BE1001341A6 - Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern - Google Patents

Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern Download PDF

Info

Publication number
BE1001341A6
BE1001341A6 BE8800034A BE8800034A BE1001341A6 BE 1001341 A6 BE1001341 A6 BE 1001341A6 BE 8800034 A BE8800034 A BE 8800034A BE 8800034 A BE8800034 A BE 8800034A BE 1001341 A6 BE1001341 A6 BE 1001341A6
Authority
BE
Belgium
Prior art keywords
sep
roller
cylinder
laser beam
laser
Prior art date
Application number
BE8800034A
Other languages
French (fr)
Inventor
Frederic Terreur
Jacques Defourny
Original Assignee
Centre Rech Metallurgique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Rech Metallurgique filed Critical Centre Rech Metallurgique
Priority to BE8800034A priority Critical patent/BE1001341A6/en
Priority to AT88870022T priority patent/ATE90890T1/en
Priority to EP88870022A priority patent/EP0280671B1/en
Priority to DE88870022T priority patent/DE3881906T2/en
Priority to US07/159,138 priority patent/US4806731A/en
Priority to JP63040555A priority patent/JPH0767566B2/en
Application granted granted Critical
Publication of BE1001341A6 publication Critical patent/BE1001341A6/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44BMACHINES, APPARATUS OR TOOLS FOR ARTISTIC WORK, e.g. FOR SCULPTURING, GUILLOCHING, CARVING, BRANDING, INLAYING
    • B44B3/00Artist's machines or apparatus equipped with tools or work holders moving or able to be controlled substantially two- dimensionally for carving, engraving, or guilloching shallow ornamenting or markings
    • B44B3/04Artist's machines or apparatus equipped with tools or work holders moving or able to be controlled substantially two- dimensionally for carving, engraving, or guilloching shallow ornamenting or markings wherein non-plane surfaces are worked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44BMACHINES, APPARATUS OR TOOLS FOR ARTISTIC WORK, e.g. FOR SCULPTURING, GUILLOCHING, CARVING, BRANDING, INLAYING
    • B44B7/00Machines, apparatus or hand tools for branding, e.g. using radiant energy such as laser beams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/10Roughness of roll surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

The surface of a roller forming part of a sheet metal mill is irradiated by an interrupted laser beam which, as the roller is turned, develops a series of microcraters. The positioning of the craters is determined by the rate of turning of the roller, the rate of interruption of the laser beam, and the traverse rate of the laser as it moves from one end of the roller to the other. During the formation of each microcrater, a jet of reducing gas is directed obliquely at the roller surface to produce an associated ridge which partly surrounds the crater. The dimensions of the ridge are determined by the jet force and direction applied. In a subsequent phase, the ridge formed is re-melted by a subsidiary beam to ensure complete adhesion with the roller surface. The resulting pattern is transferred to any sheets rolled, improving their ductility for stamping and their receptivity to superimposed coats.

Description

       

   <Desc/Clms Page number 1> 
 
 EMI1.1 
 



  Procédé pour améliorer La rugosite d'un cylindre de Laminoir. 
 EMI1.2 
 



  La presente invention porte sur un procédé pour améliorer La rugosité d'un cylindre de Laminoir. 



  On sait que La rugosite d'un cylindre de Laminoir conditionne dans une ! tres Large mesure La rugosite des tôLes métalliques laminées à L'aide de ce cylindre. Les dimensions de cette rugosité ainsi que sa repartition ä La surface du cylindre, et par conséquent à La surface des. tôLes, infLuencent en particulier L'aptitude ä L'emboutissage et au revetement de ces tôles. 



  On connait dejä, notamment par Le brevet BE-A-870. 609, un procede pour creer, au moyen d'un faisceau Laser intermittent, une multitude de fmcrocrateresdans La surface d'un cylindre de Laminoir. Un teL microcratere est constitue par une depression entourée, partiellement ou totalement, d'un bourrelet en relief. 



