BE560683A - - Google Patents

Info

Publication number
BE560683A
BE560683A BE560683DA BE560683A BE 560683 A BE560683 A BE 560683A BE 560683D A BE560683D A BE 560683DA BE 560683 A BE560683 A BE 560683A
Authority
BE
Belgium
Prior art keywords
sep
burner
fuel
atomization
combustion
Prior art date
Application number
Other languages
English (en)
Publication of BE560683A publication Critical patent/BE560683A/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description


   <Desc/Clms Page number 1> 
 



   La présente invention concerne le chauffage de fours industriels, tels que des fours à sole et analogues. 



     Annuellement   plus de 100 millions de tonnes   d'acier.;   ou 85 %   environ   de la production des Etats-Unis   d' Amérique   sont obtenus dans des fours à sole. Le combustible principal destine à ces fours comprend 7,5 billions de litres d'huile environ,   %andf-s   que certains utilisent du combustible gazeux et du goudron de sous-produits. Pour allumer les combustibles liquides de façon satisfaisante dans un four à sole, il est nécessaire de pulvériser le liquide en de minuscules gouttelettes à l'aide de certains moyens d'atomisation à vitesse élevée. 



   Généralement, le combustible liquide est atomisé dans le four à sole par un gaz chaud sous pression. Etant donné que la vapeur est facilement    disponible, on l'utilise le plus couramment et on l'admet sous une pression comprise entre 10,5 et 14 kg/cm , et de préférence à l'état surchauffé.   



  On a essayé avec plus ou moins de succès d'autres gaz comprimés tels que l'air, le gaz naturel, le gaz de four à coke ou de haut-fourneau. 



   Pour l'atomisation ordinaire antérieure, on a recours à 360 à 600 g de vapeur par litre d'huile atomisée et brûlée, suivant le type de flamme désiré, et l'on utilise peut-être jusqu'à deux fois cette quantité de vapeur par litre de combustible à base de goudron ou,de brai. Il s'en- suit qu'un four brûlant 2270 litres par heure environ d'huile, nécessite 820 à 1360 kg environ de vapeur par heure. Bien qu'il existe certains avantages pratiques pour l'atomisation par la vapeur, il existe des incon- vénients thermiques très importants inhérents à l'utilisation de la vapeur, en particulier une diminution de la température maximum de la flamme et, par suite de la radiation thermique vers le bain ou masse fondue.

   On attribue principalement ces inconvénients   à  (1) une absorption de chaleur sensible par la vapeur, et   (2)'à   la chaleur d'une partie de dissociation chimique de la vapeur à une température élevée. Pour le processus d'atomisation antérieur par la vapeur, on fournit l'énergie au combustible à une tempéra- ture d'huile atomisée par   -la   vapeur comprise entre 121  et 149  C environ. 



  La faible température finale de l'huile atomisée par la vapeur est d'impor- tance capitale et l'on doit s'y attendre avec tout système de gaz comprimé dans lequel les caractéristiques des conduites limitent les températures de fonctionnement pratiques à moins de 538 C environ. A ces températures relativement basses, une détente adiabatique du gaz comprimé à l'intérieur du brûleur confère un effet de refroidissement tout en agissant sur   l'huile.   



  Un moyen utile pour évaluer l'effet de détente adiabatique est facilement obtenu à partir des diagrammes Mollier pour divers   gaz,'Par   exemple,    le graphique Mollier pour la vapeur montre que pour que la vapeur se 2 détende adiabatiquement à partir d'une pression initiale de 12,25 kg/cm   au manomètre jusqu'à la pression atmosphérique à   149 C   environ seulement,    la température initiale de la vapeur doit être de 491  C environ 2 A cette température (491 C) et sous une pression de 12,25 kg/cm au   manomètre, la vapeur est estimée comme   n'étant   pas pratique pour une ap- plication à des fours à sole. 



   Les caractéristiques de température et physiques de la flamme du four à sole et le rendement final dépendent principalement de la condition dans laquelle l'huile quitte le 'brûleur, particulièrement en ce qui concerne : (1) le degré d'atomisation, (2) la température de l'huile, (3) la composition chimique de l'huile et des gaz- inertes, et (4) la vitesse et la force vive.

   En   tenant':'compte   de la température de   l'huile     et des équations chimiques de la combustion finale, les calculs indiquent que 480 g de vapeur (sous 10,5 kg/cm au manomètre et à 316 C) par   litre d'huile atomlsée peuvent diminuer la température théorique de la, flamme de 135 C environ, par comparaison avec la température de la flamme 

 <Desc/Clms Page number 2> 

 
 EMI2.1 
 obtenue si aucun d-iluânt de vapeur n'est nécessaire pour l'atomisation. 



  "e'4 la chaleur utile correspondante disponible pour le bain, c'est-à-" dire: -.le quantité de chaleur disponible au-dessus d'une " température'critique" de 1538 C environ, peut être di nuée de 528 Kcal par décimètre cube de combustible.. 



  Dans tout procédé de cam'bus-b température élevée, tel que dans un fo. à sole, il est important d' intfodiiîre le principe du "niveau moyen de température critique" ou simplement de la "température critique".. 



   Ce niveau de température est établi à la température la plus faible à laquel-    le le procédé peut théoriquement fonctionner, et il est très utile pour analyser les aspects thermiques de systèmes à températurelevée. La températu-   re critique pour la fabrication d'acier dans un four à sole dépend de divers facteurs tels que les points de fusion dU fer et des scories, de la profon- deur du bain et du profil géométrique du four, et, comme telle, elle est habituellement fixée à 1538 C environ. Le fait de tenir compte de ce niveau de température élevé est avantageux, attendu que l'efficacité thermique 
 EMI2.2 
 maximum dépend de la création de la quantité maum de chaleur par unité de combustible brûlée aux températures dépassanfla valeur critique de 15380C.

