AU2019343334A1 - Automatic mooring apparatus for watercraft - Google Patents

Automatic mooring apparatus for watercraft Download PDF

Info

Publication number
AU2019343334A1
AU2019343334A1 AU2019343334A AU2019343334A AU2019343334A1 AU 2019343334 A1 AU2019343334 A1 AU 2019343334A1 AU 2019343334 A AU2019343334 A AU 2019343334A AU 2019343334 A AU2019343334 A AU 2019343334A AU 2019343334 A1 AU2019343334 A1 AU 2019343334A1
Authority
AU
Australia
Prior art keywords
watercraft
dock
mooring
mooring apparatus
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2019343334A
Inventor
Attila VIRAGH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dockstar Technologies Zrt
Original Assignee
Dockstar Tech Zrt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dockstar Tech Zrt filed Critical Dockstar Tech Zrt
Publication of AU2019343334A1 publication Critical patent/AU2019343334A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/54Boat-hooks or the like, e.g. hooks detachably mounted to a pole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/02Buoys specially adapted for mooring a vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • E02B3/068Landing stages for vessels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/24Mooring posts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/28Fender piles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B2021/003Mooring or anchoring equipment, not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/26Fenders

Abstract

A mooring apparatus (10) for automatic mooring and parking a 10-70 feet long watercraft that is built from two dock-finger units (20) fixed to the dock (2). The dock-finger units (20) are equipped with flexible tentacle elements (80) for positioning the watercraft (4) by keeping continuous contact with the hull (6). and they are also equipped with automatic-operated locking mechanisms (40) for catching and locking the watercraft (4), The mooring apparatus (10) has a control panel (90) with a built-in programmable processor (98) and a communication unit (98) that can be accessed from anywhere by communication means, and connected to the harbour IT system.

