durante a combustão de combustível por um queimador de oxi-combustível. Os gases de combustão são misturados na zona de reação de combustão para diluir os reagentes. Isto distribui a combustão, retarda a liberação de calor e diminui a temperatura de pico da chama, reduzindo assim as emissões de NOx. A mistura de gases de combustão na chama também disper- sa energia em todo o forno, assegurando um aquecimento mais rápido e mais uniforme. Sistemas de pré-aquecimento de concha correspondentes pelo requerente são conhecidos com a designação OCYGON.
[0003] Outra tecnologia de combustão de oxi-combustível de baixa temperatura pelo requerente especialmente concebida para a indústria de alumínio é conhecida por LTOF (low temperature oxy-fuel (oxi- combustível de baixa temperatura)). Em um forno de fusão de alumínio, a combustão ocorre em uma concentração de oxigênio diluído com a mistura de gases do forno na zona de combustão. Isto resulta em temperaturas de chama mais baixas, abaixo do ponto no qual NOx térmico é criado. Além disso, a energia é dispersada por todo o forno para o aquecimento uniforme e uma fusão mais eficiente. Os benefícios típicos são uma maior taxa de fusão de até 50%, combustão de combustível até 50% menor, a prevenção de pontos quentes no forno, volumes reduzidos de gás de combustão e emissões de NOx.
[0004] Estas tecnologias de queimador sem chama e semi sem chama contam, todas elas, com jatos de oxigênio de velocidade muito alta para gerar o efeito sem chama. A velocidade de saída do oxigênio é tipicamente a velocidade do som no oxigênio, em torno de 305 m/s. As velocidades de cerca de 100m/s para cima podem também ser usadas. Os jatos de alta velocidade criam uma recirculação muito forte dentro do espaço de gás do forno, resultando na geração reduzida de NOx acima mencionada com a redução das temperaturas de pico dentro da chama e em um aquecimento muito homogêneo do forno. Tais tecnologias de queimador se mostraram muito eficientes e úteis especialmente em atmosferas de forno essencialmente limpos e sem poeira.
[0005] Quando usadas em um ambiente de forno sujo ou empoei rado (espaço de combustão) ou um ambiente de forno com gotículas de líquido aprisionadas, estas partículas ou gotículas são também re- circuladas, e, devido a seu maior momentum, tendem a ficar depositadas na parede refratária que circunda as saídas de jato de alta velocidade. Tais depósitos são, às vezes, referidos como acreções. Estes bloqueiam as saídas ou perturbam os jatos de gás e reduzem sua eficiência de recirculação. Isto causa alta manutenção e/reduz tipicamente os benefícios da redução de NOx e do aquecimento homogêneo. Os depósitos poderiam também desviar o jato de alta velocidade para a parede refratária do forno causando assim sérios danos. Na pior das hipóteses, a segurança do sistema de combustão não pode mais ser garantida.
[0006] No outro campo técnico da conversão de níquel e cobre, com o nome de ALSI (Air Liquide Shrouded Injector (Injetor Encoberto com Líquido de Ar), uma tecnologia de injetor encoberto foi aplicada aos conversores Hoboken e Peirce-Smith para o processamento de mates de cobre e níquel. Problemas existentes anteriormente, tais como o bloqueio de tuyere, o desgaste refratário e limites no enriquecimento do oxigênio nos conversores, poderiam ser significativamente reduzidos por esta tecnologia. Um injetor encoberto compreende um tubo interno através do qual é injetado o ar enriquecido com oxigênio. O tubo interno é circundado por um espaço anular através do qual flui o nitrogênio (ou outros gases inertes ou hidrocarboneto). O nitrogênio localmente resfria a periferia da ponta do injetor. Isto gera uma acre- ção de banho sólido que protege o refratário adjacente de erosão excessiva. As pressões nas quais os gases são injetados impedem que a acreção bloqueio o fluxo de gás, de modo que o injetor encoberto opere sem a necessidade de perfuração. A tecnologia ALSI não é, contudo, uma tecnologia de queimador, mas faz uso de um sistema de injeção de ar/oxigênio que é usado em um banho líquido de cobre ou níquel. A intenção é a de afastar as reações exotérmicas muito quentes da ponta de tuyere a fim de impedir que elas sejam danificadas pela geração de calor elevado.
