<Desc/Clms Page number 1>
Appareil et procédé pour sceller un film d' emballage et pour envelopper un produit dans un emballage constitue d'un tel film
11 est connu de former des emballages scelles ä partir d'un film de matière plastique flexible qui est scelle par application de chaleur et de pression. Certaines des techniques les plus importantes pour le scellage d'un film de matière plastique comprennent : i) le scellage pour"element chauffant"ou"mors", 2) le scellage "par impulsion de chaleur", 3) le scellage "rotatif" ou "soudage à la molette".
Le scellage par element, barreau ou mors chauffant est un procede dans lequel un film de matière plastique est scelle sous pression entre des barreaux de scellage (ou "mors"). Au moins l'un des barreaux de scellage est : chauffé habituellement à l'énergie électrique.
Normalement, un reglage porte soit sur la temperature, soit sur l'energie electrique fournie à l'appareil. Un appareil alimente par une source d'energie constante et regulee peut être décrit comme etant un dispositif de scellage ä"chaleur constante". En variante, la température du barreau de scellage peut être le parametre sur lequel on agit, et l'appareil de scellage est alors appele appareil de scellage "à température constante". Lorsque la temperature est le parametre regle ou regule, un dispositif de scellage de l'art antérieur comprend normalement un dispositif independant de detection de temperature, tel qu'un thermocouple, et un regulateur independant de
<Desc/Clms Page number 2>
temperature.
Le thermocouple detecte la temperature du barreau de scellage et transmet un signal de reaction au regulateur de température. Ce mode de commande est affecté d'un retard inevitable qui tend à en limiter l'efficacite.
Pour attenuer l'effet du retard, le barreau de scellage est souvent conçu de façon être d'une masse importante (par exemple un barreau d'acier lourd). Ceci fait fonctionner le barreau chauffe ä la façon d'un radiateur, qui cede et gaspille de la chaleur dans le milieu de travail de l'operateur du dispositif de scellage.
Le scellage par impulsion de chaleur est un procede de scellage de films dans lequel des couches d'un film de matière plastique sont soumises ä une impulsion de chaleur en même temps qu'elles sont scellees sous pression entre des barreaux de scellage, De lachaleurest fournie aux barreaux de scellage uniquement pendant une courte periode du cycle de scellage. Une utilisation d'un dispositif de scellage par impulsion de chaleur reside dans un appareil d'emballage mis en oeuvre pour emballer des balles de caoutchouc synthetique au moyen d'un film souple en matière plastique.
A l'aide de cet appareil, les balles de caoutchouc synthétique sont emballees entre deux couches du film de matière plastique par scellage des couches l'une ä l'autre au moyen de barreaux de scellage realises en tube de metal d'un diametre d'environ 6. 35-12, 7 mm. On fait passer dans le tube une forte impulsion de courant électri- que afin de produire la chaleur utilisee pour le scellage.
Une fois que le joint scelle est forme, les barreaux de scellage sont refroidis par mise en circulation d'un fluide de refroidissement, tel que de l'eau ou de l'air, dans le tube. Une grande quantite d'energie est perdue dans le fluide de refroidissement et cet appareil n'est done pas d'un rendement énergétique élevé. En outre, l'appareil est sujet aux fluctuations de temperature dues aux variations de la qualite du fluide de refroidissement ou aux variations
<Desc/Clms Page number 3>
du milieu ambiant. L'appareil est également connu pour présenter de graves surchauffes si des problemes affectent l'alimentation en fluide de refroidissement.
Le scellage ou soudage ä la molette fait appel ä des molettes de pression pour sceller un film de matiere plastique. Ce dernier peut etre chauffe avant d'etre passe entre les molettes ou bien, en. Variante, les molettes peuvent etre chauffées. Des systemes de régula- tion de temperature, s'ils sont incorpores dans un appareil de soudage rotatif, contiennent normalement un thermocouple exterieur et un circuit de reaction.
Les techniques de scellage de films décrites ci-dessus exigent toutes l'application de chaleur et de pression au film de matière plastique pour former un joint scelle. Les dispositifs de scellage sont habituellement réalisés en matière lourde capable de supporter les conditions rigoureuses de chaleur et de pression presentes dans les processus de thermo-scellage.
Les proprietes de la matiere plastique utilisee dans le film peuvent affecter notablement l'opération de scellage. 11 est connu que des caracteristiques telles que le poids moleculaire et la critallinite de la matiere plastique affectent la temperature à laquelle le film de ma- tière plastique se ramo11it et la temperature ä laquelle ce film se degrade suffisamment pour être deteriore. 11 existe une gamme de temperaturesconvenant au scellage d'un film de matiere plastique, au-dessus de la temperature ä laquelle la matiere plastique se ramollit, mais au-dessous de la température ä laquelle la matiere plastique se degrade. Si le processus de scellage est conduit ä une trop basse temperature, il ne se forme pas de joint scelle convenable et ce joint mal forme s'ouvre.
Si la temperature de scellage est trop elevee, le film de matière plastique adhère au barreau de scellage et/ou est degrade au lieu d'être scelle.
<Desc/Clms Page number 4>
Le temps de scellage est egalement important.
11 est connu qu'il faut en general des temps de scellage plus longs aux températures de scellage plus basses.
Autrement dit, pour une temperature et une pression données de scellage, il existe un temps minimal de scellage qui est demande pour que le film soit scelle, ou, autrement, le film n'est pas scelle convenablement.
La productivite d'un appareil de scellage de films, telle que mesuree par le nombre de joints scelles formés, peut évidemment être amelioree par une reduction du temps nécessaire pour former un joint. Cependant, une diminution du temps de scellage doit normalement s'accom- pagner d'une elevation de la temperature de scellage, car il est connu que le temps demandé pour sceller la matière plastique depend de la temperature de l'Operation de scellage.
L'elevation de la temperature de scellage qui accompagne la reduction du temps de scellage conduit ä mener l'opération de scellage ä une temperature plus proche de la temperature de degradation de la matière plastique. 11 apparatt donc qu'il faut une excellente régulation de la temperature aux temps minimaux de scellage pour assurer un chauffage suffisant du film pour former un joint, mais pour eviter de soumettre le film ä une température dégradant la matière plastique. 11 apparatt donc qu'un appareil de scellage de films prgsentant une excellente régulation de la temperature de scellage serait d'un apport utile à la technique.
L'invention a pour objet un appareil perfectionne pour le scellage d'un film d'emballage en polymère plastique souple. Le perfeetionnement porte sur l'excellente régulation de temperature réalisée par cet appareil.
