BE512461A - - Google Patents

Info

Publication number
BE512461A
BE512461A BE512461DA BE512461A BE 512461 A BE512461 A BE 512461A BE 512461D A BE512461D A BE 512461DA BE 512461 A BE512461 A BE 512461A
Authority
BE
Belgium
Prior art keywords
crystal
bath
seed crystal
impurity
germanium
Prior art date
Application number
Other languages
English (en)
Publication of BE512461A publication Critical patent/BE512461A/fr

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description


   <Desc/Clms Page number 1> 
 



  PROCEDE DE PRODUCTION DE CRISTAUX DE GERMANIUM ET CRISTAUX AINSI
OBTENUS. 



   La présente invention est relative à des procédés pour former des matières semi-conductrices utilisables,par exemple., dans des structu- res de transisteurs et de redresseurs, ainsi qu'également aux corps en ces matières ainsi produits. 



   Ces matières   serai-conductrices,   parmi lesquelles le   germanium   peut être pris comme exemple, peuvent prendre la forme de tiges de sections transversales variables,avoir une structure multi-cristalline ou consis- ter en un cristal unique:, elles peuvent présenter une résistivité constan- te et une concentration constante d'impuretés en excès à tout niveau dési- ré sur des parties importantes de leur longueur, peuvent contenir des li- mites P-N à tout endroit ou endroits désirés longitudinalement ou latéra- lementelles peuvent posséder toutes caractéristiques électriques désirées et contenir des jonctions N-P-N à tout endroit ou endroits désirés et pré- sentant des particularités électriques déterminéeso 
En bref,

   le procédé qui fait 1?objet de la présente inven- tion consiste à extraire un cristal ou des cristaux   d'un   corps fondu de matière semi-conductrice en plongeant dans le bain un cristal   densemen-   cement, en laissant l'interface du cristal et du bain arriver à l'équi- libre thermique, et à retirer le cristal   à.une   vitesse telle que la matiè- re fondue se sépare en cristallisant sur le cristal d'ensemencement, On fait tourner le corps cristallin en formation pendant   quon   le retire de manière qu'il en résulte une masse présentant une section transversale sy-   métrique,

     et on modifie la vitesse   dextraction   et la température du bain de manière à contrôler le niveau de 1?impureté en excès présente an un point quelconque de la masse en formation. Ce mémoire décrit également les moyens par lesquels on contrôle la résistivité et le type de conducti- vité par les additions d'impuretés significatives et par un traitement à 

 <Desc/Clms Page number 2> 

 la chaleuropérations qui sont toutes exécutées pendant l'extraction. 



   On a antérieurement suggéré que des cristaux de germanium pourraient être produits à partir du bain par l'emploi d'une vitesse d'ex- traction constante. Néanmoins on a observé que si des impuretés très si- gnificatives prédominent dans le germanium, la résistivité dans le corps solide diminue progressivement dans un tel processus au fur et à mesure que la masse fondue se cristalliseindiquant ainsi   un [inférieur   à 1 pour ces impuretés ( [ = concentration d'impuretés dans le solide sur concen- tration   dimpuretés   dans le liquide), c'est-à-dire que la matière cristal- line en formation se rapproche de la courbe de congélation normale de l'al- liage de germanium et quelle que soit 1 impureté employée.

   On peut trouver un exemple   d'une   courbe de congélation de cette espèce pour l'antimoine dans le germanium dans "The Physical Review" volo 77, pages 809 à 813. 



  15 mars 1950,  Pearson,    Struthers,    Theuerer,  Figure   3.   



   Par le procédé, qui fait   l'objet   de la présente invention, on évite la courbe de congélation normale en modifiant la vitesse de l'ex- traction. Le principe général, dans le cas où on désire produire un cris- tal ayant une zone de résistivité constante et dans le cas où [ est in- férieur à 1 (comme il l'est dans toutes les impuretés essayées jusqu'ici pour esquelles [a été caluclé), consiste à réduire graduellement la vitesse d'extraction lorsque le cristal se forme de manière à emprisonner de moins en moins d'impuretés et de manière à s'opposer à la tendance na- turelle du cristal à suivre sa courbe de congélation. 



   Si la vitesse   dsextraction   était la seule variable dans le processus, la section transversale du cristal augmenterait lorsqu'il est extrait du bain, en raison de la diminution de la vitesse   d9extraction.   



  Pour contrecarrer cet effet et maintenir une section transversale constan- te dans la zone à résistivité constante,on compense la diminution des   vitesses d'extraction par une augmentation de la température du bain. 



  Cette diminution de la température du bain réduit la vitesse de cristal-   lisatipn et est contrôlée de manière à être exactement égale et d'effet opposé à l'augmentation de la section transversale qui résulterait de la réduction de la vitesse d'extraction. 



   On comprendra mieux l'invention en se référant aux dessins ci-annexés dans lesquels - la figure 1 est une élévation frontale d'une partie de l'appareil, dans lequel le procédé qui fait 1-'objet de cette invention peut être mis en oeuvre; - la figure 2 est une coupe de l'organe vibrant qui percute contre le fil supportant le cristal dans   1-'appareil   de la figure 1, exer- gant ainsi une action d'agitation; - la figure 3 est une élévation frontale de l'ensemble du creuset contenu dans   1-'appareil   de la figure 1 ;

   - la figure   4   est une élévation frontale;, partiellement en coupe d'une autre forme d'un ensemble de creuset montrant les moyens de "dopage" (en anglais "doping") par lesquels on peut influencer la résis- tivité et le type de conductivité du cristal en formation par l'addition de quantités contrôlées d'impuretés significatives ;   - la   figure 5 est une vue en   perspeqtive     d-une   autre forme encore de creuset; - les figures 6A et 6B sont des représentations graphiques de la variation de la résistivité sur la longueur de spécimens qui peu- vent être produits dans des conditions différentes d9opération par le processus qui fait l'objet de cette invention;

   - les figures 7A et   7B   sont des représentations graphiques de la variation de la concentration d'impuretés sur la longueur de spéci- 

 <Desc/Clms Page number 3> 

 mens qui peuvent être produits dans des conditions'différentes par'le pro- cessus qui fait l'objet de la présente-invention,-et la figure 8 est urie représentation graphique   de la variation   de   la   résistivité sur la longueur dans d'autres conditions d'opération en- core. 



   Si on se réfère à la figure 1, l'appareil s'emploie comm3 suit : 
Un lingot de matière semi-conductrice est placé dans le creu- set de carbone 1, un cristal d'ensemencement 2 de la même matière-est pla- cé dans le mandrin 3; l'ensemble de creuset 4 sur lequel est monté le creuset 1 est ensuite placé dans le fond de l'enveloppe en quartz 5. On balaye alors le système en faisant passer de l'azote dans le tuyau d'en- trée 6 par l'enveloppe 5 et le tuyau de sortie de gaz 7. Après qu'on a balayé le système au moyen d'azote on fait alors circuler par le même tra- jet de l'hydrogène ou quelqu'autre gaz qui aura un effet minimum sur la composition du cristal en formation, et cette circulation se poursuit pendant tout le processus.

   On met alors en circuit un générateur de hau- te fréquence, non montré, et on fait passer un courant par la bobine d'in- duction 8 pour chauffer le creuset de carbone 1. Après que le lingot a été complètement fondu,on abaisse la tige 9 à laquelle le cristal d'en- semencement 2 est attaché, jusqu'à ce que ce dernier touche exactement le bain. On met alors en marche le vibrateur 10 et le dispositif rotatif 11. 



  Après la période d'attente désirée, on met en marche le moteur 12 qui à son tour actionne le disque 13, lequel à son tour et par l'entremise du câble 14 lève la tige 9, retirant ainsi le cristal d'ensemencement 2 du bain. La vitesse à laquelle ce dernier est retiré peut être contrôlée par l'intermédiaire du carter d'engrenages 15. 



   Si le but à atteindre est la production d'un cristal unique de germanium, on laisse le processus se poursuivre jusqu'à ce que tout le bain ait été épuisé, en variant de fagon appropriée la vitesse d'ex- traction et la température du bain comme décrit ci-dessous. Si on dési- re former une limite P-N par dopage au gaz en un point approprié du pro- cessus, on ouvre les valves 16 et 17 et on ferme la valve 18, permettant ainsi à l'hydrogène de passer par le tuyau d'entrée 19 à travers le ré- servoir contenant la substance de dopage désirée sous forme liquide 20 et sous forme gazeuse 21, et balayant donc l'atmosphère de l'enveloppe de quartz 5 au moyen du gaz de dopage 21 après qu'il a traversé le débitmètre 22.

   On pourrait également faire passer directement ce gaz de dopage dans le bain à travers la base   4,   par une ouverture dans le creuset, non mon- trée, ou par le tube de dopage 23. 