Description

Automatic mooring apparatus for watercraft inventor’s data
Name; ATTiLA ViRAGH
Address: 35/A Varkonyi Z sir.
Szentendre, Hungary
Postal code: 2000
Field and objectives of the Invention
The Invention is such a mooring apparatus that allows rope-free, automatic mooring and parking for 10 - 70 feet long watercrafts.
Background of the Invention
Watercrafts are traditionally moored with ropes to the dock or anchors, This is also the case with expensive watercrafts / yachts equipped with state-of-the-art technology. To moor with ropes, the operator also usually needs an assisting person to moor.
Mooring watercrafts is a dangerous manoeuvre, especially in windy weather, in high waves or in case of changes in water levei. Under such circumstances, when approaching the mooring spot and during mooring the watercraft may hit the dock with such force that It and/or the dock can be damaged. Repairing the damage of high- value watercrafts involves professional work and therefore significant costs and time. The use of a damaged dock Is not safe and requires repair as well.
Various technical solutions have been developed and applied to avoid Injury and damages caused by the collision of the watercraft and the dock.
The simplest and most common solution is to use bumpers that are hanging on the ship and the crew on board hang them out by the side of the ship at an appropriate height during mooring . The force of collision with the dock is dampened by the bumpers as they are made of flexible material to absorb collision energy. The problem with the use of bumpers is that they have to be hung out at the right height and points, which is not always successful. A further problem Is that besides the watercraft operator, there is a need for at least one assisting person, who is most often not available.
For the protection of watercrafts against damages, materials glued or mounted on its side are also used. Such a simple solution is to attach plastic or rubber strips to the most vulnerable parts of the hull. Their role is to prevent friction damage.
U.S. Patent No. 8.161.494 discloses the use Of inflatable bumpers on the hull. According to the invention, an appropriate opening must be provided on the huff and an inflatable bumper must be installed there. Its function is ensured by an appropriate mechanical unit. This solution is not applicable to watercrafts already in use, and their incorporation info newly-built watercrafts has not spread either. The drawback of the invention is that bumpers must be mounted at fixed heights, which is not always appropriate. Further problem is that the inflatable bumpers are easily damaged and then do not fulfil their rotes.
U.S. Patent No. 7.730,84 discloses a technical solution in which there are rotatable bumping elements fixed at the top of the hull. The bumping elements reduce the collision energy at the physically encountered points of the ship and the dock and can absorb it using an appropriate machine mechanism. The use of the invention in watercrafts is complicated. Factory or post-fitting is expensive. Because of the abovementioned, the solution has not spread in practice.
Equipping docks with various elements Is also a common way to protect ships and the dock from damage. One of the conventional solutions of collision-reducing elements is when used tires are fixed to the side of the docks. As these bumpers are fixed at a given height and location , they cannot follow the change in water level and the bumping points regarding the side of the watercraft are not optimized.
In modern harbours, using used tires is not a popular option.
A known solution is the use of bumpers atached to the vertical columns of docks. Such solutions are disclosed in U.S. Patent Nos. 5.184.562, 5.782.016 and 7.481.174. The bumpers are made of flexible material and are therefore suitable for absorbing some of the collision energy, Bumpers that rotate around the axis also reduce or prevent bumping and friction damage. They have the advantage of allowing to track the changes in water level by freely rising or sinking a moored watercraft. The disadvantage is that they can only be used where the dock is equipped with vertical columns. However, most docks are not like that.
A special solution Is disclose in Patent No. GB 2.415.942. The object of the invention is a V-shaped mooring unit which includes inclined bumper columns adapted to the shape of the front of the 'watercraft, on which there are rotating bumping elements. The ship’s side-to-side collision is reduced by the ship’s own mobile bumpers.
The US 2005/0068869 patent discloses a longitudinal bumping element mounted on a dock. The essence of the solution is that an element is attached to the inside of the dock to accommodate the mooring ropes of the watercraft, and also serves as a bumper. In case of proper water level, bumping and friction are indeed reduced. However, the problem is that the water level changes. Another problem is that the size of the watercrafts and the shapes of the hulls are different, which cannot be adapted by fixed installation or design.
For the protection of docks and watercrafts, an inflatable device is disclosed in patent o, CA 2,672 458 According to the invention, inflatable tubes are fixed on the side of the dock, which significantly reduces the risk of damage from the collision of a watercraft and a dock. However, the disadvantage of the solution is the mechanical demand, the vulnerability of the air inflated tubes and the need for operational tasks.
Apparently, avoiding collisions and friction between watercrafts and the dock is an important requirement for manoeuvring and already moored watercrafts. Some of the technical solutions for this requirement have been describe above.
Another important requirement for a modern mooring apparatus is to make navigation to the mooring easier and ultimately to get to an optimal parking position for the watercraft. After it is reached, there is an additional need for the watercraft to be automatically fixed.
These extra requirements are particularly important when someone is sailing out alone and there is no assisting staff at the time of return. It is well known that the owners of pleasure watercrafts rarely have great experience in manoeuvring; therefore, it is important for them to have an opportunity for an easy sailing in and a modern rope- free mooring.
For the Skilled in the Art of the invention, such technical solutions are known when a watercraft navigates into diverter arms and a fixing element catches it there.
Such a solution is described, for example, in WO 2017/144927 A1 , which has the disadvantage that the diverter arm does not allow a watercraft to he secured near a statically optimum waterline. A further disadvantage is that designing the columnshaped fixing means with the pivoting cylindrical element is complicated, The installation and constant presence of hook-like catching elements on a watercraft during navigation is disturbing. Their possible removal and dismantling before and after mooring reduce the benefit of the automatic mooring operation.