  Le mécanisme de formation d'un tel microcratere est à présent bien connu. On peut rappeler brièvement que, dans sa zone d'impact sur Lasurface du cylindre, chaque impulsion du faisceau Laser provoque L'echauffement d'un certain volume de métal et, ä l'intérieur de ce 

 <Desc/Clms Page number 2> 

 
 EMI2.1 
 volume, La fusion d'une gouttelette de métal. Le volume de metal echauffe ainsi que La quantité de métal fondu dépendent de La puis- sance et de La duree de   L'impuls ; on laser. L'action   de cette impulsion laser est généralement renforcee par un jet de gaz, en particulier un jet d'oxygen dirigé vers La zone d'impact précitée. L'oxygène ainsi injecte provoque une augmentation de La temperature au-dessus de la surface du métal fondu, ou il contribue ä former un plasma par combustion de métal.

   Sous l'action conjointe de La pression du plasma et de La pression du jet d'oxygene, Le métaL fondu est refoulé radialement vers la périphérie de la zone échauffée, ou évenllement   au-delä   de cette zone. Il forme ainsi un bourreLet qui se solidifie très rapidement. 



  Le faisceau Laser se déplace en translation paraLLèlement ä L'axe Longitudinal du cylindre de Laminoir en rctation, de sorte que sa zone 
 EMI2.2 
 d'impact decrit ure trajectoire hélicoidale ä La surface de ce cylindre. l'ensemble des bourrelets, associes aux depressions, determine La rugosité de La surface du cylindre et par conséquent celle des töles qui seront Laminees avec ce cylindre. La durée de vie de ces bourre- 
 EMI2.3 
 Lets conditionne des lors La duree de vie du cyLindre et La constance de La rugosité des töles produites. 



  - --- - La durée de vie des bourrelets dépend ä son tour de deux facteurs, à savoir d'une part la dureté et la resistance à l'usure de ces bourrelets et d'autre part Leur adhérence ä la surface du cylindre. La durete des bourrelets conditionne leur resistance à l'usure au cours du Laminage des tôles; elle dépend de la composition chimique et du cycle thermique d'échauffement et de refroidissement de la goutteLette de métal, c'est-à-dire de conditions métallurgiques que L'on peut rendre optimales. En revanche, L'adherence d'un bourrelet depend largement d'un phénomène mecanique : si la gcuttelette de metal s'etend trop loin au-delà de La zone échauffée par l'impulsion laser, elle n'adhere pas à la surface du cylindre, dont la temperature est trop basse.

   IL se formera des lors une fissure à l'interface entre La sur- 

 <Desc/Clms Page number 3> 

 face du cylindre et Le bourreLet, ce qui entraînera rapidement l'arrachement de ce bourrelet sous L'effet des forces de Laminage. IL faudra   prématurément   interrompre Le laminage et reconditionner Le cylindre, ce qui provoque une perte substantielle de productivite du Laminoir. 



  La presente invention propose un procédé permettant de remédier à ces inconvénients et de former,   ä   La surface d'un cylindre de laminoir, des microcratères pourvus de bourrelets partiels qui presentent une 
 EMI3.1 
 adherence et psr conscqucrit une durée de vie sensibLement accrue. u 1 Li 4. Elle est basée sur la constatation inattendue que L'orientation du jet de gaz exerce une influence sensibLe sur La forme et l'adhérence des bourreLets. 



  Conformement a La presente invention, un procede pour   ameLiorer   La rugosite d'un cylindre de   laminair,   dans lequel on forme des microcratères dans La surface dudit cyLindre au moyen d'un faisceau Laser intermittent et en presence d'un jet de gaz dirigé vers La zone d'impact dudit faisceau Laser, ledit cylindre tournant autour de son axe LongitudinaL, est caractérisé en ce que   Llon   oriente ledit jet de gaz suivant une direction sensiblement perpendiculaire   ä   La   génératrice   dudit cylindre qui passe par ladite zone d'impact. 