   Dans certains cas, il est souhaitable d'effectuer le dopage au moyen   d9une   pilule. Si on désire procéder ainsi, on peut monter dans le magasin 24 les pilules en nombre et dans la succession désirée. Au moment désiré, on met en marche le moteur 25. Ce moteur est directement accouplé au distributeur 26 contenant une ouverture qui est alignée avec une chambre du magasin 24, ce qui permet à une pilule de descendre par le tube 23 dans le bain. 



   Pendant tout le procédé on fait passer de l'eau de refroidis- sement par l'entrée d'eau   4A   dans une chemise d'eau entourant le creuset 1, cette eau étant évacuée par la sortie d'eau 4B. On refroidit également la partie supérieure du tube de quartz 5 en faisant passer de l'eau à tra- vers 4C pour sortir par 4D. Les commutateurs A, B et C contrôlent, res- pectivement, la rotation, la vibration et le dopage par matière solide. 



   La figure 2 est un dessin détaillé de l'organe de vibration 10. L'excentrique 27 monté sur l'arbre du moteur 28 agit sur le sabot 29 pour qu'il fasse vibrer le câble   14.   



   La figure 3 est une vue détaillée de l'ensemble du creuset. 



  Cette figure permet de voir plus clairement la base 4 et le creuset 1. La 

 <Desc/Clms Page number 4> 

 température-induite dans le bain et le creuset 1 par la bobine 8 est con= trôlée au moyen d'un circuit électrique, non montré, contrôlé par le ther- mocouple 30. 



   La figure 4 illustre une autre constructrion possible de   1-'En-   semble du creuset, qui permet le dopage au moyen   d9une   pilule solide. Par ce procédé, on place la pilule 31 dans le trou 32 et elle est supportée par la tige de quartz 33 qu'on peut lever au-dessus de la surface du fond du creuset en actionnant la tige d'acier 34. Suivant cet autre procédé, la pilule 31 est fondue en même temps dans le bain avec celui-ci dans le creuset, de   sorte¯que   la matière de dopage entre dans'le bain non sous la forme   d9une   pilule solide mais plutôt sous la forme d'un alliage de dopage fondu.' 
La figure 5 illustre un ensemble de creuset pour un autre pro- cédé encore de dopage. Suivant ce procédé, on place la pilule 31 dans une entaille sur le bord du creuset 1.

   Après que cette.pilule a fondu et au moment désiré, on fait tourner   l'organe   d'actionnement   32'   qui peut être fait en quartz ou en carbone, de manière à pousser la substance de dopage fondue au-dessus du bord du creuset 1, dans le bain. 



   Les figures 6A et 6B sont des graphique de la résistivité (en ohms-cm portée en ordonnée) en fonction de la distance (en centimètres portée en abscisse) qu'on a établis au moyen de deux points de repère sur la longueur de cristaux uniques non dopés de germanium produits par ce processus. Comme on peut le voir à la courbe 6A, la résistivité de la partie initiale du cristal baisse à partir du point 35 jusqu'au point 36, alors que la-section transversale du cristal augmente. La partie de la courbe située entre les points 36 et 37 représente la zone à résistivité constante désirée qu'on produit en contrôlant la vitesse d'extraction et la température , comme décrit ci-dessous.

   Après que la vitesse d'extrac- tion est devenue virtuellement nulle au point 37, de sorte   qu9on   ne peut plus retirer de cristal de résistivité   36-37,   on laisse descendre la ré- sistivité à une valeur représentée par le point 38 grâce à un accroisse- ment brusque de la vitesse d'extraction. On contrôle de nouveau la vites- se d'extraction et les températures de manière à produire la partie plate 38-39. Après que la vitesse d'extraction est devenue de nouveau virtuel- lement nulle, on maintient la vitesse d'extraction constante de manière à retirer la portion restante du lingot, ce qui produit la courbe de congé- lation normale   39-40.   La figure 6B est similaire à la figure 6A mais re- présente un cristal ayant seulement une'seule zone de résistivité plate. 



  L'accroissement de la vitesse d'extraction et la diminution de la tempé- rature pour maintenir la section transversale constante avait pour ré- sultat le gradient 41 -   42.   La zone   42 - 43   résultait   d'un   contrôle normal des vitesses d'extraction et de la température comme décrit ci-des- sus. La partie   43 - 44   réprésente la courbe de congélation normale pen- dant laquelle le reste du lingot était retiré à une vitesse constante quelconque. 



   Les figures 7A et 7B sont des représentations graphiques de cristaux qui ont été dopés. Les coordonnées sont des logarithmes de la concentration d'impuretés en excès exprimée en atomes par centimètre cube en fonction de la longueur exprimée en centimètres. Le logarithme de la concentration d'impuretés en excès dans la direction négative ou vers le bas représente un type de conductivité p de résistivité décrois-   sante, tandis que la partie positive de la verticalereprésente un type de conductivité n.

   On peut déterminer les valeurs de. la résistivité   d'après les valeurs de la concentration d'impuretés en excès, en employant l'équation 
P=ne/u 1 où P représente la résistivité en chm-centimètres, n est égal à la con- 

 <Desc/Clms Page number 5> 

 centration d'impuretés en excès exprimée en atomes par centimètre cube, e est la charge de 1?électrons tandis que /u est la mobilité des électrons ou trous exprimée en centimètres carrés par volt-seconde. La courbe A de la figure 7A représente le cristal qui a été dopé soit au moyen   d'une     gran-   de pilule, soit au moyen d'un jet de gaz comme décrit ci-dessous. La zone 45 - 46 de cette figure représente la section à résistivité constante pro- duite par le contrôle de la vitesse d'extraction et de la température.

   On laisse tomber la pilule dans le bain au point 46, et il en résulte un chan- gement brusque dans le type de conductivité 46-47, tandis que la section 47-48 représente la partie du cristal qui est retirée de la partie restan- te du lingot. Bien que cette partie qui de la courbe apparaisse plus pla- te que les parties correspondantes de la figure 6A et de la figure 6B, tou- tes deux tracées en termes de résistivité en fonction de la distance, elle aurait un aspect similaire à la courbe de congélation normale 39-40 si elle était exprimée à   1-'aide   de ces coordonnées. 



   La courbe B à la figure 7A représente un cristal avec une jonction P-N produite par dopage comme dans la courbe A si ce n'est que par l'emploi d9un processus de dopage contrôlable utilisant un dopage par pilules multiples ou un dopage graduel au gaz,   1-'échelle   de transi- tion s'étend du point 51 au point 52. La zone 49-50 représente également la partie à résistivité constante produite par l'opération de contrôle normale comme décrit ci-dessus. L'addition d'une première pilule ou   d'un   premier jet de gaz a pour résultat la zone 50 - 51, la zone 52 - 53 résul- te de l'addition similaire   d'une   pilule ou   d'un   jet de gaz d'un type d'im- pureté opposé, tandis que 53-54 est la partie de congélation normale du cristal résultant de l'extraction de la partie restante du bain.

   La cour- be C de cette même figure représente un cristal formé soit par un dopage constant du gaz, soit par un dopage par pilules multiples ayant pour ré- sultat une pente constante de la courbe 55 - 56. 



   La figure 7B représente trois cristaux illustratifs qui ont été dopés pendant le processus d'extraction de manière qu'il en résulte trois types différents de jonctions N-P-N. La partie 57 - 58 de la cour- be A représente la zone à résistivité constante produite comme décrite ailleurs tandis que la partie 58 - 59 est produite par dopage avec une seule pilule. La zone 60 - 61 représente un dopage avec une pilule de type de semi-conductivité opposé de manière à ramener le cristal dans la   région n.   Le point 61 ne doit pas nécessairement se trouver plus haut que la zone 57 - 58, mais dans ce spécimen le cristal était ramené à un niveau n plus élevé à ce point de manière à produire un excès plus élevé   d9impuretés   du type N ce qui est souhaitable dans un bon émetteur.

   La section 61 - 62 pourrait également être une partie à congélation normale du cristal. La largeur d de la région est déterminée par le laps de temps entre les phases de dopage 58 - 59 et 60 - 61. 



   La courbe B de la figure 7B est similaire à la courbe B de la figure 7A si ce n'est qu'après que le cristal a été amené dans la région P, il est ramené dans la région n par un processus de dopage in- verse utilisant une pilule ou du gaz de type de semi-conductivité opposé. 



    Ceest   pourquoi la section 63 - 64 représente la zone à résistivité con- stante tandis que la section 64 - 65 représente le dopage avec une premiè- re pilule ou un premier jet de gaz. La section 65 - 66 représente un do- page contrôlé soit par pilules ou par jets contrôlés de gaz de manière à produire la région de transition. La section 66 - 67 représente un dopa- ge avec une grande pilule ou avec un jet de gaz. Après un intervalle re- présenté par d qu'on peut contrôler en modifiant la vitesse d'extraction ou la séquence de temps, le bain est dopé avec une impureté de type de se- mi-conductivité opposée soit par pilule, soit par jet de gaz, pour ramener le cristal au point 69. Le point 69-70 représente un dopage contrôlé soit par pilule soit par un jet de gaz.

