BE1013144A3 - GLASS "clip" IN A RIGID CHASSIS. - Google Patents

GLASS "clip" IN A RIGID CHASSIS. Download PDF

Info

Publication number
BE1013144A3
BE1013144A3 BE9900753A BE9900753A BE1013144A3 BE 1013144 A3 BE1013144 A3 BE 1013144A3 BE 9900753 A BE9900753 A BE 9900753A BE 9900753 A BE9900753 A BE 9900753A BE 1013144 A3 BE1013144 A3 BE 1013144A3
Authority
BE
Belgium
Prior art keywords
glazing
sep
housing
elastic deformation
dimensions
Prior art date
Application number
BE9900753A
Other languages
French (fr)
Inventor
Denis Legrand
Original Assignee
Glaverbel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaverbel filed Critical Glaverbel
Priority to BE9900753A priority Critical patent/BE1013144A3/en
Priority to AU17020/01A priority patent/AU1702001A/en
Priority to PCT/EP2000/011375 priority patent/WO2001036256A1/en
Application granted granted Critical
Publication of BE1013144A3 publication Critical patent/BE1013144A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • B32B17/10302Edge sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/004Mounting of windows
    • B60J1/005Mounting of windows using positioning means during mounting

Abstract

La présente invention concerne un mode de mise en place d'un vitrage dans le logement correspondant d'un châssis rigide, mise en place qui comprend la déformation élastique momentanée du vitrage pour atteindre des dimensions compatible avec celles du logement dans lequel il doit être inséré, le positionnement dans le logement, et le relâchement des forces conduisant à la déformation du vitrage, relâchement qui permet le retour du vitrage à sa forme initiale. La mise en oeuvre proposée par l'invention permet notamment l'insertion de vitrage de forme en U qui peuvent pas être mis en place selon les modalités usuelles.The present invention relates to a method of fitting a glazing unit into the corresponding housing of a rigid frame, fitting which comprises the momentary elastic deformation of the glazing unit to reach dimensions compatible with those of the housing in which it is to be inserted. , positioning in the housing, and the relaxation of the forces leading to the deformation of the glazing, loosening which allows the glazing to return to its initial shape. The implementation proposed by the invention allows in particular the insertion of U-shaped glazing which cannot be put in place according to the usual methods.

Description

       

   <Desc/Clms Page number 1> 
 



   Vitrage"clipsable"dans un châssis rigide 
La présente invention concerne un mode mise en place d'un vitrage dans le logement d'un châssis rigide. Plus particulièrement, l'invention concerne le cas où le vitrage et le logement dans lequel il doit être inséré, présentent des dimensions ou une configuration telles, que l'accès du vitrage au logement ne peut être entrepris sans mesures particulières. 



   Les pare-brise et les lunettes arrière de véhicules automobiles représentent le type de vitrage pour lequel l'invention trouve le plus d'applications. Dans la suite de la description il est fait référence à ce type principal, mais tous les vitrages mis en place dans un logement d'un châssis qui présentent les problèmes d'encombrement indiqués peuvent conduire à la mise en oeuvre de la technique proposée par l'invention. 



   Dans la mise en place de vitrages dans des châssis rigides, comme notamment des carrosseries automobiles, le vitrage est habituellement préalablement équipé d'un ou plusieurs joints élastomères destinés à positionner le vitrage par rapport au logement dans lequel il s'insère, et à garantir l'étanchéité de l'ensemble. Le pourtour du vitrage est aussi enduit d'un cordon de colle qui doit assurer la fixation du vitrage au châssis après la mise en place. Dans la pratique usuelle le vitrage, pourvu des joints et cordons de colle, est présenté face au logement dans lequel il est introduit, de telle manière que les joints et le cordon de colle disposés à la périphérie, soient légèrement comprimés sur toute leur longueur, assurant ainsi étanchéité et collage sans discontinuité.

   Par hypothèse, selon l'invention, le périmètre délimité par le logement et ses éventuels éléments additionnels que sont les joints et cordons de colle, présente des dimensions et/ou une configuration qui ne permettent pas la mise en place dans les conditions habituelles. 



   L'encombrement qui ne permet pas une mise en place simple, peut venir des dimensions respectives du vitrage et du logement dans le châssis. Il peut aussi résulter des éléments additionnels attachés à l'un ou à l'autre, et en particulier aux joints, profilés d'encapsulation, cordons de colle ou analogues qui font saillie sur le vitrage, ou dans le logement du châssis rigide. 

 <Desc/Clms Page number 2> 

 



   Pour permettre la réalisation des applications indiquées précédemment, et d'autres qui apparaîtront dans la suite, l'invention propose un procédé de mise en place d'un vitrage dans le logement d'un châssis rigide, dans lequel les dimensions du vitrage sont modifiées par une déformation élastique, au moins momentanément, cette déformation élastique du vitrage étant telle qu'elle rende possible l'accès du vitrage à son logement. Le vitrage ainsi modifié est mis en position dans le logement, puis les forces assurant la déformation du vitrage sont relâchées de telle sorte que le vitrage tend à reprendre ses dimensions initiales en s'insérant dans son logement. 



   La possibilité de s'affranchir dans une certaine mesure de contraintes imposées par l'encombrement relatif du vitrage par rapport au logement offre divers avantages. 



   Un avantage est de pouvoir mettre en oeuvre des vitrages de formes plus complexes. 



   Un autre avantage est, le cas échéant, de procéder à des assemblages dans des conditions d'encombrement qui, selon les moyens traditionnels, n'auraient pu être envisagés. 



   Ces possibilités trouvent des applications dans tous les domaines où des vitrages sont utilisés, et notamment dans celui des véhicules automobiles. C'est à ce domaine qu'il est fait référence dans la suite, car c'est celui certainement qui réclame les solutions les plus diversifiées tout en exigeant des mises en oeuvre simples, peu coûteuses, et en garantissant des performances difficiles à atteindre. 



   Il est connu de mettre en forme des vitrages en mettant à profit leur déformation élastique. La mise en forme dans ce cas correspond à un état permanent. Une publication concernant ce type de vitrage est celle faite par la demanderesse dans BE 1005041. L'objet de cette publication est le bombage de faible courbure d'un vitrage feuilleté. Selon cette publication, le vitrage est incurvé en déformant mécaniquement un ensemble de deux feuilles de verre et d'une feuille intercalaire en matériau thermoplastique. La déformation élastique des feuilles est rendue permanente par le collage de l'ensemble. Le but poursuivi est en particulier d'éviter les défauts optiques qui résultent des transformations de bombage à chaud. Dans cette technique le vitrage est mis en forme avant sa mise en place dans la structure qui le reçoit, et n'est pas modifié par la suite.

   Par ailleurs, les formes sont très spécifiques. Il s'agit de vitrages très légèrement incurvés. Les rayons de courbure de ces vitrages sont de l'ordre d'une dizaine de mètres. Les feuilles de verre mises en oeuvre dans ces vitrages sont également trempées, de préférence chimiquement, pour 

 <Desc/Clms Page number 3> 

 améliorer leur résistance à la déformation. 



   Au contraire de ce qui est enseigné dans cette publication, la déformation élastique selon l'invention n'est entreprise qu'à l'occasion de la mise en place. Elle n'est pas préalable à cette opération. 



   La déformation élastique qui peut être appliquée au vitrage sans risquer de l'endommager dépend bien évidemment de sa composition. Dans cette dernière il faut comprendre non seulement les caractéristiques intrinsèques de la, (ou des) feuille (s) de verre, notamment son épaisseur et les traitements de trempe, thermique ou chimique, auxquels elle (s) a (ont) pu être soumise (s), mais aussi les assemblages dans lesquels entrent ces feuilles. 