11 est done propose un appareil pour le scellage d'un film d'emballage en polymere plastique souple, qui comprend :
<Desc/Clms Page number 5>
(i) des moyens destines ä faire avancer une couche superieure et une couche inférieure dudit film d'emballage vers un poste de scellage ; (ii) des moyens de scellage du film comprenant, séparément, un élément supérieur disposé au- dessus de la couche superieure du film et un element inférieur disposé au-dessous de la couche inférieur du film ;
(iii) l'élément supérieur comprend un barreau de scellage qui comporte un bâti de support, une couche polymérique résistant aux hautes tempe- ratures reliee de faro. n amovible au-dessous de ce support, un fil chauffant de section trans- versale circulaire, relié de façon amovible pratiquement au centre du dessous de ladite couche polymerique, et une bande de recouvrement résistant aux températures élevées, reliee de façon amovible au bäti-support et recouvrant la couche polymérique et le fil chauffant ;
(iv) l'element inferieur des moyens de scellage de film comprend un barreau de formation d'un joint scellé dont la dimension et la forme corres- pondent au barreau de scellage de l'element superieur et qui comprend un bäti-support et un barreau de caoutchouc ä faible déformation rémanente après compression, résistant aux températures élevées, (v) des moyens d'alimentation en énergie électrique du fil chauffant du barreau superieur de scellage, (vi)
des moyens destines ä faire descendre l'element supérieur des moyens de scellage du film jusqu'ä ce qu'ils soient en contact avec l'élément inférieur afin que la couche supé- rieure du film soit amenée en contact avec la
<Desc/Clms Page number 6>
couche inferieure dudit film dans la zone de formation du joint scelle pour que les deux couches du film d'emballage soient scellees l'une ä l'autre, l'appareil.
ctant caractérise en ce que les moyens d'alimentation en énergie électrique sont pilotes par un dispositif de commande qui maintient le fil chauffant ä une température préréglee essentiellement constante par une alimenta- tion proportionnelle en énergie électrique en réponse ä la résistance élecrique dudit fil chauffant.
L'invention sera decrite plus en détail en regard des dessins annexes ä titre d'exemples nullement limitatifs et sur lesquels : - la figure 1 est une vue en perspective d'un appareil de scellage de films de l'art antérieur ; - la figure 2 est une élévation d'un appareil de scellage de films selon l'invention ; - la figure 3 est une élévation d'une forme préférée de réalisation de l'invention ; - la figure 4 est une vue de dessus de l'élément supérieur de scellage de la forme préférée de realisation de l'invention ; - la figure 5 est une coupe transversale du barreau transversal de scellage de l'élément superieur de la forme préférée de réalisation de l'invention ;
- la figure 6 est une vue de dessus de l'element inférieur de scellage de la forme préférée de réalisoation de l'invention ; et - la figure 7 est une coupe transversale du barreau transversal de scellage de l'élément inferieur de la forme préférée de realisation de l'invention.
La chaleur destinee ä l'appareil de scellage selon l'invention est fournie par un fil de chauffage par effet Joule température régulée. En choisissant avec soin la matière dont est constitué le fil, la résistance
<Desc/Clms Page number 7>
electrique du fil chauffant est une fonction connue de la temperature de ce fil. La resistance électrique du fil chauffant est utilisée comme signal de commande par un dispositif de commande qui règle la resistance electrique.
Etant donne que la resistance electrique est une fonction connue de la temperature, la température du fil peut être reglee indirectement par l'utilisation d'un dispositif convenable de commande qui agit directement sur la resistance electrique. Par consequent, le signal de commande fourni au dispositif de commande résulte directement de variations de la résistance électrique du fil chauffant.
On évite ainsi l'utilisation d'un dispositif exterieur de détection, tel qu'un thermocouple, pour produiredes signaux de commande. En évitant d'avoir à utiliser un dispositif independant de detection de temperature, on obtient une excellente reponse en reaction vers le dispositif de commande, ce qui permet de regler le fil chauffant ä une température essentiellement constante.
Le fil chauffant peut être réalisé en un fil metallique de diamètre relativement faible. Ceci est avantageux car le fil chauffant presente alors une perte de chaleur par rayonnement relativement faible en comparaison avec les barreaux de scellage en acier, plus massifs, utilises dans les dispositifs de scellage de l'art anterieur précite.
L'utilisation d'une variation de la resistance electrique pour fournir un signal de commande destine ä un fil chauffant ä température régulée est connue. Par exemple, la firme Watlow Winona, Inc. fabrique un fil chauffant à température régulée de ce type, qui convient à une utilisation dans l'appareil selon l'invention.
Le dispositif ä fil chauffant ä temperature regulee a été utilise precedemment pour le rechauffement de tuyauteries afin d'empêcher les tuyaux de geler par temps froid. 11 a été aussi utilise pour réguler la température d'un fluide
<Desc/Clms Page number 8>
contenu dans un recipient de stockage, mais il n'a pas ete utilisé jusqu'ä présent dans un appareil destiné à sceller un film de matière plastique.
Un type de fil chauffant à température régulée, fabrique par la firme Watlow Winona Inc. est capable de maintenir une régulation de température en deçi d'environ plus ou moins 1/2 % de l'echelle des températures de Itélément chauffant. Un élément chauffant de ce type ayant une echelle de température allant de -18 à 315 C convient ä l'appareil selon l'invention.
L'appareil selon l'invention peut être tilisé pour former des joints scellés entre deux couches d'un film de matière plastique souple, en amenant les couches
EMI8.1
du film en contact l'une avec l'autre entre les éléments de scellage de l'appareil, dans des conditions appropriees de pression et de température. Les conditions convenables de pression et de température sont celles qui permettent de former un joint scellé satisfaisant pendant l'intervalle de temps de l'etape de scellage.
Des conditions convenant ä un film particulier ne sont normalement pas connues de l'opérateur de l'appareil avant que l'on ait procede ä certains essais empiriques de scellage.
L'appareil selon l'invention permet ä l'opérateur d'etablir des conditions convenables de la manière suivante.
Le temps et la pression de scellage sont etablis par l'opérateur, puis maintenus constants pour chaque etape de formation d'un joint scellé (les réglages de pression et de temps de scellage des machines de scellage, connus dans la technique, conviennent pour l'etablissement d'un temps et d'une pression de scellage raisonnablement reproductibles entre différentes etapes de formation de joints scelles) L'operateur estime une temperature convenable de scellage pour le film ä sceller et règle en conséquence la température du film chauffant, ä temperature
<Desc/Clms Page number 9>
regulee, du present appareil. 11 procède ensuite ä un essai de scellage.
Si le joint scellé est trop faible ou incomplet, l'opérateur éléve la température de scellage pour l'essai suivant en elevant la température du fil chauffant à temperature régulée. Inversement, si le film de matière plastique est degrade, l'operateur abaisse la température de scellage pour l'essai suivant en abaissant la température du fil de scellage ä temperature regulee.
11 apparatt qu'une commande reglable de la temperature de scellage aide donc ä établir des conditions de scellage convenables. 11 apparatt aussi qu'une commande reproductible du scellage, en coopération avec des reglages reproductibles de temps et de température, contribue à 1a formation d'etapes de scellage reproductibles.
