BE571011A - - Google Patents

Info

Publication number
BE571011A
BE571011A BE571011DA BE571011A BE 571011 A BE571011 A BE 571011A BE 571011D A BE571011D A BE 571011DA BE 571011 A BE571011 A BE 571011A
Authority
BE
Belgium
Prior art keywords
medium
cell
heat
condensed
gaseous
Prior art date
Application number
Other languages
English (en)
Publication of BE571011A publication Critical patent/BE571011A/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • G21D5/08Reactor and engine not structurally combined with engine working medium heated in a heat exchanger by the reactor coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description


   <Desc/Clms Page number 1> 
 



   La présente,invention concerne des systèmes destinés à utiliser 1' énergie nucléaire, et plus particulièrement un nouveau système perfectionné de pile à vapeur d'eau et à eau (SWR) pour convertir l'énergie produite par une pile atomique en une forme efficacement utilisable. Sous certains de ces rapports, l'invention concerne également, des procédés perfectionnés de conversion et d' utilisation d'énergie nucléaire. 



   L'utilisation de l'énergie engendrée par une pile pour la production d'une énergie sous forme d'une vapeur d'eau est naturellement bien connue en pra- tique. Toutefois, on a proposé jusqu'à présent divers systèmes de pile, destinés à fournir et à utiliser une énergie sous forme de vapeur d'eau, qui se sont ré- vélés relativement inefficaces et/ou compliqués. Ainsi, dans la pile dite à eau sous pression   (PWR),   on fait passer l'eau à travers une pile sous pression, 1' eau étant ainsi chauffée, de sorte que l'ébullition de l'eau est empêchée. L' eau chauffée est généralement mise en circulation à travers un échangeur de cha- leur pour fournir de la vapeur d'eau, puis est ramenée dans la conduite d'admis- sion de la pile.

   Dans la pile dite à eau bouillante (BWR), un certain degré d' ébullition est admis lorsque l'eau est mise   -en   circulation à travers la pile, et la vapeur d'eau produite est séparée et est utilisée pour commander une turbine par exemple. Dans les deux-'piles   PWR   et   BWR,   diverses considérations limitent la température maximum à laquelle l'eau peut être chauffée à 316  C. environ. 



  Cette limitation empêche l'utilisation de l'énergie calorifique à des rendements élevés proportionnés à ceux d'installations modernes fixes de production d'éner- gie. De telles installations de production d'énergie fonctionnent couramment à des températures de pointe comprises entre   4270   et 649 C. 



   Dans le système de pile dite sur-cri tique, on fait passer l'eau à travers une pile sous une pression de l'ordre de 280   kg/cm2,   ce qui permet de chauffer l'eau à   538 C.   environ ou plus sans ébullition. Dans ce système, on peut obtenir des rendements thermiques relativement élevés, mais il se pose des pro- blèmes importants en ce qui concerne les structures physiques nécessaires pour contenir de telles pressions. 



   On a fait diverses autres propositions pour obtenir de meilleurs ren- dements thermiques, tels que l'utilisation d'un métal liquide, par exemple le sodium, ou d'un gaz, par exemple l'anhydride carbonique, à titre de milieu de transmission de chaleur ou actif. Dans certains cas, le milieu est utilisé pour produire de la vapeur d'eau qui entraîne une turbine; dans d'autres cas, un mi- lieu gazeux est admis directement dans une turbine à gaz. Toutefois, ces agen- cements et d'autres agencements connus ne donnent pas entière   satisfaction   pour la production d'énergie en raison de divers problèmes pratiques. 



   Le rendement thermique d'une installation de production d'énergie sous forme de vapeur d'eau par exemple, est directement associé au rapport com- pris entre les températures absolues d'admission et d'évacuation. Couramment, les machines les plus efficaces sont conçues pour de la vapeur d'eau qui est ad- mise à un degré élevé de surchauffe, et qui est finalement évacuée et condensée à une température et sous une pression relativement basses. Ces changements d' état sont une conséquence nécessaire de. l'utilisation d'une proportion élevée de l'énergie disponible dans la vapeur d'eau. 



