BE896126A - Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves - Google Patents

Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves Download PDF

Info

Publication number
BE896126A
BE896126A BE0/210291A BE210291A BE896126A BE 896126 A BE896126 A BE 896126A BE 0/210291 A BE0/210291 A BE 0/210291A BE 210291 A BE210291 A BE 210291A BE 896126 A BE896126 A BE 896126A
Authority
BE
Belgium
Prior art keywords
concrete
shrinkage
floors
fibres
pref
Prior art date
Application number
BE0/210291A
Other languages
French (fr)
Original Assignee
Eurosteel Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurosteel Sa filed Critical Eurosteel Sa
Priority to BE0/210291A priority Critical patent/BE896126A/en
Publication of BE896126A publication Critical patent/BE896126A/en
Priority to DE8484900956T priority patent/DE3468132D1/en
Priority to EP84900956A priority patent/EP0137024B1/en
Priority to PCT/BE1984/000006 priority patent/WO1984003530A1/en
Priority to US06/678,552 priority patent/US4640648A/en
Priority to CA000449212A priority patent/CA1235312A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/16Reinforcements
    • E01C11/18Reinforcements for cement concrete pavings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Road Paving Structures (AREA)

Abstract

Reinforcing fibres are added to a concrete while the latter is being mixed; and the mixt. is then used to make a continuous floor, i.e. a floor contg. no grooves permitting shrinkage of the concrete. The fibres are pref. steel wires which are each provided with an anchor locking the fibres in the concrete. The concrete pref. uses max. 350 kg of cement grade HK-40, P4O, H1-30 or PPZ-30 per cu.m. of concrete, and a water/ cement ratio (W/C) below 0.52. The concrete pref. also contains a fluidiser. When the concrete is being laid round obstacles which will prevent its natural shrinkage, or where constraints will occur, the obstacles are pref. covered by a compressible mat and steel reinforcing bars in the concrete. The floors are used forfactories, stores or garages etc.. The random distribution of the fibres provides multidirectional reinforcement of the concrete, so the latter does not crack during its shrinkage on setting; no shrinkage grooves are thus required in the floor.

Description

       

  Sol industriel et son procédé de fabrication. 

  
La plupart des sols industriels (sol d'atelier de fabrication, sol de magasin de stockage, sol de garage, ...) sont réalisés en béton armé dont la surface est polie.

  
Ces sols sont réalisés par épandage de béton frais sur une feuille de matière synthétique reposant sur l'assise de fondation compactée, l'armature étant posée soit préalablement soit simultanément au bétonnage.

  
Au bétonnage succède la phase de polissage de la surface qui, achevée, procure au béton cet aspect poli miroir. Ensuite il faut protéger le béton de la dessication trop rapide par l'application immédiate d'une couche de curing maintenant l'eau non chimiquement nécessaire aussi longtemps que possible dans le béton, cela pour tenter d'éviter les fissurations sauvages de la dalle. 

  
Comme dernière opération, après le premier durcissement, il y a lieu de déterminer dans la dalle des amorces de fissuration de retrait.

  
En effet, les surfaces de ces dallages pouvant être très étendues (jusqu'à
10.000 m2), les tensions provoquées par le retrait du béton excéderont en beaucoup de points de la dalle la résistance en traction du béton avec comme conséquence l'apparition de la fissuration.

  
Pour éviter ces fissurations sauvages il est d'usage, de créer suivant des mailles rectangulaires de 25 à 35 m2 de surface des traits de sciage amorces de fissuration. La dalle ainsi achevée présente des discontinuités constituées par chaque joint scié de retrait, sources d'inconvénients pour beaucoup d'utilisation :

  
ébréchage des joints à l'usage lors du passage d'engins de manutention, retention de salissures et poussières.

  
Une amélioration importante de la qualité de la dalle pourrait être obtenue par suppression de ces joints de retrait, sans toutefois l'apparition de fissurations. 

  
En utilisant la technique antérieure, le sol industriel en béton continu se réalisait en épandant le béton sur un système d'armature de renforcement préalablement posé.

  
L'armature, généralement utilisée dans ce cas, est constituée de deux plans de treillis de fils assemblés en nappes. Chacun de ces plans d'armature,doit se trouver aussi près que possible des surfaces limitant le volume de béton du sol industriel.

  
Il en résulte des difficultés d'exécution :
- maintenir constant l'écartement des deux plans d'armature par des systèmes appelés "écarteur".
- maintenir l'armature de surface aussi près que possible de cette surface tout en maintenant constamment une épaisseur de béton minimum de recouvrement de l'acier.