EMI9.1
Un appareil utilise pour sceller un film de matière plastique est soumis ä des conditions de travail difficiles dues ä la chaleur et la pression demandees pour former des joints scellés. 11 est donc nécessaire de proteger le fil chauffant des détériorations pendant le processus de scellage. On a determine, par experience, que le fil chauffant utilise dans l'appareil selon l'invention peut etre raisonnablement bien protege des détériorations par l'utilisation d'une matière à base de caoutchouc ä faibel déformation rémanente après compression dans la realisation d'au moins l'un des barreaux de scellage.
La figure l illustre schématiquement un appareil de scellage de film du type connu dans la technique. Des couches) et t* d'un film de matiere plastique sont scellees entre des barreaux chauffes 2 et 3 de scellage.
La figure 2 est une vue schematique montrant, par un côte, une forme de réalisation de l'appareil selon l'invention. Deux couches 10 et 10'd'un film d'emballage en polymère plastique souple sont avancées vers le poste de scellage, une couche étant avancee au-dessous de l'element superieur de scellage et l'autre au-dessus de l'element
<Desc/Clms Page number 10>
inférieur de scellage.
L'element supérieur de scellage est un barreau de scellage qui comprend un bâti-support t, une couche polymérique l 12 résistant aux hautes temperatures, reliée de façon amovible au dessous du support l, un fil chauffant 13 de section transversale circulaire, relig de façon amovible pratiquement au centre du dessous de la couche polymérique 12. et une bande 14 de recouvrement, résistant aux hautes temperatures, reliée de facon amovible au bâti-support 11 et recouvrant la couche polymérieque l 12 et le fi. l chauffant) 3. Du polytétrafluoréthylène (PTFE) et de la fibre de verre conviennent pour la realisation de la bande 14 resistant aux hautes temperatures.
Un barreau de fibre de verre convient comme matière de realisation de la couche po1ymérique 12 résistant aux hautes temperatures.
Le fil chauffant 13 est connecté à des moyens d'alimentation en energie electrique afin que l'energie électyrique fournie ä ce fil chauffant 13 soit placee sous la dependance d'un dispositif 17 de commande pour maintenir une température prereglee essentiellement constante du fil chauffant 13 par une alimentation en energie proportionnelle ä la resistance électrique du fil chauffant 13. On peut ajuster la temperature de ce fil chauffant 13 en agissant sur le point de reglage du dispositif 17 de commande.
L'élément inférieur de scellage prêsente une dimension et une forme correspondant ä celles de l'élément superieur de scellage. Cet element inferieur de scellage est un barreau de formation d'un joint scelle qui comprend un bâti-support 16 et un barreau 15 de caoutchouc ä faible deformation remanente après compression et resistant aux temperatures elevees, dispose sur ou à l'intérieur du bâtisupport. Du caoutchouc silicone constitue une matière preférée pour la réalisation du barreau 15. 11 est avantageux que le bäti-support inférieur 16 et le bâti-support superieur 11 soient realises en une matière suffisamment rigide pour empêcher des deformations importantes pendant le pro-
<Desc/Clms Page number 11>
cessus de scellage.
Un profile métallique, tel qu'un profile d'acier ou d'aluminium, constitue un materiau excellent pour la realisation des bâtis-supports 11 et 16.
11 est évident ä l'homme de l'art que les operations relativement simples utilisees pour la realisation des barreaux de scellage selon l'invention présentent plusieurs avantages, parmi lesquels la facilite de fabrication
EMI11.1
et de reparation.
Des moyens appropries sont necessaires pour rapprocher les barreaux de scellage et sceller ainsi les couches du film de matière plastique l'une ä l'autre, en utilisant la chaleur fournie par le fil chauffant 13 ä température regulee, et la pression appliquée par les barreaux de scellage. 11 est evident ä l'homme de l'art que le barreau superieur de scellage peut être abaisse ou que le barreau inferieur de scellage peut etre eleve, ou encore que les deux barreaux de scellage peuvent être rapproches l'un de l'autre pour l'obtention du resultat souhaité. Des moyens connus pour rapprocher les barreaux de scellage l'un de l'autre conviennent au present appareil.
Par exemple, les moyens mécaniques utilisés pour déplacer les éléments de scellage d'un dispositif connu pour l'emballage de caoutchouc synthetique conviennent ä l'appareil selon l'invention.
11 apparatt également ä l'homme de l'art que le dispositif de scellage selon l'invention peut etre aisement incorpore dans certains des dispositifs de scellage de l'art antérieur. Ceci peut etre effectue, par exemple, par remplacement des"mors"d'un appareil de scellage ä mors, ou des barreaux ä impulsion de chaleur d'un appareil
EMI11.2
de scellage ä impulsion de l'art anterieur, par l'element supérieur de scellage, l'element inferieur de scellage et le fil chauffant ä temperature regulee, decrits ci-dessus, de la presente invention.
Ainsi, un dispositif de scellage de l'art anterieur peut etre modifie et modernise par la
<Desc/Clms Page number 12>
présente invention pour que l'on obtienne un dispositif de scellage presentant une excellente régulation de temperature. Les opérations relativement simples entrant dans la fabrication du present dispositif de scellage permettent de mener aisement ä bien de telles"modernisations".
Les figures 3,4, 5, 6 et 7 illustrent une forme préférée de réalisation de l'invention qui convient pour envelopper un produit dans un emballage scelle constitue d'un film souple en matiere plastique. Des balles de caoutchouc synthetique peuvent être convenablement emballées ä l'aide de cet appareil.
EMI12.1
La figure 3 est une vue de côté de l'appareil.
Des moyens convenables 20 et 20'fournissent : un film en matière plastique souple au poste d'emballage. La couche inférieure 21 du film de matière plastique est avancee audessous du produit ä emballer, mais au-dessus de liment inferieur de scellage, et la couche superieure 22 du film de matière plastique est avancée au-dessus du produit ä emballer, mais au-dessous de l'element inferieur de scellage.
Un transporteur 23 transporte le produit vers le poste d'emballage afin de l'amener dans une position essentiellement centree au-dessus de la couche inférieure du film (un transporteur 23'fait avancer et sortir l'emballage du poste de traitement).
L'élément supérieur de scellage comprend, successivement dans le sens du mouvement du produit ä emballer, un barreau transversal 24 de scellage d'une longueur suffisante pour former le joint scelle ä l'avant de l'emballage scellé, et, ä une certaine distance en avant du barreau transversal 24 de scellage, des moyens 25 de coupe du film d'emballage et, encore en avant des moyens de coupe, un second barreau 26 de scellage configuré de façon ä former la partie restante du joint scellé, en plus du joint avant.
Les barreaux de scellage seront décrits plus complètement
<Desc/Clms Page number 13>
ci-dessous.
