AU749283B2 - A plant and mushroom growth medium - Google Patents
A plant and mushroom growth medium Download PDFInfo
- Publication number
- AU749283B2 AU749283B2 AU60687/99A AU6068799A AU749283B2 AU 749283 B2 AU749283 B2 AU 749283B2 AU 60687/99 A AU60687/99 A AU 60687/99A AU 6068799 A AU6068799 A AU 6068799A AU 749283 B2 AU749283 B2 AU 749283B2
- Authority
- AU
- Australia
- Prior art keywords
- peat
- growth medium
- weight
- sphagnum
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Cultivation Of Plants (AREA)
Description
WO 00/14030 PCT/AU99/00730 1 A PLANT AND MUSHROOM GROWTH MEDIUM FIELD OF THE INVENTION The present invention is directed towards a growth medium for plants. The present invention is also directed towards a growth medium for use as a casing soil in mushroom cultivation.
BACKGROUND ART In commercial mushroom cultivation it is general practice to provide a lower layer of compost which is covered by a layer of a material referred to as casing soil. It is important in mushroom cultivation that the casing soil assists in maintaining a desirable moisture level for mushroom growth. It should also maintain a desirable carbon dioxide and oxygen ratio.
Further the casing soil should maintain the nutrient balance of the compost and also act as a barrier to disease and insect pests.
To date, the only material which has been recognised by commercial mushroom growers as being acceptable for use as casing material is sphagnum peat. Sphagnum peat is partially decomposed sphagnum moss and is obtained from Ireland, Holland and Canada (known as blonde peat). Sphagnum peat has the required ability to retain moisture at levels suitable for mushroom growth, together with required porosity and nutrient levels.
However, existing sphagnum peat supplies are becoming depleted. Thus, there is a need in the industry for an alternative to sphagnum peat. Still further, the costs of obtaining imported sphagnum peat are high and adds considerably to a mushroom grower's costs. Thus, there is a further need in the industry for an economically viable alternative to sphagnum peat.
A difficulty with obtaining an alternative to sphagnum peat is that any alternative must satisfy the particular requirements for mushroom cultivation. As mentioned above, a casing soil must have a moisture holding capacity to ensure that there is sufficient moisture to support mushroom growth. Other important properties include neutral pH, low salt levels and suitable nutrient levels. It has been observed that although other types of peat such as sedge peat are available they do not satisfy the above WO 00/14030 PCT/AU99/00730 2 requirements and are unsuitable as casing soils. To date, there is no commercially available alternative to sphagnum peat.
In the horticultural industry, it is common practice to prepare artificial growth medium for use as potting mixes. Such growth media must have desirable air porosity, water retention properties and sufficient nutrients to sustain plant growth.
Typical commercial potting mixes include a mixture of coarse sand and an organic material. Such a mixture on its own is generally deficient in many nutrients necessary for plant growth. Thus, to provide a satisfactory mix, it is necessary to add the nutrients required for plant growth.
Typical organic materials are timber products such as bark chips and composted bark material. Although these materials are generally obtained from byproducts of timber production, their supply does rely on diminishing natural resources.
In an attempt to provide a plant growth medium with desirable properties a number of different combinations of materials have been researched. Examples of these earlier studies include the use of filler materials such as bagasse, coconut fibre and rice husks with sphagnum peat moss and sphagnum peat.
Filler materials such as bagasse are fibrous materials which contain no significant levels of nutrients. Thus, it is necessary to add the nutrient rich sphagnum moss or peat. However, as mentioned above, sphagnum peat is in a finite supply. To date, it is believed there is no acceptable alternative to the use of sphagnum peat in the horticulture or mushroom industries.
It is therefore an object of the present invention to provide a growth medium for plants and mushrooms which may at least partially overcome the above disadvantages or provide the public with a useful choice.
It is also an object of the present invention to provide a material for use as a casing soil which may be used as an alternative to sphagnum peat.
SUMMARY OF THE INVENTION According to a first broad form of the invention there is provided a growth medium for plants or mushrooms, the medium comprising WO 00/14030 PCT/AU99/00730 3 sugarcane mill mud and a non-sphagnum peat material selected from the group consisting of a non-sphagnum peat and coconut fibre.
The growth medium of the present invention may be used in a wide range of applications including potting mixes, soil additive, mulch, mushroom casing soil and also as a top dressing material for germination of grass seeds.
In the present specification and claims, the term "non-sphagnum peat" includes any peat material which is not derived from sphagnum moss.