   Ceci représente une ''force d'entraînement" thermique pour le système, et toute chaleur obtenue à des températures inférieures au point cri- 
 EMI2.3 
 tique ne peut être utilisée (@3ctement par le four. Cette chaleur (à moins de   1 C)   comprend la plus grande partie de la chaleur du four à sole et doit être considérée comme chaleur perdue, sauf au cas où il est possi- ble de la récupérer en partie par régénération ou dans des chaudières de chaleur perdue. 



   Par conséquent, la présente invention se propose de fournir : - un procédé et un appareil de traitement de combustibles flui- des d'hydrocarbures, comprenant les brais, goudrons et fuel oils, afin d'obtenir une flamme qui constitue un élément de chauffage thermique beaucoup plus efficace que les flammes de procédés classiques utilisant ces combustibles atomisés par la vapeur ou autres gaz comprimés; - un procédé et un appareil dans lesquels on atomise finement des hydrocarbures fluides, tels que des fuel:

   oils, des brais et des goudrons, on les introduit dans un four industriel et on les y brûler - un procédé réalisant un chauffage préalable plus élevé du com- 
 EMI2.4 
 bustible au cours de l'atomisation et de l'injection dans la zone de com-.*+ . bustion située à l'intérieur du four, de sorte que le taux de combustion y est supérieur d'une façon correspondante, en assurant une température plus élevée et un dégagement thermique volumétrique supérieur ; - dans son application à des fours de fabrication   d'acier,     tels que le type courant ¯ sole, la force vive désirée, nécessaire pour une agitation du bain qui peut être conférée aux flammes sans une dilution   thermique indésirable, à l'aide de vapeur par exemple, qui aurait pour effet d'abaisser la température et la radiation de la flamme. 



   D'autres avantages et caractéristiques de l'invention ressorti- ront de la description qui va suivre. 
 EMI2.5 
 



  Suivant le procédé de'''présen-te invention, on mélange et on brûle un combustible fluide et un oxydant dans une zone de combustion, et l'on décharge des produits chauds de combustion dans 'une zone de traitem",.-, dans laquelle on injecte un courant de fluide ou de matière combustible fluidifiée, tel que des combustibles liquides, gazeux ET des combustibles' solides fluidifiés.

   Les produits chauds de combustion pénètrent dans la zone de traitement à des températures élevées et à des vitesses de l'or- dre sonique (par exemple 900 mètres/seconde environ pour des mélanges 

 <Desc/Clms Page number 3> 

 
 EMI3.1 
 stoechiométriques CH -0 ) pour obtenir un chauffage préalable et une fine atomisation de la matière fluide qui y est injectéeo Le chauffage préala- ble et l'atomisation de la matière fluide, qui est alors déchargée dans un four industriel et y est brûlée avec un oxydant, augmente   l'efficacité   de transfert thermique de la réaction ultérieure de combustiono Il semble que, lors de la pénétration dans le four industriel,le fin degré d'atomisation augmente grandement la vitesse de combustion ainsi que l'efficacité de transfert thermique à l'intérieur du four. 



    En   outre, il semble que le fin degré d'atomisation favorise certaine pyrolyse désirable du combustible dans le four pour fournir des produits 
 EMI3.2 
 gazeux qui sont trns facilement brûlés a l'intérieur du four. 



  Par conséquent, le procédé entier de combustion à l'intérieur du four indùs- triel est accéléré;? et l'on obtient les températures les plus élevées. 



  Ainsi, le processus de chauffage préalable et d'atomisation de l'invention sert à augmenter l'efficacité du transfert thermique, de la flamme à la masse située à l'inférieur du four à chauffer   c'est-à-dire   au bain ou   à'   
 EMI3.3 
 la charge')' 'pour 1.111 four z, sole, 
Tous les divers modes de circulation thermique existent dans le système de four à sole, y compris le transfert par conduction, par   convexion,   dans les liquides et entre des gaz et des surfaces liquides ou solides, et par radiation à partir des solides, des liquides et des gazToutefois, attendu qu'il est généralement établi que lorsque le bain est plat,   jusqu' à   80 à 85 % de la chaleur transférée au bain sont produits pàr radia- tion thermique,

   on décrira seulement ce mécanisme de circulation ther- miqueoLa relation mathématique de la chaleur radiante émise avec de la température est représentée par la modification suivante de la loi de Stefan-Boltzmann : 
 EMI3.4 
 1. H = e k (,-L 4 - T4) Dans laquelle H = Chaleur rayonnée à partir d'une région unitaire ou zone cible de la flamme à une température Tf vers le bain à une tempéra-   ture T = cal/heure x dm   e = Pouvoir   émissif..1   
 EMI3.5 
 k = Constante de Boltzmann 17,3 x 10 1 C cal/heure in 1r¯s? x  C absolu) ¯t''f T = Température absolue (OC+ 238) de la flamme et la tempéra- ture critique, respectivement. 



  (Tf9 i'c= "Force d'entraînement" thermique pour la circulation thermique à partir de la flamme vers la masse fondue 
Liéquation ci-dessus démontre deux critères importants dont on doit tenir compte pour obtenir une efficacité thermique maximum dans le four à sole :   (1)   température maximum de la flamme Tf a.u-dessus de la tempé- 
 EMI3.6 
 rature critique Il , et (2) un pouvoir émissif maximum e . x titre d'exemple de la façon dont cette relation peut démontrer l'effet obtenu sur le trans-   f'ert   thermique par radiation lorsqu'on augmente la température de la flamme, on suppose une flamme de   combustible   atomisé par la vapeur à   1870 C   environ, 
 EMI3.7 
 et une flamme de combustible atomisé par jet à 1925 0 environ, et on calcula de la façon suivante a.