L'element inferieur de scellage comprend, successivement dans le sens du mouvement du produit ä emballer, un barreau transversal 27 de formation d'un joint scelle et, en avant de ce barreau transversal 27, un second barreau 28 de formation d'un joint scelle, les deux barreaux de formation de joints ayant une dimension et une forme qui correspondent celles des barreaux de scellage de 1'élément superieur.
Des moyens 29 sont prevus pour faire descendre l'element superieur de l'appareil et l'amener en contact avec l'element inferieur afin que la couche superieure du film soit placez vautour du produit ä envelopper et amenee en contact avec la couche inférieure du film dans la zone de formation d'un joint scelle, defacon que les deux couches du film d'emballage soient scellees l'une ä l'autre autour du produit à envelopper. Des moyens connus de deplacement de l'element superieur conviennent ä l'appareil selon l'invention. Par exemple, les moyens déplaçant les éléments des appareils de scellage de films de l'art anterieur conviennent ä l'appareil selon l'invention.
La figure 4 est une vue de dessus ne montrant que l'element supérieur de scellage. Cet element superieur comprend un barreau transversal 24 de scellage, un second barreau 26 de scellage et un moyen 25 de coupe de film.
Le barreau transversal 24 de scellage est suffisamment long pour former le joint scellé ä l'avant de l'emballage scelle.
Le moyen 2S de coupe du film de matière plastique est d'un type bien connu dans la technique. Un fil chaud convient pour ce moyen de coupe du film.
La figure 5 est une coupe du barreau transversal 24 de scellage de L'element superieur, dans le plan indique par la ligne a-a'sur la figure 4. La figure 5 montre egalement en coupe le second barreau 26 de scellage de l'element superieur, suivant le plan indique par la ligne
<Desc/Clms Page number 14>
b-b'sur la figure 4. Une couche polymerique 34 resistant aux hautes temperatures est reliée de façon amovible ä un bäti-support 35. Une barre de fibre de verre convient pour cette couche polymerique 34. Un fil chauffant 36 est relié de façon amovible essentiellement au centre du dessous de la couche po1ymérique 34.
Une bande 37 resistant aux hautes temperatures est reliée de façon amovible au bâti-support 35 et recouvre la couche polymérique 34 et le fil chauffant 36.
EMI14.1
La resisCance du fil chauffant 36 est une fonction connue de la temperature de ce fil chauffant 36. Ce dernier est connecte ä des moyens d'alimentation en energie électrique tels que l'energie electrique fournie est reglee par un dispositif de commande pourmaintenir le fil chauffant 36 ä une température prereglee essentiellement constante, par l'alimentation de ce fil chauffant 36 en energie electrique proportionnelle ä sa resistance electrique. On peut ajuster la temperature du fil chauffant en agissant sur le point de reglage de température du dispositif de commande.
Le bäti-support est realise en une matière de rigidite convenable pour empecher de fortes deformations pendant l'Operation de scellage. Un profile metallique, tel qu'un profile d'acier ou d'aluminium, constitue un materiau prefere pour le bâti-support 35. Du PTFE ou de la fibre de verre est une matière convenant ä la realisation de la bande 37 resistant aux hautes temperatures.
La figure 6 est une vue de dessus de 1'element inférieur de scellage de la figure 3. Cet element inferieur de scellage comprend un barreau transversal 27 de formation d'un joint scelle et un second barreau 28 de formation d'un joint scelle. Ces barreaux de l'element inferieur de scellage ont une dimension et une forme correspondant aux barreaux de scellage de l'élément supérieur. Par consequent, le barreau transversal 27 de l'element inférieur de scellage
<Desc/Clms Page number 15>
coopère avec le barreau transversal de l'element superieur descellage pour former le joint scelle avant d'un emballage
EMI15.1
scelle.
De façon le second barreau 28 de ., on similaire, similaire,l'element inferieur de scellage coopere avec le second barreau de l'element superieur de scellage pour former un joint scelle qui constitue la partie restante d'un emballage scelle (avec le joint avant).
La figure 7 est une coupe transversale du barreau transversal 27 de formation d'un joint scelle de l'element inferieur, dans. le plan indique par la ligne y-y'de la figure 6. La figure 7 est egalement une coupe transversale du second barreau 28 de formation d'un joint scelle de l'élément inferieur de scellage, dans le plan indiqué par la ligne z-z'de la figure 6. Du caoutchouc 43 ä faible deformation remanente apres compression et resistance aux hautes temperatures est relié de façon amovible ä un bâtisupport 44. Du caoutchouc silicone ä faible deformation remanente apres compression est une matière appropriee pour la couche 43 resistant aux hautes temperatures.
Le bâti-support 44 est realise en une matière suffisamment rigide pour eviter de fortes deformations pendant l'application d'une pression au cours du processus de scellage.
Un profile metallique, en particulier un profile d'acier ou d'aluminium, est une matière appropriee pour la réalisation du bâti-support 44.
L'appareil de scellage de film montre sur les
EMI15.2
figures 3, 4, S, 6 et 7 peut être commodement decrit comme etant un poste d'emballage dans un film. Le poste d'emballage dans un film peut être utilise pour envelopper un produit dans un emballage scelle constitue d'un film souple d'emballage en polymere plastique.
Le procede de formation d'un emballage forme au moyen du poste d'emballage dans un film commence par la formation d'un joint scelle droit dans le film. Le produit est ensuite introduit dans le poste d'emballage.
<Desc/Clms Page number 16>
Un second joint scelle, qui coopere avec le joint scelle droit initial pour former un emballage enveloppant le produit, est ensuite forme. Le film est coupe entre l'emballage ferme et le joint scelle droit, puis l'emballage est retire du poste d'emballage.
Le procede peut être explique plus en détail en reference ä la figure 4. La forme des joints scelles formes lors de chaque et : ape de scellage correspond ä la forme des barreaux de scellage 24 et 26. Le film est coupé entre les. joints scelles par les moyens de coupe 25 au cours de chaque etape de scellage.
Un jeu de joints scellés est formé avant que le premier emballage soit réalisé. Deux couches du film de matière plastique sont insérées dans le poste d'emballage dans un film, dans le sens allant de la droite vers la gauche (en référence ä la figure 4), puis les couches du film sont scellees. Le film ä gauche des moyens 25 de coupe est retire du poste d'emballage, mais le joint scelle droit forme par le barreau 24 de scellage reste. Par consequent, le premier groupe de joints scelles formes ne donne qu'un seul joint scelle utile, ä savoir le joint scelle droit.
Tous les joints scelles formes ensuite sont utilises comme explique ci-dessous. Le produit est ensuite transporte et amené dans le poste d'emballage, en se déplaçant de nouveau de la droite vers la gauche (en reference ä la figure 4). Le produit vient buter contre le joint scellé droit, tirant ainsi les deux couches du film d'emballage vers l'intérieur du poste d'emballage afin que le joint scelle droit se trouve en avant du produit. Par consequent, le joint scelle droit forme lors de l'etape de scellage précédente devient le joint scelle avant de l'emballage scelle. Des joints scelles sont ensuite formés alors que le produit se trouve dans le poste d'emballage.
