AU730566B2 - Cross-linked copolymers based on polycarboxylic polymers - Google Patents
Cross-linked copolymers based on polycarboxylic polymers Download PDFInfo
- Publication number
- AU730566B2 AU730566B2 AU41215/97A AU4121597A AU730566B2 AU 730566 B2 AU730566 B2 AU 730566B2 AU 41215/97 A AU41215/97 A AU 41215/97A AU 4121597 A AU4121597 A AU 4121597A AU 730566 B2 AU730566 B2 AU 730566B2
- Authority
- AU
- Australia
- Prior art keywords
- polycarboxylic
- cross
- acid
- copolymers
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2031—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0045—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0069—Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0072—Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0075—Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0084—Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Medicinal Preparation (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Graft Or Block Polymers (AREA)
Abstract
The invention concerns cross-linked copolymers with a base of non cross-linked polycarboxylic polymers, said copolymers containing at least one polycarboxylic polysaccharide. The invention also concerns a method for preparing these copolymers and their use in particular as support in pharmaceutical compositions.
Description
CROSS-LINKED COPOLYMERS BASED ON POLYCARBOXYLIC POLYMERS The invention relates to cross-linked copolymers based on non cross-linked polycarboxylic polymers, said copolymers containing at least one polycarboxylic polysaccharide. The invention also relates to a process for the preparation of these copolymers and their use in particular as a support in pharmaceutical compositions.
Certain compounds with a polymeric structure containing a polycarboxylic polysaccharide, optionally modified, have been described in the literature. For example, Patent Application W089/02445 describes a gel based on hyaluronic acid; but, in its structure, this gel only comprises hyaluronic acid and no other polycarboxylic polymer. Moreover, no cross-linking agent is used in the preparation of this gel. The compound obtained in this way is mainly used in surgery. Patent Application W091/16881 describes, among others, the combination of an active ingredient with a matrix constituted by a modified polymer, i.e. to which saccharides are grafted. This modified polymer can be a natural polymer such as chondroitin sulphate. However, this matrix contains only one type of polymer.
The copolymers according to the invention based on polycarboxylic polymers contain at least one polycarboxylic polysaccharide and at least one other polycarboxyclic polymer which is not a polysaccharide. The combination of a polysaccharide with another type of polycarboxylic polymer allows the modulation of the properties of the polysaccharides such as the hydrophilicity. In this way, copolymers can be obtained with appropriate degradation properties according to their uses. Moreover, the o copolymers according to the invention are advantageously prepared in an aqueous medium. This is a real advantage as it is almost impossible to totally eliminate the solvents in a polymer structure: the existence of traces of residual aqueous solvents is generally more easily acceptable and accepted than traces of residual organic solvents such as dimethylsulphoxide or dimethylformamide.
A subject of the invention is cross-linked copolymers based on non cross-linked polycarboxylic polymers and a cross-linking agent comprising at least two amine functions, said copolymers comprising at least one polycarboxylic polysaccharide and at least one other non cross-linked polycarboxylic polymer which is not a polycarboxylic polysaccharide.
The non cross-linked polycarboxylic polysaccharides can be chosen, for example, from glycosaminoglycans, pectinic acid, alginic acid, carboxylic derivatives of dextran such as carboxymethyldextrans, or the carboxylic derivatives of cellulose such as carboxymethylcelluloses. Among the glycosaminoglycans, there can be mentioned hyaluronic acid, chondroitin sulphate, heparin, dermatan sulphate, heparan sulphate, keratan sulphate or a mixture of the latter. Among the polycarboxylic polymers which are not polysaccharides, there can be mentioned poly(glutamic acid), poly(aspartic acid), poly(maleic acid), poly(malic acid) or poly(fumaric acid), the polycarboxylic acrylic polymers such as poly(acrylic acid), poly(methacrylic acid) or the copolymers of the latter such as the Eudragits® L and S. The expression polycarboxylic polymers includes polymers as defined above but also the partly or totally substituted derivatives of these polymers such as, for example, their esters, their amides or their salts, copolymers containing the units present in these polycarboxylic polymers or in their derivatives as defined above, but also a mixture of these polymers and/or their derivatives and/or their copolymers as defined above.
A more particular subject of the invention is cross-linked copolymers as defined above, characterized in that the polysaccharide is chosen from pectinic or alginic acid, glycosaminoglycans, and preferably hyaluronic acid, chondroitin sulphate, heparin, dermatan sulphate, heparan sulphate, keratan sulphate or a mixture of the latter.
t A more particular subject of the invention is cross-linked copolymers as defined above.
characterized in that the non cross-linked polycarboxylic polymer which is not a polycarboxylic polysaccharide is chosen from polycarboxylic acrylic polymers.
poly(glutamic acid), poly(aspartic acid), poly(maleic acid), poly(malic acid) or poly(fumaric acid). The non cross-linked polycarboxylic polymer which is not a polycarboxylic polysaccharide is preferably a polycarboxylic acrylic polymer and more particularly poly(acrylic acid) or poly(methacrylic acid).