   Le point 70-71 représente un dopage dans cet exemple, de type de semi-conductivité égal mais opposé à celui de la zone 64 - 65. tandis que 71 - 72 pourrait de nouveau être la zone de 

 <Desc/Clms Page number 6> 

 congélation normale. 



   La courbe C de la figure 7B représente un dopage -au gaz con- trôlé ou un dopage par pilules multiples, le cristal étant.amené du point 73 - 74 soit par dopage du gaz constant, soit par dopage par pilules mul-' tiples. Le point 74 - 75 représente la région dans laquellaucune impureté n'est ajoutée. Cette zone peut être, ou ne pas être de type de résistivi- té constante comme désiré. La zone 75- 76 est 1?inverse de la zone   73 =   74 et représente un dopage d'un type de semi-conductivité opposé produit soit par dopage graduel au gaz, soit par dopage par pilules multiples. 



   La figure 8 est un graphique de la résistivité (en ohm-cm por- tée en ordonnée) en fonction de la distance (en centimètres portée en abscisse) d'un cristal unique de germanium contenant deux zones à résis- tivité constante'78 - 79 et 80 - 81 similaires à celles du cristal de la figure   6A'mais   contenant deux jonctions N-P-N 79-80 et 81 - 82 qui étaient produites thermiquement et sans 1-'addition d'aucune impureté significative par dopage.

   Bien qu'en théorie, le simple fait de modifier les vitesses d'extraction et la température comme décrit ci-dessus, devrait avoir pour résultat une tige circulaire lisse à caractéristiques électriques contrô- lées, en fait, s'il   s'est   avéré que ceci n'était pas le cas en raison   d'un   gradient thermique à travers la surface du bain et par suite des vitesses de cristallisation variables qui s'ensuivent sur différentes parties de la tige en formation.

   Non seulement les surfaces de la tige en formation se formaient de façon   irrégulière,   mais les caractéristiques électriques du germanium n'étaient pas maintenues constantes même dans la section trans-   versale.   On avait constaté qu'on pouvait éviter ces inconvénients en fai- sant tourner le cristal au fur et à mesure   quil   se forme. Des vitesses de rotation allant de 50 à 5.000 révolutions par minute sont satisfaisan- tes et on préférera une vitesse de quelques centaines de rotations, par exemple 200 à 500. 



   Bien qu'on ait constaté que cette rotation du cristal exer- çait une action d'agitation suffisante pour provoquer la formation d'une tige à section transversale circulaire, à première vue, on remarqua que des irrégularités analogues à des anneaux se formaient sur la surface de la tige, particulièrement aux faibles vitesses de rotation. Ceci indi- quait que le gradient de   température))   bien que réduit, se manifestait encore. 



   On constata qu'on pouvait éliminer cette irrégularité par l'addition   d'une   action de pompage. On ajouta à cet effet un organe de vibration placé dans une position telle qu'il étendait et-contractait al- ternativement le câble auquel le cristal en formation était relié. On a trouvé que des vitesses de vibration d'environ 10 battements par se- conde à une amplitude d'environ 10 millièmes de pouce à environ 500 batte- ments par seconde à une amplitude d'environ 3/4 de millième de pouce, é- taient satisfaisantes, bien qu'ici comme pour les vitesses de rotation fixées, les valeurs citées sont seulement des-suggestions et ne-repré- sentent pas des limites absolues. Il n'existe pas de raison apparente pour qu'elles ne puissent pas être dépassées dans l'une et   1-'autre   direc- tion.

   Les deux vitesses sont limitées du côté inférieur par l'ineffica- cité et du côté supérieur par la capacité de l'équipement. 



   Les   cristaux' qui   font   1-'objet   de la présente invention doi- vent être formés à partir de lingots de germanium, et afin de réduire la teneur en impuretés, on scinde une fois la dernière partie du lingot for- mé, on la refond, la recongèle et la scinde à nouveau aussi souvent qu'il est nécessairé pour le degré de pureté désiré. En variant cette charge initiale, naturellement, on modifiera les caractéristiques électriques du cristal final. On utilise habituellement des vitesses   d'extraction   allant de 0,00025 à 0,015 cm. par seconde.

   A des vitesses plus élevées que 0,015 cm. par seconde et, dans certains cas même à cette vitesse, il en résulte dans le cristal un effort de torsion qui provoque l'hémitropie ce qui est généralement considéré comme non souhaitable dans les cristaux 

 <Desc/Clms Page number 7> 

 uniques. Pour cette raison, on préfère ne pas dépasser la vitesse d'envi- ron   0900075   cm. par seconde. Les valeurs inférieures représentent seule- ment une limite pratique. Comme on le verra d'après   1-'exemple   9 ci-des- sousil est parfois souhautable de réduire la vitesse   dextraction   à un arrêt   complet.   



   Comme exposé ci-dessus9lorsqu'on fait varier la vitesse d'extraction,il est nécessaire de faire varier également la température du bain, si on désire maintenir constant le diamètre de la section trans- versale de la tige en formation. On trouvera ci-dessous un tableau don- nant des valeurs typiques 
 EMI7.1 
 
<tb> Vitesses <SEP> d'extraction <SEP> - <SEP> Centimètres <SEP> par <SEP> - <SEP> Température <SEP> C 
<tb> 
<tb> seconde
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 0,005 <SEP> 9500
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 0,0025 <SEP> 965 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 0,0025 <SEP> 9800
<tb> 
 
Bien que ce contrôle puisse se faire à la main, on a constaté   quil   était souhaitable d'utiliser un contrôle automatique du déroulement du processus,

  dont plusieurs types sont bien connus sur le   marché   des pro- duits chimiques commerciaux. Le dispositif de cette espèce est réglé de manière à faire varier les vitesses d'extraction et la température confor- mément au tableau donné ci-dessus. On notera que les températures men- tionnées dans ce tableau représentent des mesurages effectués à la paroi du creuset.. On doit s'attendre à un certain décalage de temps dans le sens d9un retard, entre la paroi du creuset et le bain. 



   Afin de maintenir les durées de vie des trous et des élec- trons de conductivité dans la tige en formation au niveau le plus   'élevé   possible, il est souhaitable de refroidir la tige aussitôt que possible après qu'elle émerge. Ceci se fait au moyen de serpentins de refroidis- sement à eau et d'un flux constant de gaz de refroidissement à travers l'enveloppe. Tout gaz thermiquement bon conducteur, non oxydant et autre- ment non réactif, donnera satisfaction pour cet usage. On a constaté que l'hydrogène, l'hélium et l'azote donnaient des résultats satisfaisants dans ce cas. 



   L'une des particularités les plus importantes du procédé qui fait l'objet de cette invention est la souplesse avec laquelle on peut produire des zones de transition semi-conductrices. Ceci peut se faire de deux manières. La plus importante consiste en un dopage avec une ma- tière solide ou un gaz contenant l'impureté significative désirée en quantité suffisante pour amener la matière au type de semi-conductivité opposé. Pour le dopage par matière solide de cristaux formés à partir de charges d9environ 50 grammes on fait usage de pilules allant   d'un   milligramme à 50 milligrammes d'alliages de germanium conjointement avec   l'impureté   désirée ou de tout composé de   l'impurété   qui aura pour effet d'injecter l'impureté désirée dans le bain. 



   Les éléments de dopage les plus satisfaisants sont le gal- lium et le bore pour la conversion de N en P, et l'arsenic et l'antimoine là où on désire la conversion de P en N. Pour le dopage par matière soli- de, les éléments peuvent être additionnés sous la forme élémentaire ou sous la forme de tout alliage ou composé qui peut avoir pour résultat l'addition de 1?impureté au bain. On peut citer comme exemple les oxy- des et les alliages de germanium. On a constaté que les trichlorures donnaient des résultats satisfaisants dans le dopage gazeux. Ici égale- ment les quantités d'impuretés utilisées soit dans le dopage par matière 

 <Desc/Clms Page number 8> 

 solide soit dans le dopage au gaz varieront d'après les dimensions et.la pureté de la charge initiale, la quantité de charge laissée dans le creu- set et les résultats désirés.

   Comme on l'a vu, on peut effectuer le dopa- ge par pilules avec des pilules sous la forme solide ou sous la forme fon- due, et on peut constituer des jonctions P-N ou N-P-N ayant toutes carac- téristiques désirées en modifiant dans le dopage par matière solide,les dimensions des pilules, la composition des pilules et la séquence de temps de l'addition de ces pilules, et dans le dopage au'gaz, en modifiant la vitesse à laquelle le gaz est amené en contact avec le bain, et si on le fait entrer par jets ou graduellement. Avec   l'un   ou 1?autre type de do- page, on peut faire varier les jonctions en contrôlant les vitesses d'ex- traction et la température du bain. 



   Un autre procédé pour produire des jonctions P-N et N-P-N sans addition d'impuretés consiste à faire varier simultanément la tem- pérature et la vitesse d'extraction. Ici, il est nécessaire de choisir une matière de départ telle que le traitement à la chaleur à environ 980  C. produira un passage du type de semi-conductivité N au type de semi-conductivité P. Un exemple d'une telle matière est un germanium d'une résistivité d'au moins 10 ohm-centimètres. 