Le joint scelle forme au moyen de la
<Desc/Clms Page number 17>
barre 26 de scellage coopère avec 1e joint seellê droit formé lors de l'étape precedente pour constituer un emballage qui enveloppe ou enferme le produit. Simultanement, un joint scelle droit est forme en arrière de l'emballage, suivant la forme du barreau 24 de scellage. Ce joint scellé droit deviendra le joint scelle avant de l'emballage suivant. Les moyens 25 de coupe du film coupent 1e. film entre l'emballage et le joint scelle droit. L'emballage fermé est ensuite avance et retiré du poste d'emballage, laissant derrière lui le joint scellé droit. Des moyens transporteurs conviennent pour retirer l'emballage forme du poste d'emballage.
11 est important de noter que le joint scelle droit forme lors de chaque cycle de scellage devient le joint scellé avant de l'emballage fermé suivant. Des moyens sont donc necessaires pour amener dans le poste d'emballage les deux couches du film comportant le joint scelle avant forme. Ceci peut etre réalisé simplement par transport du produit vers 1'intérieur du poste d'emballage d'une manière telle que le produit exerce une poussee contre le joint scelle droit et que le mouvement du produit tire les deux couches formees par le film vers l'interieur du poste d'emballage afin que le joint scelle droit se trouve en avant du produit.
Du polyethylene est une matière communément utilisee pour ledit film d'emballage souple en polymère plastique. D'autres matières convenables comprennent du poly (ethylene-acetate de vinyle), du polystyrene et du polybutadiene.
Exemple
L'appareil de scellage de film illustre sur les figures 2,3, 4, 5 et 6 est utilisé dans un procédé pour emballer du caoutchouc synthetique avec un film souple en matière plastique.
<Desc/Clms Page number 18>
Pour commencer le procédé, on amène au poste d'emballage deux couches constituées d'un film plastiquesouple en polyéthylène, d'une epaisseur d'environ 0, 04 mm.
La température du fil chauffant ä temperature régulée est réglée ä 17SoC. Les elements superieur et inférieur de scellage sont rapproches afin qu'une pression d'environ 280 kPa soit cxercee entre les barreaux de scellage, pendant une duree de 0, 5 seconde, pour sceller ainsi le film. Les moyens de coupe coupent le film scelle entre le joint formé par les barreaux transversaux de scellage et le joint formé par les seconds barreaux de scellage. 11 en resulte que le film est scelle sur lui-même uniquement au joint forme par le barreau transversal de scellage.
En avant du joint forme par les barreaux transversaux, le film de matière plastique est retiré par l'opérateur de l'appareil d'emballage, de sorte qu'il reste les deux couches du film de matière plastique, jointes l'une ä l'autre par le joint scelle forme par les barreaux transversaux de scellage.
Une balle de caoutchouc est ensuite transportée jusque dans le poste d'emballage. La balle de caoutchouc
EMI18.1
pousse le film vers l'intérieur du poste d'emballage de maniere que le joint scellé, resultant de la premiere étape, devienne le joint avant de l'emballage, en avant de la balle de caoutchouc. Les elements de scellage et de coupe sont ensuite de nouveaux rapproches de la manière decrite ci-dessus. Les seconds barreaux de scellage forment un emballage scelle constitue d'un film de matière plastique autour de la balle de caoutchouc, en cooperation avec le joint scelle avant forme lors de l'etape initiale de scellage. Les barreaux transversaux de scellage forment un joint scelle en arriere de la balle de caoutchouc emballee, lequel joint deviendra le joint scellé avant de l'emballage suivant.
Simultanement, les moyens de coupe coupent le film de matière plastique entre la balle de caoutchouc emballee et le joint scelle forme par le barreau transversal de
<Desc/Clms Page number 19>
scellage. La balle de caoutchouc enveloppee est ensuite transportee et sortie du poste d'emballage, laissant le film de matiere plastique scellé sur lui-meme uniquement au joint forme par les barreaux transversaux de scellage.
Le procédé decrit dans ce paragraphe peut etre ensuite repete pour former d'autres emballages.
11 va de soi que de nombreuses modifications peuvent etre apportees ä l'appareil et au procede decrits et representessans sortir du cadre de l'invention.
<Desc / Clms Page number 1>
Apparatus and method for sealing a packaging film and for wrapping a product in a packaging consisting of such a film
It is known to form sealed packages from a flexible plastic film which is sealed by application of heat and pressure. Some of the most important techniques for sealing a plastic film include: i) "heating element" or "jaw" sealing, 2) "heat pulse" sealing, 3) "rotary" sealing or "seam welding".
Sealing by heating element, bar or jaw is a process in which a plastic film is sealed under pressure between sealing bars (or "jaws"). At least one of the sealing bars is: usually heated with electrical energy.
Normally, an adjustment relates either to the temperature or to the electrical energy supplied to the device. Apparatus powered by a constant and regulated energy source can be described as a "constant heat" sealing device. As a variant, the temperature of the sealing bar may be the parameter on which one acts, and the sealing apparatus is then called a "constant temperature" sealing apparatus. When the temperature is the regulated or regulated parameter, a sealing device of the prior art normally comprises an independent temperature detection device, such as a thermocouple, and an independent regulator of
<Desc / Clms Page number 2>
temperature.
The thermocouple detects the temperature of the sealing bar and transmits a reaction signal to the temperature controller. This control mode is affected by an inevitable delay which tends to limit its effectiveness.
To mitigate the effect of delay, the sealing bar is often designed to be of a large mass (for example a heavy steel bar). This operates the heated bar like a radiator, which gives off and wastes heat in the working environment of the operator of the sealing device.
Heat pulse sealing is a film sealing process in which layers of a plastic film are subjected to a heat pulse at the same time as they are sealed under pressure between sealing bars, Heat is provided at the sealing bars only for a short period of the sealing cycle. One use of a heat impulse sealer resides in a packaging apparatus used for packaging bales of synthetic rubber by means of a flexible plastic film.
Using this apparatus, the synthetic rubber balls are wrapped between two layers of the plastic film by sealing the layers to each other by means of sealing bars made of metal tube of a diameter d 'about 6.35-12.7mm. A strong pulse of electric current is passed through the tube to produce the heat used for sealing.
Once the seal is formed, the sealing bars are cooled by circulating a coolant, such as water or air, in the tube. A large amount of energy is lost in the coolant and this device is therefore not of high energy efficiency. In addition, the device is subject to temperature fluctuations due to variations in the quality of the coolant or variations
<Desc / Clms Page number 3>
of the environment. The device is also known to have severe overheating if problems affect the supply of coolant.
Sealing or seam welding uses pressure wheels to seal a plastic film. The latter can be heated before being passed between the knobs or else. Alternatively, the knobs can be heated. Temperature control systems, if incorporated into a rotary welding machine, normally contain an external thermocouple and a reaction circuit.