Thus, there is a need for a harbour equipment and method to overcome the abovemenfioned problems.
The objective of the present invention is to produce such a mooring apparatus that provides rope-free, automatic mooring and simple sailing out. With such technical solutions, a non-experienced watercraft operator can safely moor watercrafts and there is no need for assisting staff.
A further objective is to connect the mooring apparatus to the harbour IT system, thereby support the work of the harbour management For example, in the event of an outbreak of a storm or at the request of an authority sailing out has to be prohibited, the registration and online rental of watercrafts are required, or harbour data and Information have to be sorted and used in a database.
Summary of the invention
The disclosed invention is an automatic mooring apparatus that is built from two dock- finger units fixed to the dock. The dock-finger units are equipped with flexible tentacle elements for positioning the watercraft by keeping continuous contact with the hull, and they are also equipped with automatic-operated locking mechanisms for mooring of the watercraft. The mooring apparatus has a contro! panel with a built-in programmable processor and a communication unit that is available for the operator via the watercraft’s onboard communication unit or from a smart device from anywhere.
Harbour management has access to the control panel via wired or wireless connection, so they are able to take actions when it is required. The central server continuously registers ail data and information related to the registered mooring apparatus.
Advantages of the Invention
By using the invented mooring apparatus, the mooring process is automatic and it ca be managed alone by the watercraft operator, without any assistance. The progress of mooring can be controlled from the cabin, so it can be easily done even under unfavourable weather conditions.
The positioning of the watercraft and reducing Its oscillatory movements are provided by the flexible tentacle elements by acting on the hull; there is no need for bumpers or other anil-collision solutions for the mooring process.
Due to the built-in lights of the mooring apparatus, the mooring process can be carried out in low visibility as well.
As there is no human intervention during the mooring, accidents related to mooring will cease.
Since there is no rope fixing the position of the prow, the navigable surface and the receptive capacity in harbours are increased, which is a significant operating and area utilization advantage of the present solution.
Control and communication equipment for the mooring apparatus is connected to the harbour IT system. The harbour master is able to prohibit sailing from a harbour with a single instruction which can be required due to bad weather, official orders or any other reason. He/she is able to view the details of the parking or sailing watercrafts, the status and dates of the sailings, and the data of the users. Another advantage is that an online rental system can be implemented for each mooring or watercraft, which can be seif-managed by the owner of the watercraft or the harbour management.
Brief description of the drawings
FIG 1 ~ Perspective view of the mooring apparatus
FIG 2 ~ Schema of the dock-finger unit
FIG 3 - Harbour arrangement with dock-finger units
FIG 4 - A detaii of moored watercraft in the mooring apparatus
FIG 5/A - The locking mechanism with spring
FIG 5/B Design of the catching unit
FIG 6 - The principle of operation of the locking mechanism
FIG ? - The locking mechanism with gas spring
FIG 8 - Front view of the moored watercraft
FIG 9 - A watercraft with double catching units
FIG 10 - Designs of flexible tentacles
FIG 11— The watercraft’s entry into the mooring apparatus - Phase 1
FIG 12 ~~ The watercraft’s entry into the mooring apparatus - Phase 2
FIG 13 - The watercraft’s entry Into the mooring apparatus - Phase 3
FIG 14 - The watercraft in the mooring apparatus between locked mechanisms -
Phase 4
FIG 15 - The watercraft in the mooring apparatus between opened mechanisms - Phase 5
FIG 18 - A perspective view of the moored watercraft in mooring apparatus
FIG 17 - A watercraft in the mooring apparatus with double catching units
FIG 18 - Outline of the mooring apparatus' ITC system and sis connection to the harbour IT system
Detailed description of the invention
The detailed description of the invention is provided by means of drawings.
A taia!many reszfetes bemutatesa rajzok segstsegevef tortenik. FIG 1 is a perspective view of the invention's mooring apparatus (10), consisting of two dock-finger units (20) that are placed parallel to each-other on the water surface and fixed to the dock (2). The dock (2) can be a fixed or a floating dock. The dock-finger units (20) are fixed to the dock (2) by mounting (28) matching the type of dock (2), The dock-finger units (20) are held above the water surface by air reservoirs (24). The air reservoirs (24) are, in one embodiment, height adjustable, which allows the dock-finger units (20) to be adjusted to the level of the dock (2) during installation. Alternatively, floating dock-finger units (20) of closed cross-section, for example made of tubes, may be used.
When installing the dock-finger units (20), the control panel (90) is placed on the dock (2) and activated. A programmable processor (96) and communication module (98) are incorporated into the control panel (90) that is accessible by authorize persons from anywhere by communication means.
The mooring apparatus (10), in the event that the dock (2) is not capable of securing dock-finger units (20) or if the customer needs an Independent mooring spot, is to connect 2 Individual dock-finger units (20). In this case, a U~shape mooring apparatus (10) is formed, which is secured with ropes at the harbour, private bay or other location.
A dock-finger unit (20) Is shown in detail in FIG 2. It main components are beam structure (22) and the locking mechanism fixed to it (40), as 'well as the flexible tentacles (80). These key elements are described in detail below,
The beam structure (22) is a dimensioned structure designed to absorb the generated forces of mooring and to hold the watercraft (4), The cross-section may be of any cross- section, for example, rectangular or tubular. It can be made of, for example, stainless steel, fibreglass reinforced plastic or carbon fibre composite. Requirements to be met are ensuring longevity and resistance to the effects of seawater.