   Température théorique de la flamme Tf de l'huile atomisée par la vapeur = 
 EMI3.8 
 18700C + 238 = 2108 C absolus. 

 <Desc/Clms Page number 4> 

   b .   Température théorique de la flamme Tfde l'huile atomisée par jet = j 
 EMI4.1 
 1925 C + 238 2163 C aQ.olus. c. Température critique Tc = 1538 C +238 1'µ7.6 c absolus de Pouvoir émisse dans tous les s = 1 e. Chaleur relative rayonnée par la flamme atomisée par vapeur = H v 
 EMI4.2 
 f. Chaleur relative irradiée par la flamme" omisée par jet = H.. 



  En partant de l'équation (1) : 
 EMI4.3 
 (2) S. e k ( T4 - T4 ) ¯%¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ .E e k ( T4 - Tu ) v Et en substituant les valeurs numériques supposées ci-dessus : 
 EMI4.4 
 ;¯ ,]4¯ v163)4 ( 8 1"'-4 122 Ev - (1876)4 De ce qui précède, il ressort 'une augmentation de la température 
 EMI4.5 
 théorique de la flamme, simplement de lB70  à 1925 C (3 % d'augmentation) assure une augmentation de 22 % environ de la chaleur à température élavée transférée par radiation. 



   En effectuant une atomisation par jet de la matière fluide à l'aide de produits de combustion chauds à vitesse élevée, suivant l'invention, la matière peut atteindre des températures pratiques d'atomisation aussi 
 EMI4.6 
 élevées que 6q.9 -70. C environ (en moyenne 482C environ). Ceci se rapproche des températures de matière   'atomisée   par la vapeur de probablement moins 
 EMI4.7 
 de 149 C environ. 0n=gpt voir l'effet sur l'intensité de radiation thermi- que en considérant les effets des augmentations de la température théorique, de la flamme, décrits dessus -F4i-ijbutre, tandis qu'on fait ressortir ci-dessus qu'une diminution .

   de tempé re de la flamme pourpxemple donné est de 135 C environ pour une atomisation par la lT11iùet que la quantité de chaleur disponible au-dessus d'une'température cique" de 1538 C environ peut être diminuée de 528 Kcal par litre de combustible, on a constaté que pour des poids équivalents de produits de combustion chauds   obtenus   par jet par litre de   combustible, la température théorise de la flamme n'est diminuée que de 30 C environ et que la quantité de chaleur disponible au-dessus d'une   
 EMI4.8 
 "température critique" rè". 'C environ n'est diminuée que de 26,4 Kcal par litre de combustible. 



   Par conséquent, on peut voir que tout diluant d'atomisation (de la vapeur de produits de combustion chauds à vitesse élevée) amoindrit l'inten- sité de la flamme, mais que l'atomisation par des produits gazeux chauds est bien supérieure à l'atomisation à l'aide de vapeur fortement diluante. 



   Sur les dessins : 
La figure 1 est une vue longitudinale du brûleur d'atomisation par jet de l'invention ; 
Les figures 2a et 2b sont des coupes partielles longitudinales du brûleur de la figure 1 ; 

 <Desc/Clms Page number 5> 

 
La figure 3 est une coupe partielle du brûleur suivant la ligne 3-3 de la figure 1; 
La figure 4 est une coupe partielle représentant en détail la construction du 'brûleur de la figure 3 ; 
La figure   5 'est   une coupe transversale du brûleur suivant la ligne 5-5 de la ligne 2b ; 
La figure 6 est une coupe transversale du brûleur suivant la ligne 6-6 de la figure 2b;

   et 
La figure 7 est une vue schématique d'un four à sole avec deux brûleurs montés aux extrémités opposées en vue d'un fonctionnement alterné, et représentant les conduites d'alimentation en fluide pour le   systèmeo   
En se référant particulièrement à la forme de réalisation de l'appareil des dessins, le brûleur B est muni d'une   enveloppe   externe allon- gée 10 traversée par un passage longitudinal cylindrique 12. Un brûleur auxiliaire 14 est monté dans l'alésage longitudinal 12 à l'extrémité postérieure de l'enveloppe 10. 



   Le brûleur auxiliaire   14,   représenté en détail sur les figures 3 et 4, est muni d'un conduit radial 16 d'admission de combustible à l'extrémité inférieure, et il communique avec un conduit longitudinal de combustible   18   qui amène le combustible vers l'extrémité antérieure du brûleur auxiliaire, jusqu'à un orifice radial 20 de dosage du combusti-   'ble   qui décharge le combustible dans une chambre   22   située à l'extrémité antérieure   de   brûleur auxiliaireLa chambre   22   est formée par un alésage axial 24 dans lequel on introduit un thermo-couple.

   Un conduit radial 30 d'admission d'oxygène est situé à l'extrémité supérieure du brûleur 14 et COMMUNIQUE avec un passage longitudinal d'oxygène 32 qui amène L'OXY- gène vers l'extrémité antérieure du brûleur et le décharge par l'intermédi- aire d'un passage radial de communication de dosage   34,   dans la chambre 22.

   Le combustible et l'oxydant sont mélangés et brûlés dans la chambre 22, et la flamme ainsi obtenue est dirigée à partir du brûleur auxiliaire 14, par l'intermédiaire d'un passage d'évacuatin 36, vers la zone principale de combustion   8   du brûleur,   0 On   prévoit des filtres 40 tant dans les con- duees de combustible pue dansles   conduits  d'oxydant,  16   ET30 respective- ment, pour   filtrer   les gaz   penétrant   dans le brûleur auxiliaire. 