The film sealing techniques described above all require the application of heat and pressure to the plastic film to form a seal. Sealing devices are usually made of heavy material capable of withstanding the harsh conditions of heat and pressure present in heat-sealing processes.
The properties of the plastic used in the film can significantly affect the sealing operation. It is known that characteristics such as the molecular weight and the criticality of the plastic affect the temperature at which the plastic film decreases and the temperature at which this film degrades enough to be deteriorated. There is a range of temperatures suitable for sealing a plastic film, above the temperature at which the plastic softens, but below the temperature at which the plastic degrades. If the sealing process is carried out at too low a temperature, a suitable seal will not form and this poorly formed seal will open.
If the sealing temperature is too high, the plastic film adheres to the sealing bar and / or is degraded instead of being sealed.
<Desc / Clms Page number 4>
The sealing time is also important.
It is known that generally longer sealing times are required at lower sealing temperatures.
In other words, for a given sealing temperature and pressure, there is a minimum sealing time which is required for the film to be sealed, or, otherwise, the film is not properly sealed.
The productivity of a film sealing apparatus, as measured by the number of sealed seals formed, can obviously be improved by reducing the time required to form a seal. However, a decrease in sealing time should normally be accompanied by an increase in the sealing temperature, as it is known that the time required to seal the plastic material depends on the temperature of the sealing operation.
The increase in the sealing temperature which accompanies the reduction in the sealing time leads to carrying out the sealing operation at a temperature closer to the degradation temperature of the plastic. It therefore appears that excellent temperature regulation is required at the minimum sealing times to ensure sufficient heating of the film to form a seal, but to avoid subjecting the film to a temperature degrading the plastic. It therefore appears that a film sealing device which provides excellent regulation of the sealing temperature would be a useful contribution to the technique.
The subject of the invention is an improved apparatus for sealing a packaging film made of flexible plastic polymer. The performance relates to the excellent temperature regulation achieved by this device.
There is therefore provided an apparatus for sealing a packaging film of flexible plastic polymer, which comprises:
<Desc / Clms Page number 5>
(i) means for advancing an upper layer and a lower layer of said packaging film to a sealing station; (ii) film sealing means comprising, separately, an upper element disposed above the upper layer of the film and a lower element disposed below the lower layer of the film;
(iii) the upper element comprises a sealing bar which comprises a support frame, a polymeric layer resistant to high temperatures connected by faro. n removable below this support, a heating wire of circular cross-section, detachably connected practically in the center of the underside of said polymer layer, and a covering strip resistant to high temperatures, detachably connected to the base support and covering the polymeric layer and the heating wire;
(iv) the lower element of the film sealing means comprises a bar for forming a sealed joint whose size and shape correspond to the sealing bar of the upper element and which comprises a support frame and a rubber bar with low residual deformation after compression, resistant to high temperatures, (v) means for supplying electrical energy to the heating wire of the upper sealing bar, (vi)
means for lowering the upper element of the film sealing means until they are in contact with the lower element so that the upper layer of the film is brought into contact with the
<Desc / Clms Page number 6>
lower layer of said film in the area of formation of the sealed seal so that the two layers of the packaging film are sealed to each other, the apparatus.
being characterized in that the means for supplying electrical energy are piloted by a control device which maintains the heating wire at a predefined temperature essentially constant by a proportional supply of electrical energy in response to the electrical resistance of said heating wire.
The invention will be described in more detail with reference to the accompanying drawings by way of non-limiting examples and in which: - Figure 1 is a perspective view of a film sealing apparatus of the prior art; - Figure 2 is an elevation of a film sealing apparatus according to the invention; - Figure 3 is an elevation of a preferred embodiment of the invention; - Figure 4 is a top view of the upper sealing element of the preferred embodiment of the invention; - Figure 5 is a cross section of the transverse sealing bar of the upper element of the preferred embodiment of the invention;
- Figure 6 is a top view of the lower sealing element of the preferred embodiment of the invention; and - Figure 7 is a cross section of the transverse sealing bar of the lower element of the preferred embodiment of the invention.
The heat intended for the sealing apparatus according to the invention is supplied by a temperature-controlled Joule heating wire. By carefully choosing the material of which the wire is made, the resistance
<Desc / Clms Page number 7>
Electric heating wire is a known function of the temperature of this wire. The electrical resistance of the heating wire is used as a control signal by a control device which regulates the electrical resistance.
Since the electrical resistance is a known function of the temperature, the temperature of the wire can be regulated indirectly by the use of a suitable control device which acts directly on the electrical resistance. Consequently, the control signal supplied to the control device results directly from variations in the electrical resistance of the heating wire.
This avoids the use of an external detection device, such as a thermocouple, to produce control signals. By avoiding having to use an independent temperature sensing device, an excellent reaction response to the control device is obtained, which allows the heating wire to be adjusted to an essentially constant temperature.
The heating wire can be made of a metal wire of relatively small diameter. This is advantageous since the heating wire then exhibits a relatively low heat loss by radiation in comparison with the more massive steel sealing bars used in the sealing devices of the aforementioned prior art.
The use of a variation of the electrical resistance to provide a control signal intended for a temperature-controlled heating wire is known. For example, the firm Watlow Winona, Inc. manufactures a temperature-controlled heating wire of this type, which is suitable for use in the apparatus according to the invention.
The temperature-controlled heating wire device has previously been used for heating pipes to prevent pipes from freezing in cold weather. 11 was also used to regulate the temperature of a fluid
<Desc / Clms Page number 8>
contained in a storage container, but has not been used hitherto in an apparatus for sealing a plastic film.
One type of temperature-controlled heating wire, manufactured by the company Watlow Winona Inc., is capable of maintaining temperature regulation below about plus or minus 1/2% of the temperature range of the heating element. A heating element of this type having a temperature range from -18 to 315 ° C. is suitable for the apparatus according to the invention.
The apparatus according to the invention can be used to form sealed joints between two layers of a flexible plastic film, bringing the layers
EMI8.1
film in contact with each other between the sealing elements of the apparatus, under suitable conditions of pressure and temperature. Suitable conditions of pressure and temperature are those which make it possible to form a satisfactory sealed joint during the time interval of the sealing step.
Conditions suitable for a particular film are normally not known to the operator of the apparatus until certain empirical sealing tests have been carried out.
The apparatus according to the invention allows the operator to establish suitable conditions in the following manner.
The sealing time and pressure are established by the operator and then held constant for each step of forming a sealed joint (the pressure and sealing time settings of the sealing machines, known in the art, are suitable for establishment of a reasonably reproducible sealing time and pressure between different stages of forming sealed seals) The operator estimates a suitable sealing temperature for the film to be sealed and adjusts the temperature of the heating film accordingly, at temperature
<Desc / Clms Page number 9>
regulated, of this device. It then proceeds to a sealing test.