  
Les difficultés de positionnement résultent principalement du fait que le niveau fini du sol industriel est strictement déterminé tandis que le niveau de l'assise de fondation sur laquelle repose le système d'armature, est variable. 

  
L'invention consiste à réaliser un sol industriel en béton continu doté d'un système de renforcement multidirectionnel homogène obtenu par mélange de fibres, en acier par exemple, au béton en cours de malaxage.

  
De cette façon, le béton devient homogène par le fait qu'il est renforcé dans toutes les directions et que la surface d'interface fibre-béton est beaucoup plus étendue que dans le cas de renforcement traditionnel.

  
La présence de ces fibres au sein du béton bloque le développement de la fissuration au stade de la microfissuration.

  
Dans le cas d'utilisation de fibres en acier, les contraintes tangentielles d'adhérence entre l'acier et le béton n'étant pas suffisantes pour garantir un travail élastique de ces fibres, on utilisera seulement des fibres munies de dispositifs d'ancrage au béton tels, crochets, ondulations ou têtes.

  
La proportion de fibres en acier ajoutées au béton n'est, de préférence, pas inférieure à 20 kg par m3 de béton. 

  
Les fibres utilisées ont, par exemple, un diamètre compris entre 0,5 et 1 mm pour une longueur comprise entre 40 et 60 mm. , réalisées à partir de fil tréfilé dur ayant une résistance à la traction supérieure à
100 kg/mm2.

  
Cependant, la capacité du renforcement par fibres, d'acier par exemple, d'arrêter le développement de la fissuration au domaine de la microfissuration n'étant pas illimitée, il est indispensable de limiter le retrait du béton, cause importante de sollicitations du béton constituant le sol industriel.

  
La limitation des efforts de retrait dans le béton découle de la limitation des deux retraits du béton : le retrait thermique et le retrait hygrométrique.

  
- Le retrait thermique est diminué en limitant la chaleur d'hydratation du béton.

  
Pratiquement, on utilise des ciments à prise normale ou ralentie en quantité ne dépassant pas 350 kg par m3 de béton ou encore des ciments à faible chaleur d'hydratation.

  
Les ciments utilisés en Belgique sont par exemple les HK 40, HL 30, P 40, ... 

  
- Le retrait hygrométrique est diminué en limitant la teneur en eau du béton.

  
Pratiquement, on peut caractériser la teneur en eau du béton en précisant la valeur du rapport E/C. (Poids d'eau/ Poids de ciment, par unité de volume de béton).

  
Cette valeur n'excédera pas 0,52 en veillant de respecter scrupuleusement les conditions concernant le ciment décrites ci-dessus.

  
Pour garantir l'ouvrabilité du béton nécessaire au pompage éventuel de celui-ci et à l'exécution du bétonnage de la dalle en grande surface, il est recommandé d'utiliser un produit adjuvant du béton augmentant la fluidité ou l'ouvrabilité tout en permettant une réduction de la teneur en eau.

  
Il est bien entendu que, pour de telles dalles on veillera aussi à ce que l'eau non chimiquement nécessaire demeure le plus longtemps dans le béton par l'emploi d'une feuille en matière synthétique déposée avant bétonnage sur l'assise de fondation et l'épandage après finition d'un produit de "curing" en surface. 

  
On veillera également à éviter le développement ponctuel de concentration de contraintes dans le béton notamment au voisinage de tout angle rentrant suivant le périmètre du sol industriel ou au voisinage d'obstacles autour desquels le mouvement de retrait serait empêché, tels que taques d'égout, couvercle de chambre de visite, massifs de fondation en surface...

  
A cet effet, autour de ces obstacles on limite le massif de béton par un matelas de matière compressible permettant le mouvement de retrait et des barres d'acier sont disposées sous la surface du béton.

  
Comme illustration des principes déjà décrits, on peut mentionner une composition de béton pouvant convenir :

  
ciment : type HK 40, 310 kg par m3

  
teneur en eau : 155 1. ou :

  
rapport E/C = 0,5

  
adjuvant : mélamine sulfonée

  
fluidifiante 3,5 1. par m3 de béton. 

  
granulométrie .

  
composition par m3 de béton

  

 <EMI ID=1.1> 


  
fibres munies de dispositifs d'ancrage au béton selon brevet belge n[deg.]. 895522 :

  
concentration : 20 kg/m3 de béton

  

 <EMI ID=2.1> 


  
L'épaisseur de la dalle telle que décrite ci-dessus est la même que celle d'une dalle classique avec joints, éventuellement diminuée d'une épaisseur de béton correspondant à une couche de recouvrement des armatures. 