The polycarboxylic polymers according to the invention are linked together by a crosslinking agent. This cross-linking agent comprises at least two amine functions which are capable of reacting with the free carboxylic functions of said non cross-linked carboxylic polymers. It can be chosen, for example, from proteins, polyamines, triamines, diamines, natural or synthetic amino acids, or the derivatives of compounds as defined above such as. for example, their salts, esters or amides. Among the amino acids there can be mentioned, for example, arginine, lysine, histidine and ornithine.
Among the diamines there can be mentioned ethylenediamine, butanediamine, hexanediamine, heptanediamine, octanediamine or dodecanediamine. Among the polyamines there can be mentioned chitosan, poly(amino acids) such as polylysine or polyornithine, as well as the copolymers of these polyamines. The cross-linking agent can also be chosen from compounds such as spermine, spermidine, melamine, guanidine or diethylenetriamine. The cross-linking agent used is preferably an amino acid and advantageously lysine, ornithine or histidine.
A more particular subject of the invention is also cross-linked copolymers as defined above, characterized in that the polycarboxylic polysaccharide is a polycarboxylic polysaccharide which can be degraded by the microbial flora of the colon such as chondroitin sulphate, hyaluronic acid, pectinic acid or heparin.
A more particular subject of the invention is cross-linked copolymers as defined above, characterized in that the polycarboxylic polysaccharide is chondroitin sulphate and the other said polcarboxylic polymer is chosen from poly(acrylic acid) and poly(methacrylic acid), and the cross-linking agent is lysine or histidine.
A subject of the invention is also a process for the preparation of cross-linked copolymers as defined above, said process characterized in that said non cross-linked polycarboxylic polymers constituting the cross-linked copolymer are reacted in the presence of an activator and a cross-linking agent comprising at least two amine functions, in an appropriate reaction medium. The preparation of cross-linked copolymers as defined above is preferably carried out in an aqueous medium. The expression aqueous medium means a medium only containing water or water mixed with one or more solvents which are miscible with water such as. for example, acetone or lower alcohols such as ethanol. The aqueous medium preferably only comprises water. The implementation of the process according to the invention can be carried out in various manners. In fact, the process may consist in mixing non cross-linked polycarboxylic polymers and the cross-linking agent, then adding the activator. The cross-linking process according to the invention can also consist in mixing together non cross-linked polycarboxylic polymers and the activator, then adding the cross-linking agent. The process may also consist in cross-linking one of the non cross-linked polycarboxylic polymers constituting the copolymer, mixing said polymer with the cross-linking agent then the activator, or with the activator then the cross-linking agent, then adding at least one other non cross-linked polycarboxylic polymer to the reaction medium, in order to cross-link it with said polymer present in the reaction mixture.
During the implementation of the process, the reagents introduced can previously be solubilized in the chosen reaction medium. The non cross-linked polycarboxylic polymers and the cross-linking agent are preferably mixed together in an aqueous medium until solubilization then the activator is added. The process is implemented at a temperature comprised between -30 and 100°C, preferably between 0 and 40 °C and most preferably at ambient temperature. The implementation temperature for the crosslinking process is of course lower than the degradation or decomposition temperatures of the reagents introduced.
The relative proportions of the reagents constituted by the non cross-linked polycarboxylic polymers, the cross-linking agent and the activator can vary according to the characteristics of the sought copolymers. The proportions of the non cross-linked polycarboxylic polymers are defined with respect to the molar quantities of the carboxylic functions present per base unit. The non cross-linked polycarboxylic polymers can vary within a molar ratio comprised between 0.01 and 100. The molar Sratio of the cross-linking agent with respect to the total carboxylic functions can vary from 0.01 to 100. The molar ratio of the activator with respect to the total carboxylic functions can vary from 0.01 to 100.
The activator can be chosen from coupling agents in standard use in peptide synthesis.
The activator can thus be chosen, for example, from carbodiimides, quinoline derivatives or mixed anhydrides. As examples of carbodiimides, there can be mentioned hydrohalides such as N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC), N-cyclohexyl-N'-(2-morpholinoethyl) carbodiimide (CMC). As examples of quinoline derivatives, there can be mentioned 2-ethoxy-N-ethoxycarbonyl- 1,2-dihydroquinoline (EEDQ), N-isobutoxycarbonyl-2-isobutoxy-l,2-dihydroquinoline (IIDQ), N-isobutoxycarbonyl-2-methoxy-l,2-dihydroquinoline (IMDQ), N-isobutoxycarbonyl-2-ethoxy-l,2-dihydroquinoline (IEDQ). As examples of mixed anhydrides, there can be mentioned chloroformates and more particularly isobutylchloroformate (IBC). The activator used is preferably N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride.