Locking mechanisms (40) are attached to the beam structure (22) according to the type of the watercraft (4) and the location of the catching units (70) fixed to the hull (8). As an example, the drawing shows that the longitudinal position of the locking mechanisms (40) mounted on the left and right sides of the dock-finger unit (20) are different, therefore the positions of the fixing units (50) are also different. The beam structure (22) is equipped with flexible tentacles (80) for guiding the watercraft (4) into the mooring apparatus (10) and for reducing its oscillatory movements during parking. In the figure, the flexible tentacles (80) are evenly spaced along the length of the beam structure (22), but may be fixed at different distances depending on the type of the watercraft (4) and the design of the hull (8) By appropriately allocating the flexible tentacles (80), the desired motion limitation of the given watercraft (4) is achieved.
The end of the dock-finger unit (20) facing the open water is a cylindrical end (32) which aids in turning the watercraft (4) while it is moving into and out of the mooring apparatus (10). Bumpers (30) are installed to catch any collision. Stepping (28) is provided for entering or exiting the watercraft (4). The surface of the dock-finger unit (20) is walkab!e and the edges are covered with soft-coverage (34). Alternatively, the entire walking surface is covered.
With the series of dock-finger units (20) shown, a complete harbour system can be implemented, which is schematically illustrated in FIG 3. Parking lots P1-P4 are a series of mooring apparatuses (10). Different watercrafts (4) can be moored by choosing the distance between the dock-finger units (20). In the figure, for example, when installing parking lot P2, the dock-finger units (20) are spaced”a" apart, while parking lot F3 is spaced "b" apart.
The locking mechanisms (40) are also flexibly mounted on the dock-finger units (20) depending on the size of the watercraft (4) and the position of the catching unit (70) fixed on the hull (6). The advantageous alternative is the possibility of mooring and parking watercrafts (4) with the stern or bow.
FIG 4 is a detailed description of the moored watercraft (4) in the mooring apparatus (10). The fixing unit (50) secures the position of the watercraft (4) and the flexible tentacles (80) by touching the hull (8) reduce the oscillation movements of the watercraft (4).
FIG 5/A shows an embodiment of the locking mechanism (40), The locking mechanism (40) is mounted on the beam structure (22) of the dock-finger unit (20). There Is a holding arm (42) rotating around "Axis A", at the end of which fixing units (50) are mounted, A spring 1 (44) providing constant force is integrated into the locking mechanisms (40) for turning the holding arm (42) towards the hull (6). In order to counteract the tension of spring 1 (44) and for providing reverse rotation, a motor unit, preferably an electric motor (48) is mounted, and the motor control (48) of which is connected to the control panel (90).
The fixing unit (50) is mounted to the end of the holding arm (42) rotating around the horizontal "Axis BT The fixing unit (50) has a vertical standby position, which is supported by a spring 2 (52). Using the spring 2 (52) is not mandatory in some cases.
The fixing rod (62) is clamped between the head element (58) and the bottom element (58). The outer surfaces of the head element (56) and the bottom element (58) are provided with collar elements (60) covered with soft coverage (34). The collar elements (60) can rotate freely around the Axis C of the fixing unit (50).
The materia! of the fixing rod (62) is preferably steel of suitable strength, its length is in the range of 0.5 to 2.0 meters, but its actual length is always determined by the type of the watercraft (4). The cross-sectional diameter is in the range of 10-50 mm, the actual diameter fits into the catching units (70) mounted on the hull (8).
The design of the catching unit (70) is shown in FIG SIB. The catching unit (70) is such a pedestal (72) that has at least one wedge-type hook (74) that is suitable for catching the fixing rod (82). When using a cover element (78), the cover (78) flexibly turns outwards when the fixing rod (62) Is removed from the hull (6), and the fixing rod (62) is free to leave the catching unit (70).
The catching unit (70) is preferably made of silicone and is preferably secured to the hull (8) by gluing. The exact location of the anchorage depends on the type, dimensions, structure and geometry of the watercraft (4) and other factors. Due to this, the place of gluing to the hull (6) is always preceded by careful planning.
FSG 6 Illustrates the operation of the locking mechanism (40) on schematic drawings, on which only the watercraft (4), the hull (6), the beam structure (22), the holding arm (42), the spring 1 (44), the fixing rod (82) and the catching unit (70) are shown.
In Schema A, the watercraft (4) enters into the mooring apparatus (10). At a certain distance from the dock (2), the motor (46) built into the locking mechanism (40) automatically turns the holding arm (42) from the "resting” state maintained by spring 1 (44) to the "opened” state. Thus, the fixing unit (50) and its fixing rod (82) get out of the way of the watercraft (4) and collision with it or any projecting objects placed on it is avoided . It is common to suspend a boat, bicycle, or other equipment on a watercraft (4) that may extend beyond its normal width.
In Schema B, the watercraft (4) moves forward an when a predetermined position is reached, the engine (48) automatically shuts off and the force of spring 1 (44) is reapplied. Spring 1 (44) pushes the holding arm (42) towards the hull (6), causing the upper collar element (60) of the fixing unit (50) to touch the hull (8). Then, due to the additional force exerted by spring 1 (44), the fixing unit (50) is rotated from its vertical position around the horizontal axis and the other collar element (SO) also reaches the hull (6). The collar elements (60) , as the watercraft (4) moves, are forced to rotate due to the tension on the hull and to hold the fixing unit (50) adjacent to the hull (6), The fixing rod (62) clamped between the head element (56) and the bottom element (58) is in a "forced" position and is approached by a catching unit (70) fixed to the hull (6)
Schema C illustrates when the catching unit (70) reaches the fixing rod (82) and after passing the «/edge-type hook (74), it is fixed. This is the "locked" state of the locking mechanism. The closed state remains until the opening command is sent to the motor control (48). When closed , the watercraft (4) has only limited mobility in both directions: in the horizontal direction, the fixing rod (82) has limite movement in the horizontal gap formed in the catching unit (70), and In the vertical direction, movement is limited in the direction of the axis of the fixing rod (62). The relative movements of the watercraft (4) towards the dock-finger units (20) when moored are minimized by the locking mechanism (40) and the flexible tentacle (80) together.