   Les feuilles de verre des vitrages feuilletés présentent des particularités bien connues. Elles ne sont généralement pas trempées. Elles peuvent le cas échéant être durcies pour leur conférer une résistance mécanique améliorée, résistance qui reste très inférieure à celle des verres trempés thermiquement, et plus encore des verres trempés chimiquement. Par ailleurs les ensembles feuilletés se prêtent généralement moins facilement à des déformations en raison des risques de délamination propres à ces produits. 



   L'invention s'applique au vitrage feuilletés et aux vitrages simples, ou monolithiques, en tenant compte de leurs propriétés mécaniques respectives. 



   Ainsi l'invention s'applique à des vitrages simples qui, de préférence, ont une épaisseur qui n'est pas supérieure à 5mm, et avantageusement pas supérieure à 4mm. Des épaisseurs plus grandes peuvent être considérées, mais les déformations élastiques, pour un vitrage de dimensions déterminées, sont d'autant plus limitées que l'épaisseur est plus grande. Pour les vitrages automobiles servant de référence, ces épaisseurs sont de toute manière limitées pour des raisons de poids. 



   Les déformations des feuilles de verre trempées thermiquement, mises en oeuvre selon l'invention, sont de préférence telles que les contraintes induites en flexion restent inférieures à 80MPa, et de façon encore plus préférée inférieures à 50MPa. 



   Pour des feuilles trempées chimiquement, les contraintes en flexion peuvent être supérieures à celles indiquées ci-dessus, dans la mesure où la trempe chimique aboutit, dans la feuille, généralement à des contraintes supérieures à ce que l'on obtient par trempe thermique. La trempe thermique, pour des raisons d'économie, est généralement préférée pour les produits de grande diffusion. Néanmoins la trempe chimique reste applicable lorsque les considérations techniques priment sur celles relatives aux coûts. 

 <Desc/Clms Page number 4> 

 



   Les vitrages feuilletés sont normalement constitués de feuilles de verre qui ne sont pas trempées en raison des conditions propres à leur mise en forme, et aux propriétés mécaniques que l'on veut leur conférer. Les feuilles en question sont souvent"durcies", autrement dit, elles ont subies un traitement qui les conduit à des propriétés mécaniques intermédiaires ente celles des verres trempés, et celles des verres recuits. Autrement dit encore, les feuilles de verre en question comportent des contraintes internes qui leur permettent de supporter des déformations élastiques moindres que celles des feuilles trempées de même épaisseur. 



   Les vitrages feuilletés sont encore tributaires des caractéristiques propres à leur composition. Les deux feuilles de verre n'ont pas nécessairement les mêmes épaisseurs, et donc pas les mêmes caractéristiques de résistance à la flexion. Mais en plus des caractéristiques des feuilles, il faut tenir compte de l'ensemble lui même. Les vitrages utilisés selon l'invention doivent offrir la possibilité d'une déformation élastique suffisante, sans risque de détérioration, en particulier sans risque de délamination. 



   Les feuilles entrant dans la constitution des vitrages feuilletés utilisés selon l'invention ont une épaisseur qui de préférence n'est pas supérieure à 3mm, et mieux, pas supérieure à 2,5mm. 



   L'épaisseur totale des vitrages feuilletés utilisés selon l'invention, est de préférence inférieure à 7mm, et se situe de façon avantageuse à moins de 6mm. 



   Les déformations élastiques des vitrages feuilletés mis en oeuvre selon l'invention sont de préférence telles que les contraintes induites en flexion dans chacune des feuilles, ne sont pas supérieures à 30MPa et de façon particulièrement préférée, pas supérieures à 20MPa. 



   L'invention est décrite dans la suite de façon plus détaillée en faisant référence aux planches de dessins dans lesquels :   - la   figure 1 est une vue schématique en perspective de la façon de mise en place d'un vitrage sur la carrosserie d'un véhicule ; - les figures 2a, 2b, 2c et 2d présentent en coupe selon A, un détail de la mise en place d'un vitrage du type présenté à la figure 1 ; - les figures 3a et 3b illustrent de façon schématique la disposition d'essai de résistance à la flexion d'un vitrage du type présenté à la figure 1 ; - les figures 4a, 4b et 4c présentent en coupe un autre mode de mise en oeuvre selon l'invention - la figure 5 présente le cas de la mise en place d'un vitrage selon 

 <Desc/Clms Page number 5> 

 l'invention, conduisant à une déformation permanente. 



   La figure 1 montre de façon schématique une partie de la carrosserie d'un véhicule comprenant le toit 1, un montant latéral 2, et une partie du reste du châssis. La partie schématisée peut correspondre à l'avant ou à l'arrière du véhicule. Dans la suite, parlant du vitrage qui vient s'insérer dans cette partie de la carrosserie il est fait référence à un pare-brise. Il est entendu que la même présentation s'applique au cas où il est question d'une lunette arrière. Ces deux types de vitrages sont régulièrement de ceux qui peuvent nécessiter le type de mise en place proposé selon l'invention, compte tenu des tendances suivies par les stylistes des constructeurs automobiles à l'heure actuelle. Comme la suite de la description l'établit encore, l'invention trouve aussi des applications pour d'autres vitrages fixes, par exemple les custodes des véhicules. 



   Il va de soi que la composition des vitrages, selon qu'il s'agit de pare-brise ou de lunette arrière, n'est pas normalement la même. En particulier, pour ce qui intervient sur les caractéristiques de la mise en oeuvre de l'invention, les pare-brise sont très généralement constitués de vitrages feuilletés, alors que les lunettes arrières sont normalement constituées d'une seule feuille de verre. 



   Comme indiqué précédemment, cette différence de nature du vitrage est importante selon l'invention pour ce qui concerne les capacités de déformation susceptibles d'être imposées au vitrage lors de sa mise en place, sans risquer de dépasser le stade de la déformation élastique. 



   En regard de la carrosserie du véhicule, on a représenté le vitrage 3 qui doit être mis en place. Le vitrage dans cet exemple présente une forme très fortement incurvée sur les côtés, les deux parties latérales 4 et 5, venant se rabattre sur les cotés du véhicule. Une telle disposition a notamment pour avantage d'accroître le champ visuel des passagers. 



   Si une telle disposition, en plus de l'avantage précédemment indiqué, peut conférer des effets esthétiques intéressants, elle soulève néanmoins quelques difficultés de mise en oeuvre. La fabrication de vitrage en forme de U, est bien maîtrisée par les verriers. Il reste que les modes de fixation traditionnels ne peuvent être utilisés tels quels. 



   Selon ces modes traditionnels, le vitrage à fixer dans la baie de la carrosserie comporte un joint à sa périphérie. Ce joint référencé 6 aux figures 2, est destiné à servir de moyen de protection du vitrage, évitant le contact de celui ci avec la structure métallique de la carrosserie référencée 7. Le logement constitué dans la carrosserie pour recevoir le vitrage 3, forme une feuillure 8 

 <Desc/Clms Page number 6> 

 dont la profondeur est adaptée à l'épaisseur du vitrage muni de son joint 6. La fixation proprement dite est obtenue par collage du vitrage 3 dans la feuillure métallique 8. 



   La colle est introduite avec le vitrage pour assurer une parfaite localisation de la position de collage. Dans la pratique la colle est appliquée sous forme d'un cordon 9 immédiatement avant la mise en place du vitrage. Le cordon de colle est suffisamment épais pour que, lors de la mise en place, il soit comprimé contre la feuillure assurant de cette façon un bon contact sur une largeur convenable. De cette façon également, la continuité de la liaison vitrage carrosserie garantit une bonne étanchéité. Compte tenu de cette nécessité dimensionnelle, le cordon de colle 9, dans la disposition présentée à la figure 2a, est plus épais que le joint 6. 