The cross-linked copolymers according to the invention can be used, for example, in the pharmaceutical, cosmetic, biomedical, veterinary, chemical, agro-chemical or agroalimentary fields.
A more particular subject of the invention is a pharmaceutical composition containing at least one active ingredient and, as an inert support or an excipient. at least one crosslinked copolymer according to the invention. The expression active ingredient designates any substance or mixture of substances having a therapeutic activity.
Such a composition can be produced from these different components by any standard technique known to a person skilled in the art. It can be presented, for example, in the form of matrix tablets, tablets coated with the copolymers of the present invention, multi-layered tablets, matrix pellets, pellets or microparticles coated with the p copolymers of the present invention. These microparticles and pellets may or may not be contained in capsules. It can also be presented in the form of microparticles or nanoparticles at least one constituent of which is a copolymer of the present invention or else in any other form allowing oral administration. It can also be presented in any other form suited to the chosen or appropriate administration method such as suppositories or preparations for local application or injection. The quantity of active ingredient allowing effective pharmacological action, in particular therapeutic action, can vary according to the type of active ingredient, the age and/or the illness of the patient to be treated.
A subject of the present invention is also the use of a pharmaceutical composition according to the invention for a sustained release of the active ingredient(s) it contains.
Such compositions can also possess other characteristics which optionally depend on the characteristics of the initial polycarboxylic polymers such as biointegration. Thus, a pharmaceutical composition according to the invention can also be used as a bioadhesive pharmaceutical system. A subject of the present invention is therefore also the use of a pharmaceutical composition according to the invention as a biointegration system.
SCompositions as defined above in which the polycarboxylic polysaccharide can be degraded by the flora of the colon can also be used as a specific release system at the Kr o«.
level of the colon by the action of the microbial flora. The concept of specific release at the level of the colon by the action of microbial flora is based on the property of the colon to possess a very abundant microbial flora which, moreover, has the potential to metabolize substances which are slightly degraded or not degraded by the upper part of the digestive tube. Such compositions are particularly suited to conveying active ingredients intended for the treatment of diseases of the colon, which allows their effectiveness to be increased and their side effects to be reduced. These active ingredients include steroids such as dexamethasone and hydrocortisone. non-steroid anti-inflammatories such as 5-aminosalicylic acid, antineoplastics such as methotrexate.
tamoxifen, antispasmodics and chemotherapy agents. Such compositions are also particularly suited for conveying active ingredients which are absorbed more efficiently at the level of the colon such as steroids or xanthine. Their direct administration at the level of the colon allows their effectiveness to be increased. Such compositions are also particularly suited to conveying active ingredients which are degraded in the upper parts of the digestive tube. Among these active ingredients, there can be mentioned peptides and proteins such as oral vaccines, insulin, contraceptive peptides, plasminogen activator peptides, growth peptides, LH/RH.
The following examples are presented in order to illustrate the above procedures and should in no event be considered as a restriction to the scope of the invention.
EXPERIMENTAL PART EXAMPLE 1 1.33 g of the sodium salt of chondroitin sulphate (A at 70%, C at 30 0.29 g of the sodium salt of polymethacrylic acid (PMA) and 3.35 g of L-lysine monohydrochloride are mixed together in 9 ml of bidistilled water until a limpid solution is obtained which is subsequently degassed. Then 4.59 g of N-ethyl-N'-(3dimethylaminopropyl) carbodiimide hydrochloride (EDC) is added. The pH is maintained between 6 and 7 by successively adding 2.5 N hydrochloric acid. The reaction is carried out at ambient temperature for 6 hours. Then the reaction medium is transferred to a dialysis apparatus (Spectra/por, cut-off threshold 12-14 KD) and dialysed 4 times against 4 litres of water each time. The precipitate obtained in this way is washed with water then dried. The sought chondroitin sulphate and polymethacrylic acid copolymer is obtained with an average mass of 1.53 0.12 g. The use of sulphur as a marker for chondroitin sulphate allows the definition by elementary analysis of the percentage by mass of chondroitin sulphate in the copolymer which is equal to 59 2 EXAMPLE 2 The operation is carried out in the same manner as in Example 1, but using 1.77 g of Llysine monohydrochloride and 2.76 g of EDC. The mass of the copolymer obtained is 1.06 0.15 g; the percentage by mass of CS in the precipitate is 55 2.