   Dans un système à cycle fermé, le condensat doit être préalablement chauffé à l'état liquide, converti en vapeur par ébullition, puis surchauffé. 



  Une pile atomique pour réaliser toutes ces fonctions (préchauffage, ébullition,   surchauffage)   pourrait nécessiter deux ou trois régions en raison des différents procédés de transmission de chaleur en jeu. En plus de la complexité ainsi ob- tenue, des problèmes de réglage pourraient se poser étant donné que les énergies en jeu dans les trois procédés ne restent pas dans le même rapport dans toutes les conditions de fonctionnement. 



   Le réglage du procédé de fission est aussi fortement compliqué par la présence de deux phases du fluide de travail de la pile, en particulier lorsque 

 <Desc/Clms Page number 2> 

 le réfrigérant est un ralentisseur plus efficace dans une phase que dans l'autre, comme c'est le cas pour l'eau. 



   La demanderesse a découvert un système de pile atomique destinée à produire de l'énergie dans lequel une pile atomique fournit un milieu de travail condensable surchauffé à un appareil de conversion d'énergie à grand rendement. 



  Ce milieu peut subir un ou plusieurs changements de phase dans l'appareil de conversion, mais il est traité de façon qu'il ne subisse pas de changement de phase lorsqu'il est surchauffé dans la   pile.   Suivant la présente invention, un milieu gazeux facilement condensable tel que la vapeur d'eau fournie à partir de l'eau ordinaire, ou lorsque cela est souhaitable, à partir d'eau lourde   (D20),   est utilisé à titre de réfrigérant de la pile et à titre de fluide de travail dans un cycle fermé destiné .à une pile atomique fournissant de l'énergie pour commander une turbine à grand rendement ou autre appareil de conversion d'éner- gie.

   La vapeur d'eau est mise en circulation à travers la pile atomique de façon que sa température soit portée de valeurs relativement basses à l'admission de la pile à une température beaucoup plus élevée à la sortie de la pile. Une partie seulement de la vapeur d'eau surchauffée fournie par la pile est utilisée à ti- tre de milieu fluide de transmission de chaleur ou de travail primaire, à partir duquel de l'énergie utilisable est dérivée par une turbine ou autre élément de conversion d'énergie. Habituellement, cette partie du milieu peut être ramenée à la phase liquide dans l'appareil de conversion d'énergie. 



   Une autre partie de la vapeur d'eau à température élevée est by-pas- sée autour de la turbine ou autre élément de conversion, et est utilisée pour réchauffer à la phase gazeuse la partie du milieu à partir de laquelle on a ob- tenu de l'énergie. Il est évident que la partie du milieu qui est ramenée de la turbine ou autre élément peut être en phase liquide avant le réchauffage, mais le milieu pénétrant dans l'entrée de la pile est sensiblement à l'état gazeux, et est alors surchauffé à une température élevée dans la pile sans subir de chan- gement de phase. 



   Une particularité fondamentale de la nouvelle pile à vapeur d'eau et à eau est constituée par le fait qu'on a prévu un système de transfert d'énergie qui permet l'utilisation de piles atomiques de construction simple et facilement réglables, en combinaison avec un appareil de conversion d'énergie moderne à grand rendement, tel que des turbines à vapeur. 



   Une des particularités les plus remarquables de l'invention réside dans le fait qu'on fournit un système d'utilisation de l'énergie d'une pile du type ci-dessus, et qui présente les caractéristiques sus-mentionnées, dans lequel la chaleur extraite d'une pile au moyen d'un ralentisseur de pile est communi- quée au milieu en circulation lorsqu'il est ramené à l'entrée de la pile, ce qui fournit une partie de l'énergie calorifique nécessaire pour mettre le milieu en phase gazeuse avant qu'il passe à travers la pile. Selon une variante, on peut obtenir ce qui précède en faisant passer le milieu en circulation condensé en relation d'échange de chaleur avec l'agent ou système ralentisseur de la pile, ou en faisant circuler une partie du milieu à travers la pile d'une façon telle que le milieu proprement dit forme l'agent de ralentissement de la pile. 