   La figure 2a illustre la difficulté rencontrée pour une forme de vitrage telle que celle de la figure 1. Le vitrage dont seule la partie latérale 4 est représentée, est avancé vers la baie de carrosserie suivant une trajectoire sensiblement perpendiculaire à la position qu'il doit occuper une fois mis en place. Cette direction est celle qui concerne la partie centrale du vitrage, le vitrage s'étendant symétriquement de part et d'autre. Le mouvement imposé au vitrage est indiqué par la flèche B à la figure 1. Compte tenu de la forme générale en U du vitrage, l'extrémité 4 se présente de telle sorte que, sans autre aménagement, le joint de colle ne peut venir en position finale sans être laminé par l'extrémité de la feuillure. Ceci n'est pas acceptable pour plusieurs raisons. 



  En premier, l'élimination de la partie supérieure du cordon de colle fait que l'écrasement sur la feuillure, qui garantit un bon contact, n'est plus assuré. Le collage est donc défectueux. En second, la colle qui est raclée par l'extrémité 10 de la feuillure, s'étale au delà de la zone normalement prévue et dissimulée généralement à la vision depuis l'extérieur par un émaillage approprié disposé sur le bord du vitrage. Le joint de colle irrégulier peut devenir partiellement visible. Mais le plus important sans doute est que l'irrégularité dans la mise en place du cordon de colle peut compromettre l'étanchéité de l'assemblage. 



   Pour éviter ces inconvénients, selon l'invention, le vitrage 3 est momentanément, et légèrement déformé au cours de sa mise en place, de telle sorte que les parties latérales 4 et 5 soient écartées des feuillures sur lesquelles elles doivent se positionner. C'est ce que représente la figure 2b. Dans ce cas la déformation élastique est limitée à ce qui est nécessaire pour assurer que le cordon de colle 9 ne vienne pas au contact de l'extrémitélO de la feuillure. 



   La figure 2c montre la position du vitrage avant le relâchement des efforts permettant la déformation élastique du vitrage. La mise en place 

 <Desc/Clms Page number 7> 

 s'achève, figure 2d, par le relâchement des forces exercées sur le vitrage. L'aile
4 vient plaquer le joint semi-rigide 6 sur la feuillure. Simultanément le cordon de colle est écrasé sur la feuillure assurant un contact dynamique avec celle-ci. 



   Les parties du vitrage non représentées aux figures 2, se collent selon les modalités traditionnelles. Le mouvement du vitrage en direction de la baie, comprime le cordon de colle sans nécessiter de dispositions particulières. 



   Ce qui est présenté aux figures 1 et 2, dans lesquelles les ailes du vitrage en forme de U sont écartées l'une de l'autre, peut être transposé au cas où il convient de rapprocher ces ailes du vitrage. Cette situation est par exemple celle que l'on peut envisager dans l'hypothèse où la mise en place du vitrage serait faite depuis l'intérieur de la carrosserie. 



   On a procédé à l'essai de déformation élastique d'un pare brise pour montrer que les contraintes imposées dans la mise en oeuvre de l'invention, étaient compatibles avec les caractéristiques mécaniques de ce type de produit. Le pare-brise essayé est composé de deux feuilles de verre chacune d'épaisseur 2,3mm. Ces deux feuilles sont réunies par une feuille intercalaire de PVB de 0,76mm d'épaisseur. Le pare brise très incliné sur la carrosserie (contrairement à la représentation de la figure 1) est plus haut que large   (1350xl300mm).   Les ailes, dans la direction perpendiculaire à la face du pare brise, s'étendent sur leur plus grande longueur sur 420mm. 



   Le pare brise est posé sur quatre plots placés de façon symétrique par rapport à la médiane, et à 300mm de part et d'autre de celle-ci. Des vérins hydrauliques sont disposés pour pousser les extrémités des ailes du vitrage (figure 3a). Des jauges de contraintes sont placées en différents points du vitrage aux emplacements indiqués à la figure 3b. Les jauges 1 à 8 sont situées sur la face convexe du vitrage. Les jauges 9 et 10 sont sur la face concave, respectivement en face des jauges 1 et 5. 



   Le tableau suivant donne le résultat des mesures d'écartement de chaque extrémité des ailes en fonction de la force exercée par chaque vérin, et les contraintes résultantes enregistrées. 



   Les mesures sont faites après 10 secondes dans chaque position, en écartant chaque extrémité d'aile de 5 en 5mm, de 0 à 40mm, puis en revenant à la position initiale de repos. Dans ces essais le temps de maintien total du vitrage sous contrainte est très largement supérieur à celui nécessaire pour la mise en place dans les conditions industrielles.

   Les contraintes sont exprimées en MPa, 

 <Desc/Clms Page number 8> 

 
 EMI8.1 
 
<tb> 
<tb> mm <SEP> daN <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4 <SEP> 5 <SEP> 6 <SEP> 7 <SEP> 8 <SEP> 9 <SEP> 10
<tb> 10 <SEP> lu-2, <SEP> 52-3, <SEP> 38 <SEP> 3, <SEP> 6 <SEP> -1. <SEP> 15 <SEP> -5, <SEP> 04 <SEP> -S, <SEP> 54 <SEP> -1. <SEP> 00 <SEP> 0, <SEP> 50 <SEP> 8, <SEP> 21 <SEP> 5. <SEP> 11
<tb> 15 <SEP> 17 <SEP> 2,88 <SEP> -4, <SEP> 32 <SEP> 0, <SEP> 29 <SEP> -1,80 <SEP> -6,77 <SEP> -7,20 <SEP> -1, <SEP> 37 <SEP> 0, <SEP> 65 <SEP> 10, <SEP> 87 <SEP> 6.70
<tb> 20 <SEP> 20 <SEP> -3, <SEP> 31 <SEP> -4, <SEP> 97 <SEP> 0 <SEP> -2,38 <SEP> -7,85 <SEP> -8,14 <SEP> -1,94 <SEP> 0. <SEP> 43 <SEP> 12, <SEP> 96 <SEP> 8. <SEP> 06
<tb> 25 <SEP> 25-3, <SEP> 82-5, <SEP> 70-0, <SEP> 50-3, <SEP> 31-9, <SEP> 65-10, <SEP> 00-2, <SEP> 66 <SEP> 0. <SEP> 14 <SEP> 15, <SEP> 98 <SEP> 9, <SEP> 72
<tb> 30J30-4.

   <SEP> 10-6, <SEP> 20-0, <SEP> 79-3, <SEP> 89-10. <SEP> 80-11. <SEP> 23-3. <SEP> 17 <SEP> 018. <SEP> 14 <SEP> 11. <SEP> 23
<tb> 3535-4. <SEP> 20-6, <SEP> 70-0, <SEP> 72-4, <SEP> 03-12. <SEP> 38-12. <SEP> 74-3. <SEP> 31 <SEP> 0,29 <SEP> 20, <SEP> 66 <SEP> 13.03
<tb> 40 <SEP> 37 <SEP> -4,25 <SEP> -7,13 <SEP> -0,50 <SEP> -4,25 <SEP> -14,40 <SEP> -14,62 <SEP> -3,31 <SEP> 0,79 <SEP> 23,26 <SEP> 15,34
<tb> 0 <SEP> 0 <SEP> -0,50 <SEP> -0,50 <SEP> -0,07 <SEP> -0,29 <SEP> -0,07 <SEP> -0,58 <SEP> -0,14 <SEP> -0,29 <SEP> -0,07 <SEP> -0,07
<tb> 
 
 EMI8.2 
 Les résultats figurant dans ce tableau montrent que, quel que soit l'emplacement sur le vitrage, la déformation imposée n'entraîne pas de contraintes supérieures à celles que l'on considère comme susceptibles d'occasionner une casse.