EXAMPLE 3 The operation is carried out in the same manner as in Example 1, but using 7.06 g of Llysine monohydrochloride and 8.21 g of EDC. The mass of the copolymer obtained is 1.61 0.12 g; the percentage by mass of CS in the precipitate is 61 1.
EXAMPLE 4 The operation is carried out in the same manner as in Example 1 but using 3 g of histidine instead of L-Lysine. The mass of the copolymer obtained is 1.94 0.01 g; the percentage by mass of CS in the precipitate is 48 3.
EXAMPLE The operation is carried out in the same manner as in Example 1, but using 0.43 g of PMA, 4.5 g of L-lysine monohydrochloride and 5.82 g of EDC. The mass of the copolymer obtained is 1.86 0.05 g; the percentage by mass of CS in the precipitate is S58 2.
EXAMPLE 6 The operation is carried out in the same manner as in Example 1. but using 0.58 g of PMA. 5.45 g of L-lysine monohydrochloride and 7.05 g of EDC. The mass of the copolymer obtained is 2.07 0.01 g: the percentage by mass of CS in the precipitate is 54 2.
EXAMPLE 7 Tests on the solubilization of the copolymer of Example 1 are carried out in the following solvents and mixtures of solvents: water at pH 3 and 7. acetonitrile, ethanol, tetrahydrofuran, dichloromethane, dimethylsulphoxide, dimethylacetamide, acetone, dioxane, triethylamine. chloroform, petroleum ether, hexane, dimethylformamide, benzyl alochol, heptane, isopropyl alcohol. 1,2-propanediol, water/ acetone mixture water/ ethanol mixture The copolymer is insoluble in all these solvents, which demonstrates its cross-linked character.
Study of the enzymatic degradation of copolymers 1- spectroscopic study We are here studying the degradation of the copolymers of the invention based on chondroitin sulphate by chondroitinases, enzymes of the microbial flora of the colon.
Suspensions of the copolymers of Examples 1 to 6, in a buffer (acetate/tris/albumin) at pH 7.3, are prepared and agitated for a few hours in order to stablize them. The suspensions contain 67 mg of CS/ml of buffer. A solution of chondroitinases is added at a rate of 3.10 3 EU (Enzymatic Unit) for each mg of CS contained in the suspension.
The mixture is incubated at 37 0 C. At determined times, a suspension is centrifuged at 4°C then filtered. A study of the UV absorbance of the supernatant is carried out. The disaccharides originating from the degradation of the CS have a maximum absorption at 230-240 nm (Yamagata, T.et J.Biol.Chem., 243(7): 1523-1535(1968); Salyers, A. et al., J.Bacteriol.. 143(2): 772-780)). The control is a solution of non cross-linked CS prepared under the same operating conditions as above.
The kinetics of the appearance in solution of the disaccharides originating from the degradation of the non cross-linked CS and the copolymer obtained in Example 1 are shown in Figure 1 below.
These results show that the copolymer of Example 1 is degraded by the enzymes.
Comparison of the degradation of the copolymer of Example 1 with that of the control shows that the copolymer, although cross-linked, is rapidly degraded by the enzymes.
The same tests are carried out on the copolymers of Examples 2 to 6: the results show that these copolymers containing the CS are degraded by the chondroitinases.
2- rheological study The enzymatic degradation of the copolymers leads to the appearance of molecular chains of smaller sizes and should therefore lead to a reduction in the viscosity of the medium in which they are suspended.
A suspension of the copolymer of Example 1 in the buffer mixture (tris/acetate/albumin) is prepared under the same operating conditions as those used in the spectroscopic study as presented above. Then, 4 ml of suspension is incubated in the cylinder of the viscometer (Haake RS100) maintained at 37 0 C. Measurement of the initial viscosity is carried out. Then, 0.8 EU of chondroitinases dissolved in 160 ml of water are added to the suspension. The control is a suspension of the copolymer of Example 1 prepared under the operating conditions previously described, without adding any enzyme and diluted in 160 ml of water. The evolution of the viscosity is monitored over time. The experiment is carried out twice for each test.
Figure 2 is a semi-logarithmic illustration of the evolution of the viscosity of the suspension of the copolymer of Example 1 in the presence of enzymes (continuous line) or in the absence of enzymes (dotted control line). The viscosity of the control, which is of the order of 17± 3 mPa.s, does not vary over time. On the other hand, in the presence of enzymes, the viscosity progressively drops from 17 mPa.s to 3 mPa.s over minutes then becomes quasi-stable. This significant drop in viscosity is explained by the degradation of the copolymer by the enzymes.