   D'autres avantages et caractéristiques de la nouvelle pile à vapeur d'eaue à'eau de la demanderesse ressortiront de la description qui va suivre d'une forme de réalisation préférée de l'invention, faite en regard du dessin annexé dans lequel : 
La figure 1 est une vue schématique simplifiée d'un système d'utili- sation de l'énergie d'une pile suivant l'invention; et la figure 2 est une vue schématique simplifiée d'une variante du nou- veau système. 



   En se référant maintenant au dessin, et initialement à la figure   1, le   :numéro de référence 10 indique une pile atomique qui, en soi, peut être de tout 

 <Desc/Clms Page number 3> 

 type approprié. Les caractéristiques particulières de structure de la pile ne font pas partie de l'invention, mais il est utile de noter que la pile présente un   '   passage, indiqué de façon générale en   11,   pour la circulation d'un milieu conden- sable tel que de la vapeur d'eau, en relation d'échange de chaleur avec les car- touches de la pile (non représentées particulièrement).

   Dans le système représenté, le passage Il peut être formé de façon à contenir de la vapeur d'eau sous une pres- sion de l'ordre de 140   kg/cm   absolue, mais il est évident que la pression du mi- lieu régnant dans la pile peut varier considérablement pour des applications par- ticulières. 



   Une conduite de vapeur 12 communiquant avec le passage   11   de la pile est reliée avec des conduites de vapeur 13, 14.La conduite 13, suivant l'invention, mène à un élément de conversion d'énergie calorifique tel qu'une turbine 15, tan- dis que la conduite 14 constitue une conduite de remise en circulation ramenant au passage 11 de la pile par l'intermédiaire d'une chaudière de mélange   16,   d'une conduite de retour 17 et d'une soufflante de vapeur d'eau 18. 



   Dans le système représenté, l'énergie calorifique du milieu en cir- culation est extraite par stades dans la turbine 15, qui peut être une turbine à vapeur à haute pression, et dans une seconde turbine 19 qui peut être une tur- bine à vapeur à basse pression. Dans ce but, la vapeur évacuée par la turbine à haute pression 15 peut s'échapper par une conduite d'évacuation 20 menant à une série de passages 21 d'un échangeur de chaleur   22.   L'autre série de passages 23 de l'échangeur 22 est en série dans la conduite de remise en circulation 14, et lorsque le milieu effluent passe à travers le passage 21, il est chauffé à une température désirée. Le milieu chauffé quittant le passage 21 passe par l'inter- médiaire d'une conduite de liaison 24 menant à l'entrée du second étage ou tur- bine à basse pression 19.

   Le milieu évacué de la turbine à basse pression est con- densé dans un condenseur à   vide.?5   et est envoyé par l'intermédiaire d'une con- duite de retour 26 par une pompe 27 de condensat, le milieu d'évacuation étant à ce moment donné sous forme d'un condensat liquide. 



   Comme représenté sur la figure 1, une certaine quantité du milieu d' évacuation provenant du premier étage de turbine 15 peut être évacuée par l'in- termédiaire d'une conduite d'extraction 28 et passer en série à travers une série de passages 29 d'un échangeur de chaleur 30, une soupape d'étranglement 31, et une série de passages 32 d'un second échangeur de chaleur 33.La sortie des pas- sages 32 de l'échangeur de chaleur est reliée à la conduite de retour 26 du côté évacuation de la pompe 270 
Une partie du milieu circulant à travers le second étage de turbine 19 peut être également évacuée par l'intermédiaire d'une conduite d'extraction 34, qui est reliée à l'entrée des passages 32 de l'échangeur de chaleur du côté basse pression de la soupape d'étranglement 31. 



   La circulation 'combinée à travers la conduite de retour 26 et les passages 32 de l'échangeur de chaleur pénètre dans une conduite 35 menant à une pompe de pression 36 ; et l'on se rend compte que la circulation du milieu à tra- vers la pompe 36 est égale à celle passant par la conduite de vapeur 13, aux fui- tes près. 



