BE852559A - INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY - Google Patents

INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY

Info

Publication number
BE852559A
BE852559A BE175859A BE175859A BE852559A BE 852559 A BE852559 A BE 852559A BE 175859 A BE175859 A BE 175859A BE 175859 A BE175859 A BE 175859A BE 852559 A BE852559 A BE 852559A
Authority
BE
Belgium
Prior art keywords
temperature
boiler
heat transfer
draw
increase
Prior art date
Application number
BE175859A
Other languages
French (fr)
Original Assignee
Socatec S A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socatec S A filed Critical Socatec S A
Priority to BE175859A priority Critical patent/BE852559A/en
Publication of BE852559A publication Critical patent/BE852559A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0015Domestic hot-water supply systems using solar energy
    • F24D17/0021Domestic hot-water supply systems using solar energy with accumulation of the heated water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

       

   <EMI ID=1.1> 

  
Augmentation du rendement d'un circuit de chauffage à

  
partir d'un fluide chauffé par l'énergie solaire.

  
Description et 1ère revendication:

  
Le procédé, faisant l'objet du brevet, consiste à augmenter

  
la quantité d'énergie captée par le panneau solaire et transportée par le fluide caloporteur, en agissant sur le rendement de l'installation.

  
A cette fin, on utilise deux ou plusieurs boilers dont les circuits chauffants sont raccordés en série. Les circuits

  
d'eau à chauffer sont également placés en série de telle sorte

  
que le dernier boiler, celui de puisage, reçoive le fluide caloporteur chaud, venant des capteurs.

  
Le premier boiler, celui d'arrivée, reçoit le fluide caloporteur après sont passage dans les autres boilers, et le recycle vers la batterie de capteurs.

  
Le circuit d'eau à chauffer de ce premier boiler est raccordé

  
au réseau d'alimentation et la sortie de ce circuit passe dans

  
le circuit correspondant du second boiler, et ainsi de suite, jusqu'au dernier boiler de puisage.

INTERET DU SYSTEME.

  
Ce procédé consiste à favoriser un facteur essentiel du rendement d'une installation thermique: la différence de température existant entre les deux milieux appelés à réaliser les échanges thermiques.

  
Les boilers en cascade vont progressivement réduire la température du fluide caloporteur, au profit d'un échauffement progressif des réserves d'eau dans les différentes unités; eau

  
qui est supposée arriver froide du réseau d'entrée. 

  
On constitue donc avant le boiler de puisage, une ou plusieurs réserves d'eau tempérée.

  
Le rendement de ces échangeurs (boilers) est fonction du ^. température: au moment où la température du dernier boiler approchera celle du fluide caloporteur, son efficacité diminuera jusqu'au zéro et le boiler suivant prend la relève

  
en augmentant sa température; et ainsi de suite.

  
La réserve d'eau chaude et tiède se trouve donc augmentée,

  
ainsi que la chaleur en réserve. Ce rapport entre la quantité d'eau et celle de chaleur est assez évident, mais la disposition en étages permet ( outre la montée en température

  
au boiler de puisage ) d'obtenir avant recyclage, un fluide caloporteur froid (thermiquement épuisé), qui augmentera donc

  
 <EMI ID=2.1> 

  
ci.



   <EMI ID = 1.1>

  
Increase in the efficiency of a heating circuit

  
from a fluid heated by solar energy.

  
Description and 1st claim:

  
The process, which is the subject of the patent, consists in increasing

  
the quantity of energy captured by the solar panel and transported by the heat transfer fluid, acting on the efficiency of the installation.

  
To this end, two or more boilers are used, the heating circuits of which are connected in series. The circuits

  
of water to be heated are also placed in series in such a way

  
that the last boiler, the draw-off boiler, receives the hot heat transfer fluid from the sensors.

  
The first boiler, the inlet one, receives the heat transfer fluid after passing through the other boilers, and recycles it to the battery of sensors.

  
The water circuit to be heated for this first boiler is connected

  
to the supply network and the output of this circuit passes through

  
the corresponding circuit of the second boiler, and so on, up to the last draw-off boiler.

INTEREST OF THE SYSTEM.

  
This process consists in favoring an essential factor of the efficiency of a thermal installation: the temperature difference existing between the two environments called upon to carry out the thermal exchanges.

  
The cascade boilers will gradually reduce the temperature of the heat transfer fluid, in favor of a gradual heating of the water reserves in the different units; water

  
which is supposed to arrive cold from the input network.

  
One or more reserves of tempered water are therefore constituted before the draw-off boiler.

  
The efficiency of these exchangers (boilers) depends on the ^. temperature: when the temperature of the last boiler approaches that of the heat transfer fluid, its efficiency will drop to zero and the next boiler takes over

  
by increasing its temperature; And so on.

  
The hot and lukewarm water reserve is therefore increased,

  
as well as the heat in reserve. This relationship between the quantity of water and that of heat is fairly obvious, but the arrangement in stages allows (in addition to the rise in temperature

  
before recycling, to obtain a cold heat transfer fluid (thermally exhausted), which will therefore increase

  
 <EMI ID = 2.1>

  
this.