   Le brûleur 14 est refroidi par de l'eau pour empêcher un   surciiauf-   fage, l'eau de refroidissement pénétrant par un conduit d'admission 42 communiquant avec un passage radial 44 situé à l'arrière du brûleur et passant successivement par un passage longitudinal de refroidissement 46, des passages annulaires de refroidissement 48 et 50 situés à l'extrémi- té antérieure du brûleur, et par l'intermédiaire d'un passage longitudinal 52 et d'un passage radial 54, jusqu'à un conduit d'evacuation ou de sortie 56. 



   On admet le combustible et l'oxydant à l'étage de combustion 38 du brûleur B pour être mélangés et enflammés par la flamme-pilote   prove--   nant du passage 36.l'oxydant de jet,tel qu'un oxygène très pur (95-100 %). un oxygène faiblement pur (45 %), ou de l'air, pénètre dans l'enveloppe 10 du brûleur par un conduit radial 60 et traverse l'espace annulaire 62. formé entre les parois du passage longitudinal 12 et sort du brûleur auxiliaire 14 pour pénétrer dans la zone de combustion primaire 38 où il est mélangé et brûlé avec le combustible.

   Il est évident que les 'dimensions des passages peuvent être modifiées, comme on le fait en pratique, lorsqu'on modifie le choix d'oxydant utilisé afin d'assurer une stabilité de la flamme 

 <Desc/Clms Page number 6> 

 
Simultanément, le combustible liquide pénètre dans l'enveloppe   10   du brûleur par l'intermédiaire d'un conduit radial d'admission 64 et passe par un   pacage   annulaire de répartition 66, dans une série d'orifices radiaux de   dosage   68 à travers lesquels il est déchargé dans un passage an- nulaire étroit de mélange 70, à travers lequel   passa..

   transversalement   un courant annulaire d'oxydant à partir du passage annuaire 62 vers la zone de combustion 38, 
Le mélange des courants de combustible et d'oxydant est réalisé dans la chambre annulaire étroite 70, et un mélange intime est obtenu au moment où le mélange passe dans la zone de combustion 38, au voisinage de la flamme-pilote. La combustion y est amorcée à   par '  la zone de combustion 
 EMI6.1 
 38 ver:; la zone de traitement 72 où la matière fluide destinée à êtrE péa2ablEmEnt chauffée et atomisée est   @   La vitesse du mélange d'oxydant et de combustible passant à travers la chambre annulaire 70 doit être suffisam- ment élevée pour qu'il ne puisse se produire de retour de flamme dans cette chambre   en.aucun   point.

   On a constaté qu'une vitesse comprise entre 900 et 1500   mètres/seconde   ou supérieure est satisfaisante Le danger provenant d'une vitesse trop faible réside dans le fait que des retours de flamme ou autres conditions oscillatoires provoquent des fluctuations de pression occasionnant un écoulement de combustible et d'oxydant irrégulier ou inter- 
 EMI6.2 
 rompu, conditionsa qui sont associées à une combustion lïère et errati- que dans la   chame   de combustion. 



   La vitesse des produits de combustion chauds provenant de la zone de combustion est de préférence supérieure à 0,5 Mach et peut être consi- dérablement plus élevée La vitesse élevée favorise le mélange et améliere l'atomisation de la matière fluide du second étage sans nécessiter des 
 EMI6.3 
 comp? exPa -aur l'injection de cette matière. En utilisant un,-melange à grande vitesi4;le chauffage lable, l'atomisation et l'accélération de la matière fluide du second étage sont réalisés plus rapidement. 



   Telle qu'utilisée ici, l'expression "Mach" indique le rapport de la vitesse linéaire du gaz du mélange à la vitesse du son dans le même mélange 
 EMI6.4 
 pour une température et une camp ¯, n de gaz données. 



  La matière d'atomisation du combustible fluide à traiter est intro- duite dans le brûleur par un conduit radial 74 à paitimµ±pquel elle passe par une série d'alésages pour atteindre des ajutages de pulvérisation 78. 



  De prnce, la matière d atomisation pénètre dans les ajutages de pulvérisation par des alésages   80   qui communiquent avec des chambres internes   82   de la tuyère selon un angle tangent à la face interne de la chambre. 



  De cette façon, le courant de matière d'atomisation   pénétrant   est obligé à 
 EMI6.5 
 tourbillonner autour des parois internes de la 'bre ¯82 et à sortir de 1 dite chambre par un orifice 8° de la zone de tr' ment 72' en tant que matière d'atomisation finement pulvérisée. 



   Les produits chauds de combustion sortant à une température élevée à la vitesse sonique ou proche de cette dernière de la chambre de combustion 
 EMI6.6 
 entrent en contact avec la matière d' "ation pulvérisée par les ajutages 78 et transportent la matière vers le bas le long de la zone de traitement z2 et l'éva â, partir de l'extrémité ouverte 86 du brûleur en tant que courant de matière préalablement chauffé, atomisé et accéléré. 



   On fait circuler de l'eau de refroidissement à travers l'enveloppe externe la leur B pour éviter un sur chauffage   L'eau   pénètre dans 
 EMI6.7 
 Ilextrémit%WPO'O>St-,ea5,rieure de l'enveloppe 1 ai un conduit radial à eau 88 et passe, par un conduit annulaire de répartition 90, dans des conduits longitudinaux de refroidissement 92, puis dans un passage annulaire 94 
 EMI6.8 
 alimentant ime série de compartiments de refroidissement 96 entourant la zone de co stion 38. 