  
Revendications

  
1. Sol industriel réalisé en béton renforcé

  
par des fibres ajoutées pendant le malaxage avec la caractéristique que sa surface est totalement continue.

  
 <EMI ID=3.1> 

  
caractéristique que les fibres de renforcement sont filiformes en acier, munies chacune d'un système d'ancrage au béton.

  
3. Procédé de réalisation d'un sol

  
industriel suivant les revendications 1 et 2 avec la caractéristique que le béton constituant a une teneur en eau donnant une valeur du rapport E/C inférieure à 0,52 pour une quantité de ciment HK 40, P 40, Hl 30 ou PPZ 30 ne dépassant pas 350 kg par m3 de béton.



  Industrial soil and its manufacturing process.

  
Most industrial floors (workshop floor, warehouse floor, garage floor, etc.) are made of reinforced concrete with a polished surface.

  
These floors are made by spreading fresh concrete on a sheet of synthetic material resting on the compacted foundation foundation, the reinforcement being laid either before or simultaneously with concreting.

  
Concreting is followed by the polishing phase of the surface which, when completed, gives the concrete this mirror-polished appearance. Then it is necessary to protect the concrete from too rapid drying by the immediate application of a layer of curing maintaining the water not chemically necessary as long as possible in the concrete, this in an attempt to avoid wild cracks in the slab.

  
As a last operation, after the first hardening, it is necessary to determine in the slab the initiations of shrinkage cracking.

  
Indeed, the surfaces of these pavements can be very large (up to
10,000 m2), the tensions caused by the shrinkage of the concrete will exceed in many points of the slab the tensile strength of the concrete with as a consequence the appearance of cracking.

  
To avoid these wild cracks, it is customary to create, using rectangular meshes of 25 to 35 m2 of surface, saw cut lines that start cracking. The slab thus completed has discontinuities formed by each sawn shrinkage joint, sources of drawbacks for many uses:

  
chipping of joints for use when handling equipment, retention of dirt and dust.

  
A significant improvement in the quality of the slab could be obtained by removing these shrinkage joints, without however the appearance of cracks.

  
Using the prior art, the continuous concrete industrial floor was made by spreading the concrete on a reinforcement reinforcement system previously laid.

  
The frame, generally used in this case, consists of two planes of wire mesh assembled in layers. Each of these reinforcement planes must be as close as possible to the surfaces limiting the volume of concrete in the industrial floor.

  
This results in implementation difficulties:
- keep the spacing of the two reinforcement planes constant by systems called "spacers".
- keep the surface reinforcement as close as possible to this surface while constantly maintaining a minimum thickness of concrete covering the steel.

  
The positioning difficulties result mainly from the fact that the finished level of the industrial floor is strictly determined while the level of the foundation foundation on which the reinforcement system rests, is variable.

  
The invention consists in producing an industrial floor in continuous concrete provided with a homogeneous multidirectional reinforcement system obtained by mixing fibers, steel for example, with the concrete being kneaded.

  
In this way, the concrete becomes homogeneous by the fact that it is reinforced in all directions and that the fiber-concrete interface surface is much larger than in the case of traditional reinforcement.

  
The presence of these fibers within the concrete blocks the development of cracking at the microcracking stage.

  
In the case of using steel fibers, the tangential adhesion stresses between steel and concrete not being sufficient to guarantee elastic work of these fibers, only fibers provided with anchoring devices will be used. concrete such, hooks, corrugations or heads.

  
The proportion of steel fibers added to the concrete is preferably not less than 20 kg per m3 of concrete.

  
The fibers used have, for example, a diameter between 0.5 and 1 mm for a length between 40 and 60 mm. , made from hard drawn wire having a tensile strength greater than
100 kg / mm2.

  
However, the capacity of fiber reinforcement, for example of steel, to stop the development of cracking in the field of micro-cracking is not unlimited, it is essential to limit the shrinkage of the concrete, a major cause of stresses on the concrete. constituting the industrial soil.

  
The limitation of shrinkage forces in concrete results from the limitation of the two shrinkages of the concrete: thermal shrinkage and hygrometric shrinkage.

  
- Thermal shrinkage is reduced by limiting the heat of hydration of the concrete.

  
In practice, cements with normal or slow setting are used in quantities not exceeding 350 kg per m3 of concrete or cements with low heat of hydration.

  
The cements used in Belgium are for example HK 40, HL 30, P 40, ...