Moreover, following the above spectroscopic and rheological studies carried out under the same operating conditions, there can be observed, after incubation in the presence of enzymes for 55 minutes, a virtually total drop in viscosity although only part of the disaccharides originating from the the degradation of the CS which is detected in solution. The degradation of a few sites of the copolymer by the enzymes is sufficient to entail a collapse of the three-dimensional network of the copolymer.
Study of sustained release tablets The cross-linked copolymers of Examples 1 to 6 are sieved then mixed with aminosalicylic acid (5ASA) and magnesium stearate (mass ratio 79.5/20/0.5). Then 250 mg tablets of hardness 100 N are prepared by direct compression.
Dissolution tests are carried out on the tablets prepared in this way, in a device with a rotating vane (DISSOLUTEST) at 37 0 C under agitation at 50 revolutions/minute. The dissolution media used are a buffer mixture of pH 1.2 and 7.5 respectively corresponding to the artificial gastric and intestinal media (without enzymes). For each formula and in each medium, the test is carried out three times. At determined times, a sample of the dissolution medium is taken and filtered. Dosage of the 5ASA is carried out by UV spectroscopy.
Table 1 below summarizes the time (in hours) taken to release 50 of the initial dose of 5ASA obtained in artificial gastric and intestinal media.
12lable 1 Exemplle 150% 150 (gastric medium) (intestinal medium) 1 2.88 7.66 2 1.42 1.61 3 6.48 8.29 4 1.22 1.59 7.94 8.65 6 7.96 11.05 In a gastric medium, the 150%'s vary from 1.2 to 8 hours thus allowing the release of the active ingredient to be modulated according to the type of copolymer. Among these copolymers, the copolymers of Examples 3, 5 and 6. respectively having t50%'s of 7.9 and 8 hours, significantly moderate the release of the active ingredient.
In an intestinal medium, the 150%'s vary from 1.6 to 11 hours, also allowing modulation of the release of the active ingredient according to the type of copolymers. Moreover, a significant moderation of the release of the active ingredient is obtained with the copolymers of Examples 1. 3, 5 and 6. In fact, the t50%'s obtained with these copolymers are 7.7, 8.3. 8.7 and 11 hours respectively.
The synthesized copolymers therefore allow the creation of sustained release pharmaceutical systems according to the characteristics of the cross-linked copolymers.
More particularly, those which possess the property of significantly moderating the release of the active ingredient and being degradable by chondroitinases appear to be useful candidates for creating sustained release systems at the level of the colon by action of the microbial flora.
"Comprises/comprising" when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or Saddition of one or more other features, integers, steps, components or groups thereof.
0-
Claims (14)
1- Cross-linked copolymers based on non cross-linked polycarboxylic polymers and a cross-linking agent comprising at least two amine functions, said copolymers comprising at least one polycarboxylic polysaccharide and at least one other non cross- linked polycarboxylic polymer which is not a polycarboxylic polysaccharide.
2- Copolymers according to claim 1, characterized in that the polycarboxylic polysaccharide is chosen from glycosaminoglycans, pectinic or alginic acid.
3- Copolymers according to one of claims I to 2, characterized in that the polycarboxylic polysaccharide is a glycosaminoglycan chosen from hyaluronic acid, chondroitin sulphate, heparin, dermatan sulphate, heparan sulphate, keratan sulphate.
4- Copolymers according to one of claims 1 to 3, characterized in that the non cross- linked polycarboxylic polymer which is not a polycarboxylic polysaccharide is chosen from polycarboxylic acrylic polymers, poly(glutamic acid), poly(aspartic acid), poly(maleic acid), poly(malic acid) or poly(fumaric acid). Copolymers according to any one of claims 1 to 4, characterized in that the non cross-linked polycarboxylic polymer which is not a polycarboxylic polysaccharide is a polycarboxylic acrylic polymer.
6- Copolymers according to claim 5, characterized in that the polycarboxylic acrylic polymer is poly(acrylic acid) or poly(methacrylic acid).
7- Copolymers according to any one of claims 1 to 6, in which the cross-linking agent is chosen from diamines, natural or synthetic amino acids or polyamines. -14-
8- Copolymers according to claim 7 in which the amino acid is chosen from lysine, histidine or ornithine.
9- Copolymers according to claim 7 in which the diamine is chosen from ethylenediamine, butanediamine, hexanediamine, heptanediamine, octanediamine and dodecanediamine. Copolymers according to claim 7 in which the polyamine is chosen from chilosan, polyornithine or polylysine.
11- Copolymers according to one of claims I to 10, characterized in that the polycarboxylic polysaccharide can be degraded by the flora of the colon.
12- Copolymers according to claim 11, characterized in that the polycarboxylic polysaccharide is chosen from chondroitin sulphate, hyaluronic acid, pectinic acid or heparin.