   Pour les vitrages feuilletés, on s'impose de ne pas dépasser une contrainte superficielle momentanée de 25MPa. La contrainte la plus élevée se situe sur la face concave au centre du vitrage, et reste inférieure à la limite indicative choisie. 



  Les résultats de cet essai sont transposables aux vitrages monolithiques. Si au lieu de considérer un vitrage feuilleté, comme ci-dessus, on entreprend la modification momentanée d'un vitrage trempé, on sait que les contraintes qui peuvent être imposées, sans risques excessifs, sont nettement plus importantes. En conséquence des verres trempés pourront encore mieux supporter les modifications consécutives à la mise en place selon l'invention. 



  L'application de l'invention ne se limite pas aux situations dans lesquelles la présence d'un cordon de colle rend la mise en place plus délicate. Dans de nombreuses situations des vitrages préalablement pourvus d'un joint en matériau élastomère doivent être introduits dans un logement de dimensions telles que le joint doit nécessairement être comprimé dans le sens du plan de la feuille de verre. La mise en place en force dans le logement recevant le vitrage conduit alors à un cisaillement du joint qui peut conduire à l'arrachage de celui, et dans tous les cas peut rendre le positionnement moins précis et moins stable. 



  Les figures 4 montrent l'utilisation de la technique proposée selon l'invention, dans laquelle un vitrage monolithique 14, muni d'un joint 15 en matériau élastomère, est introduit dans une feuillure 16 d'un cadre rigide. 

 <Desc/Clms Page number 9> 

 



  Le vitrage muni de son joint est de dimensions légèrement supérieures à celles de la feuillure dans laquelle il doit s'insérer (figure 4a). Pour ramener les dimensions de l'ensemble à des valeurs plus petites, la feuille 14 est soumise à une flexion limitée et momentanée (figure 4b). 



   Dans le mode représenté, la déformation est très largement exagérée pour plus de clarté. Dans la pratique, le gain nécessaire se limite à quelques millimètres dans la longueur du vitrage, correspondant à une flèche relativement limitée. La déformation élastique dans ce cas est d'autant plus aisée que le vitrage est trempé, et que ses dimensions sont plus grandes. 



  Comme précédemment, le vitrage maintenu en flexion est placé dans son cadre. Les extrémités du joint dans cette opération ne font plus obstacle à cette mise en place. Une fois dans la feuillure, les forces qui déforment la feuille de verre sont relâchées. La feuille reprend sa forme initiale (figure 4c). 



  Simultanément les extrémités du joint 15 sont comprimées contre les parois de la feuillure 16. 



   Suivant le mode de mise en place d'un vitrage tel que décrit cidessus, il est possible en choisissant un dessin de feuillure adéquat (profil de type contre-dépouille), de supprimer le cordon de colle habituellement utilisé pour fixer le vitrage. Un des avantages de la suppression de la colle dans les applications automobiles, est de permettre, le cas échéant, la suppression des bandes émaillées utilisées pour masquer la colle dont le contour très irrégulier, après écrasement du cordon, est inesthétique. La présence de ces bandes émaillées constitue à l'heure actuelle un obstacle au recyclage systématique des verres automobiles, en raison des pigments entrant dans leurs composition usuelles. La fixation sans colle, de vitrages sans émaux, favorise grandement les possibilités de recyclage. 



   Dans les exemples précédents les feuilles de verre retrouvent leur forme initiale après mise en place. Il est encore possible que les dimensions du vitrage soient volontairement légèrement supérieures à celle du logement dans lequel il est introduit. Dans ce cas, une fois relâchées les forces assurant la déformation, le vitrage ne peut reprendre entièrement ses dimensions initiales. 



  Bloqué dans le cadre rigide, il conserve une déformation limitée. Cette façon de procéder permet en particulier d'obtenir une courbure permanente en faisant l'économie des opérations habituellement nécessaires pour parvenir à ce résultat. 



   La figure 5 présente une situation comparable à celle de la figure
4a, mais dans ce cas les dimensions de la feuille de verre elle-même sont supérieures à celles du logement délimité par les feuillures du châssis. La figure 

 <Desc/Clms Page number 10> 

 5 présente la feuille de verre en regard du logement dans lequel elle doit s'insérer après avoir été incurvée. Une fois la feuille mise ne place dans le logement, le relâchement des efforts assurant la déformation initiale plaque les extrémités de la feuille muni du joint contre les parois de la feuillure comme précédemment. Cette fois cependant, compte tenu de ses dimensions la feuille ne peut reprendre sa forme initiale. Il demeure une certaine incurvation. 



   La déformation permanente acceptable, sans risque de rupture, est dans ce cas inférieure à celle indiquée précédemment pour les déformations momentanées. Pour une feuille trempée la déformation permanente est de préférence choisie de telle sorte que les contraintes permanentes induites soient au plus égales à 20MPa. Pour un vitrage feuilleté répondant aux épaisseurs indiquées, ces contraintes induites permanentes sont de préférence inférieures à 10MPa. En pratique, le plus souvent, les dimensions du vitrage ne sont pas supérieures à 106% de celles du logement dans lequel il est inséré, et plus fréquemment encore, pas supérieures à 103%. Les variations dimensionnelles sont évidemment tributaires des caractéristiques initiales de la feuille et en particulier de son épaisseur et de l'intensité de la trempe. 



   La réaction du vitrage assure le blocage de celui-ci dans son cadre. Comme précédemment un profil adéquat du cadre permet d'éviter le collage. Pour assurer l'intégrité du vitrage il est aussi nécessaire de prévenir le contact direct du verre avec le cadre. A cet effet on interpose alors un joint pratiquement non résilient, d'un matériau moins dur que le verre, par exemple un joint de polyuréthanne, de polyamide ou analogue.



   <Desc / Clms Page number 1>
 



   "Clip-on" glazing in a rigid frame
The present invention relates to a method of installing glazing in the housing of a rigid frame. More particularly, the invention relates to the case where the glazing and the housing in which it is to be inserted have dimensions or a configuration such that access of the glazing to the housing cannot be undertaken without special measures.



   Windshields and rear windows of motor vehicles represent the type of glazing for which the invention finds the most applications. In the following description, reference is made to this main type, but all the glazings installed in a housing of a frame which have the dimensions problems indicated can lead to the implementation of the technique proposed by the 'invention.



   In the installation of glazing in rigid frames, such as in particular automobile bodies, the glazing is usually previously fitted with one or more elastomeric seals intended to position the glazing relative to the housing in which it is inserted, and to guarantee the tightness of the assembly. The perimeter of the glazing is also coated with a bead of glue which must ensure the fixing of the glazing to the frame after installation. In normal practice, the glazing, provided with seals and beads of glue, is presented facing the housing into which it is inserted, in such a way that the seals and the bead of glue arranged at the periphery, are slightly compressed over their entire length, thus ensuring sealing and bonding without discontinuity.

   By assumption, according to the invention, the perimeter delimited by the housing and its possible additional elements that are the joints and beads of glue, has dimensions and / or a configuration which do not allow the installation under the usual conditions.



   The size which does not allow a simple installation, can come from the respective dimensions of the glazing and of the housing in the frame. It can also result from additional elements attached to one or the other, and in particular to the seals, encapsulation profiles, beads of glue or the like which protrude from the glazing, or from the housing of the rigid frame.