If the sealed joint is too weak or incomplete, the operator raises the sealing temperature for the next test by raising the temperature of the heating wire to regulated temperature. Conversely, if the plastic film is degraded, the operator lowers the sealing temperature for the next test by lowering the temperature of the sealing wire to a regulated temperature.
It appears that an adjustable control of the sealing temperature therefore helps to establish suitable sealing conditions. It also appears that a reproducible sealing control, in cooperation with reproducible time and temperature settings, contributes to the formation of reproducible sealing steps.
EMI9.1
An apparatus used to seal a plastic film is subjected to difficult working conditions due to the heat and pressure required to form sealed joints. It is therefore necessary to protect the heating wire from damage during the sealing process. It has been determined, from experience, that the heating wire used in the apparatus according to the invention can be reasonably well protected from deterioration by the use of a rubber-based material with weak residual deformation after compression in the production of at least one of the sealing bars.
Figure 1 schematically illustrates a film sealing apparatus of the type known in the art. Layers) and t * of a plastic film are sealed between heated sealing bars 2 and 3.
Figure 2 is a schematic view showing, by a dimension, an embodiment of the apparatus according to the invention. Two layers 10 and 10 'of a flexible plastic polymer packaging film are advanced towards the sealing station, one layer being advanced below the upper sealing element and the other above the element
<Desc / Clms Page number 10>
lower sealing.
The upper sealing element is a sealing bar which comprises a support frame t, a polymer layer l 12 resistant to high temperatures, detachably connected to the underside of the support l, a heating wire 13 of circular cross section, relig removably practically in the center of the underside of the polymer layer 12. and a covering strip 14, resistant to high temperatures, removably connected to the support frame 11 and covering the polymer layer l 12 and the fi. heating) 3. Polytetrafluoroethylene (PTFE) and fiberglass are suitable for producing strip 14 resistant to high temperatures.
A fiberglass rod is suitable as a material for producing the polymeric layer 12 resistant to high temperatures.
The heating wire 13 is connected to means for supplying electrical energy so that the electrical energy supplied to this heating wire 13 is placed under the control of a control device 17 to maintain a predefined essentially constant temperature of the heating wire 13 by a power supply proportional to the electrical resistance of the heating wire 13. The temperature of this heating wire 13 can be adjusted by acting on the adjustment point of the control device 17.
The lower sealing member has a size and shape corresponding to that of the upper sealing member. This lower sealing element is a bar for forming a sealed joint which comprises a support frame 16 and a bar 15 of rubber with low deformation reshaped after compression and resistant to high temperatures, placed on or inside the support frame. Silicone rubber is a preferred material for the production of the bar 15. It is advantageous if the lower support frame 16 and the upper support frame 11 are made of a material sufficiently rigid to prevent significant deformations during the pro-
<Desc / Clms Page number 11>
sealing stops.
A metal profile, such as a steel or aluminum profile, constitutes an excellent material for the production of support frames 11 and 16.
It is obvious to those skilled in the art that the relatively simple operations used for producing the sealing bars according to the invention have several advantages, among which the ease of manufacture.
EMI11.1
and repair.
Appropriate means are required to bring the sealing bars closer together and thereby seal the layers of the plastic film to each other, using the heat supplied by the heating wire 13 at a regulated temperature, and the pressure applied by the bars sealing. It is obvious to those skilled in the art that the upper sealing bar can be lowered or that the lower sealing bar can be raised, or that the two sealing bars can be brought together to obtaining the desired result. Known means for bringing the sealing bars closer to one another are suitable for this device.
For example, the mechanical means used to move the sealing elements of a known device for packaging synthetic rubber are suitable for the apparatus according to the invention.
It is also apparent to those skilled in the art that the sealing device according to the invention can be easily incorporated into some of the sealing devices of the prior art. This can be done, for example, by replacing the "jaws" of a jaw sealing device, or the heat pulse bars of a device
EMI11.2
impulse sealing of the prior art, by the upper sealing element, the lower sealing element and the temperature-regulated heating wire, described above, of the present invention.
Thus, a prior art sealing device can be modified and modernized by the
<Desc / Clms Page number 12>
present invention so that a sealing device having excellent temperature regulation is obtained. The relatively simple operations involved in the manufacture of the present sealing device make it possible to carry out such "modernizations" easily.
Figures 3,4, 5, 6 and 7 illustrate a preferred embodiment of the invention which is suitable for wrapping a product in a sealed package consisting of a flexible plastic film. Synthetic rubber balls can be suitably wrapped using this device.
EMI12.1
Figure 3 is a side view of the apparatus.
Suitable means 20 and 20 ′ provide: a flexible plastic film at the packing station. The lower layer 21 of the plastic film is advanced below the product to be packaged, but above the lower sealing element, and the upper layer 22 of the plastic film is advanced above the product to be packaged, but above below the lower sealing element.
A conveyor 23 transports the product to the packaging station in order to bring it to a position essentially centered above the lower layer of the film (a conveyor 23 ′ advances and takes out the packaging from the processing station).
The upper sealing element comprises, successively in the direction of movement of the product to be packaged, a transverse sealing bar 24 of sufficient length to form the seal seal at the front of the sealed package, and at a certain distance in front of the transverse sealing bar 24, the means 25 for cutting the packaging film and, still in front of the cutting means, a second sealing bar 26 configured so as to form the remaining part of the sealed joint, in addition of the front seal.
The sealing bars will be described more fully
<Desc / Clms Page number 13>
below.
The lower sealing element comprises, successively in the direction of movement of the product to be packaged, a transverse bar 27 for forming a seal seal and, in front of this transverse bar 27, a second bar 28 for forming a seal seal, the two joint forming bars having a dimension and a shape which correspond to those of the sealing bars of the upper element.
Means 29 are provided for lowering the upper element of the apparatus and bringing it into contact with the lower element so that the upper layer of the film is placed vulture of the product to be wrapped and brought into contact with the lower layer of the film. film in the area of the formation of a sealed joint, so that the two layers of the packaging film are sealed to one another around the product to be wrapped. Known means for moving the upper element are suitable for the apparatus according to the invention. For example, the means moving the elements of the prior art film sealing apparatus are suitable for the apparatus according to the invention.
Figure 4 is a top view showing only the upper sealing element. This upper element comprises a transverse sealing bar 24, a second sealing bar 26 and a film cutting means 25.
The sealing cross bar 24 is long enough to form the sealed joint at the front of the sealed package.
The means 2S for cutting the plastic film is of a type well known in the art. A hot wire is suitable for this means of cutting the film.
Figure 5 is a section of the transverse sealing bar 24 of the upper element, in the plane indicated by the line a-a 'in Figure 4. Figure 5 also shows in section the second sealing bar 26 of the upper element, following the plan indicated by the line
<Desc / Clms Page number 14>
b-b 'in Figure 4. A polymer layer 34 resistant to high temperatures is removably connected to a support frame 35. A fiberglass bar is suitable for this polymer layer 34. A heating wire 36 is connected removable essentially in the center of the underside of the polymer layer 34.