13- Copolymers according to any one of claims 1 to 8, 11 and 12, characterized in that the polycarboxylic polysaccharide is chondroitin sulphate, the other said polycarboxylic polymer is poly(acrylic acid) or poly(methacrylic acid) and the cross-linking agent is lysine or histidine.
14- Process for the preparation of copolymers according to any one of claims 1 to 13, characterized in that said non cross-linked polycarboxylic polymers are reacted in an aqueous medium, in the presence of an activator and of said cross-linking agent.
15- Process according to claim 14, in which the activator is chosen from carbodiimides, quinoline derivatives and mixed anhydrides.
16- Pharmaceutical composition containing at least one active ingredient and, as an inert support or excipient, at least one copolymer according to one of claims 1 to /^0 17 Pharmaceutical composition containing at least one active ingredient and, as an inert support or excipient. at least one copolymer according to one of claims 11 to 13. 18 Use of a pharmaceutical composition according to one of claims 16 to 17 for sustained release. 19 Use of a pharmaceutical composition according to one of claims 16 to 17 as a bioadhesive pharmaceutical system. Use of a pharmaceutical composition according to claim 17 for a specific release of the active ingredient at the level of the colon. 21 Use according to claim 20 to convey the active ingredient intended for the treatment of diseases of the colon. 22 Use according to claim 20 to convey the active ingredient which is absorbed at the level of the colon. 23 Use according to claim 20 to convey the active ingredient which is degraded in the upper parts of the digestive tube. 0 4. 2 3
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9610601A FR2752843B1 (en) | 1996-08-30 | 1996-08-30 | CROSSLINKED COPOLYMERS BASED ON POLYCARBOXYLIC POLYMERS AND THEIR USE AS SUPPORTS OF PHARMACEUTICAL COMPOSITIONS |
FR96/10601 | 1996-08-30 | ||
PCT/FR1997/001534 WO1998008897A1 (en) | 1996-08-30 | 1997-08-29 | Polycarboxylic based cross-linked copolymers |
Publications (2)
Publication Number | Publication Date |
---|---|
AU4121597A AU4121597A (en) | 1998-03-19 |
AU730566B2 true AU730566B2 (en) | 2001-03-08 |
Family
ID=9495309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU41215/97A Ceased AU730566B2 (en) | 1996-08-30 | 1997-08-29 | Cross-linked copolymers based on polycarboxylic polymers |
Country Status (20)
Country | Link |
---|---|
EP (1) | EP0922071B1 (en) |
JP (1) | JP4162265B2 (en) |
AT (1) | ATE208803T1 (en) |
AU (1) | AU730566B2 (en) |
CA (1) | CA2266645C (en) |
CZ (1) | CZ296041B6 (en) |
DE (1) | DE69708304T2 (en) |
DK (1) | DK0922071T3 (en) |
ES (1) | ES2167784T3 (en) |
FR (1) | FR2752843B1 (en) |
HU (1) | HUP9903745A3 (en) |
IL (1) | IL128619A (en) |
MY (1) | MY116595A (en) |
NO (1) | NO311621B1 (en) |
NZ (1) | NZ334301A (en) |
PL (1) | PL193227B1 (en) |
PT (1) | PT922071E (en) |
RU (1) | RU2194055C2 (en) |
WO (1) | WO1998008897A1 (en) |
ZA (1) | ZA977671B (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1303738B1 (en) * | 1998-11-11 | 2001-02-23 | Aquisitio S P A | CARBOXYLATE POLYSACCHARIDE CROSS-LINKING PROCESS. |
IT1303735B1 (en) * | 1998-11-11 | 2001-02-23 | Falorni Italia Farmaceutici S | CROSS-LINKED HYALURONIC ACIDS AND THEIR MEDICAL USES. |
US6288043B1 (en) * | 1999-06-18 | 2001-09-11 | Orquest, Inc. | Injectable hyaluronate-sulfated polysaccharide conjugates |
FR2799196B1 (en) * | 1999-10-04 | 2002-02-08 | Sod Conseils Rech Applic | CROSSLINKED COPOLYMERS BASED ON NON-CROSSLINKED POLYCARBOXYLIC COPOLYMERS |
KR100378109B1 (en) * | 2000-10-24 | 2003-03-29 | 주식회사 메디프렉스 | Hydrophobic multicomponant heparin conjugates, a preparing method and a use thereof |