 <Desc/Clms Page number 7> 

 



  L'eau de refroidissement passe à travers ces compartiments de refroidissement 96 et est évacuée par un passage annulaire de refroidissemetn 98 dans un passage longitudinal de refroidissement 100 qui communique avec une série de conduits de refroidissement 102 disposés radialement (analogues aux conduits de refroidissement   96   entourant la zone de combustion (38).L'eau de refroidissement est alors ramenée, par une autre série de conduits de refroidissement..102 disposée à l'opposé,   dàns   des passages   longitudinaux   104 à partir desquels elle sort de l'enveloppe 10 du brûleur par un conduit d'évacuation 106. 



   Comme représenté sur la figure 7, deux brûleurs d'atomisation selon l'invention sont disposés aux extrémites opposées   d'un   four à sole et fonctionnONT alternativement, pendant des périodes de temps bien connues en pratique, pour chauffer le four et faire passer les produits de combustion à travers des systèmes à chicanes alternés qui, lors de l'inversion des   brûleu-  servent à chauffer préalablement l'air d'admission. 



  Les brûleurs B sont disposés de façon à décharger un courant atomisé sur la longueur d'un four à sole 110 et sont alimentés en divers fluides de traitement 'par des conduites de distribution parallèles. Le brûleur auxili- aire est alimenté en oxydant et en combustible, tels que de l'oxygène et du proopane, respectivement, par des conduites 112 et 114, respectivement, et l'eau de refroidissement est admise dans les deux brûleurs par une con- duite 116.

   La circulation de ces fluides vers les deux brûleurs est   con=-   tinue et a lieu quel que soit le brûleur qui est alors en fonctionnement pour atomiser la   matière.  Le. combustible et l'oxydant sont admis dans les brûleurs par des conduits 118 et 120, respectivement, en passant par le bloc d'inversion de circulation 122 qui synchronise la période au cours de laquelle l'écoulement de ces fluides est maintenu vers l'un des deux   brû-   leurs. La matière d'atomisation est admise de façon analogue dans le bloc d'inversion par un conduit   124,   et une pompe   126   et un dispositif de chauf- fage 128 sont prévus dans la conduite   124   de matière   d'Atomisation.   



  Pendant la partie du cycle où le brûleur nord ('N") représenté sur la figure 7 est en fonctionnement, on fait passer le combustible de jet, l'oxydant de jet et la matière d'atomisation par le bloc d'inversion de circulation 122 et des conduites 130, 1 32, et   134,   respectivement, dans ce brûleur. Au cours de l'autre partie du cycle, le bloc d'inversion d'écou- lement 122 fonctionne pour faire passer ces fluides par des conduites 136,138 et 140. respectivement, vers le brûleur sud ("S"), disposé à l'extrémité opposée du four à sole 110. De cette façon, un cycle continu est établi et l'on obtient un fonctionnement périodique et alterné des deux brûleurs suivant le procédé établi pour un four à sole. 



  On a atomisé dans un four à sole suivant l'invention une grande variété de fuel ails, de brais et de goudrons, et Ton s   -,'.teint   dans chaque cas une amélioration de l'efficacité de transfert thermique au bain par rapport aux efficacités obtenues par une atomisation classique par la vapeur. 



   Naturellement, il est évident que le combustible et l'oxydant uti- lisés dans le-brûleur auxiliaire, ainsi que le combustible et l'oxydant utilisés dans l'étage de combustion par jet, peuvent CONSISTERVEn tout combustible et oxydant appropriés formant un mélange combustible. On admet de préférence le combustible de l'oxydant dans l'étage de combustion par jet dans des proportions permettant de fermer un mélange sensiblement stoechiométrique. Ceci s'est révélé avantageux pour une stabilité maximum de la flamme du premier étage. Un excès modéré d'oxydant peut être consommé dans la seconde zone ou zone de traitement sans altérer   .-''efficacité   du procédé d'ensemble. 



   Dans une série de trois essais, on a installé un'brûleur d'atomi- sation par jet   d'air'du   type représenté dans la forme de réalisation des 

 <Desc/Clms Page number 8> 

 
 EMI8.1 
 dessins à une extrémité d'un four à sole, et l'on a; monté un brûleur clas- sique à injection par vapeur à l'extrémité opposée. On a fait ":-on\; t"illnnrr les   brûleurs cycliquement, comme décrit ci-dessus. Le tableau 1 ci-dessous   fournit des données de comparaison pour la conduite de ces essais. 



   TABLEAU 1. 
 EMI8.2 
 
<tb> 



  Intensité <SEP> Tempé-
<tb> 
 
 EMI8.3 
 ¯0"- "k tO, max. de rat. 



  Oxydant. Combus'cio.e. ..,... de rat. 