Such peat materials include peat derived from sedges or trees. Another suitable material is coconut fibre, which is known as coco peat. Typically, coco peat consists of shredded coconut coir (the fibrous part of a coconut shell). The coconut fibre may be either partially composted or used in its raw state. Combinations of any two or more types of peat and/or coconut fibre may also be used. Sphagnum peat may also be included as a minor component of the composition if desired.
The term "sugarcane mill mud" in the present specification and claims refers to washing material from sugar cane mills. The washings include cane washings, lime, cane juice impurities and fine bagasse.
Neither non sphagnum-peat materials or sugarcane mill mud when used exclusively as a plant growth medium or casing soil are suitable for satisfactory plant or mushroom growth. However, the present inventor has surprisingly discovered that when a sugarcane mill mud and non-sphagnum peat are used in combination, a material suitable for use as a plant growth medium or casing soil may be obtained.
Neither product on its own is suitable for satisfactorily supporting plant or mushroom growth.
The ratio of non sphagnum-peat material to sugarcane mill mud is typically between about 1.4:1 to about 2:1 parts by weight. Preferably the ratio is about 1.7:1. The amount may vary depending upon the type of peat and source of the sugarcane mill mud. For example, the composition of the sugar cane mill mud may vary, depending upon the source mill.
Typically, the respective amounts of sugar cane mill mud and non sphagnum-peat material component are selected so as to optimise WO 00/14030 PCT/AU99/00730 4 desirable properties such as water retention, aeration, pH, salt content and nutrient level. For example, non sphagnum-peat materials typically have undesirable properties such as low pH, low nutrient levels and low air porosity. These properties may be offset by the sugarcane mill mud which has near neutral pH, suitable nutrient levels and good air porosity.
Conversely, undesirable properties of the sugarcane mill mud such as high salt levels, low moisture retention, high levels or susceptibility to unwanted biological organisms are offset by the non sphagnum-peat material which was as low salt levels, good moisture retention and is substantially free of nematodes and other soil pathogens.
Preferably, the non sphagnum-peat material sugarcane mill mud are mixed to provide a composition having the ranges as defined in the following Table 1.
TABLE 1 Nutrient Range Air Filled Porosity 17 Water Holding Capacity 67 74 pH 6.7 7.2 Electrical Conductivity 0.3 0.45 Chloride (ppm) 18 Nitrate Nitrogen (ppm) 100-150 Ammonium Nitrogen (ppm) Total Nitrogen (ppm) 60-100 Sulphur (ppm) 25 Phosphorus (ppm) 18 Potassium (ppm) 16 Calcium (ppm) 150 350 Magnesium (ppm) 30 Sodium (ppm) 5 Iron (ppm) 25 Copper (ppm) 1.0 WO 00/14030 PCT/AU99/00730 Nutrient Range Manganese (ppm) 2-7 When used as a casing soil composition, preferably water is also added to the peat and/or coconut fibre sugarcane mill mud mixture to provide a water content of between about 65 75%(wt/vol). Typically, the casing soil composition is sterilised prior to use. Other optional additives may also be added. Such additives include wetting agents, fungicides, nematicides, insecticides and texture and pH controlling agents. Such additives are known to those skilled in the art. The composition may also be supplemented with nutrients, if desired, such that the concentrations of the respective chemicals fall within the ranges in Table 1.
Where the medium is to be used as a plant growth medium such as potting mix or top dressing soil, it ma be desirable to add a filler material to modify porosity and/or water retention. The amount of filler can be varied, depending upon the desired properties of the mix. This can depend on the type of plant to be grown. Suitably, about 30 to about 80 wt of filler may be added. Potting mixes will typically include about 60 to about 70 wt filler where top dressing soils can contain lower levels of filler.
A preferred filler is an inert material. An especially preferred filler is bagasse.
Optionally, further additions known in the art may be added to the medium of the present invention. Such additives include wetting agents, insecticides, nematicides, nutrients and a pH modifying agent.
BEST MODE By way of Example only, the present invention will be described with reference to the following Examples.
Example 1 A 10 tonne batch of casing soil was prepared as follows: Sugarcane mill mud having a composition according to Table 2 and sedge peat having a composition according to Table 3 are sterilised separately at 7000 for 5 hours. 6,250kg of peat and 3,750kg of sugarcane mill mud are mixed in a mixer. An effective amount of a pH controlling agent such as WO 00/14030 PCT/AU99/00730 6 gypsum and/or lime is added such that the pH of the mixture is near neutral, typically between about 6.7 to about 7.2. Generally about 100 130kg of the pH controlling agent is added.