   On notera ici qu'on peut former une limite d'hémitropie soit en utilisant deux cristaux d'ensemencement côte à côte, soit en utilisant au départ un cristal d'ensemencement contenant une limite d'hémitropie. 



     Lorsqu'on   désire produire une quantité maximum de matière à résistivité constante et lorsque après cela, par contrôle on a réduit la vitesse d'extraction jusqu'à un arrêt virtuel de manière à rendre possible seulement un accroissement négligeable de la longueur du cris- tal, il est possible de produire cependant une autre zone à résistivité constante dans le même cristal. Toutefois, cette zone aura une résis- tivité plus basse. Dans ce but, on augmente la vitesse d'extraction brusquement jusqu'à une certaine valeur maximum et on contrôle alors sa diminution comme on l'a fait dans la première zone.

   Puisque la courbe de congélation normale établie à   l'aide   de coordonnées de la résistance en fonction de la longueur change généralement sa pente dans cette zone, on a trouvé qu'il était préférable de diminuer la vitesse d'extraction plus rapidement pendant la formation de cette seconde partie du cris- tal. 



   Bien qu'on puisse produire des cristaux à partir de cris- taux d'ensemencement présentant une orientation cristalline quelconque, on a trouvé qu'il était préférable soit de placer le cristal d'ensemen-    cement dans une position telle ou d la meuler d'une manière telle qu'on se rapproche de 1?orientation [1 [100] ou [111}     @   On trouvera ci-dessous une description générale d'un pro- cédé typique pour produire un cristal unique de germanium contenant deux zones à résistivité constante. Le cristal d'ensemencement, taillé dans une tige produite par ce procédé, est d'abord nettoyé et monté dans le mandrin de la tige de suspension. La charge, un lingot de germanium de cent grammes, est placée dans le creuset, et l'ensemble du creuset est mis en place.

   La bobine d'induction est mise en circuit et la char- ge est fondue à une température d'environ 980  c. Le cristal   d'ensemen-   cement est immergé dans un bain à une profondeur d'environ 5 millièmes de pouce et est laissé dans cette position suffisamment longtemps pour que l'équilibre thermique se produise à l'interfae. On a trouvé qu'une période d'environ cinq minutes donnait des résultats satisfaisants. En extrayant le cristal d'ensemencment du bain à la vitesse initiale d'en- viron 0,0075 cm on actionne le mécanisme rotatif-et le vibrateur est mis en mouvement.

   On abaisse la température jusqu'à environ 935  C. et on maintient constante la vitesse d'extraction pendant une période de trois minutes. ',Pendant cet intervalle de trois minutes, le diamètre du 

 <Desc/Clms Page number 9> 

 cristal a augmenté jusqu'à environ 2,2 cm.   'Ensuite,   si on désire former un cristal unique de diamètre uniformela vitesse d'extraction et la tem- pérature sont réglées comme suit. 
 EMI9.1 
 
<tb> 



  Vitesse <SEP> dextraction <SEP> diminuée <SEP> Température <SEP> diminuée
<tb> 
<tb> à <SEP> (centimètres <SEP> par <SEP> seconde) <SEP> à <SEP> (degrés <SEP> centigrades)
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 0,005 <SEP> 942
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 0,0025 <SEP> 970
<tb> 
<tb> 
<tb> 
<tb> 
<tb> 0,00025 <SEP> 980
<tb> 
 Le procédé produira jusqu'à présent une zone d'approximativement 3-3/4 cm à résistivité constante d'environ 10 ohm-centimètres. Lorsque la vitesse d'extraction a été réduite jusqu'à l'arrêt virtuel., on abaisse la résis- tivité à environ la moitié du niveau de la première zone en augmentant la vitesse d'extraction brusquement à   0,0075   cm. par seconde.

   Pendant la formation de cette seconde zone les vitesses d'extraction et les tempéra- tures sont réglées exactement comme établi ci-dessus mais avec une vites- se de décélération approximativement double. On augmente ensuite la vi- tesse   d9extraction   à une valeur quelconque et on la maintient constante jusqu'à ce que le reste du bain soit épuisé. 



   Si à un moment quelconque pendant la formation du cristal de germanium, il est souhaitable de former des limites   P-N   ou   N-P-N,   ceci peut se faire par un dopage par pilules ou un dopage au gaz suivant   l'une   des méthodes décrites jusque ici. On trouvera dans les exemples 3 à 9 des exemples typiques de limites P-N et N-P-N qu'on peut former de façon pré- déterminée en variant la grandeur des pilules'et/ou la fréquence., en va- riant les vitesses du dopage au gaz, et/ou par le traitement à la cha- leur. 



   On trouvera ci-dessous des exemples de manières dont les pro- cédés ci-dessus peuvent être modifiés pour produire neuf types diffé- rents de cristaux correspondant aux courbes des figures 6A, 6B, 7A et   7B   et 8. 



   EXEMPLE 1. 
 EMI9.2 
 



  ¯...8;:;t------ 
Le cristal d'ensemencement étant en place, une charge de cent grammes de germanium est mise en place et l'ensemble du creuset est agencé, comme décrit ci-dessus. Lorsque la charge a fondu, les comman- des sont actionnées et le cristal d'ensemencement est immergé dans le bain une profondeur d'environ 5 millièmes de pouce et laissé dans cet- te position pendant environ cinq minutes,l'appareil étant mis en mouve- ment. La vitesse d'extraction initiale est de 0,0075 cm. par seconde avec une température de départ d'environ 9800 C. laquelle tombe à envi- ron   9350   C. en approximativement dix secondes. Cette vitesse   d'extrac-   tion était maintenue constante pendant approximativement trois minutes., période pendant laquelle le diamètre de la partie initiale du cristal augmente jusqu'à environ 2,2 cm.

   On règle alors la vitesse d'extraction et la température comme exposé dans la description générale du procédé décrit ci-dessus. Après avoir réduit la vitesse d'extraction jusqu'à un arrêt virtuels on augmente brusquement la vitesse d'extraction jus- qu'à environ 0,0075 cm. par seconde et on règle une fois de plus les vitesses d'extraction et les températures, mais à une vitesse de décé- lération double. On laisse alors la partie restante du bain s'épuiser 

 <Desc/Clms Page number 10> 

 à une vitesse de 0,0075 cm. par seconde. On appelle dans ce mémoire un cristal ainsi produite un cristal en deux stades.

   Ce spécimen particulier contient deux zones à résistivité constante;,   1-'une   d9environ 10 ohm cen- timètres   s'étendant   sur une longueur d9environ 3-3/4 cm., tandis que la seconde zone une résistivité   denviron   5 ohm-centimètres et s'étend sur   En-   viron 1,9 cm. Lorsqu-on désire produire de la matière   semi-cqnductrice   à résistivité constante et   lorsqu-'il   est possible d'employer des matières possédant les deux niveaux de résistivité, c'est cette modification de 1-'invention qui produit le degré   defficacité   le plus élevé. 



   EXEMPLE 2. 



   ----------- 
Le cristal de la figure 6B est un cristal en un stade conte- nant un gradient de résistivité raide et une seule zone à résistivité con- stantea Le processus est mis en train comme décrit dans 1?exemple 1 et on laisse le cristal se former à une vitesse de 0,0025 cm. par seconde pendant une période   denviron   cinq minutes.

   On augmente ensuite la vites- se   d9extraction   à environ 0,0075 cm. par seconde, tandis qu'on diminue la température conformément au tableau ci-dessous 
 EMI10.1 
 
<tb> Vitesse <SEP> d'extraction <SEP> Température
<tb> (centimètres <SEP> par <SEP> seconde) <SEP> (degrés <SEP> centigrades)
<tb> 
<tb> -------------------------------------------------------------------------
<tb> 
<tb> 
<tb> 0900025 <SEP> 980
<tb> 
<tb> 
<tb> 090025 <SEP> 965
<tb> 
<tb> 
<tb> 
<tb> 0,005 <SEP> 950.
<tb> 
<tb> 
<tb> 



  0,0075 <SEP> 935
<tb> 
 Dans 1?exemple montré à la figure 6B, on fait varier la vitesse d'extrac- tion comme montré,sur une période allant de deux à trois minutes. On diminue ehsuite les vitesses d'extraction et on augmente alors la tempé- rature, conformément aux indications de   1-'exemple   1. Cette séquence de contrôle prend environ quinze minutes et il en résulte une zone à résis- tivité constante   denviron   3-1/2 ohm-centimètres sur une longueur d'en- viron 4-3/8 cm. Pour le reste, le processus se déroule à une vitesse désirée quelconque et on obtient la partie 43-44 à congélation normale de la figure 6B.

   La vitesse   d9extraction   utilisée dans cette partie finale n'a pas été spécifiée puisque jusqu'à présent on n'a pas trouvé d'utilisation pour cette partie du cristal dans aucun dispositif tran- sisteur ou redresseur et qu'elle est simplement remployée pour faire partie   d9une   autre charge. 