Schema D shows the case of sailing out. When the opening command is sent to the motor control (48), the holding arm (42) rotates away from the hull, causing the fixing rod (62) to move away from the hull (6). During moving away, the catching unit (70) also opens the cover (76). This is the "released” state, in which the fixing rod (62) moves away from the hull to release the watercraft (4)
FIG 7 illustrates an alternative solution of the present invention where a gas spring (84) is mounted in the locking mechanism (40) for rotating the holding arm (42) towards the hull. The operation of the locking mechanism (40) is essentially the same as that described above.
FIG S is a front view of the watercraft (4) moored in the mooring apparatus (10). It can he seen that the fixing unit (50) is rotated in accordance with the tilt angle of the hull (6) and thereby connects the fixing rod (82) to the catching unit (70) according to the tilt angle.
The mooring apparatus (10) of the present invention allows the watercraft (4) to be moored forward or in reverse in this case, two catching units (70) fixed in opposite directions are placed on the hull (6), as shown in FIG 9. Another solution is when one catching unit (70) is designed for both mooring options.
The flexible tentacles (80) are made in a variety of geometries and sizes, with a thicker / stronger cross-section at the attachment point and a thinner / weaker cross-section at the other end. FIG 10 illustrates two possible solutions.
Type A is a flexible tentacle (80) with a simpler cross-section and designed for less stress. It is fixed to the beam structure (22) by screwing so that it can be easily replaced if necessary. Type B is capable of absorbing and dampening larger and more dynamic forces. As it can be seen, both solutions are statically damped, flexible consoles.
The flexible tentacles (80) are generally distributed evenl along the length of the beam structure (22). The frequency of the distribution depends on the size of the watercraft (4), the shape and structure of the hull (8), the weather conditions and the security conditions of the harbour. The role of the flexible tentacles (80) is to secure the position of the watercraft (4) by providing pressure on the hull by touching it and maintaining it in the central axis of the mooring apparatus (10) during mooring and parking, The flexible tentacles (80), due to their flexibility, balance most of the force effects and transmit the unbalanced forces to the statically dimensioned beam structure (22). Their other general role is to dampen the oscillatory movements of the watercraft (4).
The flexible tentacles (80) are made of seawater and weather resistant material, preferably silicone. FIG 11 to FIG 15 show the phases of the automatic mooring of the watercraft (4) into the mooring apparatus {10} and its sailing out
FIG 11 is Phase 1 , when the watercraft (4) approaches the dock (2) for mooring purposes, but the distance D1 measured by the laser rangefinder (92) built into the control pane! (90) is such that the locking mechanism { 40) is not activated and the fixing unit (50) is in "resting" state.
FIG 12 is Phase 2, when the watercraft (4) reaches distance D2 and the motor (48) of the locking mechanism (40) turns on and by rotating the holding arm (42), the fixing unit (50) is in“opened” state. The distance D2 is pre-programmed in the control panel (90) during installation the mooring apparatus (10) by adapting it to the particular watercraft (4).
FIG 13 is Phase 3, when the watercraft (4) reache a predetermined and programmed distance D3, the motor (48) shuts down and the fixing unit (50) enters a "forced" state. The collar elements (80) mounted on the fixing unit (50) then touch the hull (6) and rotate there as the watercraft (4) moves further backward.
FIG 14 is Phase 4, when the watercraft (4) is fixed; the fixing unit is in the "locked" state. This is done by the fixing rod (62) mounted in the fixing unit (50) passing the wedge-type hook (74) found in the catching unit (70) mounted on the rearward moving watercraft (4)s then it gets stuck there and thus stops the watercraft (4).
FIG 15 is Phase 5, when the watercraft (4) sails out of the mooring apparatus (10), In this case the fixing unit is in the“opened” state. It is not the result of an automatic operation but the result of direct action of the operator in the event of the operator's intention to disembark, the motor control (48) is commanded via the communication pane! (98) to start the motor (48). The holding arm (42) is rotated and the fixing unit (50) is rotated to the "opened" position as described.
The watercraft (4) sails out freely and when the distance from the dock (6) is 02, the fixing unit automatically returns to the "resting" position. This operation is preprogrammed in the control panel (90), FIG 18 is a perspective view of a watercraft (4) set at stem and moored in the mooring apparatus (10). FIG 17 shows a watercraft (4) intended to be moored with a bow on which the two mounted catching units (70) are marked,
FIG 18 is an outline of the information and communication system of the mooring apparatus (10).
The mooring apparatus (10) is equipped with state-of-the-art information and communication tools that are connected to the harbour IT system (100).
The programmable processor (98) built into the control panel (90) is in direct contact with the motor control (48), the laser rangefinder (92) and the camera (94). It also has a connection with the communication module (98).
The communication module (98) is wired or wirelessly connected to the central server (110) of the harbour IT system (100). Thus, the actual position of the locking mechanism (40), the resting, opening, locking and forcing events are visible in the IT system (100) and continuously recorded in its database (112).
In addition, ail related data and information, such as the data of the renter of the mooring apparatus (10), the identity of the owner of the watercraft (4), etc., are provided and stored in the database (112) of the central server (110), The stored data provides harbour management records and greatly facilitate harbour operations. Eligible users have access to the data from external smart devices such as a notebook (118), PC (114) or a cell phone (108) via the internet
Harbour management has the opportunity to prohibit the opening of mooring apparatuses (10) connected to the harbour IT system (100). Such cases include the approach of a storm, an order by the authorities, or the protection of harbour traffic. The communication module (98) can be accessed online by the owner or the renter of the watercraft (4) or another authorized person who can directly act on the operation of the mooring apparatus (10). Access can be done directly from the onboard control (102) of the watercraft (4), using a remote control (104), a tablet (108), or a cell phone (108).
The technical solution described in this specification is a possible embodiment of the invention, which in no way restricts the claims to this solution atone.