 <Desc / Clms Page number 2>

 



   To allow the realization of the applications indicated above, and others which will appear in the following, the invention proposes a method of placing a glazing in the housing of a rigid frame, in which the dimensions of the glazing are modified by an elastic deformation, at least momentarily, this elastic deformation of the glazing being such that it makes possible the access of the glazing to its housing. The glazing thus modified is placed in position in the housing, then the forces ensuring the deformation of the glazing are released so that the glazing tends to return to its initial dimensions by fitting into its housing.



   The possibility of overcoming to a certain extent the constraints imposed by the relative size of the glazing with respect to the housing offers various advantages.



   An advantage is to be able to use glazing of more complex shapes.



   Another advantage is, if necessary, to carry out assemblies in bulk conditions which, according to traditional means, could not have been envisaged.



   These possibilities find applications in all areas where glazing is used, and in particular in that of motor vehicles. It is to this field that reference is made in the following, because it is certainly that which calls for the most diverse solutions while requiring simple, inexpensive implementations and guaranteeing performances which are difficult to achieve.



   It is known to shape glazing by taking advantage of their elastic deformation. The shaping in this case corresponds to a permanent state. A publication concerning this type of glazing is that made by the applicant in BE 1005041. The object of this publication is the bending of a small curvature of a laminated glazing. According to this publication, the glazing is curved by mechanically deforming a set of two sheets of glass and an interlayer sheet of thermoplastic material. The elastic deformation of the sheets is made permanent by the bonding of the assembly. The aim is in particular to avoid optical defects which result from hot bending transformations. In this technique, the glazing is shaped before being put into place in the structure which receives it, and is not subsequently modified.

   Besides, the shapes are very specific. These are very slightly curved glazing. The radii of curvature of these glazings are of the order of ten meters. The glass sheets used in these glazings are also tempered, preferably chemically, to

 <Desc / Clms Page number 3>

 improve their resistance to deformation.



   Contrary to what is taught in this publication, the elastic deformation according to the invention is undertaken only during the establishment. It is not a prerequisite for this operation.



   The elastic deformation which can be applied to the glazing without risking damaging it obviously depends on its composition. In the latter it is necessary to understand not only the intrinsic characteristics of the glass sheet (s), in particular its thickness and the tempering treatments, thermal or chemical, to which it (s) may have been subjected. (s), but also the assemblies in which these sheets enter.



   The glass sheets of laminated glazing have well-known features. They are generally not soaked. They can if necessary be hardened to give them an improved mechanical resistance, a resistance which remains much lower than that of thermally toughened glasses, and even more so of chemically toughened glasses. Furthermore, the laminated assemblies generally lend themselves less easily to deformations due to the risks of delamination specific to these products.



   The invention applies to laminated glazing and to simple or monolithic glazing, taking account of their respective mechanical properties.



   Thus the invention applies to simple glazings which, preferably, have a thickness which is not more than 5mm, and advantageously not more than 4mm. Larger thicknesses can be considered, but the elastic deformations, for a glazing of determined dimensions, are all the more limited as the thickness is greater. For automotive glazing serving as a reference, these thicknesses are in any case limited for reasons of weight.



   The deformations of the thermally toughened glass sheets used according to the invention are preferably such that the stresses induced in bending remain less than 80 MPa, and even more preferably less than 50 MPa.



   For chemically quenched sheets, the bending stresses can be greater than those indicated above, insofar as the chemical quenching results, in the sheet, generally at stresses greater than that obtained by thermal quenching. Thermal quenching, for reasons of economy, is generally preferred for mass market products. However, chemical quenching remains applicable when technical considerations take precedence over those relating to costs.

 <Desc / Clms Page number 4>

 



   Laminated glazing normally consists of sheets of glass which are not toughened due to the conditions specific to their shaping, and to the mechanical properties which it is desired to confer on them. The sheets in question are often "hardened", in other words, they have undergone a treatment which leads them to intermediate mechanical properties between those of toughened glasses and those of annealed glasses. In other words, the glass sheets in question have internal stresses which allow them to withstand less elastic deformations than those of tempered sheets of the same thickness.



   Laminated glazing is still dependent on the characteristics specific to its composition. The two glass sheets do not necessarily have the same thicknesses, and therefore not the same flexural strength characteristics. But in addition to the characteristics of the leaves, we must take into account the whole itself. The glazing used according to the invention must offer the possibility of sufficient elastic deformation, without risk of deterioration, in particular without risk of delamination.



   The sheets forming part of the laminated glazing used according to the invention have a thickness which preferably is not more than 3mm, and better still, not more than 2.5mm.



   The total thickness of the laminated glazing used according to the invention is preferably less than 7mm, and is advantageously less than 6mm.



   The elastic deformations of the laminated glazings used according to the invention are preferably such that the stresses induced in bending in each of the sheets, are not greater than 30 MPa and in a particularly preferred manner, not greater than 20MPa.



   The invention is described in the following in more detail with reference to the drawing boards in which: - Figure 1 is a schematic perspective view of how to install a glazing on the body of a vehicle ; - Figures 2a, 2b, 2c and 2d show in section along A, a detail of the establishment of a glazing of the type presented in Figure 1; - Figures 3a and 3b schematically illustrate the arrangement for testing the flexural strength of glazing of the type presented in Figure 1; - Figures 4a, 4b and 4c show in section another mode of implementation according to the invention - Figure 5 shows the case of the installation of a glazing according to

 <Desc / Clms Page number 5>

 the invention, leading to permanent deformation.



   Figure 1 shows schematically a part of the body of a vehicle comprising the roof 1, a lateral upright 2, and a part of the rest of the chassis. The diagrammatic part can correspond to the front or the rear of the vehicle. In the following, speaking of the glazing which is inserted into this part of the bodywork, reference is made to a windshield. It is understood that the same presentation applies in the case where it is a question of a rear window. These two types of glazing are regularly those which may require the type of installation proposed according to the invention, taking into account the trends followed by the stylists of the automobile manufacturers at present. As the following description further establishes, the invention also finds applications for other fixed glazing, for example the rear quarter lights of vehicles.



   It goes without saying that the composition of the glazing, depending on whether it is a windshield or rear window, is not normally the same. In particular, as regards the characteristics of the implementation of the invention, the windshields very generally consist of laminated glazing, while the rear glasses are normally made of a single sheet of glass.



   As indicated above, this difference in the nature of the glazing is important according to the invention with regard to the deformation capacities liable to be imposed on the glazing during its installation, without risking going beyond the stage of elastic deformation.



   Opposite the vehicle body, there is shown the glazing 3 which must be put in place. The glazing in this example has a very strongly curved shape on the sides, the two lateral parts 4 and 5, coming to fold down on the sides of the vehicle. One advantage of such an arrangement is to increase the visual field of the passengers.



   If such an arrangement, in addition to the advantage indicated above, can confer interesting aesthetic effects, it nevertheless raises some difficulties of implementation. The manufacture of U-shaped glazing is well mastered by glassmakers. The fact remains that traditional methods of attachment cannot be used as is.



   According to these traditional methods, the glazing to be fixed in the bay of the bodywork has a seal at its periphery. This seal referenced 6 in Figures 2, is intended to serve as a means of protecting the glazing, avoiding contact of the latter with the metal structure of the body referenced 7. The housing formed in the body to receive the glazing 3, forms a rebate 8

 <Desc / Clms Page number 6>

 the depth of which is adapted to the thickness of the glazing provided with its seal 6. The fixing proper is obtained by gluing the glazing 3 into the metal rebate 8.