   EXEMPLE 3. 



   ---------- 
Le cristal d'nnsemencement étant monté, la charge est mise en place et   11''équipement   est mis en action, comme décrit ci-dessus. On laisse descendre la vitesse d'extraction jusqu'à environ 0,00025 cm. par seconde, en réglant la température et les vitesses d'extraction comme indiqué au tableau ci-dessus. On maintient alors la vitesse   d9extrac-   tion constante à cette valeur pendant environ sept ou huit minutes et la totalité de 1?impureté désirée est additionnée à ce moment sous la forme   d'une   pilule.

   Afin d'obtenir un cristal ayant des caractéristiques électriques telles que celles qui sont indiquées par la courbe A de la 

 <Desc/Clms Page number 11> 

 figure 7A, on ajoute une somme globale d'impureté qui entraînerait un-chan- gement total dans le cristal   denviron   1019 atomes par centimètre cube. 



  Pour un lingot d9environ 50 grammes.; ceci revient à ajouter une pilule d'approximativement 10 milligrammes de bioxyde de gallium. On aurait pu utiliser une quantité équivalente de bore sous la forme   d'un   alliage de germanium. On aurait également pu atteindre le même résultat au moyen d'un jet de gaz de dopage tel que le trichlorure de bore ou le trichlorure de gallium, contenant approximativement le double de la quantité désirée d'impureté puisque environ la moitié seulement du gaz se dissout dans le' bain. On élève alors la vitesse d'extraction à environ 0,0025 cm. par se- conde et le reste du bain est épuisé. Les matières produites par ce pro- cédé de dopage sont utilisables dans les dispositifs régulateurs de ten- sion par suite de leur faible tension en retour. 



   EXEMPLE 4. 



   ---------- 
On a recours au dopage par pilules multiples ou au dopage au gaz graduel pour obtenir un cristal ayant des caractéristiques correspon- dant à la.courbe B de la figure 7A. On met le processus en train exac- tement comme décrit dans   19 exemple   3 et après avoir maintenu la vitesse   deextraction   à 0,00025 cm. par seconde pendant plusieurs minutes, on laisse tomber dans le bain par   l'un   des procédés de dopage décrits ci-des- sus, une pilule consistant en environ 2 milligrammes d'un alliage gal- lium-germanium contenant environ 0,35 pourcent de gallium. Cette addi- tion a pour but d9amener la concentration d'impuretés en excès à environ 102 atomes par centimètre cube.

   On laisse tomber dans le bain à des intervalles d'environ une seconde trois pilules de 2 milligrammes d'un alliage gallium-germanium contenant environ 0,05 pourcent de gallium. 



  Enfin, on laissait tomber dans le bain une seconde pilule de 5 milli- grammes d'alliage gallium-germanium convenant environ   1,4   pourcent de gallium. Le reste du bain est ensuite épuisé à une vitesse constante d'environ 0,0025 cm. par seconde. On notera   quon   peut régler comme on le désire la largeur et les caractéristiques électriques telles que la tension en retour de la jonction P-N ainsi produite, en faisant varier l'un des facteurs suivantsla grandeur de la pilule, la composition de la pilule, le nombre de pilules employées,la séquence de temps et la vitesse d'extraction. Il est également possible de produire un cristal correspondant à cette courbe en utilisant le dopage au gaz.

   On pour- rait effectuer le premier stade de dopage au moyen d9un jet d'environ 10 centimètres cubes d'hydrogène contenant approximativement 5 x 1015 atomes par centimètre-cube de trichlorure de gallium ou de tout autre gaz contenant 1?impureté désirée avec une tension de vapeur suffisan- te. Le second stade de dopage consisterait à faire passer dans le bain un gaz de dopage à une vitesse constante pendant environ une minute et contenant suffisamment d9impureté pour que le niveau du cristal en for- mation change d'un total de 5 x 104 atomes par centimètre cube.

   Afin de faire descendre la courbe à son niveau de résistivité final on met en contact avec le bain un autre court jet d'environ 10 centimètres cu- bes d'hydrogène contenant environ la même quantité   d9impureté.   Les cris- taux ainsi produits contiennent d'excellentes jonctions P-N et peuvent être façonnés de manière à répondre exactement aux particularités de tou- te structure de redresseur ou de transisteur désirée. 



   EXEMPLE 5. 



    @   
Pour produire un cristal correspondant à la courbe C de la figure   7A,   le processus est mis en train comme décrit ci-dessus,mais 

 <Desc/Clms Page number 12> 

 la vitesse d'extraction initiale est de 0,0025 cm. par seconde. On déve-   loppe.le   diamètre du cristal jusque à environ 2,2 cm. en abaissant la tem- pérature jusqu'à environ 935  C, tandis qu'on maintient la vitesse d'ex- traction constante pendant sept à huit minutes.

   On introduit alors à une vitesse constante pendant une période de trois à quatre minutes et en main- tenant toujours la vitesse d'extraction constante à environ 0,0025 cm. par seconde, de 1?hydrogène contenant suffisamment d'impureté pour modi- fier le niveau d'impureté en excès du cristal en formation d'environ 5 x 1031 atomes par centimètres cube de l'impureté souhaitable sous une forme gazeuse utilisable quelconque. Outre   quil   devra posséder la ten- sion de vapeur suffisante, la seule exigence à laquelle le composé gazeux employé ici devra répondre est qu'il devra être un composé qui n'altère- ra pas les propriétés semi-conductrices du cristal en formation et qu'il ne sera pas corrosif pour l'appareillage employé.

   Comme indiqué plus haut les trichlorures de gallium et de bore donnent des résultats satis- faisantso On conçoit   quon   pourrait produire un tel cristal en utili- sant un très grand nombre de très petites pilules, bien que, comme on peut le voir, la mesure dont un tel cristal se rapprocherait de la pente constante de la courbe dépendra du nombre de pilules employées. Les ma- tières produites conformément à cet exemple trouveront usage dans les redresseurs à tension en retour élevée. 



   EXEMPLE 6.      



   La courbe A de la figure 7B représente un processus de do- page similaire à celui de la courbe A de la figure   7A,   si ce   n'est   qu'a- près que le type semi-conducteur a été amené dans la région p, on ajoute une pilule, contenant une impureté donneuse. La suite du processus a lieu de la manière indiquée ci-dessus. Après avoir maintenu la vitesse d'extraction constante à 0,00025 cm. pendant plusieurs secondes et en opérant à nouveau avec une charge de départ de 50 grammes, on ajoute au bain une pilule de   5-milligrammes     d'un   alliage gallium-germanium conte- nant environ 1,4 pourcent de gallium.

   Après un laps de temps de cinq à dix secondes,'on ajoute une pilule de 10 milligrammes de trioxyde d'ar- senic ou   d'arsenic   pur (la raison pour laquelle on n'emploie pas un al- liage arsenic-germanium dans ce cas est que la solubilité de l'arsenic dans le germanium est tellement faible qu'elle rendrait la pilule d'al- liage prohibitive au point de vue des dimensions). Après la seconde phase de dopage, on maintient la vitesse d'extraction à environ 0,00025 cm. par secondé pendant environ huit minutes. Après cette période, on aug- mente la vitesse d'extraction   jusqueà   environ 0,0025 cm. par seconde et on laisse la vitesse d'extraction   jusquà   environ 0,0025 cm. par se- conde et on laisse s'épuiser le reste du bain.

   Les matières formées par ce procédé ont été employées avec succès dans des structures de transisteurs N-P-N. La variation de la largeur de la région clé repré- sentée par d sur la courbe   naffecte   pas la coupure de fréquence de la structure de transisteur final. Plus d est petit, plus la coupure de fréquence est élevée. On peut modifier la largeur de cette région en faisant varier l'intervalle de temps entre les deux pilules et/ou en faisant varier la vitesse d'extraction. Le spécimen de la courbe A de la figure 7B est amené à un niveau de résistivité plus élevé derrière la région clé, puisque ce spécimen doit être utilisé comme transis- teur et puisque cette zone doit être employée comme émetteur.

   Un nombre accru d'atomes d'impuretés en excès est souhaitable dans la zone d'un transisteur, devant être employée comme émetteur. 



   EXEMPLE 7. 



   La partie initiale du cristal représentée par la courbe B de 

 <Desc/Clms Page number 13> 

 la figure 7B est produite par un dopage selon les mêmes quantité et la même séquence que le cristal représenté par la courbe B de la figure 7A. 



  Toutefois, après la dernière phase de dopage, on maintient la vitesse d'extraction constante à 0,00025 cm par seconde pendant environ cinq minu- tes, après quoi on répète les mêmes phases de dopage en ordre inverse en utilisant une impureté donneuse plutôt qu'une impureté acceptrice. Ces matières peuvent également être employées dans les structures de transis- teur N-P-N. 



   EXEMPLE   8.   