  Par sensiblement perpendiculaire, iL faut comprendre que la direction du jet de gaz forme un angle de 100 maximum avec La perpendicuLaire ä La génératrice   consideree   du cylindre. 



  Suivant une variante   particuliere,   on injecte Ledit gaz dans Le sens de La rotation du cylindre. 



  Les autres conditions d'injection du gaz, teLLes que La nature du gaz, son débit et L'angLe d'incidence du jet, ne different pas de la technique conventionneLLe et ne font pas partie de La présente invention. 

 <Desc/Clms Page number 4> 

 



  L'invention pourra être mieux comprise gräce à La description et aux exempLes qui suivent,   oü   iL est fait reference aux dessins annexes dans LesqueLs La Fig. 1 rappelle, en une vue en perspective, Le principe du procede de formation de la rugosité sur un cylindre ; la Fig. 2 iLLustre La forme et la position d'un bourrelet sous L'effet d'une injection LongitudinaLe du gaz ; et La Fig. 3 represente la forme et la position d'un bourrelet sous L'effet d'une injection transversale du gaz,   conformdment   ä la presente invention. 



  Toutes les figures constituent des representations schématiques, dans LesqueLLes des eLements identiques sont designes par Les mêmes reperes numériques. La direction des divers mouvements est indiquée par des   fleches.   



  La figure 1 rappelle Le principe du   procede   de formation de la rugosité sur un cylindre de Laminoir. Un cylindre de Laminoir 1 est mis en rotation, symbolisée par la flèche courbe 2, autour de son axe LongitudinaL 3. La surface de ce cylindre 1 est frappée, sous une incidence sensiblement perpendicuLaire, par un faisceau Laser intermittent 4. Ce faisceau, représenté par une succession d'impulsions 5, est focalise sur la surface au mcyen d'une lentilte 6. En outre, Le faisceau 4 se   depLace   en translation, paraLlèLement ä   L'axe   Longitudinal 3, comme L'indique La flèche 7. De ce fait, les points d'impact des impulsions 5 successives dessinent une Ligne hé;ocpïdale 8 Åa la surface du cylindre 1.

   Un jet d'oxygene 9 est dirige vers Le point d'impact du faisceau Laser et favorise la formation des microcrateres constituant la rugosité désirée. Il faut noter à cet egard que   t'on   pourrait utiliser tout autre type de gaz, notamment neutre ou reducteur, sans sortir du cadre de L'invention. Le jet d'oxygène 9 est représente avec son orientation usuelle, qui se situe dans un plan axial du cylindre 1. 

 <Desc/Clms Page number 5> 

 On a également représenté, en trait mixte, Le jet d'oxygène 10 avec son orientation conforme à la presente invention,   c'est-a-dire   dans un 
 EMI5.1 
 plan perpendiculaire aux génératrices et donc Åa l'axe longitudinal du cylindre 1. Le jet d'oxygene 10 est dispose en arrière par rapport au faisceau laser ; cela signifie que le gaz est injecte suivant Le sens de rotation du cylindre. 



  Dans les figures 2 et 3, on a illustré la forme et la pcsition du bourrelet par rapport au   microcratere,   pour les deux orientations 9 et 10 du jet d'oxygene, respectivement. La taille des microcrateres et 
 EMI5.2 
 des bourrelets y est fortement exageree, afin de faire apparaître clairement La difference entre Les deux situations. 