   Le condensat quittant la pompe 36 s'écoule en série par l'intermédi- aire d'une conduite de retour 37, des passages 38 d'un échangeur de chaleur 39, d'une conduite 40 et de passages   41,42   d'échangeurs de chaleur   33,30,   respective- ment, vers la chaudière de mélange 160 Ainsi qu'on le décrira plus complètement ci-après, le condensat est chauffé à un certain degré dans l'échangeur de chaleur 39. Une chaleur supplémentaire est communiquée au condensat lorsqu'il passe à travers les échangeurs de chaleur33, 30. Et, suivant l'invention, le condensat ainsi préalablement chauffé, est mélangé dans la chaudière 16 avec la vapeur d'eau surchauffée provenant de la conduite de remise en circulation 14.

   Le volume de la vapeur d'eau circulant dans la chaudière   16   en venant de la conduite 14 est telle, par rapport au volume de condensat pénétrant dans la chaudière et par rapport aux 

 <Desc/Clms Page number 4> 

 températures respectives de la vapeur d'eau et du condensat, que le volume total combiné du milieu quitte la chaudière et pénètre dans la conduite de retour 17 sous forme de vapeur d'eau, la vapeur étant saturée ou relativement peu surchauf- fée, ainsi qu'il est évident. 



   La vapeur d'eau provenant de la conduite de retour 17 pénètre dans la soufflante de vapeur   18,   qui peut être un compresseur centrifuge approprié par exemple, dans lequel la pression du milieu est élevée légèrement au-dessus de la pression du milieu se trouvant dans la conduite de remise en circulation 14. 



   Dans le système représenté à titre d'exemple sur la figure 1, la pile 10 est ralentie par de l'eau ordinaire ou de l'eau lourde suivant le combustible particulier utilisé dans la pile. Le ralentisseur est mis en circulation dans un système de refroidissement comprenant une pompe 43, une conduite d'admission 44 menant de la pompe à la pile, une conduite de retour 45 venant de la pile, par des passages 46 de l'échangeur de chaleur 39, et d'une conduite 47 menant des passages 46 del'échangeur de chaleur à l'entrée de la pompe !le Lorsque la pile 10 est en fonctionnement, le ralentisseur se chauffe et nécessite un refroidisse- ment.

   Dans ce but, le fluide chauffé du système de refroidissement du ralentisseur circule par l'intermédiaire d'une conduite 45 et passe à contre-courant en rela- tion d'échange de chaleur avec le condensat principal du milieu en circulation dans l'échangeur de chaleur 39. Ceci extrait simultanément la chaleur en excès du fluide du ralentisseur et la transfère au condensat à basse température s'écoulant en direction de la chaudière de mélange 16. 



   Dans certains cas, en particulier lorsque le système d'énergie de la pile fonctionne à un faible débit par rapport à la capacité estimée, la circula- tion du condensat peut être insuffisante pour extraire la chaleur du ralentisseur. 



  Par conséquent, il peut être utile de prévoir un système de refroidissement auxili aire comprenant une soupape 48, un échangeur de chaleur 49 et des milieux de re- froidissement externes qui ne sont pas particulièrement indiqués. 



   Naturellement, il est évident que dans le système de la figure 1, ,ainsi que dans les variantes de systèmes, dont une est décrite ci-après, le fluide circulant dans le système de refroidissement du ralentisseur ne doit pas néces- sairement, en lui-même, être utilisé comme ralentisseur. Selon une variante, la pile peut être ralentie par une matière solide telle que du graphite par exemple, le fluide du système de ralentisseur étant utilisé simplement à titre de réfrigé- rant. Dans certains cas, un refroiddissement séparé d'un ralentisseur solide peut ne pas être nécessaire. 



   A titre illustratif seulement, le système de la figure 1, dans une application typique, peut fonctionner de la façon suivante :en utilisant une pile   par exemple d'une puissance de 500 mégawatts, de la vapeur d'eau (soit H2O ou D20) sous une pression de 147 kg/cm2 absolue à 335 C. peut être introduite dans   le passage 11 de la pile à un débit de 545   kg/sec.   La vapeur d'eau est chauffée dans la pile à une température de 566 C. et se trouve sous une pression de sor- tie de 141   kg/cm2   absolue. 



   Comme précédemment établi, toute pile appropriée peut être utilisée dans le système suivant l'invention, et la pile particulière à utiliser ne fait partie de l'invention. Ce n'est qu'à titre illustratif que les caractéristiques suivantes d'une forme d'une pile appropriée sont données ici. 