  ¯¯¯¯¯¯ ¯¯¯ ''-radiation max. e à la Four et Type de Pureté Eco1i)ement Ecoubme nt la flamme chi#nEj 
 EMI8.4 
 
<tb> essai. <SEP> brûleur <SEP> en <SEP> % <SEP> en <SEP> m <SEP> %heure <SEP> Type <SEP> en <SEP> 1/h <SEP> en <SEP> Kcal/ <SEP> en <SEP>  C
<tb> 
<tb> 
<tb> 
<tb> 
<tb> h/m2 <SEP> x <SEP> 104
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> A-1 <SEP> vapeur <SEP> 45 <SEP> 347 <SEP> (02) <SEP> huile <SEP> 1722 <SEP> 88,68 <SEP> 966
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> A-1 <SEP> jet <SEP> 45 <SEP> 347 <SEP> huile <SEP> 1722 <SEP> 107,4 <SEP> 816
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> A-2 <SEP> vapeur <SEP> 95 <SEP> 182 <SEP> (02) <SEP> brai <SEP> 1325 <SEP> 104,68 <SEP> 899
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> A-2 <SEP> jet <SEP> air <SEP> 1277 <SEP> brai <SEP> 1325 <SEP> 110,85 <SEP> 788
<tb> 
<tb> 
<tb> 
<tb> (20)

   <SEP> jet
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> B-3 <SEP> vapeur <SEP> - <SEP> - <SEP> huile <SEP> 1893 <SEP> 96, <SEP> 27 <SEP> 1204
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> B-3 <SEP> jet <SEP> a' <SEP> 945 <SEP> huile <SEP> 1893 <SEP> 105,77 <SEP> 1052
<tb> 
<tb> 
<tb> 
<tb> 
<tb> (20) <SEP> jet
<tb> 
 
 EMI8.5 
 .-# Pou:r CÎlqcUlle des comparaisons du tableau 1 ci-dessus, on doit noter que l'intensité maximum de radiation de la flamme est'sensiblement plus grande pour l'atomisation par brûleur à jet que pour l'atomisation 
 EMI8.6 
 correspondante par la vapeur. En outre, desvsJeurs plus élevées de température maximum de la chicane pour l'atomisation par-%tµgeur à jet indiquent un transfert plus efficace de l'énergie thermique au bain du four à sole et moins de perte de chaleur aux chicanes de sortie. 



   Le tableau suivant fournit les résultats de production pour 121 chauffages par brûleur d'atomisation par jet réalisés dans un four à sole de 200 tonnes et à titre de comparaison avec des résultats pour 166 chauffages par brûleur d'atomisation par la vapeur réalisés dans le même four, immédiatement e;  les   chauffages par brûleur d'atomisation par jet. 



   TABLEAU   IL-1,   
 EMI8.7 
 
<tb> Données <SEP> de <SEP> production <SEP> pour <SEP> comparer <SEP> l'atomisation <SEP> par <SEP> la <SEP> vapeur <SEP> et <SEP> l'atomisa-
<tb> 
<tb> 
<tb> tion <SEP> par <SEP> jet <SEP> dans <SEP> un <SEP> four <SEP> à <SEP> sole <SEP> de <SEP> 200 <SEP> tonnes <SEP> - <SEP> 65 <SEP> % <SEP> de <SEP> métal <SEP> chaud.
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 



  Atomisation <SEP> Atomisation
<tb> 
<tb> 
<tb> par <SEP> la <SEP> vapeur <SEP> par <SEP> jet <SEP> (air)
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Nombre <SEP> total <SEP> de <SEP> chauffages <SEP> consécutifs <SEP> 166 <SEP> 121
<tb> 
<tb> 
<tb> 
<tb> Produit <SEP> total,' <SEP> lingot <SEP> net <SEP> en <SEP> tonnes <SEP> 33,515 <SEP> 24.581
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Charge <SEP> moyenne <SEP> de <SEP> chauffe, <SEP> tonnes <SEP> 202 <SEP> 203
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Durée <SEP> moyenne <SEP> de <SEP> chauffe, <SEP> charge-coulée, <SEP> 10,48 <SEP> 9,4
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> heures
<tb> 
<tb> Taux <SEP> moyen <SEP> de <SEP> production, <SEP> charge-coulée, <SEP> 19,26 <SEP> 21,

  54
<tb> 
<tb> 
<tb> tonnes/heure
<tb> 
 

 <Desc/Clms Page number 9> 

 Données de production pour comparer l'atomisation par la vapeur et l'atomisation par jet dans un four à sole de 200 tonnes - 65 % de métal chaud. 
 EMI9.1 
 
<tb> 



  Atomisation <SEP> Atomisation
<tb> 
<tb> par <SEP> la <SEP> vapeur <SEP> par <SEP> jet <SEP> (air) <SEP> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Durée <SEP> moyenne <SEP> de <SEP> chauffe, <SEP> coulée-coulée,
<tb> 
<tb> 
<tb> 
<tb> heures <SEP> 11 <SEP> , <SEP> 77 <SEP> 11,06
<tb> 
<tb> 
<tb> 
<tb> Taux <SEP> moyen <SEP> de <SEP> production, <SEP> coulée-coulée,
<tb> 
<tb> 
<tb> tonnes/heure <SEP> 17,16 <SEP> 18,37
<tb> 
<tb> 
<tb> @
<tb> 
<tb> Consommation <SEP> de <SEP> combustible, <SEP> 78,3 <SEP> 72,1
<tb> 
<tb> 
<tb> litres <SEP> d'huile/tonne
<tb> 
<tb> 
<tb> 
<tb> Consommation <SEP> d'oxydant, <SEP> m/tonne <SEP> - <SEP> 39,2
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Consommation <SEP> de <SEP> gaz <SEP> naturel, <SEP> m3/ <SEP> tonne <SEP> - <SEP> 3,9
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Consommation <SEP> de <SEP> vapeur, <SEP> kg/tonne <SEP> 49,

  5 <SEP> -
<tb> 
<tb> 
<tb> 
<tb> Kcal/tonne <SEP> de <SEP> lingots <SEP> (x <SEP> 106) <SEP> 0,77 <SEP> 0,70
<tb> 
   * La   production moyenne totale de l'usine avec atomisation par la vapeur est égale à   16,75   tonnes par heure. 