  La figure 2 montre que Le bourrelet 11 est assez etendu et qu'il déborde nettement du m ; crocratère 12 ; de plus, il est deporte vers un côté du microcratere. La figure 3 montre que, grâce ä un jet   d'oxygene   10 oriente conformement ä la presente invention, Le bourrelet 11 reste symétrique par rapport au   microcratere   12. En outre, Le bourrelet 11 est ici pLus compact et il est bien soude à la surface du cylindre, car il ne s'etend pratiquement pas au-delà du microcratere. 
 EMI5.3 
 



  - ---- --- Le tableau ci-dessous rassemble les résultats d'essais comparatifs faisant apparaître l'influence de l'orientation du jet de gaz. Le gaz choisi a cet effet etait l'oxygène. 



  Dans Le premier essai, on a opéré avec un faisceau Laser   de 800 M   et un debit   d'oxygene   de 6 l/min. Dans Le second essai, on a utilisé un faisceau Laser de 900 W et un débit   d'oxygene   de 12 L/min. Pour chaque essai, Le jet d'oxygene a ete orienté successivement suivant les deux positions 9 et 10   representees   dans La Fig. 1. Toutes les autres conditions de travaiL n'ont pas ete modifiees. 

 <Desc/Clms Page number 6> 

 
 EMI6.1 
 Dans tous Les cas, on a mesuré La hauteur (H) et La largeur (La) du 0 D bourreLet Åa son point Le plus éleve, la profondeur (Pc) et la largeur (Lc) du microcratere à son point Le plus profond, La rugosite arithmet-tique (Ra) de La surface du cylindre et La force d'arrachement (F) des bourreLets. 



  Les dimensions et La rugosite sont exprimees en micromètres ; La force d'arrachement est exprimee en newtons. 
 EMI6.2 
 
<tb> 
<tb> 



  Essai <SEP> jet <SEP> gaz <SEP> Puis. <SEP> HD <SEP> LD <SEP> P <SEP> l <SEP> Ra <SEP> F
<tb> D <SEP> C <SEP> C <SEP> C
<tb> n  <SEP> gaz <SEP> (l/min) <SEP> (W) <SEP> ( m) <SEP> ( m) <SEP> ( m) <SEP> ( m) <SEP> ( m) <SEP> (N)
<tb> 9 <SEP> 6 <SEP> 800 <SEP> 15 <SEP> 106 <SEP> 18 <SEP> 96 <SEP> 3, <SEP> 5 <SEP> 1, <SEP> 0
<tb> 1 <SEP> 10 <SEP> 6 <SEP> 800 <SEP> 28 <SEP> 109 <SEP> 37 <SEP> 113 <SEP> 3,6 <SEP> 1,7
<tb> 9 <SEP> 12 <SEP> 900 <SEP> 24 <SEP> 121 <SEP> 25 <SEP> 141 <SEP> 5, <SEP> 5 <SEP> 1, <SEP> 2
<tb> 2
<tb> 10 <SEP> 12 <SEP> 900 <SEP> 45 <SEP> 132 <SEP> 31 <SEP> 123 <SEP> 4, <SEP> 9 <SEP> 1, <SEP> 9
<tb> 
 
 EMI6.3 
 It-apparait clairement, dans Les deux essais, que le passage de l'orientation 9 ä l'orientation 10 entraine une forte augmentation tant de La hauteur du bourrelet (Ha) que de La profondeur du microD   cratère (P-);

   Les largeurs L et l ne varient pas de façon très c ü c   marquée. Le bourrelet correspondant   ä   l'orientation 10 présentait la forme illustrée dans La Fig.   3 ; il était plus   compact et plus saillant que celui de la figure 2. 



  On observe-également que La force d'arrachement F, c'est-à-dire 
 EMI6.4 
 L'adherence du bourrelet, a augmenté de 60 à 70 % Lorsque l'on a change l'orientation du jet d'oxygène. Cette force a ete   déterminée   par la methode exposee dans la demande de brevet BE-A-08700372. 

 <Desc/Clms Page number 7> 

 
 EMI7.1 
 L'augmentation d'adhérence obtenue pEr Le procédé de l'invention entraine une amelioration de La tenue des cylindres; elle conduit par consequent Åa une plus grande regularite de La quaLite des tôles   lam ; nées   et à une meilleure productivité de L'installation de Laminage. 



