BE457943A - - Google Patents

Info

Publication number
BE457943A
BE457943A BE457943DA BE457943A BE 457943 A BE457943 A BE 457943A BE 457943D A BE457943D A BE 457943DA BE 457943 A BE457943 A BE 457943A
Authority
BE
Belgium
Prior art keywords
alloy
iron
chromium
vanadium
expansion
Prior art date
Application number
Other languages
French (fr)
Publication of BE457943A publication Critical patent/BE457943A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/02Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing by fusing glass directly to metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/567Using constraining layers before or during sintering made of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Sealing Material Composition (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



  MÉMOIRE DESCRIPTIF   D@POS@ A   L'APPUI D'UNE DEMANDE
DE BREVET D'INVENTION la Société dite : N.V. PHILIPS' GLOEILAMPENFABRIEKEN Objet dans lequel du verre ou une matière céramique est scellé à un alliage de fer. 



   Pour sceller un alliage à du verre ou à une matière cêramique   glaçurée   ou non, il est connu d'utiliser un alliage de fer dont le coefficient de dilatation se rapproche autant que possible de celui du verre ou de la matière céramique. 



   A cet effet on utilise, en particulier dans la fabrication de tubes à décharges et d'objets analogues, des alliages de fer et de chrome, dont la teneur en chrome varie entre 15 et 30%. 



  Le chrome a pour but de réduire le coefficient de dilatation du fer, de sorte que, suivant la tèneur en .chrome, ce coefficient de dilatation peut devenir pratiquement égal à celui du verre. De plus, la présence du chrome assure une bonne adhérence du métal au verre où à la matière céramique, ce qui peut être attribué au fait que les alliages de fer et de chrome ont la propriété de se recouvrir facilement d'une pellicule d'oxyde. Les facteurs précités sont aussi importants pour l'émaillage du fer et de ses alliages. 



   La Demanderesse a constaté qu'un alliage de fer contenant du vanadium permet d'obtenir une adhérence notablement   nieil-   leure encore. 



   Cet alliage non seulement augmente l'adhérence, mais encore présente l'avantage d'être bon conducteur de l'électricité, ce qui est particulièrement important pour l'utilisation comme matière conductrice dans les Objets utilisés pour les applications électriques. C'est ainsi que la conductibilité d'un alliage de fer et de vanadium est notablement meilleure que celle des alliages de fer et de chrome utilisés jusqu'à présent. En outre, un alliage de fer et de vanadium est beaucoup plus nialéable qu'un alliage de fer et de chrome et de plus il est facile à décaper. 



  Cette caractéristique est particulièrement importante pour le tréfilage de ces alliages; la dure pellicule d'oxyde qui se forme pendant le traitement thermique requis par le tréfilage s'enlève facilement. 



   Pour le reste, la technique du scellement de l'alliage conforme à l'invention est la même que celle des alliages de fer et de chrome usuels, tout comme d'ailleurs le traitement de l'alliage scellé. 



   En général, lorsqu'on applique l'invention, pour obtenir une bonne adhérence, il suffit que l'alliage contienne en poids 

 <Desc/Clms Page number 2> 

 au moins   1%,   de préférence 2 à 4% de vanadium. Pour obtenir un coefficient de dilatation suffisamment faible, on cherchera à utiliser de fortes teneurs jusqu'à des valeurs qui se rapprochent de la limite d'homogénéité, c'est-à-dire de la limite à laquelle le vanadium se dissout en formant des cristaux mixtes homogènes. 



  A une teneur de 20% environ, le coefficient de dilatation ne dépasse que légèrement celui des alliages de fer et de chrome   usuels.   



   Cette adaptation du coefficient de dilatation peut cependant être obtenue plus avantageusement à l'aide d'un constituant d'alliage meilleur marché que le vanadium. Aussi utilise-t-on de préférence une teneur de 2 à 4% de vanadium pour obtenir une bonne adhérence, tandis que, pour diminuer le   coëfficient   de dila-   tation   on ajoute du cobalt jusqu'à une teneur en poids de   20     %   ou bien du chrome   jusqu'à   une teneur en poids de 30%. On peut aussi ajouter du molybdène ou du tungstène, voire plusieurs éléments différents. Il y a lieu de noter que ces additions diminuent la conductibilité électrique, tandis que la présence du chrome diminue aussi la malléabilité.

   L'alliage conforme à l'invention peut contenir de petites quantités d'autres métaux ou, en général, d'impuretés sans que ses propriétés remarquables pour le scellement en soient affectées. Il y a lieu de noter que, dans le cas de présence de carbone, une partie du vanadium se transforme en carbure, forme sous laquelle elle n'assure pas l'effet conforme à l'invention. Lorsque l'alliage contient une telle substance il se peut donc que, pour obtenir une bonne adhérence, on doive ajouter une plus grande quantité de vanadium que celle requise pour un alliage pratiquement exempt de carbone.



   <Desc / Clms Page number 1>
 



  DESCRIPTIVE MEMORY D @ POS @ IN SUPPORT OF A REQUEST
OF PATENT OF INVENTION the Company called: N.V. PHILIPS 'GLOEILAMPENFABRIEKEN Object in which glass or a ceramic material is sealed to an iron alloy.



   To seal an alloy to glass or to a glazed or unglazed ceramic material, it is known practice to use an iron alloy whose coefficient of expansion is as close as possible to that of glass or ceramic material.



   For this purpose, use is made, in particular in the manufacture of discharge tubes and similar articles, of iron and chromium alloys, the chromium content of which varies between 15 and 30%.