   Le tableau III suivant fournit les résultats d'un essai à quatre taux de débit   d'un   brûleur   d'atomisation   par jet d'air utilisant du gaz naturel à titre de combustible de jet 
T A B L E A U .111. 
 EMI9.2 
 
<tb> 



  Débit. <SEP> Débit <SEP> de <SEP> Température <SEP> Vitesse <SEP> de <SEP> Poussée <SEP> au <SEP> Pression <SEP> de
<tb> 
<tb> 
<tb> 
<tb> 
<tb> d'air <SEP> gaz <SEP> . <SEP> a- <SEP> de <SEP> sortie, <SEP> sortie, <SEP> brûleur, <SEP> la <SEP> chambre,
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> m3/heure <SEP> turel <SEP>  C <SEP> m/seconde <SEP> en <SEP> kg <SEP> kg/cm <SEP> au <SEP> manom.
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> m <SEP> /heure
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 980 <SEP> 115 <SEP> 599 <SEP> 552 <SEP> 33 <SEP> 3,5
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 840 <SEP> 99 <SEP> 538 <SEP> 471 <SEP> 26 <SEP> 2,6
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 700 <SEP> 82 <SEP> 482 <SEP> 417 <SEP> 20 <SEP> 2,1
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 560 <SEP> 66 <SEP> 432 <SEP> 363 <SEP> 14 <SEP> 1,5
<tb> 
 
Pour ces essais,

   on a utilisé de l'eau à titre de matière fluide pour simuler l'opération utilisant le fuel oil N 6 et pour permettre de mesurer la poussée au brûleur et la pression de la chambre. 



  On a corrigé la température et la. vitesse pour l'huile et on les a calculées à partir d'un équilibre thermique. Les calculs sont basés sur 1606 litres d'huile par heure, avec un diamètre interne de 37,5 mm pour le brûleur d'atomisation. 



   Le tableau   IV   suivant fournit les résultats d'essais de compa- raison d'un brûleur d'atomisation par jet d'air selon l'invention et d'un brûleur classique à injection par la   vapeur'installés   dans un four à sole de la façon décrite ci-dessus., 

 <Desc/Clms Page number 10> 

 T A B L E A U IV. 
 EMI10.1 
 
<tb> 



  Atomiseur <SEP> du <SEP> type <SEP> brûleur <SEP> Vapeur <SEP> Vapeur <SEP> Jet <SEP> Jet
<tb> 
<tb> 
<tb> Diamètre <SEP> d'alésage, <SEP> en <SEP> mm <SEP> 20,6 <SEP> 20;'6 <SEP> 5,14 <SEP> 5,14
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Type <SEP> de <SEP> combustible <SEP> huile <SEP> huile <SEP> huile <SEP> huile
<tb> 
<tb> 
<tb> 
<tb> Débit <SEP> du <SEP> combustible,1/heure
<tb> 
<tb> 
<tb> (combustible <SEP> principal) <SEP> 1590 <SEP> 1893 <SEP> 1893 <SEP> 2271
<tb> 
<tb> @
<tb> 
<tb> Débit <SEP> du <SEP> combustible <SEP> de <SEP> jet,
<tb> 
<tb> 
<tb> .mineure <SEP> - <SEP> - <SEP> 84 <SEP> 98
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Pression <SEP> du <SEP> combustible <SEP> de
<tb> 
<tb> 
<tb> jet, <SEP> kg/cm <SEP> au <SEP> manomètre <SEP> - <SEP> - <SEP> 1,96 <SEP> 1,

  96
<tb> 
<tb> 
<tb> Type <SEP> d'oxydai <SEP> de <SEP> jet- <SEP> - <SEP> air <SEP> air
<tb> 
<tb> 
<tb> 
<tb> 
<tb> Débit <SEP> de <SEP> l'oxydant <SEP> de <SEP> jet,
<tb> 
<tb> 
<tb> , <SEP> ,/heure <SEP> - <SEP> - <SEP> 840 <SEP> 980
<tb> 
<tb> 
<tb> Débit <SEP> de <SEP> vapeur <SEP> pour
<tb> 
<tb> 
<tb> l'atomisation, <SEP> kg/heure <SEP> 999 <SEP> 1180 <SEP> - <SEP> - <SEP> 
<tb> 
<tb> 
<tb> 
<tb> Température <SEP> de <SEP> l'huile
<tb> 
<tb> 
<tb> atomisée, <SEP> en <SEP>  C <SEP> 121 <SEP> 121 <SEP> 482 <SEP> 482
<tb> 
<tb> 
<tb> 
<tb> Radiation <SEP> thermique <SEP> :

   <SEP> 
<tb> 
<tb> 
<tb> 
<tb> Porte <SEP> N 1, <SEP> mv <SEP> 85 <SEP> 88 <SEP> 97, <SEP> 5 <SEP> 99, <SEP> 5 <SEP> 
<tb> 
<tb> 
<tb> Porte <SEP> N 2, <SEP> mv <SEP> 83 <SEP> 85 <SEP> 8487
<tb> 
<tb> 
<tb> Porte <SEP> N 3, <SEP> mv <SEP> 65 <SEP> 70 <SEP> 67 <SEP> 68,5
<tb> 
<tb> 
<tb> Porte <SEP> N 4, <SEP> mv <SEP> 62 <SEP> 66,5 <SEP> 62,5 <SEP> 64
<tb> 
<tb> 
<tb> Porte <SEP> N 5, <SEP> mv <SEP> 61, <SEP> 5 <SEP> 64 <SEP> 61 <SEP> , <SEP> 5 <SEP> 63,3
<tb> 
   Estimer   sur la base d'équilibres thermiques. 