   Le coeur de la pile peut consister en 90 tonnes de dioxyde d'uranium non enrichi. On utilise de l'eau lourde (D20) à titre de ralentisseur et de ré- flecteur. Deux cent trente cinq tonnes d'eau lourde sont nécessaires à cet ef- fet. La longueur active du coeur est de 6,3 mètres, et le diamètre actif du coeur est de 6,65 mètres. Le coeur comprend 272 tubes sous pression. Chacun de ces tubes sous pression est en Zircalloy et présente une longueur de 7,5 mètres et un diamètre interne de 133,75 mm et un diamètre externe de 150 mm. 



   Les cartouches contenues dans le coeur consistent en des tiges solides 

 <Desc/Clms Page number 5> 

 de dioxyde d'uranium formées en faisceau, chaque tige présentant un diamètre de   19875   mmo Il existe 38 de ces tiges par faisceau de cartouches:, et 5 de ces fais- ceaux par tube sous pression. Les tiges sont revêtues d'acier inoxydable présen- tant une épaisseur de 0,025 mmo 
La sortie de vapeur d'eau de la pile est, suivant la présente inven- tion, divisée en des conduites de vapeur d'eau 13 et 14. A titre illustratif, et à titre de comparaison, on peut supposer que la vapeur d'eau se déplace par 1' intermédiaire de la conduite 13 à un débit de 1,00,auquel cas elle peut circuler à un débit de 2,22 dans la conduite de remise en circulation 14, ce qui fait un débit total de vapeur d'eau dans la pile de 3,22.

   Le débit est exprimé ici en unités de poids arbitra,ires par unité de temps. Par rapport à un total de cir- culation dans la pile de 545   kg/sec  par exemple, un débit de 1,00 représente 168   Kg/seo   environ. 



   La vapeur d'eau circulant à travers la turbine 15 est évacuée sous une pression de   385   kg/cm2 absolue et à une température de 382 C. Une certaine quantité de la vapeur d'eau évacuée est réchauffée dans l'échangeur de chaleur 22 à   538 Co   avant de pénétrer dans la turbine à basse pression 19. Le débit di- rigé vers la turbine 19 peut être de   0,88   environ, un débit de   0,12   étant prélevé par la conduite 28 à des fins de chauffage de l'eau d'admission. 



   Une partie de la vapeur d'eau s'écoulant à travers la turbine 19 est prélevée par une conduite de dérivation 34 pour le chauffage de l'eau d'admission, cette vapeur étant sous une pression de 9,8 kg/ cm2 absolue et à une température de 249 C. Le débit de cette vapeur d'eau peut être de 0,10 environ. Le reste de la vapeur d'eau s'écoulant à travers la turbine 19 (débit de   0,78)   est condensé dans le condenseur 25 sous une pression absolue de 37,5 mm de mercure environ, La pompe 27 porte cette pression à 8,4   kg/cm2   absolue environ. 



   Le condensat contenu dans la conduite   26   se combine avec le condensat provenant des échangeurs de chaleur d'eau d'admission 30, 33, et la circulation combinée (à un débit de 1,00) pénètre dans une pompe de pression 36 à une tem- pérature de 52 C. environo La pompe 36 porte la pression du condensat à 147   kg/om2   absolue, et le condensat à haute pression, en passant à travers les serpentins d'échangeur de chaleur   38,   41, 42, est chauffé à   2°3 Ce   environ. 



   Suivant l'invention, le condensat pénètre dans la chaudière de mélan- ge 16 et y est combiné avec la vapeur d'eau provenant de la conduite de remise en circulation 14 pour former de la vapeur d'eau sous une pression de 140   kg/om2   absolue environ, et à une température de 338 C. environ. Le débit quittant la chaudière 16 est naturellement de   3,220   La circulation combinée de la vapeur à basse pression pénètre dans la soufflante de vapeur 18 qui porte la pression de la vapeur à 147   kg/cm2   absolue environ. 