[0007] Um objetivo subjacente à presente invenção é o de prover uma nova tecnologia de queimador que impeça as desvantagens na técnica anterior, especialmente quando usada em um ambiente de forno contendo gotículas ou partículas. In particular, os benefícios de tecnologias de queimador sem chama e semi sem chama conhecidos, isto é, uma menor geração de NOz e aquecimento homogêneo do forno, devem ser mantidos tanto quanto possível.
SUMÁRIO DA INVENÇÃO
[0008] A presente invenção provê um método para aquecer um forno usado para o processamento de metal por meio da combustão de um combustível no forno com o fornecimento de um gás oxidante através de uma linha de fornecimento de gás oxidante no forno e com o fornecimento de um combustível através de uma linha de fornecimento de combustível no forno e um queimador correspondente apresentando pelo menos uma linha de fornecimento de gás oxidante e pelo menos uma linha de fornecimento de combustível de acordo com as reivindicações independentes. Concretizações vantajosas são o assunto das reivindicações dependentes e da descrição apresentada a seguir.
[0009] De acordo com o método da presente invenção, o gás oxi dante é fornecido na forma de um fluxo de gás oxidante central juntamente com um primeiro fluxo de gás de proteção e/ou o combustível é fornecido na forma de um fluxo de combustível central juntamente com um segundo fluxo de gás de proteção. Com a provisão de um fluxo de gás de proteção, o fluxo central, especialmente quando provido na forma de um jato de alta velocidade, irá inicialmente sugar o fluxo de gás de proteção para si próprio do que a atmosfera circundante do forno. Apenas uma vez que o gás de proteção tenha sido aspirado no fluxo/jato central, o fluxo/jato começará a sugar a atmosfera do forno para si próprio, afastando assim o ponto de recirculação da parede refratária e da saída da linha de fornecimento, reduzindo ou eliminando assim a deposição de partículas sólidas ou gotículas na parede refratária e na saída da linha de fornecimento.
[00010] O queimador correspondente de acordo com a presente invenção apresenta pelo menos uma linha de fornecimento de gás oxidante que compreende uma linha de fornecimento oxidante central para fornecer gás oxidante e uma primeira linha de fornecimento anular que circunda a linha de fornecimento de gás oxidante central para fornecer um primeiro fluxo de gás de proteção e/ou pelo menos uma linha de fornecimento de combustível que compreende uma linha de fornecimento de combustível central para fornecer combustível e uma segunda linha de fornecimento que circunda a linha de fornecimento de combustível para fornecer um segundo fluxo de gás de proteção.
[00011] Em contraste, a tecnologia ALSI, conforme discutida acima, aplica um sistema de injeção submerso encoberto que requer uma segunda fonte de gás de alta pressão, tipicamente nitrogênio. O oxigênio não pode ser usado como um gás de proteção porque isto negaria o objetivo de afastar a zona de reação da saída de tuyere. Conforme adicionalmente explicado abaixo, de acordo com a presente invenção, para o fluxo de gás oxidante central, é preferido usar o mesmo gás oxidante como o primeiro fluxo de gás de proteção.
[00012] Vantajosamente, o gás central (desde que o fluxo central esteja na forma de um gás) é também usado como o gás de proteção. Isto simplifica a instalação na medida em que menos equipamento de tubulação e controle se faz necessário. Dependendo da geometria da linha de fornecimento central e da linha de fornecimento de gás de proteção circundante, a proporção de gás de proteção pode ser uma simples função mecânica não propensa a imprecisões de falha ou controle.
[00013] Vantajosamente, a velocidade do fluxo de gás oxidante central é maior do que a velocidade do primeiro fluxo de gás de proteção, especialmente a velocidade do fluxo de gás oxidante central é essencial ou exatamente igual ou ainda maior do que a velocidade sônica do gás oxidante. Isto intensifica o efeito de sucção por meio do qual o primeiro fluxo de gás de proteção é sugado no fluxo de gás oxidante central.