   Les résultats de radiation thermique du tableau IV indiquent la concentration plus avantageuse 6' anensité de radiation thermique plus élevée à l'extrémité d'admission du four à sole obtenue avec l'atomisation par jet selon l'invention qu'avec l'atomisation classique par la vapeur. 



   REVENDICATIONS. 



   1 - Procédé de chauffage d'un four industriel à l'aide d'un courant atomisé préalablement chauffé de matière combustible fluide primaire et d'air, qui comprend la formation d'un mélange combustible de combustible fluide et d'un oxydant, la combustion du mélange combustible dans une zone de combus- tion, le déchargement des produits de combustion ainsi obtenus à haute tempé- rature et à vitesse élevée dans une zone de chauffée préalable et d'atomisa- tion alimentée en un courant de matière combustible fluide primaire pour chauffer préalablement et atomiser le combustible primaire, le déchargement du mélange ainsi obtenu, préchauffé et atomisé,dans le four et le brûlage avec de l'air dudit courant déchargé dans ce dernier.

Claims (1)

  1. 2 - Procédé selon la revendication 1, dans lequel les produits de combustion déchargés de la zone de combustion ont une vitesse supérieur.i (, 0,5 Mach.
    3 - procédé selon la revendication 1 ou la revendication 2, dans lequel le mélange combustible est formé à partir de quantités stoechiométri- ques de combustible fluide et d'oxydant.
    4 - Appareil destiné à mettre en oeuvre le procédé selon les reven- dications 1 à 3, comprenant au moins un brûleur d'atomisation par jet dispos <Desc/Clms Page number 11> de façon à décharger un courant de combustible fluide.primaire dans un four industriel, le brûleur possédant un corps allongé''traversé par un passage longitudinal destiné à former une zone de combustion interne et une zone interne de chauffage préalable et d'atomisation, un dispositif destiné à chargé et à brûler un courant de mélange de combustible fluide et d'oxydant dans la zone de combustion, un dispositif pour transporter les produits chauds de combustion, à des vitesses élevées, dans la zone de chauf- fage préalable et d'atomisation, un dispositif pour admettre un courant de matière combustible fluide primaire,
    dans ladite zone de chauffage préalable et d'atomisation, et un dispositif pour décharger le courant provenant de ladite zone de chauffage préalable et d'atomisation dans le fou pour 3+.brûler avec de l' air.
    5 - Un brûleur d'atomisation par jet selon la revendication 4,' dans lequel un brûleur auxiliaire est introduit dans le passage'longitudinal, ledit brûleur auxiliaire étant agencé pour brûler un mélange de combustible fluide et d'oxydant et pour faire passer les produits de combustion dans la chambre de combustion du brûleur.
    6 - Un brûleur d'atomisation par jet selon la revendication 5, dans lequel le brûleur auxiliaire est refroidi par de l'eau.
    7 - Un brûleur d'atomisation par jet selon les revendications 4, 5 ou 6, dans lequel le corps du brûleur est refroidi par de l'eau.
    8 - Appareil selon les revendications 4, 5,6 ou 7, dans lequel on dispose deux brûleurs comme ci-dessus aux extrémités opposées d'un four à sole.
    9 - Procédé de chauffage d'un four industriel à l'aide d'un courant atomisé préalablement chauffé de matière combustible fluide primaire et d'air en principe comme décrit ci-dessus.
    10 - Appareil destiné à mettre en oeuvre le procédé tel que spéci- fié aux revendications 1 à 3 et à la revendication 9, en principe comme décrit ci-dessus et représenté au dessin annexé. en annexe 3 dessins.
BE560683D BE560683A (fr)

Publications (1)

Publication Number Publication Date
BE560683A true BE560683A (fr)

Family

ID=182892

Family Applications (1)

Application Number Title Priority Date Filing Date
BE560683D BE560683A (fr)

Country Status (1)

Country Link
BE (1) BE560683A (fr)

Similar Documents

Publication Publication Date Title
FR2547020A1 (fr) Procede et appareil de combustion d&#39;une emulsion du type eau dans l&#39;huile
EP2153130A2 (fr) Procede de combustion a bas nox pour la fusion du verre et injecteur mixte
CA2831483C (fr) Methode d&#39;obtention de noir de carbone a partir de dechets de caoutchouc et son dispositif
EP0171316B1 (fr) Procédé et dispositif pour mise en contact d&#39;au moins deux composés gazeux réagissant notamment à haute température
EP0128792B1 (fr) Procédé et dispositif de combustion propre s&#39;appliquant notamment au brûlage des combustibles lourds
Okasha Diesel fuel and olive-cake slurry: atomization and combustion performance
EP1247046B1 (fr) Methode et dispositif d&#39;auto-combustion de dechets organiques graisseux comportant un foyer a chauffe tangentielle
BE560683A (fr)
BE529364A (fr) Procede et appareil pour la fabrication de noir de fumee
US20080006225A1 (en) Controlling jet momentum in process streams
BE575189A (fr)
BE520578A (fr)
FR2535334A1 (fr) Bruleur a noir de carbone
WO1993002322A1 (fr) Procede d&#39;incineration de dechets organiques
BE582773A (fr)
US1229338A (en) Method of producing fuel-gas.
BE496652A (fr)
EP0057029A1 (fr) Procédé de traitement de matières pulvérulentes a haute température et installation pour le réaliser
SU261362A1 (ru) Вихревой аппарат для термохимической обработки зернистых материалов
Kirzhner et al. Combustion of Sewage Sludge and Coal Powder
BE568010A (fr)
BE530424A (fr)
BE331703A (fr)
BE828518A (fr) Bruleur cyclonique multi-combustibles
BE487416A (fr)