   Le cristal représenté par la courbe C de la figure 7B est produit par un dopage au gaz constant ou, dans un autre cas, un dopage par pilules multiples, à une vitesse double et en la moitié du temps employés dans l'exemple 5. Après un laps de temps d'environ quinze minutes, on répète le même processus de dopage graduel, en utilisant une impureté de type de semi-conductivité opposée 
EXEMPLE 9. 



   Pour former un cristal correspondant à la courbe de la fi- gure 8, il est nécessaire que la partie initiale de la tige extraite ait au départ un niveau de résistivité d'au moins 10 ohm-centimètres et, de préférence,   d'au   moins 20 ohm-centimètres. Après mise en train du pro- cessus comme décrit dans l'exemple 1 et après formation de la première zone à résistivité constante à un niveau d'environ 20 ohm-centimètres, on réduit à zéro la vitesse d'extraction, tandis qu'on maintient la température à environ 9800 C. pendant plusieurs minutes, après quoi une seconde zone à résistivité constante est formée exactement comme dans l'exemple 1, le niveau de la seconde zone étant, dans ce cas, voisin de 10 ohm-centimètres.

   On arrête de nouveau l'extraction et on main- tient la température constante à environ   9800   C. pendant plusieurs mi- nutes, après quoi on laisse le reste du bain s'épuiser à une certaine vitesse constante. La zone   77-78   représente cette partie du cristal extraite à une vitesse constante de 0,0075 cm. par seconde, période pendant laquelle on laisse le diamètre se développer   à   une certaine valeur désirée (dans ce spécimen, environ 2,2 cm).

   La zone 78-79 re- présente une zone à résistivité constante qu'on produit en   réduisant   la vitesse   d'extraction   de 0,0075 cm. par seconde à 0 cm. par secon- de et par un accroissement simultané de la température du bain de   935 C   à 980 C On obtient la zone 79 - 80, qui dans ce spécimen a une épais- seur d'environ 0,25 cm., en maintenant cette partie du cristal en con- tact avec le bain pendant une période d9environ cinq à dix minutes, ce   qu   a pour résultat la conversion thermique du type N en type P. La zone 71 - 81 représente une seconde zone à résistivité constante for- mée de la même manière dans les mêmes limites de contrôle que pour la formation de la première zone à résistivité constante, mais avec une vitesse de décélération double.

   La zone P 81 - 82 est produite par une seconde conversion thermique de la même manière et avec la même durée que pour la zone 79-80, tandis que 82-83 représente la partie du cristal qui suit sa courbe de congélation normale, qui se présente lors- que le reste du bain est épuisé à une vitesse d'extraction constante de 0,0025 cm. par seconde. 'On produit de la matière   qontenant   de telles zones de transition N - P - N sans avoir recours à aucun mécanisme de dopage.

   Il n'y a, naturellement, aucune raison pour que cette phase de conversion thermique ne puisse être combinée avec   1-lune   quelconque des méthodes de dopage décrites ci-dessus de manière à donner toute souples- se désirée à la formation des aires de transition   N-P-N.   Les cristaux 

 <Desc/Clms Page number 14> 

 produits par le processus de conversion thermique esquissé ci-dessus ont des caractéristiques électriques, qui les rendent propres à être utilisés dans.les transisteurs à jonction. 



   Bien que la plus grande partie de la description se rapporte au germanium, il doit être entendu que le procédé décrit s'applique également bien à d'autres matières semi-conductrices. Le silicium, par exemple, a été utilisé, et on a constaté que les cristaux produits à partir de cette matière possèdent des propriétés excellentes. 
 EMI14.1 
 



  R E i E N D T C A T"I 0 N S.      



   1. Procédé de production d'un cristal de matière semi-con- ductrice contenant- au moins 99 pour cent   d'un   élément choisi dans le groupe comprenant le silicium et le germanium et qui consiste à intro- duire un cristal d'ensemencement de la matière dans une masse fondue de la matière, à   extràire   ce cristal d'ensemencement à une vitesse telle qu'une certaine quantité de la masse fondue est emportée avec lui, et à faire tourner ce cristal d'ensemencement pendant la phase d'extraction. 



   2. Procédé de production   d'un   cristal de matière semi-con- ductrice qui consiste à introduire un cristal d'ensemencement de la ma- tière dans une masse fondue de la matière, à extraire ce cristal d'en- semencement à une vitesse telle qu'une certaine quantité de la masse fon- due est emportée avec lui, et à faire vibrer ce cristal d'ensemencement pendant la phase d'extraction. 



   3. Procédé de production d'un cristal de matière semi-con- ductrice qui consiste à introduire un cristal d'ensemencement de la ma- tière dans une masse fondue de la matière, à extraire ce cristal d'en- semencement à une vitesse telle qu'une certaine quantité de la masse fondue est emportée avec lui, et à faire tourner et vibrer ce cristal d'ensemencement pendant la phase d'extraction. 



   4. Procédé de production d'un cristal de matière semi-con- ductrice qui consiste à introduire un cristal d'ensemencement de la ma- tière dans une masse fondue de la matière, à extraire ce cristal d'en- semencement à une vitesse allant de 0,00025 cm à 0,015 cm par seconde de façon que la masse fondue soit emportée avec lui, et à faire tourner ce cristal d'ensemencement à une vitesse de plusieurs centaines de ré- volutions par minute. 



   5. Procédé de production d'un cristal de matière semi-con- ductrice qui consiste à introduire un cristald'ensemencement de la ma- tière dans une masse fondue de la matière, à extraire ce'cristal   d'ense-     mencment   à une vitesse allant de 0,00025 cm à 0,015 cm par seconde à une vitesse telle que la masse fondue est emportée avec lui, et à faire tourner ce cristal d'ensemencement à une vitesse allant de 50 à 5000 ré- volutions par minute et à faire vibrer ce cristal d'ensemencement à un rythme de 10 à 500 battements par seconde pendant la phase   d'extrac-   tion. 

**ATTENTION** fin du champ DESC peut contenir debut de CLMS **.

Claims (1)