   Pour mettre en marche le système de la figure 1, on prévoit une pe- tite chaudière 50 chauffée à l'huile en vue d'un fonctionnement sélectif. Au moyen des   soupapes 21,   52, la chaudière 50 peut être disposée en série dans la conduite de circulation située entre la chaudière de mélange 16 et la soufflante de vapeur 18. Ainsi, pendant l'amorçage du système, le milieu en circulation peut être chauffé pour l'amener dans sa phase gazeuse avant d'amorcer la pile 10, de façon à éviter un changement de phase à l'intérieur de la pile. 



   Pendant le fonctionnement normal du système de la figure 1, le milieu ralentisseur peut atteindre une température de   110 C.  En-faisant circuler le mi- lieu ralentisseur à travers le'échangeur de chaleur 39, la température du milieu peut être ramenée à 60 C. avant qu'il ne pénètre dans la pile. 



   Il est évident que l'explication ci-dessus du fonctionnement de la nouvelle pile à vapeur d'eau et à eau de la demanderesse n'est donnée qu'à titre illustratif. Les diverses températures et pressions particulières peuvent varier de façon   considérable   et on peut omettre un grand nombre de particularités du système   ,lorsqu elles   ne sont pas essentielles au fonctionnement d'une installation 

 <Desc/Clms Page number 6> 

 particulière. 



   Dans certains cas, il peut être avantageux que la sortie d'énergie de la pile soit admise dans la turbine ou autre élément de conversion au moyen de systèmes reliés thermiquement, mais physiquement isolés. Un tel agencement peut être nécessaire pour éviter la   possibilté   d'un passage d'une vapeur d'eau radio- active dans la turbine. Naturellement, on subit une légère perte de l'efficacité   d'ensemble.)   
Dans la variante de système de la figure 2, une partie de l'écoulement de retour du condensat provenant de l'élément de conversion d'énergie 60 est détoui née dans la pile à titre de milieu de ralentissement ou de réfrigérant ralentis- seur.

   Ainsi, une pile   61   chauffe un milieu facilement condensable à l'état gazeux, et le milieu chauffé est dirigé en partie vers l'élément de conversion 60, qui peut être une turbine par exemple, et en partie vers une chaudière de mélange   62.   



  Le condensat à basse température provenant de l'élément de conversion   60   est ra- mené par une conduite 63 et peut s'écouler, en partie au moins, par une conduite 64 dans la pile 61'¯pour agir à titre de ralentisseur ou de réfrigérant ralentis- seur. Le condensat est chauffé légèrement dans la pile et s'écoule de cette der- nière dans la chaudière de mélange 62 par l'intermédiaire d'une conduite de re- tour 65. 



   Le réglage de la circulation du milieu de ralentissement, dans le système de la figure 2, peut être réalisé en prévoyant une soupape de dérivation 66 qui relie les conduites 64, 65 en parallèle avec le circuit de circulation passant à travers la pile. Par un réglage approprié de la soupape 66, l'écoulement du milieu à travers le circuit de ralentissement peut être proportionné à l'é- coulement total du milieu, le reste de l'écoulement passant directement dans la chaudière de mélange 62, par l'intermédiaire de la soupape de dérivation. 



   Un des avantages importants du nouveau système réside dans le fait qu'un milieu gazeux facilement condensable, tel que de la vapeur d'eau ordinaire ou d'eau lourde, peut être chauffé dans une pile à une température élevée en vue d'une utilisation efficace conjointement   à   des éléments de conversion d'énergie modernes à grand rendement, tels que des turbines. On obtient cet avantage suivant l'invention en fournissant un milieu en circulation facilement condensable à 1' entrée de la pile sous forme gazeuse, de façon qu'aucun changement de phase n'ait 'lieu dans la pile. La vapeur pénétrant dans la pile peut être chauffée à une tem- pérature élevée, et de cette façon on obtient un rendement thermique élevé, tout en évitant des pressions élevées nuisibles et/ou des systèmes de transfert com-   pliqués.   



   Une autre particularité avantageuse de l'invention réside dans le fait que la caractéristique d'aptitude à la condensation d'un milieu en circu- lation facilement condensable peut être utilisée pour obtenir un rendement de fonctionnement élevé dans un élément de conversion d'énergie tel qu'une turbine, tandis qu'en même temps un milieu condensé est converti en sa phase gazeuse avant d'être remis en circulation à travers la pile. Ceci est réalisé en prévoyant une chambre de mélange dans laquelle une partie du milieu gazeux à température élevée est by-passée. Le milieu gazeux à température élevée change le condensat en sa phase gazeuse de la façon désirée.