   The adhesive is introduced with the glazing to ensure perfect location of the bonding position. In practice, the adhesive is applied in the form of a bead 9 immediately before the glazing is put in place. The bead of adhesive is thick enough so that, during installation, it is compressed against the rebate thus ensuring good contact over a suitable width. Also in this way, the continuity of the body glazing connection guarantees good sealing. Given this dimensional need, the bead of adhesive 9, in the arrangement presented in FIG. 2a, is thicker than the joint 6.



   FIG. 2a illustrates the difficulty encountered for a form of glazing such as that of FIG. 1. The glazing of which only the lateral part 4 is shown, is advanced towards the bodywork bay along a trajectory substantially perpendicular to the position which it must occupy once set up. This direction is that which relates to the central part of the glazing, the glazing extending symmetrically on either side. The movement imposed on the glazing is indicated by the arrow B in FIG. 1. Taking into account the general U-shape of the glazing, the end 4 is presented so that, without any other arrangement, the adhesive joint cannot come in final position without being laminated by the end of the rebate. This is not acceptable for several reasons.



  First, the elimination of the upper part of the bead of adhesive means that the crushing on the rebate, which guarantees good contact, is no longer ensured. The bonding is therefore defective. Second, the glue which is scraped by the end 10 of the rebate, spreads beyond the zone normally provided and generally hidden from view from the outside by suitable enameling placed on the edge of the glazing. The irregular glue joint may become partially visible. But the most important without a doubt is that the irregularity in the placement of the bead of adhesive can compromise the tightness of the assembly.



   To avoid these drawbacks, according to the invention, the glazing 3 is momentarily, and slightly deformed during its installation, so that the lateral parts 4 and 5 are spaced from the rebates on which they must be positioned. This is shown in Figure 2b. In this case the elastic deformation is limited to what is necessary to ensure that the bead of adhesive 9 does not come into contact with the endlO of the rebate.



   FIG. 2c shows the position of the glazing before the relaxation of the forces allowing the elastic deformation of the glazing. The establishment

 <Desc / Clms Page number 7>

 ends, FIG. 2d, by the relaxation of the forces exerted on the glazing. The wing
4 presses the semi-rigid seal 6 on the rebate. Simultaneously the bead of glue is crushed on the rebate ensuring dynamic contact with it.



   The parts of the glazing not shown in Figures 2, stick together according to traditional methods. The movement of the glazing towards the opening compresses the bead of glue without requiring any special arrangements.



   What is presented in FIGS. 1 and 2, in which the wings of the U-shaped glazing are spaced from one another, can be transposed in the case where these wings should be brought closer to the glazing. This situation is for example that which one can envisage in the hypothesis where the installation of the glazing would be made from inside the bodywork.



   An elastic deformation test of a windshield was carried out to show that the constraints imposed in the implementation of the invention were compatible with the mechanical characteristics of this type of product. The windshield tested is composed of two sheets of glass, each 2.3 mm thick. These two sheets are joined by an intermediate sheet of PVB 0.76 mm thick. The very inclined windshield on the body (unlike the representation in Figure 1) is higher than wide (1350xl300mm). The wings, in the direction perpendicular to the face of the windscreen, extend over their greatest length over 420mm.



   The windshield is placed on four studs placed symmetrically with respect to the median, and 300mm on either side of it. Hydraulic cylinders are arranged to push the ends of the glazing wings (Figure 3a). Strain gauges are placed at different points of the glazing at the locations indicated in Figure 3b. The gauges 1 to 8 are located on the convex face of the glazing. The gauges 9 and 10 are on the concave face, respectively opposite the gauges 1 and 5.



   The following table gives the result of the spacing measurements of each end of the wings as a function of the force exerted by each cylinder, and the resulting stresses recorded.



   The measurements are made after 10 seconds in each position, moving each wing end 5 to 5mm apart, from 0 to 40mm, then returning to the initial rest position. In these tests, the total holding time of the glazing under stress is very much greater than that required for installation under industrial conditions.

   The stresses are expressed in MPa,

 <Desc / Clms Page number 8>

 
 EMI8.1
 
<tb>
<tb> mm <SEP> daN <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4 <SEP> 5 <SEP> 6 <SEP> 7 <SEP> 8 <SEP> 9 <SEP> 10
<tb> 10 <SEP> lu-2, <SEP> 52-3, <SEP> 38 <SEP> 3, <SEP> 6 <SEP> -1. <SEP> 15 <SEP> -5, <SEP> 04 <SEP> -S, <SEP> 54 <SEP> -1. <SEP> 00 <SEP> 0, <SEP> 50 <SEP> 8, <SEP> 21 <SEP> 5. <SEP> 11
<tb> 15 <SEP> 17 <SEP> 2.88 <SEP> -4, <SEP> 32 <SEP> 0, <SEP> 29 <SEP> -1.80 <SEP> -6.77 <SEP> -7.20 <SEP> -1, <SEP> 37 <SEP> 0, <SEP> 65 <SEP> 10, <SEP> 87 <SEP> 6.70
<tb> 20 <SEP> 20 <SEP> -3, <SEP> 31 <SEP> -4, <SEP> 97 <SEP> 0 <SEP> -2.38 <SEP> -7.85 <SEP> - 8.14 <SEP> -1.94 <SEP> 0. <SEP> 43 <SEP> 12, <SEP> 96 <SEP> 8. <SEP> 06
<tb> 25 <SEP> 25-3, <SEP> 82-5, <SEP> 70-0, <SEP> 50-3, <SEP> 31-9, <SEP> 65-10, <SEP> 00 -2, <SEP> 66 <SEP> 0. <SEP> 14 <SEP> 15, <SEP> 98 <SEP> 9, <SEP> 72
<tb> 30J30-4.

   <SEP> 10-6, <SEP> 20-0, <SEP> 79-3, <SEP> 89-10. <SEP> 80-11. <SEP> 23-3. <SEP> 17 <SEP> 018. <SEP> 14 <SEP> 11. <SEP> 23
<tb> 3535-4. <SEP> 20-6, <SEP> 70-0, <SEP> 72-4, <SEP> 03-12. <SEP> 38-12. <SEP> 74-3. <SEP> 31 <SEP> 0.29 <SEP> 20, <SEP> 66 <SEP> 13.03
<tb> 40 <SEP> 37 <SEP> -4.25 <SEP> -7.13 <SEP> -0.50 <SEP> -4.25 <SEP> -14.40 <SEP> -14.62 <SEP> -3.31 <SEP> 0.79 <SEP> 23.26 <SEP> 15.34
<tb> 0 <SEP> 0 <SEP> -0.50 <SEP> -0.50 <SEP> -0.07 <SEP> -0.29 <SEP> -0.07 <SEP> -0.58 <SEP> -0.14 <SEP> -0.29 <SEP> -0.07 <SEP> -0.07
<tb>
 
 EMI8.2
 The results appearing in this table show that, whatever the location on the glazing, the imposed deformation does not cause stresses greater than those which are considered likely to cause breakage.

   For laminated glazing, it is essential not to exceed a momentary surface stress of 25 MPa. The highest stress is located on the concave face in the center of the glazing, and remains below the chosen indicative limit.



  The results of this test can be transferred to monolithic glazing. If instead of considering laminated glazing, as above, we undertake the momentary modification of a toughened glazing, we know that the constraints that can be imposed, without excessive risks, are much greater. Consequently, toughened glasses will be able to withstand even better the modifications resulting from the positioning according to the invention.



  The application of the invention is not limited to situations in which the presence of a bead of adhesive makes the installation more delicate. In many situations glazing previously provided with a seal of elastomeric material must be introduced into a housing of dimensions such that the seal must necessarily be compressed in the direction of the plane of the glass sheet. The introduction into force in the housing receiving the glazing then leads to shearing of the seal which can lead to the tearing of that, and in all cases can make the positioning less precise and less stable.