[00014] O mesmo se aplicará ao fluxo de combustível, se a velocidade do fluxo de combustível central for maior do que a velocidade do segundo fluxo de gás de proteção, especialmente se a velocidade do fluxo de combustível central for essencial ou exatamente igual ou ainda maior do que a velocidade sônica do combustível. Na prática, gases de combustível são tipicamente fornecidos com uma baixa pressão de fornecimento. Há, contudo, combustível gasoso como gás natural (NG) ou LPG que pode ser fornecido com uma pressão de fornecimento alta o suficiente.
[00015] Vantajosamente, a razão das vazões do primeiro fluxo de gás de proteção e do fluxo de gás oxidante central é ajustada. Da mesma forma, é vantajoso ajustar a razão das vazões do segundo fluxo de gás de proteção e do fluxo de combustível central.
[00016] A fim de implementar um ajuste ou uma variação das razões das respectivas vazões, é preferido que a primeira linha de fornecimento anular do queimador esteja em conexão de fluido com pelo menos dois primeiros bicos que se abrem para a primeira linha de fornecimento anular e/ou para a segunda linha de fornecimento anular para ficar em conexão de fluido com pelo menos dois segundos bicos que se abrem para a segunda linha de fornecimento anular. Com ajuste do diâmetro e do número dos pequenos bicos que alimentam o espaço anular, a razão das vazões do gás de proteção e do fluxo de fluido central pode ser variada de acordo com as necessidades do pro- cesso. Um número maior de bicos menores é preferido a um único bico ou alguns bicos ligeiramente maiores. Isto procederá, se - especialmente no caso do gás oxidante - o gás de proteção for o mesmo que o fluido central. Neste caso, o mesmo gás poderia ser fornecido para a linha de fornecimento central e para a linha de fornecimento anular. Um grande número de bicos menores pode impedir danos ao material da linha de fornecimento anular pela alta velocidade, especialmente a velocidade sônica, que entra no espaço anular estreito. Orifícios demasiadamente pequenos seriam suscetíveis de ficar bloqueados por sujeira aprisionada no fluxo de gás. Haverá sempre um limite inferior do diâmetro do bico que é tecnicamente alcançável e economicamente viável e que pode ser operado em condições normais de processo sem ficar bloqueado, a menos que filtração ultrafina e condições muito limpas sejam usadas - o que não é nem típico nem necessário nestes tipos de aplicações e ambientes.
[00017] Pelas razões acima, será vantajoso se o primeiro fluxo de gás de proteção for ou contiver o gás oxidante e/ou se o segundo fluxo de gás de proteção for ou contiver o combustível.
[00018] No entanto, o gás de proteção não tem necessariamente que ser igual ao fluido central. O primeiro fluxo de gás de proteção pode ser ou pode conter ar, vapor ou gases de combustão (teoricamente também um gás inerte como argônio, embora possa não fazer sentido econômico, o nitrogênio não deve ser usado, visto que este irá (poderá) aumentar a geração de NOx) ou uma combinação do mesmo. Tais gases de proteção teriam que ser fornecidos através de pelo menos uma linha separada, idealmente também com alguma forma de controle ou regulação de fluxo. O gás de proteção poderia ser também gases, uma vez que os gases de combustão são suficientemente limpos para impedir o bloqueio dos bicos e/ou a linha de fornecimento anular. Os bicos são usados para criar uma razão fixas (mecanicamente) en- tre os fluxos central e de proteção, quando o mesmo gás for usado para a proteção como para o fluxo central. Se for usado um gás de proteção diferente, então não haverá nenhuma conexão entre o gás central e o gás de proteção. Visto que a presente invenção é especialmente aplicada a uma atmosfera de forno suja e empoeirada, os gases de combustão teriam que ser purificados antes de serem usados como um gás de proteção. Teoricamente, poderiam ser usados gases de combustão, embora possa não ser técnica ou economicamente viável. Se gases de combustão forem usados, então eles teriam que ser limpos para remover pelo menos as partículas.
[00019] O segundo fluxo de gás de proteção pode ser ou conter ar, vapor ou gás inerte como nitrogênio, argônio ou uma combinação dos mesmos. Nota-se que a saída de combustível poderia ser implementada sem qualquer fluxo de proteção, se a velocidade de saída de combustível fosse baixa, tipicamente na faixa de 80 a 100 m/s.
[00020] O combustível pode ser um combustível gasoso, mas combustíveis líquidos podem também ser usados para a presente invenção. A recirculação de gotículas de combustível líquido pouco atomi- zadas é uma preocupação potencial especialmente para queimadores de oxi-combustível sem chama, visto que estas gotículas de combustível pouco atomizadas ficam depositadas na face refratária que circunda o queimador/as respectivas linhas de fornecimento. A proteção do combustível líquido pode, contudo, ajudar com a atomização e reduzir a probabilidade de o combustível ficar depositado nas paredes refratárias circundantes. O gás oxidante poderá ser oxigênio, oxigênio especialmente habitual de alta pureza ou ar, especialmente quando uma pressão do ar alta o suficiente estiver disponível. Desse modo, a in-venção pode também ser implementada para queimadores de ar- combustível, não sendo limitada a queimadores de oxi-combustível.
[00021] É entendido que as características recitadas acima e aque- las ainda a serem explicadas abaixo podem ser usadas não apenas na respectiva combinação indicada, mas também em outras combinações ou isoladamente sem se afastar do contexto da presente invenção.
DESCRIÇÃO DAS FIGURAS
[00022] A invenção é esquematicamente representada nos desenhos com base nas concretizações exemplificativas, e será descrita em detalhes abaixo com referência aos desenhos.
[00023] A Figura 1 esquematicamente mostra uma linha de fornecimento de gás oxidante ou uma linha de fornecimento de combustível de um queimador de acordo com uma concretização da presente invenção, e a Figura 2 mostra a linha de fornecimento da Figura 1 em combinação com um forno usado para o processamento de metal que implementa um método de acordo com a presente invenção. DESCRIÇÃO DETALHADA DA INVENÇÃO
[00024] A Figura 1 esquematicamente mostra uma das linhas de fornecimento de gás oxidante 20 de um queimador 10 para aquecer um forno de reciclagem de alumínio 40. Até agora, em tal forno, acre- ções foram depositadas em torno dos bicos de oxigênio/linhas de fornecimento de queimador (isto poderia também se aplicar ao fornecimento de combustível, embora seja mais comum em linhas de oxigênio por causa de uma velocidade de jato muito maior), em geral, o material depositado sendo poeira fina de escória e/ou partículas sólidas grossas - elas poderiam ser gotículas de metal líquido recirculadas que se depositam e que então potencialmente se solidificam em torno da saída do bico. A invenção surge na tentativa de impedir a recirculação de gotículas líquidas de cobre e de escória em um conversor Peirce- Smith que ocorre durante a fase de sopro de ar. Tais acreções se formam em torno da linha de fornecimento de oxigênio 20 na parede do refratário 50. Com um queimador 10 compreendendo linhas de forne- cimento, conforme mostrado na Figura 1, tais acreções são grandemente reduzidas.
[00025] O exemplo da Figura 1 mostra uma das duas linhas de fornecimento de oxigênio 20 em um queimador de oxi-combustível sem chama, por exemplo, de 1500 kW. As linhas de fornecimento de oxigênio ou lanças normalmente seriam (embora não tenham que ser) idênticas no layout. Para o queimador 10 seria tipicamente necessário um combustível, por exemplo, gás natural, e duas linhas de fornecimento de oxigênio, com as linhas de fornecimento de oxigênio tipicamente instaladas em um único plano em cada lado da linha de fornecimento de combustível central, as linhas de fornecimento de oxigênio estando afastadas em cerca de 50 mm da linha de fornecimento de combustível (parede externa a parede externa). Esta geometria é apenas exemplificativa e não relevante à presente invenção. A linha de fornecimento de combustível (30) pode parecer similar à linha de for-necimento de oxigênio 20, mas tipicamente teria dimensões maiores. Para fins de ilustração, contudo, a Figura 1 mostra ou uma linha de fornecimento de gás oxidante 20 ou uma linha de fornecimento de combustível 30. A linha de fornecimento de combustível 30 também teria uma linha de fornecimento de combustível central 31 e uma segunda linha de fornecimento anular 32. Os fluxos de gás correspondentes são rotulados como 34 e 35, respectivamente. Deve-se notar que, contudo, uma vez que o combustível é tipicamente injetado em velocidades mais baixas, poderia ser usado um fluxo de proteção reduzido 35 ou nenhum fluxo de proteção 35. Portanto, a seguir, para fins de ilustração, é descrita em maiores detalhes não apenas a linha de fornecimento de gás oxidante 20.
[00026] O dimensionamento desta linha de fornecimento de oxigênio 20 é para aproximadamente 160 Nm3/h de oxigênio em uma pressão de fornecimento de 2 barg, com o uso de bicos de 3 x 3 mm 23 que se abrem para a linha de fornecimento anular externa 25, um fluxo de oxigênio/primeiro fluxo de gás de proteção 25 de cerca de 35 Nm3/h irá passar através do espaço anular 25 saindo do espaço anular externo em cerca de 25 m/s. O equilíbrio do fluxo de oxigênio 24 (em torno de 125 Nm3/h) sai através da linha de fornecimento central 21 preferivelmente na velocidade sônica de oxigênio. Neste exemplo, entre 20 e 25% do oxigênio saem através do espaço anular 22. Quanto mais sujo o ambiente do forno, mais alta a razão seria.
[00027] O combustível total (NG) e fluxo de oxigênio têm sempre que corresponder àquele requerido para os cálculos estequiométricos.
[00028] Conforme já mencionado acima, tipicamente o gás de combustível não é injetado em velocidade sônica, embora isto seja uma opção, se pressão suficiente estiver disponível e se todos os padrões e normas de segurança forem cumpridos. Se a velocidade de saída de combustível fosse baixa o suficiente, então poderia ser usado um fluxo de proteção reduzido ou nenhum fluxo de proteção.
[00029] Com o ajuste do diâmetro e do número dos pequenos bicos (23 para o gás oxidante e 33 para o combustível) que alimentam o espaço anular 22, 32, a razão do gás de proteção 25, 35 e do gás central 24, 25 pode ser variada, de acordo com as necessidades do processo. Conforme já mencionado anteriormente, um grande número de bicos menores, especialmente no caso de bicos de fornecimento de gás oxidante 23, é preferível a um único bico ou alguns bicos ligeiramente maiores.
[00030] O tubo de fornecimento que alimenta a linha de fornecimento de gás oxidante 20 ou a linha de fornecimento de combustível 30 é rotulado como 60.
[00031] A Figura 2 mostra esquematicamente a parte do queimador 10 da Figura 1, por exemplo, em um forno de reciclagem de alumínio 40. Oxigênio é usado como o gás oxidante que é fornecido com alta pressão através da linha de fornecimento de oxigênio central 21 e que sai da linha de fornecimento 21 na forma de um jato de alta velocidade 24. Nesta concretização, o oxigênio também é usado como o gás de proteção. Isto simplifica a instalação, uma vez que menos equipamento de tubulação e controle se faz necessário. A proporção de gás de proteção é uma função mecânica que depende da pressão e da geometria e do número de bicos 23. O oxigênio sai do espaço anular 22 na forma de um fluxo de oxigênio anular 25, conforme mostrado na Figura 2.
[00032] O jato de oxigênio central de alta velocidade 24 suga partes da atmosfera do forno novamente para si resultando em uma re- circulação de gases do forno 41. O jato central de alta velocidade 24 inicialmente suga o fluxo de gás de oxigênio de proteção 25 para si do que a atmosfera circundante do forno. Apenas uma vez que o gás de proteção 25 tenha sido aspirado no jato 24, o jato 24 irá começar a sugar os gases do forno 41 para si mesmo. O ponto de recirculação se afasta, portanto, da parede do refratário 50 e se afasta da ponta da linha de fornecimento. Isto reduz ou até mesmo elimina a deposição de partículas sólidas ou líquidas na atmosfera recirculada do forno em torno da saída da linha de fornecimento para a parede do re-fratário 50.
[00033] Conforme já mencionado na parte geral da descrição, o gás de proteção não tem que ser necessariamente o mesmo que o gás central. O sistema não é limitado a uma configuração de um único combustível e a duas a quatro linhas de fornecimento de oxigênio. Uma única linha de fornecimento de oxigênio bem como múltiplas linhas de fornecimento de oxigênio (3, 5, 6 e mesmo 8) são também concebíveis. O sistema pode ser também implementado em queimadores de ar-combsutível, especialmente quando uma pressão do ar alta o suficiente estiver disponível. LISTA DE SINAIS DE REFERÊNCIA 10 queimador 20 linha de fornecimento de gás oxidante 21 linha de fornecimento oxidante central 22 primeira linha de fornecimento anular 23 bico 24 jato/fluxo de gás oxidante central 25 fluxo de gás oxidante anular, primeiro fluxo de gás de proteção 30 linha de fornecimento de combustível 31 linha de fornecimento de combustível central 32 segunda linha de fornecimento anular 33 bico 34 fluxo de combustível central 35 segundo fluxo de gás de proteção 40 forno 41 gases recirculados do forno 50 refratário 60 tubo de fornecimento

Claims (11)

1. Método para aquecer um forno (40) usado para o pro-cessamento de metal por meio da combustão de um combustível no forno (40) com o fornecimento de um gás oxidante através de uma linha de fornecimento de gás oxidante (20) no forno (40) e com o fornecimento de um combustível através de uma linha de fornecimento de combustível (30) no forno (40), caracterizado pelo fato de o gás oxidante ser fornecido na forma de um fluxo de gás oxidante central (24) juntamente com um primeiro fluxo de gás de proteção (25), em que o primeiro fluxo de gás de proteção (25) é fornecido por uma primeira linha de fornecimento anular (22) que circunda a linha de fornecimento de gás oxidante (20), em que a velocidade do fluxo de gás oxidante central (24) é maior do que a velocidade do primeiro fluxo de gás de proteção (25), e/ou o combustível ser fornecido na forma de um fluxo de combustível central (34) juntamente com um segundo fluxo de gás de proteção (35), em que o segundo fluxo de gás de proteção (35) é fornecido por uma segunda linha de fornecimento anular (32) que circunda a linha de fornecimento de combustível central (31), e em que a velocidade do fluxo de combustível central (34) é maior do que a velocidade do segundo fluxo de gás de proteção (35).
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de a velocidade do fluxo de gás oxidante central (24) ser igual à velocidade sônica do gás oxidante.
3. Método, de acordo com a reivindicação 1 ou 2, caracteri-zado pelo fato de a velocidade do fluxo de combustível central (34) ser igual à velocidade sônica do combustível.
4. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de a razão das vazões do primeiro fluxo de gás de proteção (25) e do fluxo de gás oxidante central (24) ser ajustada.
5. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de a razão das vazões do segundo fluxo de gás de proteção (35) e do fluxo de combustível oxidante central (34) ser ajustada.
6. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de o primeiro fluxo de gás de proteção (25) ser ou conter o gás oxidante.
7. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de o segundo fluxo de gás de proteção (35) ser ou conter o combustível.
8. Método, de acordo com qualquer uma das reivindicações 1 a 5 ou 7, caracterizado pelo fato de o primeiro fluxo de gás de proteção (25) ser ou conter ar, vapor, um gás inerte ou gases de combustão ou uma combinação dos mesmos.
9. Método, de acordo com qualquer uma das reivindicações 1 a 6 ou 8, caracterizado pelo fato de o segundo fluxo de gás de proteção (35) ser ou conter ar, vapor ou gás inerte ou uma combinação dos mesmos.
10. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de o combustível ser um combustível gasoso e/ou líquido.
11. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de o gás oxidante ser oxigênio e/ou ar.
BR112019021862-9A 2017-04-26 2017-04-26 Método e queimador para aquecer um forno para o processamento de metal BR112019021862B1 (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081959 WO2018195789A1 (en) 2017-04-26 2017-04-26 Method and burner for heating a furnace for metal processing

Publications (2)

Publication Number Publication Date
BR112019021862A2 BR112019021862A2 (pt) 2020-05-26
BR112019021862B1 true BR112019021862B1 (pt) 2022-12-20

Family

ID=63919511

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112019021862-9A BR112019021862B1 (pt) 2017-04-26 2017-04-26 Método e queimador para aquecer um forno para o processamento de metal

Country Status (11)

Country Link
US (2) US11852336B2 (pt)
EP (1) EP3615699A4 (pt)
KR (1) KR102429928B1 (pt)
CN (1) CN110603335B (pt)
BR (1) BR112019021862B1 (pt)
CA (1) CA3059799A1 (pt)
MY (1) MY197759A (pt)
RU (1) RU2733614C1 (pt)
UA (1) UA124285C2 (pt)
WO (1) WO2018195789A1 (pt)
ZA (1) ZA201907070B (pt)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3615699A4 (en) * 2017-04-26 2021-01-13 Linde GmbH PROCESS AND BURNER FOR HEATING A METAL PROCESSING OVEN
US11105502B2 (en) * 2019-06-17 2021-08-31 Honeywell International Inc. Staged fuel burner

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1424029A (fr) * 1964-01-06 1966-01-07 Union Carbide Corp Procédé et appareil pour introduire un courant de gaz de traitement dans un bain de métal en fusion
SU792020A1 (ru) * 1979-02-26 1980-12-30 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научно-Исследовательский Институт Им. Ф.Э.Дзержинского Горелка
DD143817A1 (de) * 1979-07-04 1980-09-10 Rolf Maiwald Vorrichtung zur direkten brennstoffverbrennung in einer wirbelschicht
US4890562A (en) * 1988-05-26 1990-01-02 American Combustion, Inc. Method and apparatus for treating solid particles
US4952218A (en) 1988-08-26 1990-08-28 The Dow Chemical Company Two-fluid nozzle for atomizing a liquid solid slurry and protecting nozzle tip
US5286277A (en) 1992-05-26 1994-02-15 Zaptech Corporation Method for producing steel
CN1056916C (zh) * 1993-09-28 2000-09-27 德士古发展公司 部分氧化方法及其中所采用的燃烧器
AT402963B (de) * 1995-09-07 1997-10-27 Voest Alpine Ind Anlagen Verfahren zum verbrennen von brennstoff
US5743723A (en) * 1995-09-15 1998-04-28 American Air Liquide, Inc. Oxy-fuel burner having coaxial fuel and oxidant outlets
US6342086B1 (en) * 1999-02-16 2002-01-29 Process Technology International, Inc. Method and apparatus for improved EAF steelmaking
ITMI20021526A1 (it) * 2002-07-11 2004-01-12 Danieli Off Mecc Iniettore per forni di fusione di materiale metallico
US6910431B2 (en) * 2002-12-30 2005-06-28 The Boc Group, Inc. Burner-lance and combustion method for heating surfaces susceptible to oxidation or reduction
US20050252430A1 (en) * 2002-12-30 2005-11-17 Satchell Donald P Jr Burner-lance and combustion method for heating surfaces susceptible to oxidation or reduction
ITMI20050241A1 (it) * 2005-02-18 2006-08-19 Techint Spa Iniettore multifunzione e relativo procedimento di combustione per trattamento metallurgico in un forno ad arco elettrico
US7452401B2 (en) * 2006-06-28 2008-11-18 Praxair Technology, Inc. Oxygen injection method
DE102007032376A1 (de) 2007-07-11 2009-01-22 Siemens Ag Reduktionsgaserzeuger
EP2333412A1 (en) * 2009-12-08 2011-06-15 Paul Wurth Refractory & Engineering GmbH Burner unit for steel making facilities
US20140170573A1 (en) * 2012-12-19 2014-06-19 Neil G. SIMPSON BURNER UTILIZING OXYGEN LANCE FOR FLAME CONTROL AND NOx REDUCTION
WO2015200346A1 (en) * 2014-06-23 2015-12-30 Air Products And Chemicals, Inc. Solid fuel burner and method of operating
US20170058769A1 (en) * 2015-08-27 2017-03-02 General Electric Company SYSTEM AND METHOD FOR OPERATING A DRY LOW NOx COMBUSTOR IN A NON-PREMIX MODE
CN105154686B (zh) * 2015-10-05 2018-01-19 阳谷祥光铜业有限公司 一种旋浮冶炼方法及旋浮冶炼喷嘴
EP3615699A4 (en) * 2017-04-26 2021-01-13 Linde GmbH PROCESS AND BURNER FOR HEATING A METAL PROCESSING OVEN

Also Published As

Publication number Publication date
CN110603335A (zh) 2019-12-20
US11852336B2 (en) 2023-12-26
EP3615699A4 (en) 2021-01-13
KR20200002982A (ko) 2020-01-08
CA3059799A1 (en) 2018-11-01
RU2733614C1 (ru) 2020-10-05
EP3615699A1 (en) 2020-03-04
ZA201907070B (en) 2023-10-25
MY197759A (en) 2023-07-13
WO2018195789A1 (en) 2018-11-01
US20240077200A1 (en) 2024-03-07
KR102429928B1 (ko) 2022-08-04
BR112019021862A2 (pt) 2020-05-26
UA124285C2 (uk) 2021-08-18
US20200116350A1 (en) 2020-04-16
CN110603335B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
EP0631090B1 (en) Controlled flame fuel jet combustion
JP4081129B2 (ja) 燃料およびオキシダント流の分離噴射を含む燃焼方法およびその燃焼
KR970003607B1 (ko) 고속가스 주입을 위한 방법 및 장치
KR970009482B1 (ko) 저 no_x의 산소-연료의 화염을 발생시키는 산소-연료 가열 방법 및 그 장치
US5931654A (en) Recessed furnace lance purge gas system
RU2239139C2 (ru) Способ получения множества когерентных газовых струй при использовании единственной фурмы (варианты) и фурма для его осуществления
US4556384A (en) Burner for pulverized coal
KR100272747B1 (ko) 부피가 큰 저속난류화염을 사용한 산소/연료 점화식 노
US20240077200A1 (en) Method and burner for heating a furnace for metal processing
US3347660A (en) Method for refining metals
US3175817A (en) Burner apparatus for refining metals
JP3675163B2 (ja) 管状火炎バーナ
JP3346267B2 (ja) 燃焼又は火炎加水分解用燃焼炉及び燃焼方法
US11313554B2 (en) Fluidic burner with heat stability
CA1051659A (en) Liquid-fuel atomization and injection device
US20040216494A1 (en) Burner for combustion or flame hydrolysis, and combustion furnace and process
JP2005003360A (ja) 管状火炎バーナ
JP3346266B2 (ja) 燃焼又は火炎加水分解用バーナー及び燃焼方法
EP1087177B1 (en) Burner and combustion furnace for combustion and flame hydrolysis and combustion method
JP3824485B2 (ja) 灰溶融バーナ
CA2630788A1 (en) Oil/slurry burner with injection atomization
JPS62116816A (ja) 高温酸素ランス
CN117448749A (zh) 一种火焰水解沉积装置的反应喷枪
SK68093A3 (sk) Spôsob vyvíjania plameňa z kyslíka a paliva s nízkym obsahom NOx a zariadenie na vykonávanie spôsobu
JPS6248156B2 (pt)

Legal Events

Date Code Title Description
B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]
B350 Update of information on the portal [chapter 15.35 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 26/04/2017, OBSERVADAS AS CONDICOES LEGAIS