   Et, comme avantage supplémentaire, l'agence- ment ci-dessus permet l'addition commode d'un milieu de complément dans la cham- bre de mélange, où les impuretés peuvent être précipitées avant l'entrée du mi- lieu dans la pile. 



   Naturellement, l'invention n'est pas limitée aux formes de réalisa- tiôn décrites et représentées, et est susceptible de recevoir diverses variantes rentrant dans le cadre et l'esprit de l'invention.

Claims (1)

  1. RESUME.
    A. Système destiné à utiliser l'énergie fournie par une pile atomique, <Desc/Clms Page number 7> caractérisé par les points suivants séparément ou en combinaisons : 1. Il comprend une pile atomique destinée à être refroidie par un mi- lieu fluide à l'état gazeux, un élément de conversion d'énergie, un milieu flui- de d'un type destiné à être transformé en phase gazeuse lors de son chauffage et qui est susceptible d'être facilement condensé, un dispositif de transfert de cha- leur situé dans la pile pour chauffer le milieu dans sa phase gazeuse et refroidir ainsi la pile, un dispositif pour faire circuler le milieu à travers le disposi- tif de transfert de chaleur, un dispositif pour amener une première partie du mi- lieu gazeux chauffé à l'élément de conversion d'énergie dans lequel le milieu peut être condensé,
    un dispositif destiné à remettre en circulation une seconde partie du milieu gazeux chauffé, un dispositif destiné à transporter le milieu condensé à partir de l'élément de conversion, un dispositif extérieur à la pile destiné à combiner les parties condensée et remise en circulation du milieu pour former un milieu gazeux, et un dispositif destiné à transporter le milieu gazeux vers le dispositif de transfert de chaleur.
    2. Il comprend une source de milieu en circulation fluide d'un type susceptible d'être transformé en une phase gazeuse lors de son chauffage et d' être facilement condensé, un dispositif comprenant l'élément de conversion des- tiné à effectuer la condensation du milieu gazeux chauffé, un dispositif destiné à chauffer le milieu condensé pour transformer le milieu en sa phase gazeuse, et un dispositif pour transporter le milieu transformé vers le dispositif de trans- fert de chaleur.
    3.Le dispositif de chauffage du milieu condensé comprend un moyen pour transmettre la chaleur au milieu condensé à partir d'une partie au moins du milieu gazeux chauffé contenu dans le dispositif de transfert de chaleur.
    4. Le dispositif de chauffage du milieu condensé comprend un moyen extérieur à la pile pour mélanger avec le milieu condensé une partie du m&lieu gazeux chauffé, partie qui est suffisante pour transformer le mélange en phase gazeuse.
    5. La pile présente un ralentisseur, un dispositif destiné à extraire la chaldur engendrée dans le ralentisseur vers l'extérieur de la pile, et un dis- positif destiné à transmettre ladite chaleur extraite au milieu condensé.
    6. La pile est munie d'un ralentisseur fluide, d'un dispositif desti- né à faire circuler le realentisseur vers l'extérieur de la pile, ledit disposi- tif destiné à faire circuler le ralentisseur comprenant un dispositif d'échange de chaleur pour transmettre la chaleur du ralentisseur au milieu condensé.
    7. La pile comprend un moyen fluide de ralentissement des neutrons, et le dispositif destiné à chauffer le milieu condensé comprend en partie un moyen permettant de faire passer le milieu condensé en relation d'échange de chaleur avec ledit ralentisseur.
    Procédé d'utilisation de l'énergie engendrée par une pile, caracté- risé par les points suivants séparément ou en combinaisons : 1. On fait passer un milieu facilement condensable à l'état gazeux à travers la pile en relation d'échange de chaleur pour chauffer le milieu ga- zeux, on condense au moins une partie du milieu gazeux chauffé, on transforme le milieu gazeux en sa phase gazeuse en le mélangeant avec une partie du milieu ga- zeux chauffé, et on remet en circulation le milieu transformé à travers la pile en relation d'échange de chaleur.
    2. On fait passer dé la vapeur d'eau à travers la pile en relation d'échange de chaleur pour chauffer la vapeur d'eau, on extrait la chaleur d'une partie de la vapeur d'eau extérieurement à la pile pour former un condensat aqueux, on vaporise le condensat pour former de la vapeur d'eau en mélangeant cette der- nière avec une autre partie de la vapeur chauffée dans la pile, et on fait circu- ler de nouveau la vapeur d'eau ainsi formée à travers la pile en relation d'échan- <Desc/Clms Page number 8> ge de chaleur.
    3. Le condensat est chauffé avant la vaporisation en utilisant le condensat à titre de ralentisseur de neutrons pour la pile.
BE571011D BE571011A (fr)