Claims (10)

Claims
1. A mooring apparatus (10) for mooring a watercraft (4), equipped with dock-finger units (20) fixed to the dock (2) and floating on the water mounted with automatic locking mechanisms (40) catching and securing the watercraft (4) during mooring and then parking, characterized In that said automatic locking mechanisms (40) connected to catching units (70) fixed to the hull (6) and flexible tentacles (80) fixed to the dock- finger units (20) touching the hull (6) for guiding the watercraft (4) between the dock- finger units during mooring (20) and reducing its movement at the parking spot while parking.
2. The mooring apparatus (10) of claim 1 , characterized in that said automatic locking mechanisms (40) fixed to the beam structure (22) of the dock-finger units (20) and having pivoting holding arms (42) with fixing units (50) at their ends; for rotating the holding arms (42) in the direction of the hull (6), the locking mechanisms (40) equipped with a mechanical element providing constant force, preferably a spring (44) or a gas spring (64), and a motor (46) ensuring the rotation in the opposite direction, preferably an electric motor, and its motor control (48) being connected to the control panel (90).
3. The mooring apparatus (TO) of claim 2, characterized in that said fixing unit (50) fixed to the end of the holding arm (42) by pivoting around a horizontal axis and the fixing rod (62) clamped between the head element (56) and the botto element (58), and the outer surface of the head element (56) and the bottom element (58) covered with soft coverage (34) collar elements (60) being able to freely rotate around the axis of the fixing unit (50).
4. The mooring apparatus (10) of claim 3, characterized in that said fixing rod (62) being made of steel, G.5 - 2.0 meter in length, the actual length always being determined by the type of the watercraft (4) in question, its cross-sectional diameter being in the range of 10 - 50 millimetre, its actual diameter fitting into the catching units (70) fixed to the hull (6).
5. The mooring apparatus (10) of claim 3, characterized in that said catching unit (70) having at least one wedge-type hook (74) for fastening the fixing rod (82) on a pedestal (72).
8. The mooring apparatus (10) of claim 5, characterized in that said catching unit (70) made of silicone
7. The mooring apparatus (10) of claim 8, characterized in that said catching unit (70) fixed to the hull (6) by gluing.
8. The mooring apparatus (10) of claim 2, characterized in that said control panel (90) fixed to the dock (2) and equipped with laser rangefinder (92), camera (94), programmable processor (98) and communication module (98).
9. The mooring apparatus (10) of claim 1 , characterized in that said flexible tentacles (80) fixed to the dock-finge unit’s (20) beam structure (22) being 20 - 90 cm long consoles made of flexible material.
10. The mooring apparatus (10) of claim 9, characterized in that said flexible tentacles (80) made of material resistant to environmental influences, preferably silicone,
AU2019343334A 2018-09-21 2019-08-22 Automatic mooring apparatus for watercraft Abandoned AU2019343334A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862734319P 2018-09-21 2018-09-21
US62/734,319 2018-09-21
PCT/HU2019/000026 WO2020058734A1 (en) 2018-09-21 2019-08-22 Automatic mooring apparatus for watercraft