A 10L solution of one or more fungicides is prepared. Preferred fungicides are those available under the trade names Prochloraz and Benomyl. Preferably a 10L solution of Prochloraz (0.4 0.8kg) and Benomyl (0.3 0.7kg) is prepared.
A 10L solution of an insecticide, nematicide and disinfectant is also prepared. A preferred insecticide is available under the trade name Fipronil (0.2 0.4L), a preferred nematicide is available under the trade name Fenamiphos (0.1 0.3L) and a preferred disinfectant is Formalin (1.5 2.25L).
The moisture level of the mix is measured and the amount of water required to achieve a moisture content of about 75% is calculated.
A wetting agent is then added to the calculated amount of water.
A preferred wetting agent is Alcohol Ethoxylate. Typically about 0.8 1.5L of ethoxylate is added to about 0.8 1.OKL of water.
The sugarcane mill mud and peat are mixed in the mixer at a speed not more than about 50rpm for between about 8 to 10 minutes. During mixing, the three aqueous solutions, prepared above, are sprinkled onto the mixture. After the solutions have been added, mixing is continued for between about 3 to about 5 minutes.
The casing mixture is then ready to be used or packaged.
TABLE 2 SEDGE PEAT* Nutrient/Test Optimum Range Analytical Range at different depth Air Filled Porosity 15 25 2 Water Holding Capacity 40 54 -82 pH 6.5 7.2 3.6 4.4 Electrical Conductivity 0.2 -0.5 0.08 0.12 Chloride 0-100 10-13 Nitrate Nitrogen 100- 150 1 2 WO 00/14030 PCT/AU99/00730 Nutrient/Test Optimum Range Analytical Range at different depth Ammonium Nitrogen 0-150 0.0 Total Nitrogen 150- 250 1 2 Sulphur 40 4 8 Phosphorus 8 40 1 -2 Potassium 35 250 2 -4 Calcium 50 340 17 22 Magnesium 25 80 20 -24 Sodium 0 70 18 23 Iron 35 70 52 72 Copper 0.4 10 0.04 0.15 Manganese 1.0 15 1 3 *The sedge peat is sourced from Butcher's Creek in Atherton.
This peat contains high levels of minerals and a large percentage of undecomposed grasses, roots and the like which can tie up free nitrogen.
Further, this material can break down to a very fine particle size that can clog pore spaces.
TABLE 3 SUGARCANE MILL MUD Nutrient/Test Analytical Range Moisture Level 67.9 75.5 Water holding capacity 46.9 62.3 pH 5.8 6.4 Electrical conductivity 0.54 0.77 Total Nitrogen dm 0.52 0.83 Ammonium Nitrogen ppm 5-45 Phosphorus dm 0.45 0.69 Potassium dm 0.69 0.89 Calcium dm 1.01 -1.53 Magnesium dm 0.37 0.43 WO 00/14030 PCT/AU99/00730 Nutrient/Test Analytical Range Sulfur dm 0.13- 0.19 Example 2 Example 1 was repeated with the sedge peat being replaced by coco peat. The coco peat has a composition according to Table 4.
TABLE 4 COCO PEAT Nutrient/Test Optimum Range Analytical Range at different depth Air Filled Porosity 15 25 13 18 Water Holding Capacity 40 63 77 pH 6.5 7.2 6.1 6.4 Electrical Conductivity 0.2 0.5 0.29 0.31 Chloride 0 100 59 71 Nitrate Nitrogen 100 150 1 3 Ammonium Nitrogen 0-150 Total Nitrogen 150 250 1 Sulphur 40 2.9 6.3 Phosphorus 8 40 1 -6 Potassium 35 250 132 166 Calcium 50 340 42 68 Magnesium 25 80 14 23 Sodium 0 70 53 57 Iron 35 70 10.1 24.6 Copper 0.4 10 4 7.6 Manganese 1.0- 15 2.2 The composition of the casing soil prepared by Examples 1 and 2 has a composition according to Table 5. This mixture may also be used as a plant growth medium or as a soil additive.