JP4796845B2 (en) * | 2003-07-18 | 2011-10-19 | 日本エクスラン工業株式会社 | Amino acid derivative sustained-release polymer, cosmetics and fiber structure containing the polymer, and methods for producing and regenerating them |
FR2873379B1 (en) * | 2004-07-23 | 2008-05-16 | Jerome Asius | PROCESS FOR THE PREPARATION OF RETICULATED HYALURONIC ACID, RETICULATED HYALURONIC ACID WHICH CAN BE OBTAINED BY THIS METHOD, IMPLANT CONTAINING THE RETICULATED HYALURONIC ACID, AND USE THEREOF |
GB2423252B (en) * | 2005-02-18 | 2007-10-17 | Engelhard Lyon | Cross-linked polymer of carbohydrate, notably based on polysaccharides, and/or on oligosaccharides and/or on polyols |
CN101432311A (en) * | 2006-02-28 | 2009-05-13 | 诺维信生物聚合物公司 | Derivatives of hyaluronic acids |
EP1942117A1 (en) * | 2006-12-29 | 2008-07-09 | Sigea S.R.L. | Derivatives of acid polysaccharides |
WO2009047802A2 (en) * | 2007-10-10 | 2009-04-16 | Lupin Limited | Novel colon targeted modified release bioadhesive formulation of 5-amino salicylic acid or its salts and metabolites thereof |
EP3184552B1 (en) | 2008-09-02 | 2020-08-12 | Tautona Group LP | Threads of hyaluronic acid, methods of making thereof and uses thereof |
CZ302789B6 (en) * | 2009-11-25 | 2011-11-09 | Zentiva, K. S. | Method of increasing solubility of pharmaceutically active compounds and targeted (controlled) transport thereof into intestine |
US20110172180A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie. Sas | Heat stable hyaluronic acid compositions for dermatological use |
DK3078388T3 (en) | 2010-03-22 | 2019-05-20 | Allergan Inc | CROSS-BREAKED HYDROGEN WAVES |
CN107412002A (en) | 2011-06-03 | 2017-12-01 | 阿勒根公司 | Dermal filler composition including antioxidant |
US9408797B2 (en) | 2011-06-03 | 2016-08-09 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
US20130096081A1 (en) | 2011-06-03 | 2013-04-18 | Allergan, Inc. | Dermal filler compositions |
US9393263B2 (en) | 2011-06-03 | 2016-07-19 | Allergan, Inc. | Dermal filler compositions including antioxidants |
US9662422B2 (en) | 2011-09-06 | 2017-05-30 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US20130244943A1 (en) | 2011-09-06 | 2013-09-19 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
FR2997014B1 (en) | 2012-10-24 | 2015-03-20 | Teoxane | DERMO-INJECTABLE STERILE COMPOSITION |
ITUD20130119A1 (en) * | 2013-09-12 | 2015-03-13 | Limacorporate Spa | BIOCOMPATIBLE IDROGEL FOR BIOMEDICAL OR PHARMACEUTICAL USE, INTERMEDIATE POLYMER TO REALIZE THE BIOCOMPATIBLE IDROGEL AND ITS APPLICATION METHOD |
ES2811269T3 (en) * | 2014-01-31 | 2021-03-11 | Seikagaku Kogyo Co Ltd | Diamine crosslinking agent, acid polysaccharide crosslinking body and medical material |
WO2016051219A1 (en) | 2014-09-30 | 2016-04-07 | Allergan Industrie, Sas | Stable hydrogel compositions including additives |
EP3386551A4 (en) * | 2015-12-11 | 2018-10-24 | The General Hospital Corporation | Dextran nanoparticles for macrophage specific imaging and therapy |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4026851A (en) * | 1975-08-13 | 1977-05-31 | E. I. Du Pont De Nemours And Company | Acrylate polymers cured with diamines in the presence of an acid catalyst |
US4663050A (en) * | 1982-01-18 | 1987-05-05 | Standard Oil Company | Semipermeable membranes prepared from polymers containing adjacent, pendent carboxy groups |
US4937270A (en) * | 1987-09-18 | 1990-06-26 | Genzyme Corporation | Water insoluble derivatives of hyaluronic acid |
US5017229A (en) * | 1990-06-25 | 1991-05-21 | Genzyme Corporation | Water insoluble derivatives of hyaluronic acid |
DE3809764A1 (en) * | 1988-03-23 | 1989-10-05 | Knoll Ag | MIXTURE OF ALGINATES AND POLYACRYLATES AND THEIR USE |
DE527942T1 (en) * | 1990-05-04 | 1994-03-03 | Perio Prod Ltd | DISPENSING SYSTEM IN COLON. |
-
1996
- 1996-08-30 FR FR9610601A patent/FR2752843B1/en not_active Expired - Fee Related
-
1997
- 1997-08-26 ZA ZA9707671A patent/ZA977671B/en unknown