Publications (1)

Publication Number Publication Date
AU2019343334A1 true AU2019343334A1 (en) 2021-05-27

Family

ID=68242744

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019343334A Abandoned AU2019343334A1 (en) 2018-09-21 2019-08-22 Automatic mooring apparatus for watercraft

Country Status (8)

Country Link
US (1) US20210354790A1 (en)
EP (1) EP3853116B1 (en)
CN (1) CN112823118A (en)
AU (1) AU2019343334A1 (en)
CA (1) CA3112992A1 (en)
HU (1) HUE060623T2 (en)
MX (1) MX2021003284A (en)
WO (1) WO2020058734A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774860B (en) * 2021-09-28 2022-12-27 九江职院船舶与海洋工程技术有限公司 Anti-collision stabilizing device for ship berthing
US11834803B2 (en) 2022-01-13 2023-12-05 Richard Gregory Farrell Boat docking assist assembly
CN114348206A (en) * 2022-01-25 2022-04-15 青岛太奇环境艺术设计工程有限公司 Intelligent dock facility for parking and storing unmanned ships and boats on water
CN115094833A (en) * 2022-06-27 2022-09-23 刘泽平 Arrangement method of water area facility protection structure
CN115331485B (en) * 2022-07-07 2023-10-17 镇江港务集团有限公司 Remote safety monitoring and port management system for ship