Publications (1)

Publication Number Publication Date
BE571011A true BE571011A (fr)

Family

ID=189363

Family Applications (1)

Application Number Title Priority Date Filing Date
BE571011D BE571011A (fr)

Country Status (1)

Country Link
BE (1) BE571011A (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1190116B (de) * 1961-02-03 1965-04-01 Rateau S A Soc Atomkraftanlage mit ueberhitztem Dampf als Kuehlmittel
DE1201499B (de) * 1961-07-21 1965-09-23 Rateau S A Soc Kernenergieanlage mit dampfgekuehltem Kernreaktor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1190116B (de) * 1961-02-03 1965-04-01 Rateau S A Soc Atomkraftanlage mit ueberhitztem Dampf als Kuehlmittel
DE1201499B (de) * 1961-07-21 1965-09-23 Rateau S A Soc Kernenergieanlage mit dampfgekuehltem Kernreaktor

Similar Documents

Publication Publication Date Title
AU2008228211B2 (en) Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant
CA2481293A1 (fr) Procede et dispositif de production d&#39;electricite a partir de la chaleur produite dans le coeur d&#39;au moins un reacteur nucleaire a haute temperature
US20110185742A1 (en) Solar hybrid combined cycle gas and steam power plant
JPH09209716A (ja) 発電プラント
US3047479A (en) Steam reactor system
JPH08226335A (ja) 水素燃焼ガスタービンプラント
FR2940355A1 (fr) Dispositif de production d&#39;electricite avec plusieurs pompes a chaleur en serie
JP2014031787A (ja) 発電プラントおよび熱供給方法
FR3076086B1 (fr) Ensemble de production d&#39;energie couplant une pile a combustible et un systeme thermodynamique reversible
FR2557280A1 (fr) Generateur de vapeur sodium-eau a tubes concentriques droits et a circulation de gaz dans l&#39;espace annulaire
BE571011A (fr)
RU2253917C2 (ru) Способ эксплуатации атомной паротурбинной энергетической установки и установка для его осуществления
Abid et al. Techno-environmental analysis of a parabolic dish assisted recompression with and without reheat s-CO2 Brayton cycle
EP2956715B1 (fr) Installation de production d&#39;electricite comportant un dispositif de production de vapeur d&#39;eau de hauteur reduite, application aux reacteurs rep et reb
WO2015032614A1 (fr) Procede et dispositif pour prevenir l&#39;assechement dans une chaudiere de centrale solaire a concentration de type tour
EP3004571A2 (fr) Procede de production d&#39;energie par combustion de matieres, et installation pour la mise en oeuvre du procede
BE1010594A3 (fr) Procede de conduite d&#39;une chaudiere a circulation forcee et chaudiere pour sa mise en oeuvre.
CN108868918B (zh) 核能与非核燃料带再热双链耦合高效发电系统及方法
EP0101372A1 (fr) Procédé et installation à boucle thermodynamique pour la production d&#39;énergie
CN217481348U (zh) 一种储热增容式火电机组和电网
JP3059124B2 (ja) 水素燃焼タービンプラント
US11492964B2 (en) Integrated supercritical CO2/multiple thermal cycles
JPH09170405A (ja) 加圧流動層複合発電設備
BE564347A (fr)
JPH11257025A (ja) 混合媒体サイクル発電プラント