A strip 37 resistant to high temperatures is removably connected to the support frame 35 and covers the polymer layer 34 and the heating wire 36.
EMI14.1
The resistance of the heating wire 36 is a known function of the temperature of this heating wire 36. The latter is connected to electrical energy supply means such that the electrical energy supplied is regulated by a control device to maintain the heating wire 36 at a predefined essentially constant temperature, by supplying this heating wire 36 with electrical energy proportional to its electrical resistance. The temperature of the heating wire can be adjusted by acting on the temperature setting point of the control device.
The support frame is made of a material of rigidity suitable for preventing large deformations during the sealing operation. A metal profile, such as a steel or aluminum profile, constitutes a preferred material for the support frame 35. PTFE or fiberglass is a material suitable for the realization of the band 37 resistant to high temperatures.
Figure 6 is a top view of the lower sealing member of Figure 3. This lower sealing member comprises a transverse bar 27 for forming a sealed joint and a second bar 28 for forming a sealed joint. These bars of the lower sealing element have a dimension and a shape corresponding to the sealing bars of the upper element. Consequently, the transverse bar 27 of the lower sealing element
<Desc / Clms Page number 15>
cooperates with the transverse bar of the upper unsealing element to form the seal seal before packaging
EMI15.1
sealed.
In a way, the second bar 28 of., Similar, similar, the lower sealing element cooperates with the second bar of the upper sealing element to form a sealed joint which constitutes the remaining part of a sealed package (with the front seal).
Figure 7 is a cross section of the transverse bar 27 for forming a sealed joint of the lower element, in. the plane indicated by the line y-y ′ in FIG. 6. FIG. 7 is also a cross section of the second bar 28 for forming a sealed joint of the lower sealing element, in the plane indicated by the line z - see Figure 6. Rubber 43 with low reshaping after compression and resistance to high temperatures is removably connected to a support frame 44. Silicone rubber with low reshaping after compression is a suitable material for layer 43 resistant at high temperatures.
The support frame 44 is made of a sufficiently rigid material to avoid strong deformations during the application of pressure during the sealing process.
A metal profile, in particular a steel or aluminum profile, is a suitable material for the production of the support frame 44.
The film sealer shows on the
EMI15.2
Figures 3, 4, S, 6 and 7 can be conveniently described as being a packing station in film. The film packaging station can be used to wrap a product in a sealed packaging made of a flexible plastic polymer packaging film.
The process of forming a package formed by means of the packaging station in a film begins with the formation of a straight seal in the film. The product is then introduced into the packaging station.
<Desc / Clms Page number 16>
A second seal seal, which cooperates with the initial straight seal seal to form a package enveloping the product, is then formed. The film is cut between the closed packaging and the right seal, then the packaging is removed from the packaging station.
The process can be explained in more detail with reference to Figure 4. The shape of the seals formed during each and: ape of sealing corresponds to the shape of the sealing bars 24 and 26. The film is cut between them. seals sealed by the cutting means 25 during each sealing step.
A set of sealed seals is formed before the first packaging is made. Two layers of the plastic film are inserted into the packing station in a film, in the right-to-left direction (with reference to Figure 4), then the layers of the film are sealed. The film to the left of the cutting means 25 is removed from the packing station, but the right seal remains formed by the sealing bar 24 remains. Therefore, the first group of shaped seals gives only one useful seal, namely the straight seal.
All the sealed joints then formed are used as explained below. The product is then transported and brought to the packing station, again moving from right to left (with reference to Figure 4). The product abuts against the right sealed joint, thereby pulling the two layers of packaging film towards the inside of the packaging station so that the right sealed joint is in front of the product. Therefore, the straight seal seal formed in the previous sealing step becomes the seal seal before the sealed package. Seals are then formed while the product is in the packing station.
The seal seals form by means of the
<Desc / Clms Page number 17>
sealing bar 26 cooperates with the first straight seal formed during the previous step to form a package which envelops or encloses the product. Simultaneously, a straight seal is formed behind the packaging, according to the shape of the sealing bar 24. This straight sealed joint will become the sealed joint before the next packaging. The film cutting means 25 cut 1e. film between the packaging and the seal seals straight. The closed package is then advanced and removed from the packaging station, leaving behind the straight sealed joint. Conveyor means are suitable for removing the shaped packaging from the packaging station.
It is important to note that the straight seal seal formed during each sealing cycle becomes the sealed seal before the next closed package. Means are therefore necessary to bring the two layers of film comprising the seal before form into the packing station. This can be done simply by transporting the product to the inside of the packing station in such a way that the product pushes against the straight sealed joint and that the movement of the product pulls the two layers formed by the film towards the inside the packing station so that the right seal is located in front of the product.
Polyethylene is a commonly used material for said flexible plastic polymer packaging film. Other suitable materials include poly (ethylene vinyl acetate), polystyrene and polybutadiene.
Example
The film sealing apparatus illustrated in Figures 2, 3, 4, 5 and 6 is used in a process for wrapping synthetic rubber with a flexible plastic film.
<Desc / Clms Page number 18>
To begin the process, two layers consisting of a flexible polyethylene plastic film, with a thickness of about 0.04 mm, are brought to the packing station.
The temperature of the temperature-controlled heating wire is set at 17SoC. The upper and lower sealing elements are brought together so that a pressure of approximately 280 kPa is exerted between the sealing bars, for a duration of 0.5 seconds, to thus seal the film. The cutting means cut the sealed film between the joint formed by the transverse sealing bars and the joint formed by the second sealing bars. 11 results from this that the film is sealed on itself only at the joint formed by the transverse sealing bar.
In front of the joint formed by the transverse bars, the plastic film is removed by the operator from the packaging device, so that there remain the two layers of the plastic film, joined together. 'other by the seal seals formed by the transverse sealing bars.
A rubber ball is then transported to the packing station. Rubber ball
EMI18.1
push the film towards the inside of the packing station so that the sealed joint, resulting from the first step, becomes the joint before the packing, in front of the rubber ball. The sealing and cutting elements are then reconciled as described above. The second sealing bars form a sealed package made of a plastic film around the rubber ball, in cooperation with the seal seal before it is formed during the initial sealing step. The cross sealing bars form a sealed joint behind the packaged rubber ball, which joint will become the sealed joint before the next package.
Simultaneously, the cutting means cut the plastic film between the wrapped rubber ball and the sealed joint formed by the transverse bar of
<Desc / Clms Page number 19>
sealing. The wrapped rubber bale is then transported and taken out of the packing station, leaving the plastic film sealed on itself only at the joint formed by the transverse sealing bars.
The process described in this paragraph can then be repeated to form other packages.
It goes without saying that many modifications can be made to the apparatus and to the process described and shown without departing from the scope of the invention.