  La presente invention s'étend également aux cylindres obtenus par Le procédé précité, qui presentent une rugosite plus durable, ainsi qu'aux tôles laminées avec de tels cylindres.



   <Desc / Clms Page number 1>
 
 EMI1.1
 



  Method for improving the roughness of a rolling mill cylinder.
 EMI1.2
 



  The present invention relates to a method for improving the roughness of a rolling mill cylinder.



  We know that the roughness of a rolling mill cylinder conditions in one! Very large measure The roughness of the metal sheets rolled using this cylinder. The dimensions of this roughness as well as its distribution on the surface of the cylinder, and consequently on the surface of the. sheets, in particular influence the ability to stamp and coat these sheets.



  We already know, especially from patent BE-A-870. 609, a method for creating, by means of an intermittent laser beam, a multitude of crystals in the surface of a rolling mill cylinder. A microcrater is made up of a depression surrounded, partially or totally, by a raised bead.



  The mechanism of formation of such a microcrater is now well known. It may be recalled briefly that, in its zone of impact on the surface of the cylinder, each pulse of the laser beam causes the heating of a certain volume of metal and, inside this

 <Desc / Clms Page number 2>

 
 EMI2.1
 volume, The fusion of a metal droplet. The volume of heated metal as well as the quantity of molten metal depend on the power and the duration of the impulse; on laser. The action of this laser pulse is generally reinforced by a gas jet, in particular an oxygen jet directed towards the aforementioned impact zone. The oxygen thus injected causes an increase in temperature above the surface of the molten metal, where it contributes to the formation of a plasma by combustion of metal.

   Under the joint action of the pressure of the plasma and the pressure of the oxygen jet, the molten metal is discharged radially towards the periphery of the heated zone, or even beyond this zone. It thus forms a fill which solidifies very quickly.



  The laser beam travels in translation parallel to the longitudinal axis of the rolling mill cylinder, so that its area
 EMI2.2
 of impact described on a helical path to the surface of this cylinder. the set of beads, associated with the depressions, determines the roughness of the surface of the cylinder and consequently that of the sheets which will be laminated with this cylinder. The lifespan of these fillers
 EMI2.3
 Lets therefore determines the life of the cylinder and the consistency of the roughness of the sheets produced.



  - --- - The life of the beads in turn depends on two factors, namely on the one hand the hardness and the wear resistance of these beads and on the other hand their adhesion to the surface of the cylinder. The hardness of the beads determines their resistance to wear during the rolling of the sheets; it depends on the chemical composition and on the thermal cycle of heating and cooling of the metal droplet, that is to say on metallurgical conditions which can be made optimal. On the other hand, the adhesion of a bead depends largely on a mechanical phenomenon: if the metal gcuttelette extends too far beyond the zone heated by the laser pulse, it does not adhere to the surface of the cylinder, the temperature of which is too low.

   A crack will then form at the interface between the sur-

 <Desc / Clms Page number 3>

 face of the cylinder and the bead, which will quickly lead to the tearing of this bead under the effect of the laminating forces. It will be necessary to prematurely stop the rolling and recondition the cylinder, which causes a substantial loss of productivity of the rolling mill.



  The present invention provides a method for overcoming these drawbacks and for forming, on the surface of a rolling mill cylinder, microcraters provided with partial beads which have a
 EMI3.1
 adherence and psr achieves a significantly increased lifespan. u 1 Li 4. It is based on the unexpected observation that the orientation of the gas jet exerts a significant influence on the shape and adhesion of the fillers.



  In accordance with the present invention, a method for improving the roughness of a laminar cylinder, in which microcraters are formed in the surface of said cylinder by means of an intermittent laser beam and in the presence of a gas jet directed towards the impact zone of said laser beam, said cylinder rotating around its axis LongitudinaL, is characterized in that Llon orients said jet of gas in a direction substantially perpendicular to the generator of said cylinder which passes through said impact zone.