  The purpose of chromium is to reduce the coefficient of expansion of iron, so that, depending on the chromium content, this coefficient of expansion can become practically equal to that of glass. In addition, the presence of chromium ensures good adhesion of the metal to the glass or to the ceramic material, which can be attributed to the fact that the alloys of iron and chromium have the property of being easily covered with an oxide film. . The above factors are also important for the enameling of iron and its alloys.



   The Applicant has found that an iron alloy containing vanadium makes it possible to obtain a still significantly lower adhesion.



   This alloy not only increases the adhesion, but also has the advantage of being a good conductor of electricity, which is particularly important for use as a conductive material in objects used for electrical applications. Thus, the conductivity of an alloy of iron and vanadium is notably better than that of the alloys of iron and chromium used until now. In addition, an alloy of iron and vanadium is much more reliable than an alloy of iron and chromium and moreover it is easy to pickle.



  This characteristic is particularly important for the drawing of these alloys; the hard oxide film that forms during the heat treatment required by wire drawing is easily removed.



   For the rest, the technique of sealing the alloy in accordance with the invention is the same as that of the usual iron and chromium alloys, just like, moreover, the treatment of the sealed alloy.



   In general, when the invention is applied, to obtain good adhesion, it is sufficient that the alloy contains by weight

 <Desc / Clms Page number 2>

 at least 1%, preferably 2 to 4% of vanadium. To obtain a sufficiently low coefficient of expansion, one will seek to use high contents up to values which approach the limit of homogeneity, that is to say the limit at which the vanadium dissolves by forming homogeneous mixed crystals.



  At a content of about 20%, the coefficient of expansion only slightly exceeds that of conventional iron and chromium alloys.



   This adaptation of the coefficient of expansion can, however, be obtained more advantageously by using an alloy constituent which is cheaper than vanadium. A content of 2 to 4% of vanadium is therefore preferably used to obtain good adhesion, while, in order to reduce the coefficient of expansion, cobalt is added up to a content by weight of 20% or else chromium up to a content by weight of 30%. Molybdenum or tungsten can also be added, or even several different elements. It should be noted that these additions decrease the electrical conductivity, while the presence of chromium also decreases the malleability.

   The alloy according to the invention can contain small amounts of other metals or, in general, of impurities without its remarkable properties for sealing being affected. It should be noted that, in the case of the presence of carbon, part of the vanadium is transformed into carbide, a form in which it does not provide the effect in accordance with the invention. When the alloy contains such a substance, therefore, in order to obtain good adhesion, a larger quantity of vanadium may have to be added than that required for an alloy substantially free of carbon.


    

Claims (1)

RESUME 1.- Objet dans lequel du verre ou de la matière céramique est scellé à un alliage de fer, caractérisé par le fait que l'alliage contient en poids au moins 1% et, de préférence, 2 à 4% de vanadium, cet objet pouvant présenter en outre la particularité que l'alliage contient en outre un ou plusieurs constituants qui réduisent le coefficient de dilatation, par exemple du cobalt, du chrome, du molybdène ou du tungstène. ABSTRACT 1.- Object in which glass or ceramic material is sealed to an iron alloy, characterized in that the alloy contains by weight at least 1% and, preferably, 2 to 4% of vanadium, this object which may also have the particular feature that the alloy further contains one or more constituents which reduce the coefficient of expansion, for example cobalt, chromium, molybdenum or tungsten. 2.- Procédé de scellement de verre ou de matière céramique à un,alliage de fer, caractérisé par le fait que l'alliage a une composition telle que spécifiée sous 1. 2.- A method of sealing glass or ceramic material to an iron alloy, characterized in that the alloy has a composition as specified under 1.
BE457943D BE457943A (en)

Publications (1)

Publication Number Publication Date
BE457943A true BE457943A (en)

Family

ID=111325

Family Applications (1)

Application Number Title Priority Date Filing Date
BE457943D BE457943A (en)

Country Status (1)

Country Link
BE (1) BE457943A (en)

Similar Documents

Publication Publication Date Title
FR2588572A1 (en) COPPER ALLOY AND ITS MANUFACTURE
FR2585727A1 (en) COPPER-CHROME-TITANIUM-SILICON ALLOY AND USE THEREOF
FR2565601A1 (en) COPPER, NICKEL, TINNEY, TITANIUM ALLOY, PROCESS FOR MANUFACTURING THE SAME, AND USE THEREOF
BE457943A (en)
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
CH620245A5 (en)
CN1840718B (en) Cu-Ni-Si-Zn alloy tin-plated strip
CN100439527C (en) Yttrium-containing gold-silver-zirconium-based alloy material
JP2891819B2 (en) Corrosion resistant copper alloy
JP2006089815A (en) Materials for solar cell interconnectors
JPS6033328A (en) Copper-based alloy for lead frame and manufacture thereof
JPS62211337A (en) Copper, titanium and cobalt alloy as material for electronics parts
JPS59222543A (en) Copper alloy for lead frame
JPS59140338A (en) Copper alloy for lead frame
BE422651A (en)
JP2960116B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPS58152379A (en) high temperature battery
BE422650A (en)
FR2557593A1 (en) LOW-ALLOY COPPER ALLOY, PROCESS FOR MANUFACTURING THE SAME, AND USE THEREOF
JPH0331776B2 (en)
FR2880358A1 (en) Copper alloy containing iron and phosphorus in low quantities for use in electronic applications, notably power transistor circuits
JPH09235635A (en) High strength and highly conductive copper alloy with excellent migration resistance
BE371689A (en)
BE490356A (en)
BE513537A (en)