WO 00/14030 PCT/AU99/00730 9 TABLE Nutrient Available limits of new casing mix Air Filled Porosity 21 Water Holding Capacity 70 72 pH 6.8 Electrical Conductivity 0.375 0.4 Chloride (ppm) 24 28 Nitrate Nitrogen (ppm) 110-125 Ammonium Nitrogen (ppm) 0.0 Total Nitrogen (ppm) 75- Sulphur (ppm) 30 Phosphorus (ppm) 25- Potassium (ppm) 20 Calcium (ppm) 225 300 Magnesium (ppm) 36 Sodium (ppm) 14 Iron (ppm) 42 Copper (ppm) 3.5 Manganese (ppm) 4-8 The casing soils prepared by Examples 1 and 2 are chemically balanced and ready to use. The texture of the material is able to maintain a ratio of carbon dioxide and oxygen which facilitates the initial growth of the mushroom mycelium. (Carbon dioxide is typically generated by the lower compost layer).
The casing soil prepared according to Examples 1 and 2 were observed to have a high carbon content (which is desirable for optimum vegetative growth), a low ash content (about 15 to about a high level of organic material (about 540mg/kg), to be substantially nematode free, substantially free from soil borne pathogens have a moisture content of between about 45 to about 55% and a high moisture holding capacity (ie. a water holding capacity at dry bulb density of 0.4m/cc at 0.4m suction is 137% WO 00/14030 PCT/AU99/00730 on a dry basis and 55% on a volumetric basis at temperature ranges of 150C to 320C).
The casing soil was also observed to maintain the moisture holding capacity at a minimum level of about 67 to about 72%, to maintain an optimum level of resistance against unwanted biological organisms during the cropping cycle, optimum nutrient levels, a pH of between about 6.7 to about 7.2 and also to maintain a desirable texture.
The growth and quality of mushrooms produced using the composition of the present invention was compared with the growth and quality of mushrooms produced using sphagnum peat. The quantity and quality of the mushrooms produced using the composition of the present inventit n was found to be comparable to that using sphagnum peat.
Comparative tests in which sedge peat and sugarcane mill mud were used on their own showed that the mushroom growth was unsatisfactory.
Example 3 A potting mix was prepared by mixing 1.7 parts by weight sedge peat to 1 part by weight sugar mill mud. To this mix was added 4 parts by weight bagasse.
Example 4 A top dressing material was prepared according to Example 3 except that 2 parts by weight bagasse was added. The top dressing material was spread on a ground surface. Grass seeds were spread on the material at regular intervals. Grass germination and growth was evident over a period of about one week. This time was observed to be less than that when using conventional top dressing materials.
The potting mix and top dressing material were also observed to exhibit at least equivalent and generally superior results over conventional materials. However, the medium of the present invention can be prepared using waste products such as sugar cane mill mud. Thus, the medium can replace conventional materials currently prepared from limited natural resources.
It will be appreciated that in the present specification and claims, the term "comprising" and its derivatives "comprise" and "comprises" will imply WO 00/14030 PCT/AU99/00730 11 the inclusion of the stated integers but not the exclusion of any further integer or integers.
It can be seen that the composition of the present invention provides an alternative to conventional sphagnum peat in the production of mushrooms and use as a plant growth medium or soil additive. The composition enables the production of mushrooms of a quality and quantity comparable to sphagnum peat.
Claims (16)
1. A growth medium for plants or mushrooms, the medium comprising sugar cane mill mud and a non sphagnum-peat.
2. The growth medium of claim 1 wherein the ratio of sugar cane mill mud to non sphagnum-peat is between about 1:1.4 to about 1:2 parts by weight.
3. The growth medium of claim 2, wherein the ratio is about 1:1.4.
4. The growth medium of claim 1 having a composition as defined in Table 1.
5. The growth medium of claim 1, wherein the peat is sedge peat.
6. The growth medium of claim 1 which is in the form of a casing soil composition.
7. The growth medium of claim 6, which further contains about to about 75% wt/vol water.
8. The growth medium of claim 7, which further includes an additive selected from the group comprising a fungicide, insecticide, a nematicide, a wetting agent and a pH controlling agent.
9. The growth medium of claim 1, which further includes about to about 80 wt of an inert filler.
10. The growth medium of claim 9, which includes between about to about 70% of an inert filler.
11. The growth medium of claim 9, wherein the inert filler is bagasse.
12. A potting mix comprising about 1.7 parts by weight sedge peat, about 1 part by weight sugar cane mill mud and about 4 parts by weight bagasse.
13. A top dressing material comprising about 1.7 parts by weight sedge peat, about 1 part by weight sugar cane mill mud and about 2 parts by weight bagasse.