  By substantially perpendicular, it should be understood that the direction of the gas jet forms an angle of maximum 100 with the perpendicular to the considered generator of the cylinder.



  According to a particular variant, said gas is injected in the direction of rotation of the cylinder.



  The other gas injection conditions, such as the nature of the gas, its flow rate and the angle of incidence of the jet, do not differ from the conventional technique and do not form part of the present invention.

 <Desc / Clms Page number 4>

 



  The invention will be better understood from the description and the examples which follow, where reference is made to the accompanying drawings in LesqueLs FIG. 1 recalls, in a perspective view, the principle of the method of forming roughness on a cylinder; Fig. 2 ILLUSTRATED The shape and position of a bead under the effect of a Longitudinal gas injection; and Fig. 3 shows the shape and position of a bead under the effect of a transverse injection of gas, in accordance with the present invention.



  All the figures constitute schematic representations, in which identical elements are designated by the same numerical marks. The direction of the various movements is indicated by arrows.



  Figure 1 recalls the principle of the method of forming roughness on a rolling mill cylinder. A rolling mill cylinder 1 is set in rotation, symbolized by the curved arrow 2, around its Longitudinal axis 3. The surface of this cylinder 1 is struck, at a substantially perpendicular incidence, by an intermittent laser beam 4. This beam, represented by a succession of pulses 5, is focused on the surface at the center of a lens 6. In addition, the beam 4 is displaced in translation, parallel to the longitudinal axis 3, as indicated by arrow 7. From this in fact, the impact points of the successive pulses 5 draw a hep; ocpid line 8 Å on the surface of the cylinder 1.

   An oxygen jet 9 is directed towards the point of impact of the laser beam and promotes the formation of microcraterals constituting the desired roughness. It should be noted in this regard that you could use any other type of gas, in particular neutral or reducing, without departing from the scope of the invention. The oxygen jet 9 is shown with its usual orientation, which is located in an axial plane of the cylinder 1.

 <Desc / Clms Page number 5>

 Also shown, in phantom, the oxygen jet 10 with its orientation in accordance with the present invention, that is to say in a
 EMI5.1
 plane perpendicular to the generatrices and therefore Å to the longitudinal axis of the cylinder 1. The oxygen jet 10 is arranged behind the laser beam; this means that the gas is injected according to the direction of rotation of the cylinder.



  In FIGS. 2 and 3, the shape and the position of the bead relative to the microcrater are illustrated, for the two orientations 9 and 10 of the oxygen jet, respectively. The size of the microcraters and
 EMI5.2
 bulges are strongly exaggerated, in order to clearly show the difference between the two situations.



  Figure 2 shows that the bead 11 is quite extensive and that it clearly extends beyond the m; crocrater 12; moreover, it is moved to one side of the microcrater. Figure 3 shows that, thanks to an oxygen jet 10 oriented in accordance with the present invention, the bead 11 remains symmetrical with respect to the microcrater 12. In addition, the bead 11 is here more compact and it is well welded on the surface of the cylinder, because it practically does not extend beyond the microcrater.
 EMI5.3
 



  - ---- --- The table below brings together the results of comparative tests showing the influence of the orientation of the gas jet. The gas chosen for this purpose was oxygen.



  In the first test, we operated with an 800 M laser beam and an oxygen flow rate of 6 l / min. In the second test, a 900 W laser beam was used and an oxygen flow rate of 12 L / min. For each test, the oxygen jet was oriented successively according to the two positions 9 and 10 shown in FIG. 1. All other working conditions have not been changed.

 <Desc / Clms Page number 6>

 
 EMI6.1
 In all cases, we measured the height (H) and the width (La) of the 0 D padding at its highest point, the depth (Pc) and the width (Lc) of the microcrater at its deepest point, The arithmetical roughness (Ra) of the surface of the cylinder and the tearing force (F) of the beads.