- 1997-08-29 CA CA002266645A patent/CA2266645C/en not_active Expired - Fee Related
- 1997-08-29 HU HU9903745A patent/HUP9903745A3/en unknown
- 1997-08-29 PT PT97938958T patent/PT922071E/en unknown
- 1997-08-29 EP EP97938958A patent/EP0922071B1/en not_active Expired - Lifetime
- 1997-08-29 IL IL12861997A patent/IL128619A/en not_active IP Right Cessation
- 1997-08-29 JP JP51134298A patent/JP4162265B2/en not_active Expired - Fee Related
- 1997-08-29 DK DK97938958T patent/DK0922071T3/en active
- 1997-08-29 AT AT97938958T patent/ATE208803T1/en not_active IP Right Cessation
- 1997-08-29 WO PCT/FR1997/001534 patent/WO1998008897A1/en active IP Right Grant
- 1997-08-29 ES ES97938958T patent/ES2167784T3/en not_active Expired - Lifetime
- 1997-08-29 PL PL331848A patent/PL193227B1/en not_active IP Right Cessation
- 1997-08-29 AU AU41215/97A patent/AU730566B2/en not_active Ceased
- 1997-08-29 NZ NZ334301A patent/NZ334301A/en unknown
- 1997-08-29 CZ CZ1999606A patent/CZ296041B6/en not_active IP Right Cessation
- 1997-08-29 DE DE69708304T patent/DE69708304T2/en not_active Expired - Lifetime
- 1997-08-29 RU RU99106546/04A patent/RU2194055C2/en not_active IP Right Cessation
- 1997-08-30 MY MYPI97004035A patent/MY116595A/en unknown
-
1999
- 1999-02-26 NO NO19990935A patent/NO311621B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
IL128619A0 (en) | 2000-01-31 |
FR2752843A1 (en) | 1998-03-06 |
HUP9903745A3 (en) | 2001-03-28 |
IL128619A (en) | 2004-02-19 |
HUP9903745A2 (en) | 2000-03-28 |
WO1998008897A1 (en) | 1998-03-05 |
NO990935D0 (en) | 1999-02-26 |
CA2266645C (en) | 2008-03-18 |
PL331848A1 (en) | 1999-08-16 |
ZA977671B (en) | 1998-02-23 |
ATE208803T1 (en) | 2001-11-15 |
ES2167784T3 (en) | 2002-05-16 |
RU2194055C2 (en) | 2002-12-10 |
DE69708304D1 (en) | 2001-12-20 |
JP2001501228A (en) | 2001-01-30 |
DE69708304T2 (en) | 2002-07-25 |
AU4121597A (en) | 1998-03-19 |
NZ334301A (en) | 2000-06-23 |
NO990935L (en) | 1999-04-15 |
EP0922071B1 (en) | 2001-11-14 |
FR2752843B1 (en) | 1998-10-16 |
JP4162265B2 (en) | 2008-10-08 |
MY116595A (en) | 2004-02-28 |
PL193227B1 (en) | 2007-01-31 |
PT922071E (en) | 2002-05-31 |
NO311621B1 (en) | 2001-12-17 |
CZ60699A3 (en) | 2000-06-14 |
DK0922071T3 (en) | 2002-03-11 |
CZ296041B6 (en) | 2005-12-14 |
CA2266645A1 (en) | 1998-03-05 |
EP0922071A1 (en) | 1999-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU730566B2 (en) | Cross-linked copolymers based on polycarboxylic polymers | |
US6229009B1 (en) | Polycarboxylic based cross-linked copolymers | |
JP7009371B2 (en) | Methods for deacetylating biopolymers | |
AU606230B2 (en) | Water insoluble derivatives of hyaluronic acid | |
AU717188B2 (en) | Ionic molecular conjugates of n-acylated derivatives of poly (2-amino-2-deoxy-d-glucose) and polypeptides | |
AU622699B2 (en) | Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents | |
JP4745826B2 (en) | Cross-linked polysaccharide microparticles and method for producing the same | |
US7879818B2 (en) | Hyaluronic acid-based cross-linked nanoparticles | |
US20030096734A1 (en) | Sodium hyaluronate microspheres | |
CN112041378B (en) | Injectable gel products | |
CN1298297A (en) | Cross-linked high amylose starch having functional groups as a matrix for the slow release of pharmaceutical agents | |
US20080292664A1 (en) | Hydrogels and Hyaluronic Acid and Alpha, Beta-Polyaspartyl-Hydrazide and Their Biomedical and Pharmaceutical Uses | |
EP1564220A1 (en) | Sustained release drug carrier | |
CA2400205A1 (en) | Modification of biopolymers for improved drug delivery | |
US7014845B1 (en) | Crosslinked copolymers based on non-crosslinked polycarboxylic copolymers | |
US20040171580A1 (en) | Regioselectively reticulated polysaccharides | |
Banerjee et al. | Pharmaceutical Applications of Xanthan Gum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |