BR112018014632B1 - método para produzir dois canais de áudio e sistema - Google Patents

método para produzir dois canais de áudio e sistema Download PDF

Info

Publication number
BR112018014632B1
BR112018014632B1 BR112018014632-3A BR112018014632A BR112018014632B1 BR 112018014632 B1 BR112018014632 B1 BR 112018014632B1 BR 112018014632 A BR112018014632 A BR 112018014632A BR 112018014632 B1 BR112018014632 B1 BR 112018014632B1
Authority
BR
Brazil
Prior art keywords
channel
component
band
subband
cross
Prior art date
Application number
BR112018014632-3A
Other languages
English (en)
Other versions
BR112018014632A2 (pt
Inventor
Zachary Seldess
James Tracey
Alan Kraemer
Original Assignee
Boomcloud 360, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boomcloud 360, Inc. filed Critical Boomcloud 360, Inc.
Publication of BR112018014632A2 publication Critical patent/BR112018014632A2/pt
Publication of BR112018014632B1 publication Critical patent/BR112018014632B1/pt

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/07Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone

Abstract

As realizações no presente são principalmente descritas no contexto de um sistema, um método e uma mídia legível por computador não transitória para produzir um som com detectabilidade espacial aprimorada e interferência reduzida de fala cruzada. O sistema de processamento de áudio recebe um sinal de áudio de entrada, e realizar um processamento de áudio no sinal de áudio de entrada para gerar um sinal de áudio de saída. Em um aspecto das realizações reveladas, o sistema de processamento de áudio divide o sinal de áudio de entrada em diferentes bandas de frequência, e aprimora um componente espacial do sinal de áudio de entrada com relação a um componente não espacial do sinal de áudio de entrada para cada banda de frequência.

Description

Histórico 1. Campo da descrição
[0001] As realizações da presente revelação geralmente referem-se ao campo do processamento de sinal de áudio e, mais particularmente, a redução de interferência de fala cruzada e aprimoramento espacial.
2. Descrição da técnica relacionada
[0002] A reprodução de som estereofônico envolve codificar e reproduzir sinais contendo propriedades espaciais de um campo de som. O som estereofônico permite a um ouvinte perceber um sentido espacial no campo de som.
[0003] Por exemplo, na FIG. 1, dois alto-falantes 110A e 110B posicionados em locais fixos convertem um sinal estéreo em ondas de som, que são direcionados a um ouvinte 120 para criar uma impressão de som ouvido de diversas direções. Em arranjo convencional de falante de campo próximo, tal como, ilustrado na FIG. 1, as ondas de som produzidas por ambos os alto- falantes 110 são recebidas em ambos os ouvidos esquerdo e direito 125L, 125R do ouvinte 120 com um leve atraso entre o ouvido esquerdo 125L e ouvido direito 125R e filtragem causada pela cabeça do ouvinte 120. As ondas de som geradas por ambos os alto-falantes criam a interferência de fala cruzada, que pode impedir o ouvinte 120 de determinar a localização espacial percebida da fonte de som imaginária 160.
Sumário
[0004] Um sistema de processamento de áudio produz de modo adaptável dois ou mais canais de saída para reprodução com detectabilidade espacial aprimorada e interferência reduzida de fala cruzada com base nos parâmetros dos alto-falantes e posição do ouvinte relativa aos alto-falantes. O sistema de processamento de áudio aplica um sinal de áudio de entrada de dois canais para multiplicar os fluxos múltiplos de processamento de áudio que controlam de modo adaptável como um ouvinte percebe a extensão da expansão do campo de som do sinal de áudio criada além dos limites físicos dos alto-falantes e a localização e intensidade dos componentes de som dentro do campo de som expandido. Os fluxos de processamento de áudio incluem um fluxo de processamento de aprimoramento de campo de som e um fluxo de processamento de cancelamento de fala cruzada para processamento do sinal de áudio de entrada de dois canais (p.ex., um sinal de áudio para um alto-falante de canal esquerdo e um sinal de áudio para um alto-falante de canal direito).
[0005] Em uma realização, o fluxo de processamento de aprimoramento de campo de som pré-processa o sinal de áudio de entrada antes de realizar o processamento de cancelamento de fala cruzada para extrair os componentes espaciais ou não espaciais. O pré-processamento ajusta a intensidade e balanço da energia nos componentes espaciais ou não espaciais do sinal de áudio de entrada. O componente espacial corresponde a uma porção não correlacionada entre dois canais (um "componente lateral"), enquanto um componente não espacial corresponde a uma porção correlacionada entre os dois canais (um "componente médio"). O fluxo de processamento de aprimoramento de campo de som também permite o controle da característica tímbrica e espectral dos componentes espaciais ou não espaciais do sinal de áudio de entrada.
[0006] Em um aspecto das realizações reveladas, o fluxo de processamento de aprimoramento de campo de som realiza um aprimoramento espacial de sub-banda no sinal de áudio de entrada ao dividir cada canal do sinal de áudio de entrada em diferentes sub-bandas de frequência e extrair os componentes espaciais ou não espaciais em cada sub-banda de frequência. O fluxo de processamento de aprimoramento de campo de som então independentemente ajusta a energia em um ou mais dos componentes espaciais ou não espaciais em cada sub-banda de frequência, e ajusta a característica espectral de um ou mais dos componentes espaciais ou não espaciais. Ao dividir o sinal de áudio de entrada de acordo com diferentes sub-bandas de frequência e ao ajustar a energia de um componente espacial com relação a um componente não espacial para cada sub-banda de frequência, o sinal de áudio espacialmente aprimorado de sub-banda atinge uma melhor localização espacial quando reproduzido pelos alto-falantes. Ajustar a energia do componente espacial com relação ao componente não espacial pode ser realizado ao ajustar o componente espacial por um primeiro coeficiente de ganho, o componente não espacial por um segundo coeficiente de ganho, ou ambos.
[0007] Em um aspecto das realizações reveladas, o fluxo de processamento de cancelamento de fala cruzada realiza o cancelamento de fala cruzada na saída de sinal de áudio espacialmente aprimorado de sub-banda a partir do fluxo de processamento de campo de som. Uma saída de componente de sinal (p.ex., 118L, 118R) por um alto-falante no mesmo lado da cabeça do ouvinte e recebida pelo ouvido do ouvinte naquele lado é aqui denominada como “um componente de som ipsilateral” (p.ex., componente de sinal de canal esquerdo recebido no ouvido esquerdo, e componente de sinal de canal direito recebido no ouvido direito) e uma saída do componente de sinal (p.ex., 112L, 112R) por um alto-falante no lado oposto da cabeça do ouvinte é aqui denominada como “um componente de som contralateral” (p.ex., componente de sinal de canal esquerdo recebido no ouvido direito, e componente de sinal de canal direito recebido no ouvido esquerdo). Os componentes de som contralateral contribuem para a interferência de fala cruzada, que resulta em percepção diminuída de espacialidade. O fluxo de processamento de cancelamento de fala cruzada prevê os componentes de som contralateral e identifica os componentes de sinal do sinal de áudio de entrada contribuindo com os componentes de som contralateral. O fluxo de processamento de cancelamento de fala cruzada então modificada cada canal do sinal de áudio espacialmente aprimorado de sub-banda ao adicionar um inverso dos componentes identificados de sinal de um canal ao outro canal do sinal de áudio espacialmente aprimorado de sub-banda para gerar um sinal de áudio de saída para reproduzir som. Como resultado, o sistema revelado pode reduzir os componentes de som contralateral que contribuem com a interferência de fala cruzada, e melhora a espacialidade percebida do som de saída.
[0008] Em um aspecto das realizações reveladas, um sinal de áudio de saída é obtido ao processar de modo adaptável o sinal de áudio de entrada através do fluxo de processamento de aprimoramento de campo de som e subsequentemente processar através do fluxo de processamento de cancelamento de fala cruzada, de acordo com os parâmetros para a posição de alto- falantes relativa aos ouvintes. Os exemplos dos parâmetros dos alto-falantes incluem uma distância entre o ouvinte e um alto- falante, um ângulo formado por dois alto-falantes com relação ao ouvinte. Os parâmetros adicionais incluem a resposta de frequência dos alto-falantes, e podem incluir outros parâmetros que podem ser medidos em tempo real, antes de ou durante o processamento de fluxo. O processo de cancelamento de fala cruzada é realizado usando os parâmetros. Por exemplo, uma frequência de corte, atraso e ganho associados ao cancelamento de fala cruzada podem ser determinados como uma função dos parâmetros dos alto-falantes. Além do mais, quaisquer defeitos espectrais devido ao cancelamento de fala cruzada correspondente associado aos parâmetros dos alto- falantes podem ser estimados. Além disso, uma compensação correspondente de fala cruzada para compensar pelos defeitos espectrais estimados pode ser realizada para uma ou mais sub- bandas através do fluxo de processamento de aprimoramento de campo de som.
[0009] De modo correspondente, o processamento de aprimoramento de campo de som, tal como, o processamento de aprimoramento espacial de sub-banda e compensação de fala cruzada, melhora a eficácia percebida geral de um processamento subsequente de cancelamento de fala cruzada. Como resultado, o ouvinte pode perceber que o som é direcionado ao ouvinte a partir de uma área maior, ao invés dos pontos específicos no espaço correspondente às localizações dos alto-falantes, e assim produzindo uma experiência de audição mais imersiva ao ouvinte.
Breve descrição dos desenhos
[0010] FIG. 1 ilustra um sistema de reprodução de áudio estéreo da técnica relacionada.
[0011] FIG. 2A ilustra um exemplo de um sistema de processamento de áudio para reproduzir um campo de som aprimorado com interferência reduzida de fala cruzada, de acordo com uma realização.
[0012] FIG. 2B ilustra uma implantação detalhada do sistema de processamento de áudio mostrado na FIG. 2A, de acordo com uma realização.
[0013] FIG. 3 ilustra um algoritmo de processamento de sinal exemplar para processar um sinal de áudio de modo a reduzir a interferência de fala cruzada, de acordo com uma realização.
[0014] FIG. 4 ilustra um diagrama exemplar de um processador de áudio espacial de sub-banda, de acordo com uma realização.
[0015] FIG. 5 ilustra um algoritmo exemplar para realizar o aprimoramento espacial de sub-banda, de acordo com uma realização.
[0016] FIG. 6 ilustra um diagrama exemplar de um processador de compensação de fala cruzada, de acordo com uma realização.
[0017] FIG. 7 ilustra um método exemplar de realizar a compensação para cancelamento de fala cruzada, de acordo com uma realização.
[0018] FIG. 8 ilustra um diagrama exemplar de um processador de cancelamento de fala cruzada, de acordo com uma realização.
[0019] FIG. 9 ilustra um método exemplar de realizar o cancelamento de fala cruzada, de acordo com uma realização.
[0020] FIGS. 10 e 11 ilustram os gráficos exemplares de resposta de frequência para demonstrar artefatos espectrais devido ao cancelamento de fala cruzada.
[0021] FIGS. 12 e 13 ilustram os gráficos exemplares de resposta de frequência para demonstrar efeitos da compensação de fala cruzada.
[0022] FIG. 14 ilustra as respostas exemplares de frequência para demonstrar efeitos de alterar as frequências de canto do divisor de banda de frequência mostrado na FIG. 8.
[0023] FIGS. 15 e 16 ilustram as respostas exemplares de frequência para demonstrar os efeitos do divisor de banda de frequência mostrado na FIG. 8.
Descrição detalhada
[0024] Os recursos e vantagens descritos na especificação não são todos inclusive e, particularmente, muitos recursos de vantagens adicionais serão aparentes para aquele com habilidade ordinária na técnica considerando os desenhos, especificação e reivindicações. Além disso, deve ser observado que a linguagem usada na especificação foi principalmente selecionada para fins de legibilidade e instrucionais, e pode não ter sido selecionada para delinear ou circunscrever o objeto inventivo.
[0025] As Figuras (FIG.) e a seguinte descrição referem-se às realizações preferidas por meio de ilustração apenas. Deve ser observado que, a partir da discussão a seguir, as realizações alternativas das estruturas e métodos aqui revelados serão prontamente reconhecidos como alternativas viáveis que podem ser empregadas sem desviar dos princípios da presente invenção.
[0026] A referência será agora feita em detalhe a diversas realizações da(s) presente(s) invenção(ões), cujos exemplos são ilustrados nas figuras anexas. É observado que em qualquer momento os números semelhantes praticáveis ou semelhantes de referência podem ser usados nas figuras e podem indicar funcionalidade semelhante ou igual. As figuras ilustram as realizações para os fins de ilustração apenas. Aquele com habilidade na técnica prontamente reconhecerá a partir da descrição a seguir que as realizações alternativas das estruturas e métodos aqui ilustrados podem ser empregados sem desviar dos princípios aqui descritos.
Sistema de processamento de áudio exemplar
[0027] FIG. 2A ilustra um exemplo de um sistema de processamento de áudio 220 para reproduzir um campo espacial aprimorado com interferência reduzida de fala cruzada, de acordo com uma realização. O sistema de processamento de áudio 220 recebe um sinal de áudio de entrada X compreendendo dois canais de entrada XL, XR. O sistema de processamento de áudio 220 prevê, em cada canal de entrada, os componentes de sinal que resultarão nos componentes de sinal contralateral. Em um aspecto, o sistema de processamento de áudio 220 obtém informações descrevendo os parâmetros dos alto-falantes 280L, 280R, e estima os componentes de sinal que resultarão nos componentes de sinal contralateral de acordo com as informações descrevendo os parâmetros dos alto-falantes. O sistema de processamento de áudio 220 gera um sinal de áudio de saída O compreendendo dois canais de saída OL, OU ao adicionar, para cada canal, um inverso de um componente de sinal que resultará no componente de sinal contralateral ao outro canal, para remover os componentes estimados de sinal contralateral a partir de cada canal de entrada. Além do mais, o sistema de processamento de áudio 220 pode acoplar os canais de saída OL, OU aos dispositivos de saída, tais como, alto-falantes 280L, 280R.
[0028] Em uma realização, o sistema de processamento de áudio 220 inclui um fluxo de processamento de aprimoramento de campo de som 210, um fluxo de processamento de cancelamento de fala cruzada 270 e um detector de configuração de alto-falante 202. Os componentes do sistema de processamento de áudio 220 podem ser implantados em circuitos eletrônicos. Por exemplo, um componente de hardware pode compreender conjunto de circuito dedicado ou lógica que é configurado (p.ex., como um processamento de finalidade especial, tal como, um processador de sinal digital (DSP), arranjo de porta programável de campo (FPGA) ou um circuito integrado específico de aplicação (ASIC)) para realizar determinadas operações aqui reveladas.
[0029] O detector de configuração de alto-falante 202 determina os parâmetros 204 dos alto-falantes 280. Os exemplos dos parâmetros dos alto-falantes incluem um número de alto- falantes, uma distância entre o ouvinte e um alto-falante, o ângulo de audição subtendido formado por dois alto-falantes com relação ao ouvinte (“ângulo de alto-falante”), frequência de saída dos alto-falantes, frequências de corte e outras quantidades que podem ser pré-definidas ou medidas em tempo real. O detector de configuração de alto-falante 202 pode obter informações descrevendo um tipo (p.ex., embutido no alto- falante no telefone, embutido no alto-falante de um computador pessoal, um alto-falante portátil, caixa de som, etc.) a partir de uma entrada de usuário ou entrada de sistema (p.ex., evento de detecção de conector de fone de ouvido), e determina os parâmetros dos alto-falantes de acordo com o tipo ou modelo dos alto-falantes 280. Alternativamente, o detector de configuração de alto-falante 202 pode produzir os sinais de teste para cada um dos alto-falantes 280 e usar um microfone embutido (não mostrado) para amostrar as saídas de alto- falante. A partir de cada saída amostrada, o detector de configuração de alto-falante 202 pode determinar a distância do alto-falante e características de resposta. O ângulo de alto-falante pode ser fornecido pelo usuário (p.ex., o ouvinte 120 ou outra pessoa) seja por seleção de uma quantia de ângulo, ou com base no tipo de alto-falante. Alternativa ou adicionalmente, o ângulo de alto-falante pode ser determinado através dos dados de usuário capturados interpretados ou de sensor gerados pelo sistema, tais como, uma análise de sinal de microfone, análise de visão de computador de uma imagem obtida dos alto-falantes (p.ex., usando a distância focal para estimar a distância intra-alto-falante, e então arco-tangente da razão de metade da distância intra-alto-falante para distância focal de modo a obter o meio ângulo de alto-falante), dados de giroscópio integrados por sistema ou acelerômetro. O fluxo de processamento de aprimoramento de campo de som 210 recebe o sinal de áudio de entrada X, e realiza o aprimoramento de campo de som no sinal de áudio de entrada X para gerar um sinal pré-compensado compreendendo os canais TL e TR. O fluxo de processamento de aprimoramento de campo de som 210 realiza o aprimoramento de campo de som usando um aprimoramento espacial de sub-banda, e pode usar os parâmetros 204 dos alto- falantes 280. Particularmente, o fluxo de processamento de aprimoramento de campo de som 210 realiza de modo adaptável (i) aprimoramento espacial de sub-banda no sinal de áudio de entrada X para aprimorar as informações espaciais do sinal de áudio de entrada X para uma ou mais sub-bandas de frequência, e (ii) realiza a compensação de fala cruzada para compensar quaisquer defeitos espectrais devido ao cancelamento subsequente de fala cruzada pelo fluxo de processamento de cancelamento de fala cruzada 270 de acordo com os parâmetros dos alto-falantes 280. As implantações detalhadas e operações do fluxo de processamento de aprimoramento de campo de som 210 são fornecidas com relação às FIGS. 2B, 3-7 abaixo.
[0030] O fluxo de processamento de cancelamento de fala cruzada 270 recebe o sinal pré-compensado T, e realiza um cancelamento de fala cruzada no sinal pré-compensado T para gerar o sinal de saída O. O fluxo de processamento de cancelamento de fala cruzada 270 pode realizar de modo adaptável o cancelamento de fala cruzada de acordo com os parâmetros 204. As implantações detalhadas e operações do fluxo de processamento de cancelamento de fala cruzada 270 são fornecidas com relação às FIGS. 3, e 8-9 abaixo.
[0031] Em uma realização, as configurações (p.ex., frequências de centro ou corte, fator de qualidade (Q), ganho, atraso, etc.) do fluxo de processamento de aprimoramento de campo de som 210 e fluxo de processamento de cancelamento de fala cruzada 270 são determinadas de acordo com os parâmetros 204 dos alto-falantes 280. Em um aspecto, diferentes configurações do fluxo de processamento de aprimoramento de campo de som 210 e fluxo de processamento de cancelamento de fala cruzada 270 podem ser armazenadas como uma ou mais tabelas de consulta, as quais podem ser acessadas de acordo com os parâmetros de alto- falante 204. As configurações com base nos parâmetros de alto- falante 204 podem ser identificadas através de uma ou mais tabelas de consulta, e aplicadas para realizar o aprimoramento de campo de som e cancelamento de fala cruzada.
[0032] Em uma realização, as configurações do fluxo de processamento de aprimoramento de campo de som 210 podem ser identificadas através de uma primeira tabela de consulta descrevendo uma associação entre os parâmetros de alto-falante 204 e configurações correspondentes do fluxo de processamento de aprimoramento de campo de som 210. Por exemplo, se os parâmetros de alto-falante 204 especificarem um ângulo de audição (ou faixa) e ainda especificarem um tipo de alto- falantes (ou uma faixa de resposta de frequência (p.ex., 350 Hz e 12 kHz para alto-falantes portáteis), as configurações do fluxo de processamento de aprimoramento de campo de som 210 podem ser determinadas através da primeira tabela de consulta. A primeira tabela de consulta pode ser gerada ao simular artefatos espectrais do cancelamento de fala cruzada sob diversos ajustes (p.ex., variar frequências de corte, ganho ou atraso para realizar o cancelamento de fala cruzada), e pré- determinar os ajustes do aprimoramento de campo de som para compensar os artefatos espectrais correspondentes. Além disso, os parâmetros de alto-falante 204 podem ser mapeados para configurações do fluxo de processamento de aprimoramento de campo de som 210 de acordo com o cancelamento de fala cruzada. Por exemplo, as configurações do fluxo de processamento de aprimoramentos de campo de som 210 para corrigir os artefatos espectrais de um cancelamento de fala cruzada particular podem ser armazenadas na primeira tabela de consulta para os alto- falantes 280 associados ao cancelamento de fala cruzada.
[0033] Em uma realização, as configurações do fluxo de processamento de cancelamento de fala cruzada 270 são identificadas através de uma segunda tabela de consulta descrevendo uma associação entre diversos parâmetros de alto- falante 204 e configurações correspondentes (p.ex., frequência de corte, frequência de centro, Q, ganho e atraso) do fluxo de processamento de cancelamento de fala cruzada 270. Por exemplo, se os alto-falantes 280 de um tipo particular (p.ex., alto- falante portátil) forem dispostos em um ângulo particular, as configurações do fluxo de processamento de cancelamento de fala cruzada 270 para realizar o cancelamento de fala cruzada para os alto-falantes 280 podem ser determinadas através da segunda tabela de consulta. A segunda tabela de consulta pode ser gerada através dos experimentos empíricos ao testar o som gerado sob os diversos ajustes (p.ex., distância, ângulo, etc.) de diversos alto-falantes 280.
[0034] FIG. 2B ilustra uma implantação detalhada do sistema de processamento de áudio 220 mostrada na FIG. 2A, de acordo com uma realização. Em uma realização, o fluxo de processamento de aprimoramento de campo de som 210 inclui um processador de áudio espacial de sub-banda (SBS) 230, um processador de compensação de fala cruzada 240 e um combinador 250, e o fluxo de processamento de cancelamento de fala cruzada 270 inclui um processador de cancelamento de fala cruzada (CTC) 260. (O detector de configuração de alto-falante 202 não é mostrado nesta figura.) Em algumas realizações, o processador de compensação de fala cruzada 240 e o combinador 250 podem ser omitidos, ou integrados ao processador de áudio de SBS 230. O processador de áudio de SBS 230 gera um sinal de áudio espacialmente aprimorado Y compreendendo dois canais, tais como, canal esquerdo YL e canal direito YR.
[0035] FIG. 3 ilustra um algoritmo de processamento de sinal exemplar para processar um sinal de áudio para reduzir a interferência de fala cruzada, conforme seria realizado pelo sistema de processamento de áudio 220 de acordo com uma realização. Em algumas realizações, o sistema de processamento de áudio 220 pode realizar as etapas em paralelo, realizar as etapas em ordens diferentes ou realizar diferentes etapas.
[0036] O processador de áudio espacial de sub-banda 230 recebe 370 o sinal de áudio de entrada X compreendendo dois canais, tais como, canal esquerdo XL e canal direito XR, e realiza 372 um aprimoramento espacial de sub-banda no sinal de áudio de entrada X para gerar um sinal de áudio espacialmente aprimorado Y compreendendo dois canais, tais como, canal esquerdo YL e canal direito YR. Em uma realização, o aprimoramento espacial de sub-banda inclui aplicar o canal esquerdo YL e canal direito YR a uma rede de cruzamento que divide cada canal do sinal de áudio de entrada X em diferentes sinais de sub-banda de entrada X(k). A rede de cruzamento compreende múltiplos filtros dispostos em diversas topologias de circuito conforme discutido com referência ao divisor de banda de frequência 410 mostrado na FIG. 4. A saída da rede de cruzamento é por matriz nos componentes médios e laterais. Os ganhos são aplicados aos componentes médios e laterais para ajustar o balanço ou razão entre os componentes médios e laterais de cada sub-banda. Os respectivos ganhos e atraso aplicados aos componentes médios e laterais de sub-banda podem ser determinados de acordo com uma primeira tabela de consulta, ou uma função. Desse modo, a energia em cada componente de sub-banda espacial Xs(k) de um sinal de sub-banda de entrada X(k) é ajustada com relação à energia em cada componente de sub-banda não espacial Xn(k) do sinal de sub-banda de entrada X(k) para gerar um componente aprimorado de sub-banda espacial Ys(k), e um componente aprimorado de sub-banda não espacial Yn(k) para uma sub-banda k. Com base nos componentes aprimorados de sub-banda Ys(k), Yn(k), o processador de áudio espacial de sub-banda 230 realiza uma operação de retirada de matriz para gerar dois canais (p.ex., canal esquerdo YL(k) e canal direito YR(k)) de um sinal de áudio de sub-banda espacialmente aprimorado Y(k) para uma sub-banda k. O processador de áudio espacial de sub-banda aplica um ganho espacial aos dois canais de retirada de matriz para ajustar a energia. Além do mais, o processador de áudio espacial de sub-banda 230 combina os sinais de áudio de sub- banda espacialmente aprimorados Y(k) em cada canal para gerar um canal correspondente YL e YR do sinal de áudio espacialmente aprimorado Y. Os detalhes da divisão de frequência e aprimoramento espacial de sub-banda estão descritos abaixo com relação à FIG. 4.
[0037] O processador de compensação de fala cruzada 240 realiza 374 uma compensação de fala cruzada para compensar os artefatos resultantes de um cancelamento de fala cruzada. Esses artefatos, resultantes principalmente da somatória dos componentes atrasados e invertidos de som contralateral com seus componentes correspondentes de som ipsilateral no processador de cancelamento de fala cruzada 260, introduzem uma resposta de frequência semelhante ao filtro de pente ao resultado produzido final. Com base no atraso específico, a amplificação, ou filtragem aplicada no processador de cancelamento de fala cruzada 260, a quantia e características (p.ex., frequência de centro, ganho, e Q) dos picos e fossos de filtro de pente sub-Nyquist mudam para cima e para baixo na resposta de frequência, causando amplificação variável e/ou atenuação da energia nas regiões específicas do espectro. A compensação de fala cruzada pode ser realizada como uma etapa de pré-processamento ao atrasar ou amplificar, para determinado parâmetro dos alto-falantes 280, o sinal de áudio de entrada X para uma banda particular de frequência, antes do cancelamento de fala cruzada realizado pelo processador de cancelamento de fala cruzada 260. Em uma implantação, a compensação de fala cruzada é realizada no sinal de áudio de entrada X para gerar um sinal de compensação de fala cruzada Z em paralelo com o aprimoramento espacial de sub-banda realizado pelo processador de áudio espacial de sub-banda 230. Nesta implantação, o combinador 250 combina 376 o sinal de compensação de fala cruzada Z com cada um dos dois canais YL e YR para gerar um sinal pré-compensado T compreendendo dois canais pré-compensados TL e TR. Alternativamente, a compensação de fala cruzada é realizada sequencialmente após o aprimoramento espacial de sub-banda, após o cancelamento de fala cruzada ou integrada com o aprimoramento espacial de sub- banda. Os detalhes da compensação de fala cruzada são abaixo descritos com relação à FIG. 6.
[0038] O processador de cancelamento de fala cruzada 260 realiza 378 um cancelamento de fala cruzada para gerar os canais de saída OL e OU. Mais particularmente, o processador de cancelamento de fala cruzada 260 recebe os canais pré- compensados TL e TR a partir do combinador 250, e realiza um cancelamento de fala cruzada nos canais pré-compensados TL e TR para gerar os canais de saída OL e OU. Para um canal (L/R), o processador de cancelamento de fala cruzada 260 estima um componente de som contralateral devido ao canal pré-compensado T(L/R) e identifica uma porção do canal pré-compensado T(L/R) contribuindo com o componente de som contralateral de acordo com os parâmetros de alto-falante 204. O processador de cancelamento de fala cruzada 260 adiciona um inverso da porção identificada do canal pré-compensado T(L/R) ao outro canal pré- compensado T(R/L) para gerar o canal de saída O(R/L). Nesta configuração, uma frente de onda de uma saída do componente de som ipsilateral pelo alto-falante 280(R/L) de acordo com o canal de saída O(R/L) chegou em um ouvido 125(R/L) pode cancelar uma frente de onda de uma saída do componente de som contralateral pelo outro alto-falante 280(L/R) de acordo com o canal de saída O(L/R), assim efetivamente removendo o componente de som contralateral devido ao canal de saída O(L/R). Alternativamente, o processador de cancelamento de fala cruzada 260 pode realizar o cancelamento de fala cruzada no sinal de áudio espacialmente aprimorado Y a partir do processador de áudio espacial de sub- banda 230 ou no sinal de áudio de entrada X ao invés disso. Os detalhes do cancelamento de fala cruzada estão abaixo descritos com relação à FIG. 8.
[0039] FIG. 4 ilustra um diagrama exemplar de um processador de áudio espacial de sub-banda 230, de acordo com uma realização que emprega uma abordagem de processamento médio/lateral. O processador de áudio espacial de sub-banda 230 recebe o sinal de áudio de entrada compreendendo os canais XL, XR, e realiza um aprimoramento espacial de sub-banda no sinal de áudio de entrada para gerar um sinal de áudio espacialmente aprimorado compreendendo os canais YL, YR. Em uma realização, o processador de áudio espacial de sub-banda 230 inclui um divisor de banda de frequência 410, conversores de áudio esquerdo/direito para áudio médio/lateral 420(k) (“um conversor de L/R para M/S 420(k)”), processadores de áudio médio/lateral 430(k) (“um processador médio/lateral 430(k)” ou “um processador de sub-banda 430(k)”), conversões de áudio médio/lateral para áudio esquerdo/direito 440(k) (“um conversor de M/S para L/R 440(k)” ou “um conversor reverso 440(k)”) para um grupo de sub-bandas de frequência k, e um combinador de banda de frequência 450. Em algumas realizações, os componentes do processador de áudio espacial de sub-banda 230 mostrados na FIG. 4 podem estar dispostos em diferentes ordens. Em algumas realizações, o processador de áudio espacial de sub-banda 230 inclui componentes diferentes, adicionais ou alguns do que aqueles mostrados na FIG. 4.
[0040] Em uma configuração, o divisor de banda de frequência 410, ou banco de filtro, é uma rede de cruzamento que inclui múltiplos filtros dispostos em quaisquer das diversas topologias de circuito, tais como, serial, paralela ou derivada. Os tipos exemplares de filtro incluídos na rede de cruzamento incluem filtros de faixa de passagem de resposta de impulso infinito (IIR) ou resposta de impulso finito (FIR), Filtros de pico e inclinação de IIR, Linkwitz-Riley ou outros tipos de filtro conhecidos por aqueles com habilidade ordinária na técnica de processamento de sinal de áudio. Os filtros dividem o canal esquerdo de entrada XL nos componentes de sub- banda esquerda XL(k), e dividem o canal direito de entrada XR nos componentes de sub-banda direita XR(k) para cada sub-banda de frequência k. Em uma abordagem, quatro filtros de faixa de passagem, ou quaisquer combinações de filtro de passagem inferior, filtro de faixa de passagem e um filtro de passagem superior, são empregados para aproximar as bandas críticas do ouvido humano. Uma banda crítica corresponde à largura de banda de dentro da qual um segundo tom é capaz de mascarar um tom primário existente. Por exemplo, cada uma das sub-bandas de frequência pode corresponder a uma escala consolidada de Bark para imitar as bandas críticas da audição humana. Por exemplo, o divisor de banda de frequência 410 divide o canal esquerdo de entrada XL em quatro componentes de sub-banda esquerda XL(k), correspondentes a 0 até 300 Hz, 300 até 510 Hz, 510 até 2700 Hz, e 2700 até frequência de Nyquist, respectivamente, e semelhantemente divide o canal direito de entrada XR nos componentes de sub-banda direita XR(k) para bandas correspondentes de frequência. O processo de determinar um conjunto consolidado de bandas críticas inclui um corpus de amostras de áudio a partir de uma ampla variedade de gêneros musicais, e determinar a partir das amostras uma razão de energia de média de longo prazo dos componentes médios para laterais sobre as bandas críticas de escala de 24 Bark. As bandas contínuas de frequência com razões de média de longo prazo são então agrupadas juntas para formar o conjunto de bandas críticas. Em outras implantações, os filtros separam os canais de entrada esquerda e direita em menos ou mais do que quatro sub-bandas. A faixa de bandas de frequência pode ser ajustável. O divisor de banda de frequência 410 produz um par de um componente de sub-banda esquerda XL(k) e um componente de sub-banda direita XR(k) a um conversor correspondente de L/R para M/S 420(k).
[0041] Um conversor de L/R para M/S 420(k), um processador médio/lateral 430(k) e um conversor de M/S para L/R 440(k) em cada sub-banda de frequência k operam juntos para aprimorar um componente de sub-banda espacial Xs(k) (também denominado como “um componente de sub-banda lateral”) com relação a um componente de sub-banda não espacial Xn(k) (também denominado como “um componente de sub-banda média”) em sua respectiva sub-banda de frequência k. Especificamente, cada conversor de L/R para M/S 420(k) recebe um par de componentes de sub-banda XL(k), XR(k) para determinada sub-banda de frequência k, e converte essas entradas em um componente de sub-banda média e um componente de sub-banda lateral. Em uma realização, o componente de sub-banda não espacial Xn(k) corresponde a uma porção correlacionada entre o componente de sub-banda esquerda XL(k) e o componente de sub-banda direita XR(k), consequentemente, inclui as informações não espaciais. Além do mais, o componente de sub-banda espacial Xs(k) corresponde a uma porção não correlacionada entre o componente de sub-banda esquerda XL(k) e o componente de sub-banda direita XR(k), consequentemente, inclui as informações espaciais. O componente de sub-banda não espacial Xn(k) pode ser computado como uma soma do componente de sub-banda esquerda XL(k) e o componente de sub-banda direita XR(k), e o componente de sub- banda espacial Xs(k) pode ser computado como uma diferença entre o componente de sub-banda esquerda XL(k) e o componente de sub-banda direita XR(k). Em um exemplo, o conversor de L/R para M/S 420 obtém o componente de sub-banda espacial Xs(k) e componente de sub-banda não espacial Xn(k) da banda de frequência de acordo com as seguintes equações: Xs(k)= XL(k)-XR(k) para a sub-banda k Eq. (1) Xn(k)= XL(k)+XR(k) para a sub-banda k Eq. (2)
[0042] Cada processador médio/lateral 430(k) aprimora o componente recebido de sub-banda espacial Xs(k) com relação ao componente recebido de sub-banda não espacial Xn(k) para gerar um componente aprimorado de sub-banda espacial Ys(k) e um componente aprimorado de sub-banda não espacial Yn(k) para uma sub-banda k. Em uma realização, o processador médio/lateral 430(k) ajusta o componente de sub-banda não espacial Xn(k) por um coeficiente de ganho correspondente Gn(k), e atrasa o componente amplificado de sub-banda não espacial Gn(k)*Xn(k) por uma função de atraso correspondente D[] para gerar um componente aprimorado de sub-banda não espacial Yn(k). Semelhantemente, o processador médio/lateral 430(k) ajusta o componente recebido de sub-banda espacial Xs(k) por um coeficiente de ganho correspondente Gs(k), e atrasa o componente amplificado de sub-banda espacial Gs(k)*Xs(k) por uma função de atraso correspondente D para gerar um componente aprimorado de sub-banda espacial Ys(k). Os coeficientes de ganho e quantia de atraso podem ser ajustáveis. Os coeficientes de ganho e quantia de atraso podem ser determinados de acordo com os parâmetros de alto-falante 204 ou podem ser fixados para um conjunto assumido de valores de parâmetro. Cada processador médio/lateral 430(k) produz o componente de sub- banda não espacial Xn(k) e o componente de sub-banda espacial Xs(k) para um conversor correspondente de M/S para L/R 440(k) da respectiva sub-banda de frequência k. O processador médio/lateral 430(k) de uma sub-banda de frequência k gera um componente de sub-banda não espacial aprimorado Yn(k) e um componente aprimorado de sub-banda espacial Ys(k) de acordo com as seguintes equações: Yn(k)= Gn(k)*D[Xn(k), k] para a sub-banda k Eq. (3) Ys(k)= Gs(k)*D[Xs(k), k] para a sub-banda k Eq. (4) Os exemplos dos coeficientes de ganho e atraso estão listados na seguinte Tabela 1. Tabela 1. Configurações exemplares dos processadores médios/laterais
Figure img0001
[0043] Cada conversor de M/S para L/R 440(k) recebe um componente aprimorado não espacial Yn(k) e um componente aprimorado espacial Ys(k), e converte-os em um componente aprimorado de sub-banda esquerda YL(k) e um componente aprimorado de sub-banda direita YR(k). Presumindo-se que um conversor de L/R para M/S 420(k) gera o componente de sub- banda não espacial Xn(k) e o componente de sub-banda espacial Xs(k) de acordo com a Eq. (1) e Eq. (2) acima, o conversor de M/S para L/R 440(k) gera o componente aprimorado de sub-banda esquerda YL(k) e componente aprimorado de sub-banda direita YR(k) da sub-banda de frequência k de acordo com as seguintes equações: Y L(k)=(Yn(k)+Ys(k))/2 para a sub-banda k Eq. (5) Y R(k)= (Yn(k)-Ys(k))/2 para a sub-banda k Eq. (6)
[0044] Em uma realização, XL(k) e XR(k) na Eq. (1) e Eq. (2) podem ser trocados, caso em que YL(k) e YR(k) na Eq. (5) e Eq. (6) também são trocados.
[0045] O combinador de banda de frequência 450 combina os componentes aprimorados de sub-banda esquerda em diferentes bandas de frequência a partir do conversor de M/S para L/Rs 440 para gerar o canal de áudio espacialmente aprimorado esquerdo YL e combina os componentes aprimorados de sub-banda direita em diferentes bandas de frequência a partir do conversor de M/S para L/Rs 440 para gerar o canal de áudio espacialmente aprimorado direito YR, de acordo com as seguintes equações: Y L=∑YL(k) Eq. (7) Y R= ∑YR(k) Eq. (8)
[0046] Embora na realização da FIG. 4 os canais de entrada XL, XR sejam divididos em quatro sub-bandas de frequência, em outras realizações, os canais de entrada XL, XR podem ser divididos em um número diferente de sub-bandas de frequência, conforme acima explicado.
[0047] FIG. 5 ilustra um algoritmo exemplar para realizar o aprimoramento espacial de sub-banda, conforme seria realizado pelo processador de áudio espacial de sub-banda 230 de acordo com uma realização. Em algumas realizações, o processador de áudio espacial de sub-banda 230 pode realizar as etapas em paralelo, realizar as etapas em diferentes ordens ou realizar diferentes etapas.
[0048] O processador de áudio espacial de sub-banda 230 recebe um sinal de entrada compreendendo os canais de entrada XL, XR. O processador de áudio espacial de sub-banda 230 divide 510 o canal de entrada XL em XL(k) (p.ex., k=4) componentes de sub- banda, p.ex., XL(1), XL(2), XL(3) XL(4), e o canal de entrada XR(k) em componentes de sub-banda, p.ex., XR(1), XR(2), XR(3) XR(4) de acordo com k sub-bandas de frequência, p.ex., sub- banda abrangendo 0 até 300 Hz, 300 até 510 Hz, 510 até 2700 Hz e 2700 até frequência de Nyquist, respectivamente.
[0049] O processador de áudio espacial de sub-banda 230 realiza o aprimoramento espacial de sub-banda nos componentes de sub- banda para cada sub-banda de frequência k. Especificamente, o processador de áudio espacial de sub-banda 230 gera 515, para cada sub-banda k, um componente de sub-banda espacial Xs(k) e um componente de sub-banda não espacial Xn(k) com base nos componentes de sub-banda XL(k), XR(k), por exemplo, de acordo com a Eq. (1) e Eq. (2) acima. Além disso, o processador de áudio espacial de sub-banda 230 gera 520, para a sub-banda k, um componente aprimorado espacial Ys(k) e um componente aprimorado não espacial Yn(k) com base no componente de sub- banda espacial Xs(k) e componente de sub-banda não espacial Xn(k), por exemplo, de acordo com a Eq. (3) e Eq. (4) acima. Além do mais, o processador de áudio espacial de sub-banda 230 gera 525, para a sub-banda k, componentes aprimorados de sub- banda YL(k), YR(k) com base no componente aprimorado espacial Ys(k) e o componente aprimorado não espacial Yn(k), por exemplo, de acordo com a Eq. (5) e Eq. (6) acima.
[0050] O processador de áudio espacial de sub-banda 230 gera 530 um canal espacialmente aprimorado YL ao combinar todos os componentes aprimorados de sub-banda YL(k) e gera um canal espacialmente aprimorado YR ao combinar todos os componentes aprimorados de sub-banda YR(k).
[0051] FIG. 6 ilustra um diagrama exemplar de um processador de compensação de fala cruzada 240, de acordo com uma realização. O processador de compensação de fala cruzada 240 recebe os canais de entrada XL e XR, e realiza um pré- processamento para pré-compensar quaisquer artefatos em um cancelamento subsequente de fala cruzada realizado pelo processador de cancelamento de fala cruzada 260. Em uma realização, o processador de compensação de fala cruzada 240 inclui um combinador de sinais esquerdos e direitos 610 (também denominado como “um combinador de L&R 610”), e um processador de componente não espacial 620.
[0052] O combinador de L&R 610 recebe o canal de áudio de entrada esquerda XL e o canal de áudio de entrada direita XR, e gera um componente não espacial Xn dos canais de entrada XL, XR. Em um aspecto das realizações reveladas, o componente não espacial Xn corresponde a uma porção correlacionada entre o canal esquerdo de entrada XL e o canal direito de entrada XR. O combinador de L&R 610 pode adicionar o canal esquerdo de entrada XL e canal direito de entrada XR para gerar a porção correlacionada, que corresponde ao componente não espacial Xn dos canais de áudio de entrada XL, XR conforme mostrado na seguinte equação: Xn= XL+XR Eq. (9)
[0053] O processador de componente não espacial 620 recebe o componente não espacial Xn, e realiza o aprimoramento não espacial no componente não espacial Xn para gerar o sinal de compensação de fala cruzada Z. Em um aspecto das realizações reveladas, o processador de componente não espacial 620 realiza um pré-processamento no componente não espacial Xn dos canais de entrada XL, XR para compensar quaisquer artefatos em um cancelamento subsequente de fala cruzada. Um gráfico de resposta de frequência do componente de sinal não espacial de um cancelamento subsequente de fala cruzada pode ser obtido através de simulação. Além disso, ao analisar o gráfico de resposta de frequência, quaisquer defeitos espectrais, tais como, picos ou fossos no gráfico de resposta de frequência sobre um limite pré-determinado (p.ex., 10 dB) ocorrendo como um artefato do cancelamento de fala cruzada podem ser estimados. Esses artefatos resultam principalmente a partir da somatória dos sinais contralaterais atrasados e invertidos com seu sinal ipsilateral correspondente no processador de cancelamento de fala cruzada 260, assim efetivamente introduzindo uma resposta de frequência semelhante ao filtro de pente ao resultado produzido final. O sinal de compensação de fala cruzada Z pode ser gerado pelo processador de componente não espacial 620 até compensar pelos picos ou fossos estimados. Especificamente, com base no atraso específico, frequência de filtragem e ganho aplicado no processador de cancelamento de fala cruzada 260, picos e fossos mudam para cima e para baixo na resposta de frequência, causando amplificação variável e/ou atenuação da energia nas regiões específicas do espectro.
[0054] Em uma implantação, o processador de componente não espacial 620 inclui um amplificador 660, um filtro 670 e uma unidade de atraso 680 para gerar o sinal de compensação de fala cruzada Z para compensar os defeitos espectrais estimados do cancelamento de fala cruzada. Em uma implantação exemplar, o amplificador 660 amplifica o componente não espacial Xn por um coeficiente de ganho Gn, e o filtro 670 realiza um filtro de EQ de pico de 2 a ordem F[] no componente amplificado não espacial Gn*Xn. A saída do filtro 670 pode ser atrasada pela unidade de atraso 680 por uma função de atraso D. O filtro, amplificador e a unidade de atraso podem estar dispostos em cascata em qualquer sequência. O filtro, amplificador e a unidade de atraso podem ser implantados com configurações ajustáveis (p.ex., frequência de centro, frequência de corte, coeficiente de ganho, quantia de atraso, etc.). Em um exemplo, o processador de componente não espacial 620 gera o sinal de compensação de fala cruzada Z, de acordo com a equação abaixo: Z= D[F[Gn*Xn]] Eq. (10) Conforme acima descrito com relação à FIG. 2A acima, as configurações de compensar o cancelamento de fala cruzada podem ser determinadas pelos parâmetros de alto-falante 204, por exemplo, de acordo com a seguinte Tabela 2 e Tabela 3 como uma primeira tabela de consulta: Tabela 2. Configurações exemplares da compensação de fala cruzada para um pequeno alto-falante (p.ex., faixa de frequência de saída entre 250 Hz e 14000 Hz)
Figure img0002
Tabela 3. Configurações exemplares da compensação de fala cruzada para um grande alto-falante (p.ex., faixa de frequência de saída entre 100 Hz e 16000 Hz).
Figure img0003
Em um exemplo, para um tipo particular de alto-falantes (alto-falantes pequenos/portáteis ou grandes alto-falantes), frequência de centro de filtro, ganho de filtro e fator de qualidade do filtro 670 podem ser determinados, de acordo com um ângulo formado entre dois alto-falantes 280 com relação a um ouvinte. Em algumas realizações, os valores entre os ângulos de alto-falante são usados para interpolar outros valores.
[0055] Em algumas realizações, o processador de componente não espacial 620 pode ser integrado ao processador de áudio espacial de sub-banda 230 (p.ex., processador médio/lateral 430) e compensar os artefatos espectrais de um cancelamento subsequente de fala cruzada para uma ou mais sub-bandas de frequência.
[0056] FIG. 7 ilustra um método exemplar de realizar a compensação para cancelamento de fala cruzada, conforme seria realizada pelo processador de compensação de fala cruzada 240 de acordo com uma realização. Em algumas realizações, o processador de compensação de fala cruzada 240 pode realizar as etapas em paralelo, realizar as etapas em ordens diferentes ou realizar diferentes etapas.
[0057] O processador de compensação de fala cruzada 240 recebe um sinal de áudio de entrada compreendendo os canais de entrada XL e XR. O processador de compensação de fala cruzada 240 gera 710 um componente não espacial Xn entre os canais de entrada XL e XR, por exemplo, de acordo com a Eq. (9) acima.
[0058] O processador de compensação de fala cruzada 240 determina 720 configurações (p.ex., parâmetros de filtro) para realizar a compensação de fala cruzada conforme acima descrito com relação à FIG. 6 acima. O processador de compensação de fala cruzada 240 gera 730 o sinal de compensação de fala cruzada Z para compensar os defeitos espectrais estimados na resposta de frequência de um cancelamento subsequente de fala cruzada aplicado aos sinais de entrada XL e XR.
[0059] FIG. 8 ilustra um diagrama exemplar de um processador de cancelamento de fala cruzada 260, de acordo com uma realização. O processador de cancelamento de fala cruzada 260 recebe um sinal de áudio de entrada T compreendendo os canais de entrada TL, TR, e realiza o cancelamento de fala cruzada nos canais TL, TR para gerar um sinal de áudio de saída O compreendendo os canais de saída OL, OU (p.ex., canais esquerdos e direitos). O sinal de áudio de entrada T pode ser produzido a partir do combinador 250 da FIG. 2B. Alternativamente, o sinal de áudio de entrada T pode ser o sinal de áudio espacialmente aprimorado Y a partir do processador de áudio espacial de sub-banda 230. Em uma realização, o processador de cancelamento de fala cruzada 260 inclui um divisor de banda de frequência 810, inversores 820A, 820B, estimadores contralaterais 825A, 825B e um combinador de banda de frequência 840. Em uma abordagem, esses componentes operam juntos para dividir os canais de entrada TL, TR em componentes dentro da banda e componentes fora da banda, e realiza um cancelamento de fala cruzada nos componentes dentro da banda para gerar os canais de saída OL, OU.
[0060] Ao dividir o sinal de áudio de entrada T em diferentes componentes de banda de frequência e ao realizar o cancelamento de fala cruzada nos componentes seletivos (p.ex., componentes dentro da banda), o cancelamento de fala cruzada pode ser realizado para uma banda particular de frequência enquanto obvia degradações em outras bandas de frequência. Se o cancelamento de fala cruzada for realizado sem dividir o sinal de áudio de entrada T em diferentes bandas de frequência, o sinal de áudio após tal cancelamento de fala cruzada pode exibir atenuação ou amplificação significativa nos componentes não espaciais e espaciais em baixa frequência (p.ex., abaixo 350 Hz), frequência superior (p.ex., acima 12000 Hz), ou ambos. Ao seletivamente realizar o cancelamento de fala cruzada para dentro da banda (p.ex., entre 250 Hz e 14000 Hz), onde a vasta maioria das pistas espaciais impactantes reside, uma energia geral balanceada, particularmente no componente não espacial, através do espectro na mistura pode ser retida.
[0061] Em uma configuração, o divisor de banda de frequência 810 ou um banco de filtro divide os canais de entrada TL, TR nos canais dentro da banda TL,In, TR,In e canais fora da banda TL,Out, TR,Out, respectivamente. Particularmente, o divisor de banda de frequência 810 divide o canal esquerdo de entrada TL em um canal esquerdo dentro da banda TL,In e um canal direito fora da banda TL,Out. Semelhantemente, o divisor de banda de frequência 810 divide o canal direito de entrada TR em um canal direito dentro da banda TR,In e um canal direito fora da banda TR,Out. Cada canal dentro da banda pode abranger uma porção de um respectivo canal de entrada correspondente a uma faixa de frequência incluindo, por exemplo, 250 Hz até 14 kHz. A faixa das bandas de frequência pode ser ajustável, por exemplo, de acordo com os parâmetros de alto-falante 204.
[0062] O inversor 820A e o estimador contralateral 825A operam juntos para gerar um componente de cancelamento contralateral SL para compensar um componente de som contralateral devido ao canal esquerdo dentro da banda TL,In. Semelhantemente, o inversor 820B e o estimador contralateral 825B operam juntos para gerar um componente de cancelamento contralateral SR para compensar um componente de som contralateral devido ao canal direito dentro da banda TR,In.
[0063] Em uma abordagem, o inversor 820A recebe o canal dentro da banda TL,In e inverte uma polaridade do canal recebido dentro da banda TL,In para gerar um canal invertido dentro da banda TL,In’. O estimador contralateral 825A recebe o canal invertido dentro da banda TL,In’, e extrai uma porção do canal invertido dentro da banda TL,In’ correspondente a um componente de som contralateral através de filtragem. Devido à filtragem ser realizada no canal invertido dentro da banda TL,In’, a porção extraída pelo estimador contralateral 825A torna-se um inverso de uma porção do canal dentro da banda TL,In atribuindo ao componente de som contralateral. Consequentemente, a porção extraída pelo estimador contralateral 825A torna-se um componente de cancelamento contralateral SL, que pode ser adicionado a um canal de contraparte dentro da banda TR,In para reduzir o componente de som contralateral devido ao canal dentro da banda TL,In. Em algumas realizações, o inversor 820A e estimador contralateral 825A são implantados em uma sequência diferente.
[0064] O inversor 820B e o estimador contralateral 825B realizam operações semelhantes com relação ao canal dentro da banda TR,In para gerar o componente de cancelamento contralateral SR. Portanto, sua descrição detalhada é aqui omitida para os fins de brevidade.
[0065] Em uma implantação exemplar, o estimador contralateral 825A inclui um filtro 852A, um amplificador 854A e uma unidade de atraso 856A. O filtro 852A recebe o canal invertido de entrada TL,In’ e extrai uma porção do canal invertido dentro da banda TL,In’ correspondente a um componente de som contralateral através da função de filtragem F. Uma implantação de filtro exemplar é um filtro Notch ou Highshelf com uma frequência de centro selecionada entre 5000 e 10000 Hz, e Q selecionado entre 0,5 e 1,0. O ganho em decibéis (GdB) pode ser derivado a partir da seguinte fórmula: GdB = -3.0 - log1.333(D) Eq. (11) onde D é uma quantia de atraso por unidade de atraso 856A/B nas amostras, por exemplo, em uma taxa de amostragem de 48 KHz. Uma implantação alternativa é um Filtro de Passagem Inferior com uma frequência de canto selecionada entre 5000 e 10000 Hz, e Q selecionado entre 0,5 e 1,0. Além do mais, o amplificador 854A amplifica a porção extraída por um coeficiente de ganho correspondente GL,In, e a unidade de atraso 856A atrasa a saída amplificada a partir do amplificador 854A de acordo com uma função de atraso D para gerar o componente de cancelamento contralateral SL. O estimador contralateral 825B realiza operações semelhantes no canal invertido dentro da banda TR,In’ para gerar o componente de cancelamento contralateral SR. Em um exemplo, os estimadores contralaterais 825A, 825B geram os componentes de cancelamento contralateral SL, SR, de acordo com as equações abaixo: SL=D[GL,In*F[TL,In’]] Eq. (12) SR=D[GR,In*F[TR,In’]] Eq. (13) Conforme acima descrito com relação à FIG. 2A acima, as configurações do cancelamento de fala cruzada podem ser determinadas pelos parâmetros de alto-falante 204, por exemplo, de acordo com a seguinte Tabela 4 como uma segunda tabela de consulta: Tabela 4. Configurações exemplares do cancelamento de fala cruzada
Figure img0004
Em um exemplo, a frequência de centro de filtro, quantia de atraso, ganho de amplificador e ganho de filtro podem ser determinados, de acordo com um ângulo formado entre dois alto- falantes 280 com relação a um ouvinte. Em algumas realizações, os valores entre os ângulos de alto-falante são usados para interpolar outros valores.
[0066] O combinador 830A combina o componente de cancelamento contralateral SR ao canal esquerdo dentro da banda TL,In para gerar um canal compensado esquerdo dentro da banda CL, e o combinador 830B combina o componente de cancelamento contralateral SL ao canal direito dentro da banda TR,In para gerar um canal direito compensado dentro da banda CR. O combinador de banda de frequência 840 combina os canais compensados dentro da banda CL, CR com os canais fora da banda TL,Out, TR,Out para gerar os canais de áudio de saída OL, OU, respectivamente.
[0067] De modo correspondente, o canal de áudio de saída OL inclui o componente de cancelamento contralateral SR correspondente a um inverso de uma porção do canal dentro da banda TR,In atribuindo ao som contralateral, e o canal de áudio de saída OU inclui o componente de cancelamento contralateral SL correspondente a um inverso de uma porção do canal dentro da banda TL,In atribuindo ao som contralateral. Nesta configuração, uma frente de onda de uma saída do componente de som ipsilateral pelo alto-falante 280R de acordo com o canal de saída OU chegou ao ouvido direito pode cancelar uma frente de onda de uma saída do componente de som contralateral pelo alto-falante 280L de acordo com o canal de saída OL. Semelhantemente, uma frente de onda de uma saída do componente de som ipsilateral pelo alto-falante 280L de acordo com o canal de saída OL chegou ao ouvido esquerdo pode cancelar uma frente de onda de uma saída do componente de som contralateral pelo alto-falante 280R de acordo com o canal de saída OU. Desse modo, os componentes de som contralateral podem ser reduzidos para aprimorar a detectabilidade espacial.
[0068] FIG. 9 ilustra um método exemplar de realizar o cancelamento de fala cruzada, conforme seria realizado pelo processador de cancelamento de fala cruzada 260 de acordo com uma realização. Em algumas realizações, o processador de cancelamento de fala cruzada 260 pode realizar as etapas em paralelo, realizar as etapas em ordens diferentes ou realizar diferentes etapas.
[0069] O processador de cancelamento de fala cruzada 260 recebe um sinal de entrada compreendendo os canais de entrada TL, TR. O sinal de entrada pode ser produzido TL, TR a partir do combinador 250. O processador de cancelamento de fala cruzada 260 divide 910 um canal de entrada TL em um canal dentro da banda TL,In e um canal fora da banda TL,Out. Semelhantemente, o processador de cancelamento de fala cruzada 260 divide 915 o canal de entrada TR em um canal dentro da banda TR,In e um canal fora da banda TR,Out. Os canais de entrada TL, TR podem ser divididos nos canal dentro da banda e os canais fora da banda pelo divisor de banda de frequência 810, conforme acima descrito com relação à FIG. 8 acima.
[0070] O processador de cancelamento de fala cruzada 260 gera 925 um componente de cancelamento de fala cruzada SL com base em uma porção do canal dentro da banda TL,In contribuindo com um componente de som contralateral, por exemplo, de acordo com a Tabela 4 e Eq. (12) acima. Semelhantemente, o processador de cancelamento de fala cruzada 260 gera 935 um componente de cancelamento de fala cruzada SR contribuindo com um componente de som contralateral com base na porção identificada do canal dentro da banda TR,In, por exemplo, de acordo com a Tabela 4 e Eq. (13).
[0071] O processador de cancelamento de fala cruzada 260 gera um canal de áudio de saída OL ao combinar 940 o canal dentro da banda TL,In, componente de cancelamento de fala cruzada SR, e canal fora da banda TL,Out. Semelhantemente, o processador de cancelamento de fala cruzada 260 gera um canal de áudio de saída OU ao combinar 945 o canal dentro da banda TR,In, componente de cancelamento de fala cruzada SL, e canal fora da banda TR,Out.
[0072] Os canais de saída OL, OU podem ser fornecidos aos respectivos alto-falantes para reproduzir o som estéreo com fala cruzada reduzida e detectabilidade espacial melhorada.
[0073] FIGS. 10 e 11 ilustram os gráficos exemplares de resposta de frequência para demonstrar artefatos espectrais devido ao cancelamento de fala cruzada. Em um aspecto, a resposta de frequência do cancelamento de fala cruzada exibe artefatos de filtro de pente. Esses artefatos de filtro de pente exibem respostas invertidas nos componentes espaciais ou não espaciais do sinal. FIG. 10 ilustra os artefatos resultantes do cancelamento de fala cruzada empregando 1 atraso de amostra em uma taxa de amostragem de 48 KHz, e FIG. 11 ilustra os artefatos resultantes do cancelamento de fala cruzada empregando 6 atrasos de amostra em uma taxa de amostragem de 48 KHz. O gráfico 1010 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1020 é uma resposta de frequência de um componente não espacial (correlacionado) do cancelamento de fala cruzada empregando 1 atraso de amostra; e gráfico 1030 é uma resposta de frequência de um componente espacial (não correlacionado) do cancelamento de fala cruzada empregando 1 atraso de amostra. Gráfico 1110 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1120 é uma resposta de frequência de um componente não espacial (correlacionado) do cancelamento de fala cruzada empregando 6 atrasos de amostra; e gráfico 1130 é uma resposta de frequência componente espacial (não correlacionado) do cancelamento de fala cruzada empregando 6 atrasos de amostra. Ao alterar o atraso da compensação de fala cruzada, o número e frequência de centro dos picos e fossos ocorrendo abaixo da frequência de Nyquist podem ser alterados.
[0074] FIGS. 12 e 13 ilustram gráficos exemplares de resposta de frequência para demonstrar efeitos da compensação de fala cruzada. Gráfico 1210 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1220 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando 1 atraso de amostra sem a compensação de fala cruzada; e gráfico 1230 é uma resposta de frequência de um componente não espacial (correlacionado) do cancelamento de fala cruzada empregando 1 atraso de amostra com a compensação de fala cruzada. Gráfico 1310 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1320 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando 6 atrasos de amostra sem a compensação de fala cruzada; e gráfico 1330 é uma resposta de frequência de um componente não espacial (correlacionado) do cancelamento de fala cruzada empregando 6 atrasos de amostra com a compensação de fala cruzada. Em um exemplo, o processador de compensação de fala cruzada 240 aplica um filtro de pico ao componente não espacial para uma faixa de frequência com um fosso e aplica um filtro de entalhe ao componente não espacial para uma faixa de frequência com um pico para outra faixa de frequência para aplanar a resposta de frequência conforme mostrado nos gráficos 1230 e 1330. Como resultado, uma presença perceptual mais estável dos elementos musicais de giro central pode ser produzida. Outros parâmetros, tais como, uma frequência de centro, ganho e Q do cancelamento de fala cruzada podem ser determinados por uma segunda tabela de consulta (p.ex., Tabela 4 acima) de acordo com os parâmetros de alto- falante 204.
[0075] FIG. 14 ilustra as respostas exemplares de frequência para demonstrar efeitos de alterar as frequências de canto do divisor de banda de frequência mostrado na FIG. 8. Gráfico 1410 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1420 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando frequências de canto Dentro da Banda de 350-12000 Hz; e gráfico 1430 é uma resposta de frequência de um componente não espacial (correlacionado) do cancelamento de fala cruzada empregando frequências de canto Dentro da Banda de 200-14000 Hz. Conforme mostrado na FIG. 14, alterar as frequências de corte do divisor de banda de frequência 810 da FIG. 8 afeta a resposta de frequência do cancelamento de fala cruzada.
[0076] FIGS. 15 e 16 ilustram as respostas exemplares de frequência para demonstrar efeitos do divisor de banda de frequência 810 mostrado na FIG. 8. Gráfico 1510 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1520 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando 1 atraso de amostra em uma taxa de amostragem de 48 KHz e faixa de frequência dentro da banda de 350 até 12000 Hz; e gráfico 1530 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando 1 atraso de amostra em uma taxa de amostragem de 48 KHz para toda a frequência sem o divisor de banda de frequência 810. Gráfico 1610 é uma resposta de frequência de um sinal de entrada de ruído branco; gráfico 1620 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando 6 atrasos de amostra em uma taxa de amostragem de 48 KHz e faixa de frequência dentro da banda de 250 até 14000 Hz; e gráfico 1630 é uma resposta de frequência de um componente não espacial (correlacionado) de um cancelamento de fala cruzada empregando 6 atrasos de amostra em uma taxa de amostragem de 48 KHz para toda a frequência sem o divisor de banda de frequência 810. Ao aplicar o cancelamento de fala cruzada sem o divisor de banda de frequência 810, o gráfico 1530 mostra supressão significativa abaixo de 1000 Hz e uma ondulação acima de 10000 Hz. Semelhantemente, o gráfico 1630 mostra a supressão significativa abaixo de 400 Hz e uma ondulação acima de 1000 Hz. Ao implantar o divisor de banda de frequência 810 e seletivamente realizar o cancelamento de fala cruzada na banda selecionada de frequência, a supressão em regiões de baixa frequência (p.ex., abaixo de 1000 Hz) e as ondulações em região de alta frequência (p.ex., acima de 10000 Hz) podem ser reduzidas conforme mostrado nos gráficos 1520 e 1620.
[0077] Ao ler esta revelação, aqueles com habilidade na técnica apreciarão ainda realizações alternativas adicionais através dos princípios aqui revelados. Desse modo, enquanto as realizações particulares e aplicações foram ilustradas e descritas, fica entendido que as realizações reveladas não são limitadas à construção precisa e componentes aqui revelados. Diversas modificações, alterações e variações, as quais serão aparentes para aqueles com habilidade na técnica, podem ser feitas no arranjo, operação e detalhes do método e mecanismo aqui revelados sem desviar do escopo aqui descrito. Quaisquer das etapas, operações ou processos aqui descritos podem ser realizados ou implantados com um ou mais módulos de hardware ou software, sozinhos ou em combinação com outros dispositivos. Em uma realização, um módulo de software é implantado com um produto de programa de computador compreendendo uma mídia legível por computador (p.ex., mídia legível por computador não transitória) contendo código de programa de computador, o qual pode ser executado por um processador de computador para realizar todas ou quaisquer das etapas, operações ou processos descritos.

Claims (22)

1. Método para produzir dois canais de áudio, o método caracterizado pelo fato de compreender: - receber (370) um sinal de áudio de entrada (X) compreendendo um primeiro canal de entrada (XL) e um segundo canal de entrada (XR); - dividir (510) o primeiro canal de entrada (XL) nos primeiros componentes de sub-banda (XL(k)), cada um dos primeiros componentes de sub-banda (XL(k)) correspondentes a uma banda de frequência a partir de um grupo de bandas de frequência, pelo menos uma banda de frequência do grupo de bandas de frequência incluindo um conjunto de bandas críticas; - dividir (510) o segundo canal de entrada (XR) nos segundos componentes de sub-banda (XR(k)), cada um dos segundos componentes de sub-banda (XR(k)) correspondentes a uma banda de frequência a partir do grupo das bandas de frequência; - gerar (515), para cada uma das bandas de frequência, uma porção correlacionada entre um primeiro componente de sub- banda (XL(k)) correspondente e um segundo componente de sub- banda correspondente (XR(k)); - gerar (515), para cada uma das bandas de frequência, uma porção não correlacionada entre o primeiro componente de sub- banda (XL(k)) correspondente e o segundo componente de sub- banda correspondente (XR(k)); - amplificar, para cada uma das bandas de frequência, a porção correlacionada (Xn(k)) com relação à porção não correlacionada(XS(k)) para obter (520) um componente aprimorado espacial (YS(k)) e um componente aprimorado não espacial (Yn(k)); - gerar (525), para cada uma das bandas de frequência, um primeiro componente aprimorado de sub-banda (YL(k)) ao obter uma soma do componente aprimorado espacial (YS(k)) e do componente aprimorado não espacial (Yn(k)); - gerar (525), para cada uma das bandas de frequência, um segundo componente aprimorado de sub-banda (YR(k)) ao obter uma diferença entre o componente aprimorado espacial (YS(k)) e o componente aprimorado não espacial (Yn(k)); - gerar (530) um primeiro canal espacialmente aprimorado (YL) ao combinar os primeiros componentes aprimorados de sub-banda (YL(k)) das bandas de frequência; e - gerar (530) um segundo canal espacialmente aprimorado (YR) ao combinar os segundos componentes aprimorados de sub-banda (YR(k)) das bandas de frequência.
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de a porção correlacionada entre o correspondente primeiro componente de sub-banda (XL(k)) e o correspondente segundo componente de sub-banda (XR(k)) da banda de frequência incluir as informações não espaciais da banda de frequência, e sendo que a porção não correlacionada entre o correspondente primeiro componente de sub-banda (XL(k)) e o correspondente segundo componente de sub-banda (XR(k)) da banda de frequência inclui as informações espaciais da banda de frequência.
3. Método, de acordo com a reivindicação 1, caracterizado pelo fato de ainda compreender: - gerar uma porção correlacionada (Xn) entre o primeiro canal de entrada (XL) e o segundo canal de entrada (XR); - gerar (374) um sinal de compensação de fala cruzada (Z) com base na porção correlacionada (Xn) entre o primeiro canal de entrada (XL) e o segundo canal de entrada (XR); - adicionar (376) o sinal de compensação de fala cruzada (Z) ao primeiro canal espacialmente aprimorado (YL) para gerar um primeiro canal pré-compensado (TL); e - adicionar o sinal de compensação de fala cruzada (Z) ao segundo canal espacialmente aprimorado (YR) para gerar um segundo canal pré-compensado (TR).
4. Método, de acordo com a reivindicação 3, caracterizado pelo fato de gerar o sinal de compensação de fala cruzada (Z) compreender: - gerar o sinal de compensação de fala cruzada (Z) para remover defeitos espectrais estimados em uma resposta de frequência de um cancelamento subsequente de fala cruzada.
5. Método, de acordo com a reivindicação 3, caracterizado pelo fato de ainda compreender: - dividir (910) o primeiro canal pré-compensado (TL) em um primeiro canal dentro da banda (TL,In) correspondente a uma frequência dentro da banda e um primeiro canal fora da banda (TL,Out) correspondente a uma frequência fora da banda; - dividir (915) o segundo canal pré-compensado (TR) em um segundo canal dentro da banda (TR,In) correspondente à frequência dentro da banda e um segundo canal fora da banda (TR,Out) correspondente à frequência fora da banda; - gerar (925) um primeiro componente de cancelamento de fala cruzada (SL) para compensar um primeiro componente de som contralateral contribuído pelo primeiro canal dentro da banda (TL,In); - gerar (935) um segundo componente de cancelamento de fala cruzada (SR) para compensar um segundo componente de som contralateral contribuído pelo segundo canal dentro da banda (TR,In); - combinar (940) o primeiro canal dentro da banda (TL,In), o segundo componente de cancelamento de fala cruzada (SR), e o primeiro canal fora da banda para gerar um primeiro canal compensado (CL); e - combinar (945) o segundo canal dentro da banda (TR,In), o primeiro componente de cancelamento de fala cruzada (SL) e o segundo canal fora da banda para gerar um segundo canal compensado (CR).
6. Método, de acordo com a reivindicação 5, caracterizado pelo fato de gerar o primeiro componente de cancelamento de fala cruzada (SL) compreender: - estimar o primeiro componente de som contralateral contribuído pelo primeiro canal dentro da banda (TL,In); e - gerar o primeiro componente de cancelamento de fala cruzada (SL) a partir de um inverso do primeiro componente de som contralateral estimado, e sendo que gerar o segundo componente de cancelamento de fala cruzada (SR) compreender: - estimar o segundo componente de som contralateral contribuído pelo segundo canal dentro da banda (TR,In); e - gerar o segundo componente de cancelamento de fala cruzada (SR) a partir de um inverso do segundo componente de som contralateral estimado.
7. Método, de acordo com a reivindicação 1, caracterizado pelo fato de o conjunto de bandas críticas incluir bandas de uma escala de Bark.
8. Método, de acordo com a reivindicação 1, caracterizado pelo fato de compreender ainda determinar o conjunto de bandas críticas do pelo menos uma banda de frequência através de: - determinar uma razão de energia de média de longo prazo entre os componentes correlacionados e os componentes não correlacionados das amostras de áudio sobre as bandas críticas; e - agrupar as bandas críticas contínuas de acordo com as razões de energia de média de longo prazo das bandas críticas.
9. Método, de acordo com a reivindicação 1, caracterizado pelo fato de amplificar, para cada uma das bandas de frequência, a porção correlacionada (Xn(k)) com relação à porção não correlacionada (Xs(k)) inclui a aplicação, para a pelo menos uma banda de frequência, um primeiro coeficiente de ganho para a porção correlacionada da pelo menos uma banda de frequência e um segundo coeficiente de ganho diferente do primeiro coeficiente de ganho para a porção não-correlacionada da pelo menos uma banda de frequência.
10. Método, de acordo com a reivindicação 1, caracterizado pelo fato de incluir ainda para a pelo menos uma banda de frequência, aplicar um primeiro atraso de tempo para a porção correlacionada da pelo menos uma banda de frequência e aplicar um segundo atraso de tempo diferente do primeiro atraso de tempo para a porção não-correlacionada da pelo menos uma banda de frequência.
11. Sistema, caracterizado pelo fato de compreender: - um processador de áudio espacial de sub-banda (230), o processador de áudio espacial de sub-banda (230) incluindo: - um divisor de banda de frequência (410) configurado para: - receber (370) um sinal de áudio de entrada (X) compreendendo um primeiro canal de entrada (XL) e um segundo canal de entrada (XR), - dividir (510) o primeiro canal de entrada (XL) nos primeiros componentes de sub-banda (XL(k)), cada um dos primeiros componentes de sub-banda (XL(k)) correspondentes a uma banda de frequência a partir de um grupo das bandas de frequência, pelo menos uma banda de frequência do grupo de bandas de frequência incluindo um conjunto de bandas críticas, e - dividir (510) o segundo canal de entrada (XR) nos segundos componentes de sub-banda (XR(k)), cada um dos segundos componentes de sub-banda (XR(k)) correspondentes a uma banda de frequência a partir do grupo das bandas de frequência, - conversores (420) acoplados ao divisor de banda de frequência (410), cada conversor (420) configurado para: - gerar (515), para uma banda de frequência correspondente a partir do grupo das bandas de frequência, - uma porção correlacionada entre um primeiro componente de sub-banda correspondente (XL(k)) e um segundo componente de sub-banda correspondente (XR(k)), e - gerar (515), para a banda de frequência correspondente, uma porção não correlacionada entre o primeiro componente de sub- banda correspondente (XL(k)) e o segundo componente de sub- banda correspondente (XR(k)), - processadores de sub-banda (430), cada processador de sub- banda (430) acoplado a um conversor (420) para uma banda de frequência correspondente, cada processador de sub-banda (430) configurado para amplificar, para a banda de frequência correspondente, a porção correlacionada com relação à porção não correlacionada para obter (520) um componente aprimorado espacial (YS(k)) e um componente aprimorado não espacial (Yn(k)), - conversores reversos (440), cada conversor reverso (440) acoplado a um processador de sub-banda correspondente (430), cada conversor reverso (440) configurado para: - gerar (525), para uma banda de frequência correspondente, um primeiro componente aprimorado de sub-banda (XL(k)) ao obter uma soma do componente aprimorado espacial (YS(k)) e componente aprimorado não espacial (Yn(k)), e - gerar (525), para uma banda de frequência correspondente, um segundo componente aprimorado de sub-banda (YR(k)) ao obter uma diferença entre o componente aprimorado espacial (YS(k)) e componente aprimorado não espacial (Yn(k)), e - um combinador de banda de frequência (450) acoplado aos conversores reversos (440), o combinador de banda de frequência (450) configurado para: - gerar (530) um primeiro canal espacialmente aprimorado (YL) ao combinar primeiros componentes aprimorados de sub-banda (YL(k)) das bandas de frequência, e - gerar (530) um segundo canal espacialmente aprimorado (YR) ao combinar segundos componentes aprimorados de sub-banda (YR(k)) das bandas de frequência.
12. Sistema, de acordo com a reivindicação 11, caracterizado pelo fato de a porção correlacionada entre o correspondente primeiro componente de sub-banda (XL(k)) e o correspondente segundo componente de sub-banda (XR(k)) de uma banda de frequência incluir as informações não espaciais da banda de frequência, e sendo que uma porção não correlacionada entre o correspondente primeiro componente de sub-banda (XL(k)) e o correspondente segundo componente de sub-banda da banda de frequência (XR(k)) inclui as informações espaciais da banda de frequência.
13. Sistema, de acordo com a reivindicação 11, caracterizado pelo fato de ainda compreender um processador de áudio não espacial configurado para: - gerar uma porção correlacionada entre o primeiro canal de entrada (XL) e o segundo canal de entrada (XR), e - gerar um sinal de compensação de fala cruzada (Z) com base na porção correlacionada entre o primeiro canal de entrada (XL) e o segundo canal de entrada (XR).
14. Sistema, de acordo com a reivindicação 13, caracterizado pelo fato de o processador de áudio não espacial gerar o sinal de compensação de fala cruzada (Z) ao: - gerar o sinal de compensação de fala cruzada (Z) para remover os defeitos espectrais estimados em uma resposta de frequência de um cancelamento subsequente de fala cruzada.
15. Sistema, de acordo com a reivindicação 14, caracterizado pelo fato de ainda compreender um combinador (250) acoplado ao processador de áudio espacial de sub-banda (230) e ao processador de áudio não espacial, o combinador (250) configurado para: - adicionar o sinal de compensação de fala cruzada (Z) ao primeiro canal espacialmente aprimorado (YL) para gerar um primeiro canal pré-compensado (TL), e - adicionar o sinal de compensação de fala cruzada (Z) ao segundo canal espacialmente aprimorado (YR) para gerar um segundo canal pré-compensado (TR).
16. Sistema, de acordo com a reivindicação 15, caracterizado pelo fato de ainda compreender: - um processador de cancelamento de fala cruzada (260) acoplado ao combinador (250), o processador de cancelamento de fala cruzada (260) configurado para: - dividir o primeiro canal pré-compensado (TL) em um primeiro canal dentro da banda (TL, in) correspondente a uma frequência dentro da banda e um primeiro canal fora da banda (TL, Out) correspondente a uma frequência fora da banda; - dividir o segundo canal pré-compensado (TR) em um segundo canal dentro da banda (TR, In) correspondente à frequência dentro da banda e um segundo canal fora da banda (TR, Out) correspondente à frequência fora da banda; - gerar um primeiro componente de cancelamento de fala cruzada (SL) para compensar um primeiro componente de som contralateral contribuído pelo primeiro canal dentro da banda (TL, In); - gerar um segundo componente de cancelamento de fala cruzada (SR) para compensar um segundo componente de som contralateral contribuído pelo segundo canal dentro da banda (TR, In); - combinar o primeiro canal dentro da banda (TL, In), o segundo componente de cancelamento de fala cruzada (SR) e primeiro canal fora da banda para gerar um primeiro canal compensado (CL); e - combinar o segundo canal dentro da banda (TR, In), o primeiro componente de cancelamento de fala cruzada (SL), e o segundo canal fora da banda para gerar um segundo canal compensado (CR).
17. Sistema, de acordo com a reivindicação 16, caracterizado pelo fato de ainda compreender: - um primeiro alto-falante (280) acoplado ao processador de cancelamento de fala cruzada (260), o primeiro alto-falante (280) configurado para produzir um primeiro som de acordo com o primeiro canal compensado (CL); e - um segundo alto-falante (280) acoplado ao processador de cancelamento de fala cruzada (260), o segundo alto-falante (280) configurado para produzir um segundo som de acordo com o segundo canal compensado (CR).
18. Sistema, de acordo com a reivindicação 16, caracterizado pelo fato de o processador de cancelamento de fala cruzada (260) incluir: - um primeiro inversor (820A) configurado para gerar um inverso do primeiro canal dentro da banda (TL, In), - um primeiro estimador contralateral (825A) acoplado ao primeiro inversor (820A_, o primeiro estimador contralateral (825A) configurado para estimar o primeiro componente de som contralateral contribuído pelo primeiro canal dentro da banda (TL, In) e para gerar o primeiro componente de cancelamento de fala cruzada (SL) correspondente a um inverso do primeiro componente de som contralateral de acordo com o inverso do primeiro canal dentro da banda (TL, in') , - um segundo inversor (820B) configurado para gerar um inverso do segundo canal dentro da banda (TR, In), e - um segundo estimador contralateral (825B) acoplado ao segundo inversor (820B), o segundo estimador contralateral (825B) configurado para estimar o segundo componente de som contralateral (SR) contribuído pelo segundo canal dentro da banda (TR, In) e para gerar o segundo componente de cancelamento de fala cruzada correspondente a um inverso do segundo componente de som contralateral de acordo com o inverso do segundo canal dentro da banda (TR, In').
19. Sistema, de acordo com a reivindicação 11, caracterizado pelo fato de o conjunto de bandas críticas incluir bandas de uma escala de Bark.
20. Sistema, de acordo com a reivindicação 11, caracterizado pelo fato de o divisor de banda de frequência (410) ser configurado para determinar o conjunto de bandas críticas do pelo menos uma banda de frequência através de:
21. Sistema, de acordo com a reivindicação 11, caracterizado pelo fato de cada processador de sub-banda (430) configurado para amplificar, para a banda de frequência correspondente, a porção correlacionada com relação à porção não correlacionada inclui um processador de sub-banda (430) sendo configurado para aplicar, para a pelo menos uma banda de frequência, um primeiro coeficiente de ganho para a porção correlacionada da pelo menos uma banda de frequência e um segundo coeficiente de ganho diferente do primeiro coeficiente de ganho para a porção não-correlacionada da pelo menos uma banda de frequência.
22. Sistema, de acordo com a reivindicação 11, caracterizado pelo fato de cada processador de sub-banda (430) ser ainda configurado a, para a pelo menos uma banda de frequência, aplicar um primeiro atraso de tempo para a porção correlacionada e aplicar um segundo atraso de tempo diferente do primeiro atraso de tempo para a porção não-correlacionada.
BR112018014632-3A 2016-01-18 2017-01-11 método para produzir dois canais de áudio e sistema BR112018014632B1 (pt)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662280119P 2016-01-18 2016-01-18
US62/280,119 2016-01-18
US201662388366P 2016-01-29 2016-01-29
US62/388,366 2016-01-29
PCT/US2017/013061 WO2017127271A1 (en) 2016-01-18 2017-01-11 Subband spatial and crosstalk cancellation for audio reproduction

Publications (2)

Publication Number Publication Date
BR112018014632A2 BR112018014632A2 (pt) 2018-12-11
BR112018014632B1 true BR112018014632B1 (pt) 2020-12-29

Family

ID=59362011

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112018014632-3A BR112018014632B1 (pt) 2016-01-18 2017-01-11 método para produzir dois canais de áudio e sistema

Country Status (10)

Country Link
EP (2) EP3406084B1 (pt)
JP (2) JP6479287B1 (pt)
KR (1) KR101858917B1 (pt)
CN (2) CN112235695B (pt)
AU (2) AU2017208909B2 (pt)
BR (1) BR112018014632B1 (pt)
CA (2) CA3011628C (pt)
NZ (2) NZ750171A (pt)
TW (2) TWI620172B (pt)
WO (1) WO2017127271A1 (pt)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018014632B1 (pt) * 2016-01-18 2020-12-29 Boomcloud 360, Inc. método para produzir dois canais de áudio e sistema
US10524078B2 (en) * 2017-11-29 2019-12-31 Boomcloud 360, Inc. Crosstalk cancellation b-chain
US10511909B2 (en) 2017-11-29 2019-12-17 Boomcloud 360, Inc. Crosstalk cancellation for opposite-facing transaural loudspeaker systems
US10575116B2 (en) * 2018-06-20 2020-02-25 Lg Display Co., Ltd. Spectral defect compensation for crosstalk processing of spatial audio signals
CN110718237B (zh) * 2018-07-12 2023-08-18 阿里巴巴集团控股有限公司 串音数据检测方法和电子设备
US10715915B2 (en) * 2018-09-28 2020-07-14 Boomcloud 360, Inc. Spatial crosstalk processing for stereo signal
US10841728B1 (en) 2019-10-10 2020-11-17 Boomcloud 360, Inc. Multi-channel crosstalk processing
US11533560B2 (en) * 2019-11-15 2022-12-20 Boomcloud 360 Inc. Dynamic rendering device metadata-informed audio enhancement system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9622773D0 (en) * 1996-11-01 1997-01-08 Central Research Lab Ltd Stereo sound expander
JP3368836B2 (ja) * 1998-07-31 2003-01-20 オンキヨー株式会社 音響信号処理回路および方法
JP4817658B2 (ja) * 2002-06-05 2011-11-16 アーク・インターナショナル・ピーエルシー 音響仮想現実エンジンおよび配信された音声改善のための新技術
US20050265558A1 (en) * 2004-05-17 2005-12-01 Waves Audio Ltd. Method and circuit for enhancement of stereo audio reproduction
JP2008502200A (ja) * 2004-06-04 2008-01-24 サムスン エレクトロニクス カンパニー リミテッド ワイドステレオ再生方法及びその装置
JP4509686B2 (ja) * 2004-07-29 2010-07-21 新日本無線株式会社 音響信号処理方法および装置
GB2419265B (en) * 2004-10-18 2009-03-11 Wolfson Ltd Improved audio processing
KR100974370B1 (ko) * 2005-10-26 2010-08-05 닛본 덴끼 가부시끼가이샤 에코 억압 방법 및 장치
CN101401456B (zh) 2006-03-13 2013-01-02 杜比实验室特许公司 呈现中央声道音频的方法和装置
PL1999999T3 (pl) * 2006-03-24 2012-07-31 Dolby Int Ab Generowanie downmixów przestrzennych na podstawie parametrycznych reprezentacji sygnałów wielokanałowych
US8619998B2 (en) * 2006-08-07 2013-12-31 Creative Technology Ltd Spatial audio enhancement processing method and apparatus
EP1858296A1 (en) * 2006-05-17 2007-11-21 SonicEmotion AG Method and system for producing a binaural impression using loudspeakers
JP4841324B2 (ja) * 2006-06-14 2011-12-21 アルパイン株式会社 サラウンド生成装置
US8705748B2 (en) * 2007-05-04 2014-04-22 Creative Technology Ltd Method for spatially processing multichannel signals, processing module, and virtual surround-sound systems
WO2009022463A1 (ja) * 2007-08-13 2009-02-19 Mitsubishi Electric Corporation オーディオ装置
CN101884065B (zh) * 2007-10-03 2013-07-10 创新科技有限公司 用于双耳再现和格式转换的空间音频分析和合成的方法
JP4655098B2 (ja) 2008-03-05 2011-03-23 ヤマハ株式会社 音声信号出力装置、音声信号出力方法およびプログラム
US8295498B2 (en) * 2008-04-16 2012-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for producing 3D audio in systems with closely spaced speakers
US9247369B2 (en) * 2008-10-06 2016-01-26 Creative Technology Ltd Method for enlarging a location with optimal three-dimensional audio perception
US20110268299A1 (en) * 2009-01-05 2011-11-03 Panasonic Corporation Sound field control apparatus and sound field control method
US9107021B2 (en) * 2010-04-30 2015-08-11 Microsoft Technology Licensing, Llc Audio spatialization using reflective room model
EP2578000A1 (en) 2010-06-02 2013-04-10 Koninklijke Philips Electronics N.V. System and method for sound processing
JP5993373B2 (ja) * 2010-09-03 2016-09-14 ザ トラスティーズ オヴ プリンストン ユニヴァーシティー ラウドスピーカを通した音声のスペクトル的色付けのない最適なクロストーク除去
JP5587706B2 (ja) * 2010-09-13 2014-09-10 クラリオン株式会社 音響処理装置
KR101785379B1 (ko) * 2010-12-31 2017-10-16 삼성전자주식회사 공간 음향에너지 분포 제어장치 및 방법
US9088858B2 (en) * 2011-01-04 2015-07-21 Dts Llc Immersive audio rendering system
EP2560161A1 (en) * 2011-08-17 2013-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optimal mixing matrices and usage of decorrelators in spatial audio processing
CN102737647A (zh) * 2012-07-23 2012-10-17 武汉大学 双声道音频音质增强编解码方法及装置
CN103928030B (zh) * 2014-04-30 2017-03-15 武汉大学 基于子带空间关注测度的可分级音频编码系统及方法
BR112018014632B1 (pt) * 2016-01-18 2020-12-29 Boomcloud 360, Inc. método para produzir dois canais de áudio e sistema

Also Published As

Publication number Publication date
CN108886650B (zh) 2020-11-03
JP2019508978A (ja) 2019-03-28
AU2019202161A1 (en) 2019-04-18
KR20170126105A (ko) 2017-11-16
JP6832968B2 (ja) 2021-02-24
TWI620172B (zh) 2018-04-01
EP3406084A4 (en) 2019-08-14
CN112235695B (zh) 2022-04-15
NZ745415A (en) 2019-03-29
WO2017127271A1 (en) 2017-07-27
CN108886650A (zh) 2018-11-23
BR112018014632A2 (pt) 2018-12-11
WO2017127271A8 (en) 2018-08-02
NZ750171A (en) 2022-04-29
AU2019202161B2 (en) 2020-09-03
CA3011628A1 (en) 2017-07-27
CA3034685A1 (en) 2017-07-27
TW201804462A (zh) 2018-02-01
KR101858917B1 (ko) 2018-06-28
TWI646530B (zh) 2019-01-01
AU2017208909A1 (en) 2018-09-06
EP3406084A1 (en) 2018-11-28
EP3780653A1 (en) 2021-02-17
JP6479287B1 (ja) 2019-03-06
CA3011628C (en) 2019-04-09
TW201732785A (zh) 2017-09-16
CN112235695A (zh) 2021-01-15
AU2017208909B2 (en) 2019-01-03
JP2019083570A (ja) 2019-05-30
EP3406084B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US10721564B2 (en) Subband spatial and crosstalk cancellation for audio reporoduction
BR112018014632B1 (pt) método para produzir dois canais de áudio e sistema
JP5984943B2 (ja) 聴覚装置における安定性と音声の聴き取り易さの改善
US11051121B2 (en) Spectral defect compensation for crosstalk processing of spatial audio signals
CN111492669B (zh) 用于相反朝向跨耳扬声器系统的串扰消除
US10524052B2 (en) Dominant sub-band determination

Legal Events

Date Code Title Description
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 11/01/2017, OBSERVADAS AS CONDICOES LEGAIS.