  Dimensions and roughness are expressed in micrometers; The breakout force is expressed in newtons.
 EMI6.2
 
<tb>
<tb>



  Test <SEP> jet <SEP> gas <SEP> Then. <SEP> HD <SEP> LD <SEP> P <SEP> l <SEP> Ra <SEP> F
<tb> D <SEP> C <SEP> C <SEP> C
<tb> n <SEP> gas <SEP> (l / min) <SEP> (W) <SEP> (m) <SEP> (m) <SEP> (m) <SEP> (m) <SEP> ( m) <SEP> (N)
<tb> 9 <SEP> 6 <SEP> 800 <SEP> 15 <SEP> 106 <SEP> 18 <SEP> 96 <SEP> 3, <SEP> 5 <SEP> 1, <SEP> 0
<tb> 1 <SEP> 10 <SEP> 6 <SEP> 800 <SEP> 28 <SEP> 109 <SEP> 37 <SEP> 113 <SEP> 3.6 <SEP> 1.7
<tb> 9 <SEP> 12 <SEP> 900 <SEP> 24 <SEP> 121 <SEP> 25 <SEP> 141 <SEP> 5, <SEP> 5 <SEP> 1, <SEP> 2
<tb> 2
<tb> 10 <SEP> 12 <SEP> 900 <SEP> 45 <SEP> 132 <SEP> 31 <SEP> 123 <SEP> 4, <SEP> 9 <SEP> 1, <SEP> 9
<tb>
 
 EMI6.3
 It appears clearly in the two tests that the transition from orientation 9 to orientation 10 leads to a large increase both in the height of the bead (Ha) and in the depth of the crater microD (P-);

   The widths L and l do not vary very markedly. The bead corresponding to orientation 10 had the shape illustrated in FIG. 3; it was more compact and more prominent than that of Figure 2.



  We also observe that the breakout force F, i.e.
 EMI6.4
 The adhesion of the bead increased from 60 to 70% when the orientation of the oxygen jet was changed. This force was determined by the method set out in patent application BE-A-08700372.

 <Desc / Clms Page number 7>

 
 EMI7.1
 The increase in adhesion obtained by the process of the invention leads to an improvement in the strength of the cylinders; it therefore leads to greater regularity in the quality of lam sheets; born and better productivity of the Laminating installation.



  The present invention also extends to cylinders obtained by the aforementioned process, which have a more durable roughness, as well as to sheets rolled with such cylinders.


    

Claims (4)