  1. 6. Procédé de production d'un cristal de matière semi-con- ductrice qui consiste à introduire un cristal d'ensemencement de la ma- tière dans une masse fondue de la matière en laissant le cristal en con- tact avec le bain pendant plusieurs minutes pour permettre à la surface du cristal d'ensemencement d'arriver à l'équilibre thermique avec le bain, à extraire ce cristal d'ensemencement à une vitesse décroissante tandis qu'on augmente simultanément la température du bain de manière à maintenir la résistivité du cristal en formation pratiquement con- stante, et ainsi à maintenir la section transversale du cristal en forma- tion pratiquement constante. <Desc/Clms Page number 15>
    7. Procédé de production d'un cristal de matière semi-con- ductrice qui consiste à introduire un cristal d9ensemencement de la matiè- re dans une masse fondue de la matière en laissant le cristal en'contact avec le bain pendant plusieurs minutes pour permettre à la surface du cristal d'ensemencement darriver à 19'équilibre thermique avec'le bain, et à extraire ce cristal d'ensemencement à une vitesse d'extraction qui va- rie.
    8. Procédé de production' d'un cristal de germanium qui con- siste à introduire un cristal de germanium dans une masse fondue de ger- manium, à laisser le cristal d'ensemencement en contact avec le bain pen- dant environ cinq minutes pour permettre à la surface du cristal d'en- semencement darriver à l'équilibre thermique avec le bain, à extraire ce cristal d'ensemencement à une vitesse constante de manière à permettre au diamètre du cristal en formation de croître jusqu'à ce quon obtien- ne une section transversale désirée, et à extraire ensuite ce cristal d9ensemencement à une vitesse initiale d'environ 0,0075 cm.
    par seconde et à une température d'environ 935 C', et à réduire graduellement la vitesse d'extraction tandis qu'on augmente simultanément la température du bain jusqu'à environ 980 Go de manière à maintenir la résistivité et la section transversale du cristal en formation pratiquement constan- tes, et à permettre ensuite l'épuisement du reste du bain.
    9. Procédé de production d'un cristal de matière semi-con- ductrice contenant au moins une limite P-N, qui consiste à introduire un cristal d'ensemencement de matière semi-conductrice dans une masse fondue de matière semi-conductrice contenant une impureté significati- ve, à maintenir ce cristal densemencement en contact avec ce bain pen- dant plusieurs minutes pour amener 1?un et l'autre à l'équilibre ther- mique, à extraire ce cristal d'ensemencement à une vitesse telle qu'une partie de la masse fondue est emportée avec lui et à additionner au bain une impureté significative du type de conductivité opposé à celui de la conductivité de la charge initiale pendant la phase d'extraction, 10.
    Procédé de production d'un cristal de matière semi- conductrice contenant au moins une limite P-N qui consiste à introduire un cristal d'ensemencement de matière semi-conductrice dans une masse fondue de matière semi-conductrice contenant une impureté significati- ve, à maintenir ce cristal d'ensemencement en contact avec ce bain pen- dant plusieurs minutes pour amener 1-'un et 1-'autre à 1?équilibre ther- mique, à extraire ce cristal d'ensmencement à une vitesse telle quune certaine quantité de la masse est emportée avec lui et à laisser tomber dans la bain au moins une pilule contenant une impureté significative du type de conductivité opposé à celui de la conductivité de l'impureté significative contenue dans le bain, pendant lopration d'extraction.
    11. Procédé de production d'un cristal de matière semi- conductrice contenant au moins une limite P-N qui consiste à introduire un cristal d'ensemencement de matière semi-conductrice dans une masse fondue de matière conductrice contenant une impureté significative, à maintenir ce cristal deensemencement en contact avec ce bain pendant plu- sieurs minutes pour amener 1-'un et l'autre à 1-'équilibre thermique, à extraire ce cristal d9ensemencement à une vitesse telle qu'une certaine quantité de la masse est emportée avec lui et à laisser du gaz contenant une impureté significative du type de conductivité opposé à celui de la conductivité de l'impureté contenue dans le bain, entrer en contact avec le bain pendant l'opération d'extraction.
    12. Procédé de production d'un cristal de matière semi-con- ductrice contenant au moins 99 pour cent d'un élément choisi dans le groupe comprenant le silicium et le germanium et qui consiste à introdui- re un cristal d9ensemencement de cette matière dans une masse fondue de cette matière contenant une impureté significative, à maintenir le cris- tal d'ensemencement en contact avec la masse fondue pendant plusieurs <Desc/Clms Page number 16> minutes afin d'amener le système à l'équilibre thermique, à extraire le cristal d'ensemencement de la masse fondue à une vitesse décroissante tandis qu'on augmente en même temps la température pour produire une zone à résistivité et section transversale pratiquement constantes, et après que la vitesse d'extraction a atteint une limite inférieure,
    à augmenter la vitesse d'extraction et à faire varier de nouveau au moins une fois la vitesse d'extraction et les températures comme décrit ci-dessus pen- dant l'opération d'extraction.
    13.Procédé de production d'un cristal de matière semi-con- ductrice contenant une zone à résistivité constante et un gradient de ré- sistivité raide, qui consiste à introduire un cristal d'ensemencement de cette matière dans une masse fondue de cette matière'contenant une impu- reté significative, à laisser ce cristal d'ensemencement en contact avec le bain pendant plusieurs minutes afin damener le système à l'équilibre thermique, à extraire ce cristal d'ensemencement à une vitesse d'extrac- tion croissant graduellement, à abaisser simultanément la température du bain et à réduire ensuite la vitesse d'extraction et à augmenter la température du bain de manière qu'il en résulte une zone à résistivité constante dans la dernière partie du cristal.
    14. Procédé de production d'un cristal de germanium conte- nant au moins deux zones à résistivité constante, qui consiste à introdui- re un cristal d'ensemencement de germanium dans une masse fondue de ger- manium contenant une impureté significative, à laisser le cristal d'en- semencement en contact avec le bain pendant une période de plusieurs mi- nutes afin d'amener l'interface à l'équilibre thermique, à extraire en- suite le cristal d'ensemencement à une vitesse d'extraction décroissant graduellement d'environ 0,0075 cm. à environ zéro cm. par seconde tandis qu'on augmente simultanément la température du bain d'environ 9350 C à environ 9800 Co, à augmenter la vitesse d'extraction jusqu'à environ 0,0075 cm.
    par seconde et à contrôler de nouveau la vitesse d'extrac- tion et la température comme décrit ci-dessus au moins une fois pour produire des zones à résistivité constante correspondant à chaque séquen- ce de contrôle.
    15. Procédé de production d'un cristal de germanium conte- nant au moins une limite P-N, qui consite à introduire un cristal d'ense- mencement de germanium dans une masse fondue de germanium contenant une impureté significative, à laisser le cristal d'ensemencement en contact avec le bain pendant plusieurs minutes pour amener l'interface à l'équi- libre thermique, à extraire ce cristal d'ensemencement à une vitesse constante d'environ 0,0075 cm. par seconde pendant'une période d'envi- ron cinq minutes, à réduire ensuite cette vitesse d'extraction jusqu'à environ 0,00025 cm. par seconde, à augmenter simultanément la températu- re du bain de 9350 C.
    à environ 980 C., à maintenir cette vitesse d'ex- traction constante à cette valeur pendant environ sept minutes et à addi- tionner une impureté significative désirée d'un type de conductivité op- posé à celui de la conductivité de l'impureté prédominant dans le bain, sous la forme d'une seule pilule d'un oxyde de cette impureté, et à lais- ser ensuite le reste du bain s'épuiser à une vitesse constante quelcon- que.
    16. Procédé de production d'un corps de matière semi-conduc- trice dont la résistivité varie au moins une fois, qui consiste à intro- duire un cristal d'ensemencement de cette matière dans une masse fondue de cette matière contenant au moins une impureté significative, à extrai- re ce cristal d'ensemencement tandis qu'on additionne au bain au moins un élément choisi dans le groupe contenant le gallium, le bore, l'antimoine et l'arsenic sous une forme telle qu'il se dissoudra dans le bain.
    17. Procédé de production d'un cristal de matière semi-con- ductrice contenant au moins une limite P-Nfagonnée d'une largeur désirée quelconque et ayant des caractéristiques électriques désirées quelconques, <Desc/Clms Page number 17> qui consiste à introduire un cristal d'ensemencement de cette matière dans une masse fondue de cette matière contenant une impureté significative, à laisser le cristal d9ensemencement en contact avec le bain pendant plu- sieurs minutes pour amener 1?interface à 1-'équilibre thermique, à ex- traire ce cristal d'ensmencement à une vitesse d'extraction qui varie et à laisser au moins une fois la vitesse dextraction se maintenir à la valeur d'environ 0,00025 cm.
    par seconde pendant plusieurs minutes, à en- suite effectuer un dopage au moyen d9impuretés significatives du type de conductivité opposé à celui de la conductivité des impuretés prédomi- nant dans le bain au moment, dans la quantité et suivant la séquence de temps nécessaires pour donner les caractéristiques désirées et de manière à amener le bain d'un type de conductivité à 1-'autre.
    18. Procédé de production d'un cristal de germanium conte- nant une jonction P-N, convenant pour être utilisée dans les dispositifs de traduction à semi-conducteur, qui consiste à introduire un cristal d'ensemencement de germanium dans une masse fondue de germanium conte- nant une impureté donneuse, à laisser ce cristal d'ensemencement en con- tact avec le bain pendant plusieurs minutes pour amener l'interface à 1?équilibre thermique, à extraire le cristal d9ensemencement à une vi- tesse décroissant graduellement d'environ 0,0075 cm par seconde à envi- ron 0,00025 cm/ par seconde, à augmenter simultanément la température d'environ 9350 C. à environ 980 C.
    de manière à produire une zone à résistivité constante d'environ un tiers de la longueur du cristal, à laisser la vitesse d'extraction se maintenir à une valeur d'environ 0,00025 cm. par seconde pendant plusieurs minutes, à additionner ensui- te une pilule d'alliage de germanium d'un élément choisi dans le grou- pe comprenant le gallium et le bore contenant suffisamment d'impureté pour réduire la concentration d'impureté en excès du cristal en forma- tion d'environ 1015 à environ 102 atomes par centimètre, à ensuite amener la résistivité du cristal en formation au type P d'environ la même con- centration dimpureté par excès par un dopage par pilules multiples du même alliage de germanium suivant une séquence de temps déterminée par les caractéristiques électriques désirées,
    à alors additionner une au- tre pilule ayant les mêmes caractéristiques chimiques et la même gran- deur que celles qui ont été utilisées dans la phase de dopage initiale pour abaisser la résistivité du cristal à environ 1015 atomes d'impure- té par excès par centimètre et ensuite à laisser le reste du bain s'é- puiser à une certaine vitesse d'extraction constante.
    19. Procédé suivant la revendication 18 dans lequel on exécute la phase initiale et la dernière phase de dopage en utilisant des jets de gaz contenant 1?impureté significative désirée et dans le- quel on produit la zone de transition en employant un flux graduel de gaz contenant la même impureté significative.
    20. Procédé de production d'un cristal de matière semi- conductrice contenant au moins une zone de transition N-P-N, qui con- siste à introduire un cristal d'ensemencement de.cette matière semi- cpnductrice dans une masse fondue de cette matière contenant une im- pureté significative, à laisser le cristal d'ensemencement en contact avec le bain pendant plusieurs minutes de manière à amener l'interfa- ce à l'équilibre thermique, à extraire ce cristal d'ensemencement à une vitesse d'extraction qui varie, à maintenir ensuite la vitesse d'extraction constante à environ 0,00025 cm.
    par seconde pendant plu- sieurs minutes, à additionner une impureté significative du type de conductivité opposé à celui de la conductivité de 1-'impureté qui pré- domine alors dans le bain, et en quantité suffisante pour amener le bain au type de conductivité de l'impureté additionnée, et après un laps de temps,à effectuer un dopage avec une impureté significative du type de conductivité identique à celui de la conductivité de l'im- pureté présente initialement dans le bain et en quantité suffisante <Desc/Clms Page number 18> pour ramener le bain à son type de conductivité originel.
    21. Procédé de production d'un cristal de matière semi-con- ductrice contenant une limite P-N qui consiste à introduire un cristal d'ensemencement de cette matière conductrice dans une masse fondue de cet- te matière contenant une impureté significative, à maintenir la surface du cristal d'ensemencement en contact avec le bain pendant plusieurs minu- tes afin d'amener l'interface à l'équilibre thermique, à extraire le cris- tal d'ensemencement du bain à une vitesse d'extraction constante tandis- qu'on effectue un dopage continu avec une impureté significative du type de conductivité opposé à celui de la conductivité de la charge origi- nelle à une vitesse telle qu'on amène le cristal en formation d'un type de conductivité à l'autre.
    22. Procédé de production d'un cristal de germanium conte- nant au moins une jonction N-P-N ayant des caractéristiques électriques prédéterminées, qui consiste à introduire un cristal d'ensemencement de germanium dans une masse fondue de germanium contenant une impureté si- gnificative donneuse, à laisser le cristal d'ensemencement en cpntact avec le bain pendant une période de plusieurs minutes de manière à ame- ner l'interface à l'équilibre thermique, à contrôler la vitesse d'ex- traction d'environ 0,0075 cm. par seconde à environ 0,00025 cm. par se- conde, à augmenter simultanément la température d'environ 935 C. à en- viron 980 C. de manière à produire une zone à résistivité constante, à maintenir la vitesse d'extraction constante à environ 0,00025 cm.
    par seconde pendant plusieurs minutes, à doper le bain avec un alliage de germanium d'une impureté acceptrice en quantité suffisante pour rédui- re la concentration d'impureté par excès du cristal en formation d'en- viron 1016 à environ 102 atomes par centimètre cube, à ensuite effec- tuer un dopage au moyen de pilules multiples de l'alliage de germa- nium contenant la même impureté en quantité suffisante pour amener le cristal en formation dans la région P et suivant la séquence de temps permettant de produire la largeur désirée, à effectuer ensuite un do- page avec une pilule contenant la même impureté et environ la même quantité que celle qui a été utilisée dans le stade de dopage initial, à maintenir la vitesse d'extraction constante à environ 0,00025 cm.
    par seconde pendant environ cinq autres minutes, après quoi on répète les mêmes phases de dopage en ordre inverse, en utilisant une impure- té donneuse plutôt qu'une impureté acceptrice.
    23. Cristal unique de germanium possédant des zones con- tigu#s à résistivités différentes, la résistivité étant constante laté- ralement et longitudinalement d'un bout à 1?autre de chaque zone.
    24. Cristal unique de germanium ayant au moins une zone à résistivité constante à la fois latéralement et longitudinalement d'un bout à l'autre de la zone.
    25. Cristal unique de germanium contenant au moins une li- mite P-N et dans lequel au moins l'une des zones de bord a une résisti- vité constante à la fois latéralement et longitudinalement d'un bout à 1'autre de la zone.
    26. Cristal unique de germanium contenant au moins une zone de transition N-P-N et dans lequel au moins l'une des zones de bord a une résistivité constante à la fois latéralement et longitudi- nalement d'un bout à l'autre 'de chaque zone.
    27. Cristal unique de germanium contenant au moins une li- mite P-N, et dans lequel la résistivité d'une zone de bord varie graduel- lement. <Desc/Clms Page number 19>
    28. Cristal unique semi-conducteur ayant au moins une zone à résistivité constante à la fois latéralement et longitudinalement d'un bout à 1?autre de la zone.
    En annexe 4 dessinso
BE512461D BE512461A (fr)