    

Claims (1)

SECONDE REVENDICATION. SECOND CLAIM. Dans le cas d'une semblable installation, le contrôle de température de puisage peut se faire par ajustage du débit de la In the case of a similar installation, the draw-off temperature can be controlled by adjusting the flow rate of the pompe de circulation. circulation pump. La réduction du débit favorisera la montée en température du Reducing the flow will promote the rise in temperature of the boiler de puisage tandis que l'augmentation du débit favorisera draw-off boiler while the increase in flow will favor la quantité globale de calories captées par les panneaux. the overall quantity of calories captured by the panels. Il va de soi que les éléments de sécurité, purgeurs et chauffage d'appoint font partie du schéma d'installation. It goes without saying that the safety elements, traps and auxiliary heating are part of the installation diagram. Une vanne coupera le circuit caloporteur dès que sa température A valve will cut off the heat transfer circuit as soon as its temperature devient inférieure à celle du boiler de puisage, dans le seul becomes lower than that of the draw-off boiler, in the only cas où on veut lui garder sa température; sinon on continera when we want to keep his temperature; otherwise we will continue à chauffer les autres boilers jusqu'à ce que le fluides caloporteur ait atteint la température du boiler le plus froid, heating the other boilers until the heat transfer fluid has reached the temperature of the coldest boiler, (le premier), à ce moment on coupe le circuit caloporteur. (the first), at this time the heat transfer circuit is cut. RESUME. ABSTRACT. Le fluide caloporteur d'une installation de chauffage solaire réchauffant successivement deux ou plusieurs boilers en série, The heat transfer fluid of a solar heating installation successively heating two or more boilers in series, sera recyclé le plus froid possible, de manière à ce qu'il will be recycled as cold as possible, so that it libère totalement ses calories en préchauffant le ou les boilers d'attente, ainsi le rendement du capteur solaire s'en trouve totally releases its calories by preheating the standby boiler (s), thus the efficiency of the solar collector is there augmenté. La réduction du débit caloporteur favorisera l'élévation de température du boiler de puisage, au détriment du facteur global d'efficacité, et inversement. increases. Reducing the heat transfer flow rate will increase the temperature of the draw-off boiler, to the detriment of the overall efficiency factor, and vice versa.
BE175859A 1977-03-17 1977-03-17 INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY BE852559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE175859A BE852559A (en) 1977-03-17 1977-03-17 INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE175859A BE852559A (en) 1977-03-17 1977-03-17 INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY
BE852559 1977-03-17

Publications (1)

Publication Number Publication Date
BE852559A true BE852559A (en) 1977-07-18

Family

ID=25649933

Family Applications (1)

Application Number Title Priority Date Filing Date
BE175859A BE852559A (en) 1977-03-17 1977-03-17 INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY

Country Status (1)

Country Link
BE (1) BE852559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897090A1 (en) * 1997-08-13 1999-02-17 Josef Mayrhofer Solar system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897090A1 (en) * 1997-08-13 1999-02-17 Josef Mayrhofer Solar system
WO1999009356A1 (en) * 1997-08-13 1999-02-25 Josef Mayrhofer Solar plant

Similar Documents

Publication Publication Date Title
CN100554792C (en) Method that a kind of Teat pump boiler combines with solar water heater and hot-water heating system
JPS57150757A (en) Solar heat utilizing plant
US4606404A (en) Method and apparatus for recycling thermal energy
Song et al. Performance analyses on a novel heat pump with a hybrid condenser combined with flat plate micro-channel heat pipe plus TEG and FPV evaporator
Su et al. Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment
US4345586A (en) Cascade solar heater
BE852559A (en) INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY
US10502456B2 (en) Efficient solar flat plate heat absorption system and operation method thereof
CN208010661U (en) The blower cooling water circulatory system
CN210328732U (en) Multi-energy complementary greenhouse heating and power generation system
CN101109540A (en) Method for enlarging thermoelectricity co-generating heat supplying area
CN207963199U (en) Solar heat pump and water heating system
CN201066212Y (en) Light funnel light-guiding spot energy graded heating direct type solar energy water heating device
FR2569469A1 (en) Method for saving energy and heating installation with domestic hot water production making use thereof
CN218062552U (en) Geothermal-solar series coupling power generation system
WO2023236325A1 (en) Special solar vacuum water jacket heating furnace for oil field and crude oil heating method
RU2213312C2 (en) Liquid-metal cooling system
CN113251459B (en) Method and system for deep peak shaving of thermoelectric unit
CN218096020U (en) Hydrophobic recycling energy-saving system of boiler plasma air heater
EP4056922A1 (en) High efficiency solar pvt trigeneration system
SU1249179A1 (en) Power plant
SU1044903A1 (en) Combined solar-wind power plant
SU1483053A1 (en) Heat-and-power steam plant
Anarbaev et al. Schematic and parametric optimization of solar+ fuel boiler installations
SU1694941A1 (en) Power-and-heat supply plant