  Figures 4 show the use of the technique proposed according to the invention, in which a monolithic glazing 14, provided with a seal 15 of elastomeric material, is introduced into a rebate 16 of a rigid frame.

 <Desc / Clms Page number 9>

 



  The glazing fitted with its seal is slightly larger than the rebate in which it must fit (Figure 4a). To reduce the dimensions of the assembly to smaller values, the sheet 14 is subjected to a limited and momentary bending (FIG. 4b).



   In the mode shown, the deformation is very largely exaggerated for clarity. In practice, the gain required is limited to a few millimeters in the length of the glazing, corresponding to a relatively limited deflection. The elastic deformation in this case is all the easier as the glazing is toughened, and as its dimensions are larger.



  As before, the glazing maintained in flexion is placed in its frame. The ends of the joint in this operation no longer obstruct this establishment. Once in the rebate, the forces which deform the glass sheet are released. The sheet returns to its original shape (Figure 4c).



  Simultaneously the ends of the seal 15 are pressed against the walls of the rebate 16.



   According to the mode of installation of a glazing as described above, it is possible by choosing an adequate rebate design (profile of undercut type), to remove the bead of glue usually used to fix the glazing. One of the advantages of removing the glue in automotive applications is that it allows, if necessary, the removal of the enameled strips used to mask the glue, the very irregular outline of which, after crushing the bead, is unsightly. The presence of these enameled bands currently constitutes an obstacle to the systematic recycling of automotive glass, due to the pigments used in their usual composition. The fixing without glue, glazing without enamels, greatly favors the possibilities of recycling.



   In the previous examples, the glass sheets regain their initial shape after installation. It is still possible that the dimensions of the glazing are deliberately slightly greater than that of the housing in which it is introduced. In this case, once the forces ensuring the deformation have been released, the glazing cannot fully return to its initial dimensions.



  Locked in the rigid frame, it retains a limited deformation. This procedure allows in particular to obtain a permanent curvature by saving the operations usually necessary to achieve this result.



   Figure 5 presents a situation comparable to that of Figure
4a, but in this case the dimensions of the glass sheet itself are greater than those of the housing delimited by the rebates of the frame. The figure

 <Desc / Clms Page number 10>

 5 presents the glass sheet opposite the housing in which it must be inserted after having been curved. Once the sheet has been placed in the housing, the relaxation of the forces ensuring the initial deformation plates the ends of the sheet fitted with the seal against the walls of the rebate as before. This time, however, given its size, the sheet cannot return to its original shape. There remains a certain curvature.



   The acceptable permanent deformation, without risk of rupture, is in this case less than that indicated above for momentary deformations. For a tempered sheet, the permanent deformation is preferably chosen so that the induced permanent stresses are at most equal to 20 MPa. For laminated glazing corresponding to the thicknesses indicated, these permanent induced stresses are preferably less than 10 MPa. In practice, most often, the dimensions of the glazing are not greater than 106% of those of the housing in which it is inserted, and more frequently still, not greater than 103%. The dimensional variations are obviously dependent on the initial characteristics of the sheet and in particular on its thickness and the intensity of the quenching.



   The reaction of the glazing ensures that it is blocked in its frame. As before, an adequate profile of the frame makes it possible to avoid sticking. To ensure the integrity of the glazing it is also necessary to prevent direct contact of the glass with the frame. To this end, a practically non-resilient seal is then interposed, of a material which is less hard than glass, for example a polyurethane, polyamide or similar seal.


    

Claims (1)

REVENDICATIONS 1. Procédé de mise en place d'un vitrage dans un logement de châssis rigide, éventuellement pourvu d'éléments du type joint, profilé d'encapsulation, cordon d'adhésif et analogues, dans lequel les dimensions du vitrage sont modifiées en le forçant à une déformation élastique, au moins momentanément, pour atteindre des valeurs compatibles avec la mise en place dans le logement, mise en position dans le logement du vitrage maintenu déformé, et relâchement des forces exercées pour la déformation, conduisant à une reprise de dimensions du vitrage.  CLAIMS 1. Method for placing a glazing unit in a rigid frame housing, possibly provided with elements of the joint type, encapsulation profile, adhesive bead and the like, in which the dimensions of the glazing unit are modified by forcing it to elastic deformation, at least momentarily, to reach values compatible with the positioning in the housing, positioning in the housing of the glazing maintained deformed, and relaxation of the forces exerted for the deformation, leading to a resumption of dimensions of the glazing. 2. Procédé selon la revendication 2 dans lequel le vitrage est un vitrage automobile et le châssis rigide est constitué par un ou plusieurs éléments de carrosserie.  2. Method according to claim 2 wherein the glazing is an automotive glazing and the rigid frame is constituted by one or more bodywork elements. 3. Procédé selon l'une des revendications précédentes dans lequel le vitrage est formé d'une feuille de verre unique, dont l'épaisseur n'est pas supérieure à 5mm et de préférence pas supérieure à 4mm.  3. Method according to one of the preceding claims wherein the glazing is formed of a single glass sheet, the thickness of which is not more than 5mm and preferably not more than 4mm. 4. Procédé selon la revendication 3 dans lequel la feuille de verre est trempée.  4. The method of claim 3 wherein the glass sheet is tempered. 5. Procédé selon l'une des revendication 3 ou la revendication 4, dans lequel la déformation élastique imposée au vitrage par flexion, n'induit pas une contrainte supérieure à 80MPa, et de préférence pas supérieure à 50MPa.  5. Method according to one of claim 3 or claim 4, wherein the elastic deformation imposed on the glazing by bending, does not induce a stress greater than 80MPa, and preferably not greater than 50MPa. 6. Procédé selon l'une des revendications 1 ou 2, dans lequel le vitrage est feuilleté et comprend deux feuilles de verre dont chacune présente une épaisseur au plus égale à 3mm, et de préférence au plus égale à 2, 5mm.  6. Method according to one of claims 1 or 2, wherein the glazing is laminated and comprises two sheets of glass each of which has a thickness at most equal to 3mm, and preferably at most equal to 2.5mm. 7. Procédé selon la revendication 6, dans lequel la déformation élastique imposée par flexion, n'induit pas une contrainte supérieure à 30MPa, et de préférence pas supérieure à 25MPa.  7. The method of claim 6, wherein the elastic deformation imposed by bending, does not induce a stress greater than 30MPa, and preferably not greater than 25MPa. S. Procédé selon l'une des revendications précédentes pour la mise en place dans un logement d'un vitrage dont les dimensions au repos sont légèrement supérieures à celle du logement, de telle sorte qu'après mise en place, le vitrage conserve une légère déformation élastique qui le bloque dans le logement.  S. Method according to one of the preceding claims for the installation in a housing of a glazing whose dimensions at rest are slightly greater than that of the housing, so that after installation, the glazing retains a slight elastic deformation which blocks it in the housing. 9. Procédé selon la revendication 8 dans lequel le rapport des dimensions du vitrage au repos, à celles du logement n'excède pas 1,06.  9. The method of claim 8 wherein the ratio of the dimensions of the glazing at rest to those of the housing does not exceed 1.06. 10. Procédé selon la revendication 9 dans lequel la tension maintenue dans le vitrage mis en place n'excède pas 10MPa pour un vitrage feuilleté et 20MPa pour un vitrage trempé. <Desc/Clms Page number 12>  10. The method of claim 9 wherein the tension maintained in the glazing in place does not exceed 10MPa for laminated glazing and 20MPa for tempered glazing.  <Desc / Clms Page number 12>   11. Procédé selon l'une des revendications précédentes dans lequel le vitrage présente une forme générale incurvée en U, la déformation élastique imposée étant exercée de telle façon que les branches du U soient écartées l'une de l'autre.  11. Method according to one of the preceding claims wherein the glazing has a generally U-shaped curve, the imposed elastic deformation being exerted in such a way that the branches of the U are spaced from one another. 12. Procédé selon la revendication 11, dans lequel le vitrage constitue un pare-brise ou une lunette arrière automobile portant un cordon de colle sur le pourtour de sa face concave, la déformation élastique imposée à ce pare-brise étant destinée à permettre la mise en place sur la carrosserie en écartant les extrémités du pare-brise de telle sorte que le cordon de colle n'entre pas en contact avec le châssis avant que le vitrage soit en place dans son logement.  12. The method of claim 11, wherein the glazing constitutes a windshield or an automotive rear window carrying a bead of adhesive around the periphery of its concave face, the elastic deformation imposed on this windshield being intended to allow the setting in place on the bodywork, spreading the ends of the windshield so that the bead of adhesive does not come into contact with the frame before the glazing is in place in its housing. 13. Procédé selon l'une des revendications 1 à 10, dans lequel le vitrage présente une forme générale incurvée en U, la déformation élastique imposée étant exercée de telle façon que les branches du U soient rapprochées l'une de l'autre.  13. Method according to one of claims 1 to 10, wherein the glazing has a generally U-shaped curved shape, the imposed elastic deformation being exerted in such a way that the branches of the U are brought together. 14. Procédé selon l'une des revendications 1 à 10 dans lequel le vitrage est mis en place dans un logement comprenant une feuillure dont les dimensions d'accès sont légèrement inférieures à celles du vitrage, la flexion du vitrage permettant de passer dans l'espace d'accès au logement.  14. Method according to one of claims 1 to 10 wherein the glazing is placed in a housing comprising a rebate whose access dimensions are slightly smaller than those of the glazing, the bending of the glazing making it possible to pass into the housing access space.
BE9900753A 1999-11-19 1999-11-19 GLASS "clip" IN A RIGID CHASSIS. BE1013144A3 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BE9900753A BE1013144A3 (en) 1999-11-19 1999-11-19 GLASS "clip" IN A RIGID CHASSIS.
AU17020/01A AU1702001A (en) 1999-11-19 2000-11-14 Glass panel adapted to be clipped onto a rigid frame
PCT/EP2000/011375 WO2001036256A1 (en) 1999-11-19 2000-11-14 Glass panel adapted to be clipped onto a rigid frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE9900753A BE1013144A3 (en) 1999-11-19 1999-11-19 GLASS "clip" IN A RIGID CHASSIS.