REVENDICATIONS 1. Procédé pour améliorer la rugosite d'un cylindre de Laminoir, dans lequel on forme des nncrocrateres dans la surface dudit cylindre au moyen d'un faisceau Laser intermittent et en presence d'un jet de gaz dirigé vers la zone d'impact dudit faisceau laser, ledit cylindre tournant autour de son axe longitudinal, caractérise en ce que L'on oriente Ledit jet de gaz suivant une direction sensiblement EMI8.1 perpendcuLare ä La generstricc dudit cyLindre qui passe par Ladite zone d'impact. CLAIMS 1. Method for improving the roughness of a rolling mill cylinder, in which ncrocrateres are formed in the surface of said cylinder by means of an intermittent laser beam and in the presence of a gas jet directed towards the impact zone of said laser beam, said cylinder rotating about its longitudinal axis, characterized in that said gas jet is oriented in a direction substantially  EMI8.1  perpendicular to the genesis of said cylinder which passes through said impact zone. 2. Procédé suivant La revendication 1, caractérisé en ce que L'on injecte Ledit gaz dans le sens de la rotation du cylindre. 2. Method according to claim 1, characterized in that said gas is injected in the direction of rotation of the cylinder. 3. CyLindre de Laminoir présentant une rugosite améliorée realisée au moyen d'un faisceau Laser intermittent et d'un jet de gaz orienté conformément ä L'une ou l'autre des revendications précédentes. 3. Roller CyLindre having improved roughness achieved by means of an intermittent laser beam and a gas jet oriented in accordance with either of the preceding claims. 4. Tôle d'acier laminée ä froid au moyen d'au moins un cylindre présentant une rugosite amelioree, selon la revendication 3. 4. Cold rolled steel sheet by means of at least one cylinder having an improved roughness, according to claim 3.
BE8800034A 1987-02-23 1988-01-13 Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern BE1001341A6 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BE8800034A BE1001341A6 (en) 1988-01-13 1988-01-13 Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern
AT88870022T ATE90890T1 (en) 1987-02-23 1988-02-22 METHOD OF SURFACE MARKING OF ROLLING MILL ROLLS.
EP88870022A EP0280671B1 (en) 1987-02-23 1988-02-22 Surface-marking process for a metal-rolling roll
DE88870022T DE3881906T2 (en) 1987-02-23 1988-02-22 Process for surface marking of rolling mill rolls.
US07/159,138 US4806731A (en) 1987-02-23 1988-02-23 Process for marking the surface of a rolling mill
JP63040555A JPH0767566B2 (en) 1987-02-23 1988-02-23 Method for marking the surface of rolling mill rollers, rollers marked by this method and sheets rolled by such rollers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE8800034A BE1001341A6 (en) 1988-01-13 1988-01-13 Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern

Publications (1)

Publication Number Publication Date
BE1001341A6 true BE1001341A6 (en) 1989-10-03

Family

ID=3883198

Family Applications (1)

Application Number Title Priority Date Filing Date
BE8800034A BE1001341A6 (en) 1987-02-23 1988-01-13 Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern

Country Status (1)

Country Link
BE (1) BE1001341A6 (en)

Similar Documents

Publication Publication Date Title
EP0280671B1 (en) Surface-marking process for a metal-rolling roll
EP0119182B1 (en) Method of improving the surface properties of rolls
CA2461994C (en) Method and device for overlapping welding of two coated metal sheets with a beam of high energy density
CH629410A5 (en) METHOD FOR MANUFACTURING A COMPOSITE STRIP BY PLATING.
WO2012022895A1 (en) Arc welding device and process using an mig/mag torch combined with a tig torch
EP0278942A1 (en) Method for the surface treatment of a rolling cylinder
FR2534164A1 (en) METHOD AND APPARATUS FOR CONTINUOUS CASTING
BE1001341A6 (en) Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern
CH667823A5 (en) MOLD FOR CONTINUOUS CASTING.
JP4348403B1 (en) Internal bead cutting device for ERW steel pipe
BE1001336A7 (en) Method for marking the surface of a roll stand.
EP2408585B1 (en) Braze-welding device
CA2413511A1 (en) Weld preparation method
BE1000570A7 (en) Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern
EP0622138A1 (en) Process and device for making at least one metal strip of small width and metal strip obtained by this process
BE849516A (en) FRICTION WELDING PROCESS
WO2012153182A1 (en) Assembly of a tube and of a sheet
EP2465635B1 (en) Method and device for creating a laser-welded seam
BE1001397A6 (en) Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern
CH664310A5 (en) METHOD AND APPARATUS FOR MANUFACTURING MOLDS FOR THE CONTINUOUS MOLDING OF METALS.
CH298581A (en) Method for manufacturing a metal tube and apparatus for carrying out this method.
CN216706383U (en) Stainless steel tube welding precision control device for fluid conveying
FR2635284A1 (en) Rapid oxygen cutting device
BE527211A (en)
BE1000692A6 (en) Laser-powered surface marking for sheet mill roller - produces spaced laser beam impart points on turning roller, and develops craters and rims in desired pattern

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: CENTRE DE RECHERCHES METALLURGIQUES - CENTRUM VOO

Effective date: 19930131