14. A method of preparing a casing soil composition comprising mixing about 6.25 parts by weight sedge peat or coconut fibre with about 3.75 parts by weight sugar cane mill mud, adjusting the pH to between about 6.7 to about 7.2 and adding water to adjust the moisture content to about C AMENDED SHEET IPEAIAU The growth medium of claim 1, wherein the non-sphagnum peat material is selected from the group consisting of a non-sphagnum peat and coconut fibre.
16. The growth medium of claim 15, wherein the material is coconut fibre and the ratio of sugar cane mill mud to non sphagnum-peat material is between about 1:1.4 to about 1:2 parts by weight.
17. The growth medium of claim 16 which is in the form of a casing soil composition. a *.aa
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU60687/99A AU749283B2 (en) | 1998-09-04 | 1999-09-06 | A plant and mushroom growth medium |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPP5695A AUPP569598A0 (en) | 1998-09-04 | 1998-09-04 | Casing soil composition |
AUPP5695 | 1998-09-04 | ||
AUPQ0998A AUPQ099899A0 (en) | 1999-06-16 | 1999-06-16 | Plant and mushroom growth medium |
AUPQ0998 | 1999-06-16 | ||
AU60687/99A AU749283B2 (en) | 1998-09-04 | 1999-09-06 | A plant and mushroom growth medium |
PCT/AU1999/000730 WO2000014030A1 (en) | 1998-09-04 | 1999-09-06 | A plant and mushroom growth medium |
Publications (2)
Publication Number | Publication Date |
---|---|
AU6068799A AU6068799A (en) | 2000-03-27 |
AU749283B2 true AU749283B2 (en) | 2002-06-20 |
Family
ID=27155303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU60687/99A Ceased AU749283B2 (en) | 1998-09-04 | 1999-09-06 | A plant and mushroom growth medium |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU749283B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2804466A1 (en) * | 2012-01-20 | 2014-11-26 | UAB "EKO Invest" | Method for production of casing for cultivating mushrooms and/or plants |
-
1999
- 1999-09-06 AU AU60687/99A patent/AU749283B2/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2804466A1 (en) * | 2012-01-20 | 2014-11-26 | UAB "EKO Invest" | Method for production of casing for cultivating mushrooms and/or plants |
Also Published As
Publication number | Publication date |
---|---|
AU6068799A (en) | 2000-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070209273A1 (en) | Plant and mushroom growth medium | |
EP1453374B1 (en) | Plant growth media and processes for production thereof and compositions for use therein | |
JP4922697B2 (en) | Plant seedling materials and their use | |
AU2019204665A1 (en) | Plant growing material | |
EP1737926A1 (en) | Growth medium | |
US4767440A (en) | Potting media | |
AU749283B2 (en) | A plant and mushroom growth medium | |
AU712824B3 (en) | A growth medium | |
DE2600186C3 (en) | ||
AU708546B3 (en) | Casing soil composition | |
EP3677565B1 (en) | Composition for plants' root development and growing bag comprising it | |
JP3302342B2 (en) | Cyclamen cultivation medium | |
Nichols | Coir-a XXIst Century sustainable growing medium | |
Maas et al. | Peat, bark and sawdust mixtures for nursery substrates | |
GB2269378A (en) | Fibrous growth media | |
RU2823526C1 (en) | Soil from compost with acid reaction | |
JPH1156095A (en) | Artificial soil containing coconut husk | |
JP2003313555A (en) | Soil-improving material | |
US3744986A (en) | Method for the production of horticultural soils | |
AU2005229154A1 (en) | Growth medium | |
EP1473984B1 (en) | Substrate | |
JP3486651B2 (en) | Cultivation soil for connected plastic tray | |
SU1755741A1 (en) | Substrate for growing plants in sheltered ground | |
JPH0851858A (en) | Production of culture soil for culturing plant | |
SU1250559A1 (en) | Method of producing biologicaly active soil in the field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC1 | Assignment before grant (sect. 113) |
Owner name: SUPER SOIL INTERNATIONAL LIMITED Free format text: THE FORMER OWNER WAS: MARLIN TECHNOLOGIES PTY LTD |
|
TC | Change of applicant's name (sec. 104) |
Owner name: SOIL SUB TECHNOLOGIES PTY LTD Free format text: FORMER NAME: SUPER SOIL INTERNATIONAL LIMITED |
|
FGA | Letters patent sealed or granted (standard patent) |