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1146231A (en) * 1967-01-31 1969-03-19 John Gunnar Hedman A device for mooring watercraft
US3659545A (en) * 1969-11-27 1972-05-02 Klas O Tellberg Ab Outrigger for mooring a water vehicle
DK132236C (en) * 1971-01-29 1976-04-12 K O Tellberg CARRIER BOOM FOR MOUNTING BATHS
US5113702A (en) * 1990-04-30 1992-05-19 Capps Lloyd O Boat and dock guard
US5184562A (en) 1992-04-10 1993-02-09 Hallin Mark P Lake dock pole accessory system
US5429063A (en) * 1994-03-23 1995-07-04 Rosenkranz; Walter E. Docking device
US5762016A (en) 1997-02-19 1998-06-09 Parsons; Tom Dock pole bumper assembly
US5911189A (en) * 1998-07-02 1999-06-15 Ryan; John Michael Boat guide for use in guiding a boat into or out of a boat slip
IT1302211B1 (en) 1998-09-15 2000-09-05 Antonello Lucio Pontevolpe FENDER DEVICE FOR BOATS WITH HIGH SIMPLICITY OF USE.
US6309140B1 (en) * 1999-09-28 2001-10-30 Svedala Industries, Inc. Fender system
NZ520450A (en) * 2002-07-30 2004-12-24 Mooring Systems Ltd Method of controlling a mooring system
US20050066869A1 (en) 2003-09-29 2005-03-31 Brad Alan Boat dock bumper & dockline storage system
GB2415942A (en) 2004-07-09 2006-01-11 Paul Haidon V-shaped dock mooring bumper
US7730844B2 (en) 2005-03-18 2010-06-08 Ihab Ayoub Bumper system
CA2561449C (en) * 2006-09-28 2010-11-30 Raymond Howard Hebden Floating pontoon berthing facility for ferries and ships
US7481174B2 (en) 2007-02-05 2009-01-27 Boat Guard International, Inc. Rotatable guard mounted about boat mooring
GB0718192D0 (en) * 2007-09-19 2007-10-31 Parsons Anthony William Mooring aid
KR100895604B1 (en) * 2008-02-12 2009-05-06 한국과학기술원 Mobile harbor to improve ocean transportation system and transportation method using the same
CA2672456C (en) 2008-07-16 2017-02-07 Jean-Marc D. Turcot Inflatable protection system for docks
DE102008061707B4 (en) * 2008-12-12 2012-05-16 Dieter Tamke applier
KR101303003B1 (en) * 2011-06-28 2013-09-03 삼성중공업 주식회사 Fender having friction decreasing device
US9027496B2 (en) * 2011-09-16 2015-05-12 Doug Zucco Watercraft mooring standoff
SE535906C2 (en) * 2012-04-04 2013-02-12 Bjoern Helgesson Fastening device for a mooring bar for boats
FR3040682B1 (en) * 2015-09-08 2019-04-19 Savoye DEVICE FOR MOORING A VESSEL TO A MOORING STATION OF A PONTON AND PONTON CORRESPONDING
WO2017144927A1 (en) * 2016-02-26 2017-08-31 Viragh Attila Watercraft mooring apparatus, method and system

Also Published As

Publication number Publication date
CA3112992A1 (en) 2020-03-26
US20210354790A1 (en) 2021-11-18
CN112823118A (en) 2021-05-18
EP3853116A1 (en) 2021-07-28
MX2021003284A (en) 2021-05-31
WO2020058734A1 (en) 2020-03-26
HUE060623T2 (en) 2023-04-28
EP3853116B1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
EP3853116B1 (en) Automatic mooring apparatus for watercraft
KR101380649B1 (en) Docking facility for tower on sea and Tower on sea having the same
JPH07501290A (en) Device for rotatably attaching a ship to a loading buoy
KR20000010566A (en) Launching and bringing device of boat
DK172841B1 (en) Evacuation system for offshore platforms
US4861299A (en) Rescue lift
KR20190013705A (en) Submarine Remote Acting Vehicle (ROV) Hub
DK3003846T3 (en) Boat mounting
FI111528B (en) Storage structure for one or more vessels in a marine structure
US5205670A (en) Rotating surfing wave simulator
US3753416A (en) Rat guard
US6178909B1 (en) Water craft and dock protector assembly
KR101732663B1 (en) Rotary tower type lifeboat launching apparatus
US6701981B1 (en) System for loading and unloading fluid products
US8056491B2 (en) Berthing system and structure for use therein
KR101391315B1 (en) Apparatus for Discharging Life Buoy for Offshore Structure
KR20090085872A (en) Pontoon
US7431622B2 (en) Floating berth system and method
CN108360460A (en) Sightseeing ship steps on quadrupler
SE446173B (en) DEVICE FOR OFFSHORE PLATFORM Dedicated Rescue Cabin
GB2415942A (en) V-shaped dock mooring bumper
WO1998030438A1 (en) Arrangement of drilling and production ship
WO2017144927A1 (en) Watercraft mooring apparatus, method and system
RU2688496C1 (en) Guard rail
GB2209146A (en) Mooring device

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application