Publications (1)

Publication Number Publication Date
BE1013144A3 true BE1013144A3 (en) 2001-10-02

Family

ID=3892169

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9900753A BE1013144A3 (en) 1999-11-19 1999-11-19 GLASS "clip" IN A RIGID CHASSIS.

Country Status (3)

Country Link
AU (1) AU1702001A (en)
BE (1) BE1013144A3 (en)
WO (1) WO2001036256A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232970A (en) * 1985-04-06 1986-10-17 Nissan Motor Co Ltd Setting method of window panel for automobile
DE3526959A1 (en) * 1985-07-27 1987-02-05 Daimler Benz Ag Centring method for aligning windows adhesively bonded into a window frame and device for implementing the method
FR2610573A1 (en) * 1987-02-11 1988-08-12 Carrot Louis Device allowing the rapid installation particularly of glazing elements for vehicles such as windscreens
BE1005041A5 (en) 1991-04-30 1993-03-30 Glaverbel Laminated glass hanger and manufacturing method thereof.
US5586798A (en) * 1993-01-25 1996-12-24 Honda Giken Kogyo Kabushiki Kaisha Curved window glass panel and method of installing curved window glass panel on automobile body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232970A (en) * 1985-04-06 1986-10-17 Nissan Motor Co Ltd Setting method of window panel for automobile
DE3526959A1 (en) * 1985-07-27 1987-02-05 Daimler Benz Ag Centring method for aligning windows adhesively bonded into a window frame and device for implementing the method
FR2610573A1 (en) * 1987-02-11 1988-08-12 Carrot Louis Device allowing the rapid installation particularly of glazing elements for vehicles such as windscreens
BE1005041A5 (en) 1991-04-30 1993-03-30 Glaverbel Laminated glass hanger and manufacturing method thereof.
US5586798A (en) * 1993-01-25 1996-12-24 Honda Giken Kogyo Kabushiki Kaisha Curved window glass panel and method of installing curved window glass panel on automobile body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 076 (M - 569) 7 March 1987 (1987-03-07) *

Also Published As

Publication number Publication date
AU1702001A (en) 2001-05-30
WO2001036256A1 (en) 2001-05-25

Similar Documents

Publication Publication Date Title
EP0729857B1 (en) Glazing, in particular for vehicles, prepared for mounting by glueing
EP0248707B1 (en) Window glass provided with an insertable marginal trimming strip
EP0307317B1 (en) Vehicle window
EP1324892B1 (en) Use of a glazing comprising a profiled string rim for its installation in a recess
EP0258128B1 (en) Glazing for direct glueing, in particular motorvehicle glazing
EP0307316B1 (en) Vehicle window to be glued on instantly
EP0568435B1 (en) Sealing, especially intended to form a guide rail for a movable motor vehicle window pane
WO2001045974A1 (en) Joining of a vehicle pane to a contiguous element
FR2543535A1 (en) Laminated windscreen for direct bonding to frame
EP2121362B8 (en) Method for assembling a glazing on its holder by gluing, and means for realising said method
EP1827881B1 (en) Panoramic windscreen for a motor vehicle
BE1013572A4 (en) Windows mobile pre-adjusted position.
EP1644214A1 (en) Glazing comprising a reinforcement element
FR3053922A1 (en) GLAZING LAMINATE GLASS INSIDE VERY THIN IN REMOVAL
EP2001669A1 (en) Vehicle comprising a window lined with a safety film, and production method
WO2003062003A1 (en) Gasket seal for a fixed window which is solidly connected to the flanges of an opening and the production method thereof
BE1013144A3 (en) GLASS &#34;clip&#34; IN A RIGID CHASSIS.
FR2952995A1 (en) Wedge forming assembly for use during fixation of e.g. windscreen on glazed opening support of car, has wedge fixed on branch of U-shaped section and extended in cantilever beyond core of U-shaped section
FR2902384A1 (en) Trim device for motor vehicle, has sealing joint mounted directly on body element e.g. front quarter panel, and formed by profile with two branches for embedding profile on hooking tabs provided on edge of element
FR3037001A1 (en) SEMI-TEMPERED GLASS SHEET GLAZING WITH A PROFILE JOINT PORTION HAVING A MECHANICAL REINFORCING INSERT
EP1943120B1 (en) Body element for a motor vehicle, finish seal for said element and method of assembling a windscreen
EP1586496B1 (en) Vehicle roof and vehicle having such a roof
FR3071864A1 (en) GLASS PANEL WITH POLYMERIC BOTTOM, REINFORCEMENT FRAMES AND FASTENING FRAMES
FR2916690A1 (en) Windscreen joint for motor vehicle, has pins provided at free end of arms with respect to windscreen or shrouded tail rotor, where arms are extended in space between windscreen and shrouded tail rotor
WO2022200734A1 (en) Glazing unit comprising two glass panes and a joint for assembling said glass panes

Legal Events

Date Code Title Description
RE Patent lapsed

Effective date: 20051130