  
- The humidity shrinkage is reduced by limiting the water content of the concrete.

  
In practice, the water content of the concrete can be characterized by specifying the value of the W / C ratio. (Weight of water / Weight of cement, per unit volume of concrete).

  
This value will not exceed 0.52, taking care to scrupulously respect the conditions concerning the cement described above.

  
To guarantee the workability of the concrete necessary for the eventual pumping of the latter and for the execution of the concreting of the slab in large areas, it is recommended to use a concrete admixture product increasing the fluidity or workability while allowing a reduction in the water content.

  
It is understood that, for such slabs, it will also be ensured that the non-chemically necessary water remains in the concrete as long as possible by the use of a sheet of synthetic material deposited before concreting on the foundation foundation and spreading after finishing a product of "curing" on the surface.

  
Care will also be taken to avoid the occasional development of stress concentration in the concrete, particularly in the vicinity of any re-entrant angle along the perimeter of the industrial floor or in the vicinity of obstacles around which the withdrawal movement would be prevented, such as sewer plates, manhole cover, surface foundations ...

  
To this end, around these obstacles, the concrete block is limited by a mattress of compressible material allowing the withdrawal movement and steel bars are placed under the surface of the concrete.

  
As an illustration of the principles already described, mention may be made of a concrete composition which may be suitable:

  
cement: type HK 40, 310 kg per m3

  
water content: 155 1. or:

  
W / C ratio = 0.5

  
adjuvant: sulfonated melamine

  
fluidizing agent 3.5 1. per m3 of concrete.

  
granulometry .

  
composition per m3 of concrete

  

 <EMI ID = 1.1>


  
fibers fitted with concrete anchoring devices according to Belgian patent n [deg.]. 895522:

  
concentration: 20 kg / m3 of concrete

  

 <EMI ID = 2.1>


  
The thickness of the slab as described above is the same as that of a conventional slab with joints, possibly reduced by a thickness of concrete corresponding to a covering layer of the reinforcements.

  
Claims

  
1. Industrial floor made of reinforced concrete

  
by fibers added during mixing with the characteristic that its surface is completely continuous.

  
 <EMI ID = 3.1>

  
characteristic that the reinforcing fibers are filiform in steel, each provided with a concrete anchoring system.

  
3. Method of making a floor

  
industrial according to claims 1 and 2 with the characteristic that the constituent concrete has a water content giving a value of the W / C ratio less than 0.52 for a quantity of cement HK 40, P 40, Hl 30 or PPZ 30 not exceeding not 350 kg per m3 of concrete.


    

Claims (1)

4. Procédé suivant la revendication 3 avec 4. Method according to claim 3 with la caractéristique que le béton est rendu fluide par l'utilisation d'un adjuvant superfluidifiant. 5. Procédé suivant l'une quelconque des the characteristic that concrete is made fluid by the use of a superfluidifying adjuvant. 5. Method according to any one of revendications 3 ou 4 avec la caractéristique que pour éviter le développement ponctuel de concentration des contraintes dans le béton notamment au voisinage de tout angle rentrant suivant le périmètre du sol industriel ou au voisinage d'obstacles autour desquels le mouvement de retrait serait empêché, on limite autour de ces obstacles le massif de béton par un matelas de matière compressible permettant le mouvement de retrait et on place des barres d'acier à adhérence améliorée sous la surface du béton. Claims 3 or 4 with the characteristic that in order to avoid the point development of stress concentration in the concrete in particular in the vicinity of any re-entrant angle along the perimeter of the industrial floor or in the vicinity of obstacles around which the movement of withdrawal would be prevented, we limit around these obstacles the concrete block by a mat of compressible material allowing the movement of withdrawal and steel bars with improved adhesion are placed under the surface of the concrete.
BE0/210291A 1983-03-10 1983-03-10 Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves BE896126A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BE0/210291A BE896126A (en) 1983-03-10 1983-03-10 Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves
DE8484900956T DE3468132D1 (en) 1983-03-10 1984-03-07 Construction method for an industrial floor
EP84900956A EP0137024B1 (en) 1983-03-10 1984-03-07 Construction method for an industrial floor
PCT/BE1984/000006 WO1984003530A1 (en) 1983-03-10 1984-03-07 Industrial floor and construction method
US06/678,552 US4640648A (en) 1983-03-10 1984-03-07 Industrial floor and construction method
CA000449212A CA1235312A (en) 1983-03-10 1984-03-09 Industrial flooring, and method of laying said flooring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE896126 1983-03-10
BE0/210291A BE896126A (en) 1983-03-10 1983-03-10 Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves

Publications (1)

Publication Number Publication Date
BE896126A true BE896126A (en) 1983-07-01

Family

ID=25653595

Family Applications (1)

Application Number Title Priority Date Filing Date
BE0/210291A BE896126A (en) 1983-03-10 1983-03-10 Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves

Country Status (1)

Country Link
BE (1) BE896126A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003530A1 (en) * 1983-03-10 1984-09-13 Eurosteel Sa Industrial floor and construction method
FR2542341A1 (en) * 1983-03-10 1984-09-14 Eurosteel Sa Industrial floor and method for the production thereof
AU2003204314B1 (en) * 2003-05-25 2004-11-18 Bendtsen, Bo Mr Precast spanning floor system using steel fibre reinforced concrete
WO2006099894A1 (en) * 2005-03-24 2006-09-28 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Improved ceramic slab for facings, and method for its manufacture
CN114263326A (en) * 2021-12-29 2022-04-01 湖南中联重科新材料科技有限公司 Terrace isolation system and construction method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003530A1 (en) * 1983-03-10 1984-09-13 Eurosteel Sa Industrial floor and construction method
FR2542341A1 (en) * 1983-03-10 1984-09-14 Eurosteel Sa Industrial floor and method for the production thereof
AU2003204314B1 (en) * 2003-05-25 2004-11-18 Bendtsen, Bo Mr Precast spanning floor system using steel fibre reinforced concrete
WO2006099894A1 (en) * 2005-03-24 2006-09-28 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Improved ceramic slab for facings, and method for its manufacture
CN114263326A (en) * 2021-12-29 2022-04-01 湖南中联重科新材料科技有限公司 Terrace isolation system and construction method thereof
CN114263326B (en) * 2021-12-29 2024-04-19 中联重科新材料科技有限公司 Terrace isolation system and construction method thereof

Similar Documents

Publication Publication Date Title
FR2708263A1 (en) Concrete composition of metal fibers for molding a concrete element, obtained elements and heat curing method.
EP0137024B1 (en) Construction method for an industrial floor
FR2948708A1 (en) METHOD FOR MANUFACTURING PANELS WITH INTEGRATED INSULATION FOR THE PRODUCTION OF BUILDINGS, PANELS THUS PRODUCED
BE896126A (en) Reinforced industrial floors made of concrete - which contains reinforcing fibres, so continuous floors can be laid free from shrinkage grooves
EP1694611B1 (en) Metal fiber concrete
FR2697858A1 (en) Three layer precast concrete and insulation material construction panel - comprises fixing reinforcement cage pouring concrete leaving starter bars placing expanded polystyrene 2nd cage and pouring glass fibre concrete
EP0745170B1 (en) Industrial floor including a non-adhesive wear coat on a concrete base
CN111140263B (en) Tunnel concrete lining crack width calculation method and crack treatment method
EP0887486A1 (en) Reinforced concrete composition with metal strips, method and building elements made thereof
US8297026B1 (en) Construction system and method having integrated plank and framing members
WO2006119590A2 (en) Material composition made from cement and wood fibres for production of construction elements
FR2542341A1 (en) Industrial floor and method for the production thereof
EP0245257A1 (en) Decorative laminated element for the building industry
LU85372A1 (en) Forming fibre-reinforced concrete components - has fibres wound under tension onto mandrel with simultaneous cement spray
FR2772745A1 (en) WOOD CONCRETE CONTAINING CEMENT-COATED WOOD AGGREGATE
FR2547338A1 (en) LOST FORMWORK CONCRETE FORM
BE1009726A6 (en) Signs of recovery in lieu of floor tile or yoke.
LU84896A1 (en) PROCESS FOR THE RECONSTRUCTION OF ROCKS AND PARTICULARLY SLATES
BE905741A (en) Two-layer concrete industrial floor prodn. - with reinforcing fibres extending between layers
JP2867845B2 (en) Method for producing fiber-reinforced cementitious composite material
CN1587628A (en) Concrete material reinforced stainless steel anti-theft net and its producing method
EP1063366A1 (en) Reinforced construction material
WO1998024976A1 (en) Composite material of natural stone, granite, or marble and concrete
FR2481727A1 (en) Prefabricated concrete floors with integral insulation blocks - pref. of expanded polystyrene as cladding for casting supporting ribs
FR2568869A1 (en) Composite material for mfr. of prefabricated panels for buildings

Legal Events

Date Code Title Description
RE20 Patent expired

Owner name: *EUROSTEEL S.A.

Effective date: 20030310