Publications (1)

Publication Number Publication Date
BE512461A true BE512461A (fr)

Family

ID=150908

Family Applications (1)

Application Number Title Priority Date Filing Date
BE512461D BE512461A (fr)

Country Status (1)

Country Link
BE (1) BE512461A (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2792317A (en) * 1954-01-28 1957-05-14 Westinghouse Electric Corp Method of producing multiple p-n junctions
DE1015151B (de) * 1953-02-23 1957-09-05 Siemens Ag Verfahren zum Ziehen von Halbleiterkristallen
DE1021494B (de) * 1953-04-02 1957-12-27 Standard Elektrik Ag Verfahren zur Herstellung von Schichtkristallen aus Germanium, Silizium oder anderen Halbleitern fuer Gleichrichter und Transistoren durch thermische Behandlung und anschliessendes Abschrecken
US2851341A (en) * 1953-07-08 1958-09-09 Shirley I Weiss Method and equipment for growing crystals
US2852890A (en) * 1955-08-12 1958-09-23 Union Carbide Corp Synthetic unicrystalline bodies and methods for making same
US2944875A (en) * 1953-07-13 1960-07-12 Raytheon Co Crystal-growing apparatus and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1015151B (de) * 1953-02-23 1957-09-05 Siemens Ag Verfahren zum Ziehen von Halbleiterkristallen
DE1021494B (de) * 1953-04-02 1957-12-27 Standard Elektrik Ag Verfahren zur Herstellung von Schichtkristallen aus Germanium, Silizium oder anderen Halbleitern fuer Gleichrichter und Transistoren durch thermische Behandlung und anschliessendes Abschrecken
US2851341A (en) * 1953-07-08 1958-09-09 Shirley I Weiss Method and equipment for growing crystals
US2944875A (en) * 1953-07-13 1960-07-12 Raytheon Co Crystal-growing apparatus and methods
US2792317A (en) * 1954-01-28 1957-05-14 Westinghouse Electric Corp Method of producing multiple p-n junctions
US2852890A (en) * 1955-08-12 1958-09-23 Union Carbide Corp Synthetic unicrystalline bodies and methods for making same

Similar Documents

Publication Publication Date Title
EP0042901B1 (fr) Procédé pour contrôler la teneur en oxygène des barreaux de silicium tirés selon la méthode de Czochralski
FR2898430A1 (fr) Procede de realisation d&#39;une structure comprenant au moins une couche mince en materiau amorphe obtenue par epitaxie sur un substrat support et structure obtenue suivant ledit procede
FR2940806A1 (fr) Procede de solidification de semi-conducteur avec ajout de charges de semi-conducteur dope au cours de la cristallisation
TW201213626A (en) Silicon single crystal doped with gallium, indium, or aluminum
FR2515216A1 (fr) Procede de solidification de materiaux tels que des semi-conducteurs, des dielectriques ou des materiaux magnetiques
EP3184673B1 (fr) Procédé d&#39;étalonnage d&#39;un four de recuit utilisé pour former des donneurs thermiques
BE512461A (fr)
FR2590076A1 (fr) Dispositif capteur d&#39;image du type etat solide avec repartition uniforme d&#39;agent de dopage, et son procede de production
FR2465802A1 (fr) Procede de solidification d&#39;un fluide tel qu&#39;un bain de silicium et procede obtenu
FR2497402A1 (fr) Procede de fabrication de jonctions p-n par electromigration
JP6579046B2 (ja) シリコン単結晶の製造方法
EP1897965B1 (fr) Procédé d&#39;élimination par recuit des précipités dans un matériau semi-conducteur II-VI
FR2569430A1 (fr) Appareil pour extraire des monocristaux d&#39;un bain de materiau semi-conducteur fondu contenu dans un creuset
FR2530323A1 (fr) Procede de refroidissement de produits et appareil mettant en oeuvre le procede
WO2017102832A1 (fr) Procédé pour ajuster la résistivité d&#39;un lingot semi-conducteur lors de sa fabrication
FR2729678A1 (fr) Monocristaux en solution solide de ktiopo4 et procede pour les preparer
EP1415023B1 (fr) Procede d&#39;obtention d&#39;un monocristal de cdte ou de cdznte
JPH0777999B2 (ja) アンチモンドープ単結晶シリコンの育成方法
US2841559A (en) Method of doping semi-conductive materials
CA3085769A1 (fr) Methode de validation de l&#39;histoire thermique d&#39;un lingot semi-conducteur
FR2597884A1 (fr) Procede et dispositif de controle en continu de la surfusion du front de solidification d&#39;un monocristal en cours d&#39;elaboration et application au controle de la croissance d&#39;un crital
EP1349970B1 (fr) Procede de croissance d&#39;un materiau semi-conducteur massif de type ii-vi
EP0115711B1 (fr) Procédé de préparation de plaques d&#39;un matériau métallique ou semi-métallique par moulage sans contact direct avec les parois du moule
Aguiar et al. Directional solidification of a Sn-Se eutectic alloy using the Bridgman-Stockbarger method
EP0335453B1 (fr) Procédé d&#39;obtention d&#39;une couche monocristalline ternaire hétéro-épitaxiée sur une couche binaire et creuset pour sa mise en oeuvre