AU2016298814C1 - Railroad renewal method and device for implementing said method - Google Patents
Railroad renewal method and device for implementing said method Download PDFInfo
- Publication number
- AU2016298814C1 AU2016298814C1 AU2016298814A AU2016298814A AU2016298814C1 AU 2016298814 C1 AU2016298814 C1 AU 2016298814C1 AU 2016298814 A AU2016298814 A AU 2016298814A AU 2016298814 A AU2016298814 A AU 2016298814A AU 2016298814 C1 AU2016298814 C1 AU 2016298814C1
- Authority
- AU
- Australia
- Prior art keywords
- temperature
- rail
- section
- thermal treatment
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 25
- 238000007669 thermal treatment Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 239000013529 heat transfer fluid Substances 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 2
- 230000006399 behavior Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B29/00—Laying, rebuilding, or taking-up tracks; Tools or machines therefor
- E01B29/42—Undetachably joining or fastening track components in or on the track, e.g. by welding, by gluing; Pre-assembling track components by gluing; Sealing joints with filling components
- E01B29/44—Methods for effecting joining of rails in the track, e.g. taking account of ambient temperature
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B31/00—Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
- E01B31/02—Working rail or other metal track components on the spot
- E01B31/18—Reconditioning or repairing worn or damaged parts on the spot, e.g. applying inlays, building-up rails by welding; Heating or cooling of parts on the spot, e.g. for reducing joint gaps, for hardening rails
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B29/00—Laying, rebuilding, or taking-up tracks; Tools or machines therefor
- E01B29/16—Transporting, laying, removing, or replacing rails; Moving rails placed on sleepers in the track
- E01B29/17—Lengths of rails assembled into strings, e.g. welded together
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Machines For Laying And Maintaining Railways (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
The invention relates to a railroad renewal method and device, the method including, in particular: the removal of the old rail (A), the installation of the new rail (B) and the primary adjustment of the temperature of said new rail to a set value (T1) at a point (C) located upstream of and close to the attachment area (F) on a crosstie (H). The thermodynamic behavior of the intermediate section (R) of the new rail (B) located between the primary temperature adjustment point (C) and the attachment area (F) is controlled by means of a device, provided with a control and management system (G), such that the temperature of the new rail (B) is uniform, in the cross-section thereof, at a set value (Tf) on the attachment point (F).
Description
The invention relates to a railroad renewal method and a device for implementing said method.
More specifically, the invention concerns an improvement to methods implemented continuously for maintaining and/or renewing railroad tracks.
DISCLOSURE OF THE INVENTION A reference herein to a patent document or any other matter identified as prior art, is not to be taken as an admission that the document or other matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.
Where any or all of the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components.
Work on railroad track renewal sites is generally carried out using special trains referred to as "work" trains for replacing, in full or in part, old or worn rails, which may or may not involve changing the crossties.
The old rail is removed immediately prior to the installation of the sections of new rail (on the old or new crossties), which may be up to several hundred meters long.
However, when permanently attaching the new rail to the crossties by means of rail fasteners, it is necessary to take into account the inevitable future modifications in
WO 2017/017600 - 2 - PCT/IB2016/054438
the dimensions of the rail and, in particular, the fact that it will lengthen by expansion or retract as a result of the many major changes in temperature that will occur over time.
For this reason, in practice, the rail is attached after having previously adjusted its temperature to stabilize it at a predetermined value at a primary adjustment point located upstream from and close to the attachment area where it is attached to the crossties.
More specifically, this temperature, referred to as a "pre-destressing" or "destressing" temperature, is a temperature commonly accepted as the average value in the normal and predictable temperature range in the climate of the region where the rail is to be renewed.
These temperatures for "destressing" the rail can result from either heating or cooling relative to the ambient temperature at the track renewal site at the time that the new rails are being attached.
The "pre-destressing" temperature results from approaching the precise set temperature and therefore generally corresponds to a temperature range in the vicinity of the "destressing" temperature.
This operation for "pre-destressing" or "destressing" the rail makes it possible to anticipate its expansion or contraction, regardless of the ambient temperature at the site, and to thus limit the risk of subsequent slewing or breakage of the rail.
The heat input that makes it possible to reach and maintain this temperature is obtained, for example, by induction means that heat the rail locally in a continuous manner, close to and upstream from the attachment station where additional means for controlling
WO 2017/017600 - 3 - PCT/IB2016/054438
and regulating the temperature are positioned, optionally coupled to the heating means.
Such a renewal method and the associated equipment, in particular the means for heating the rail, are already described, in particular, in WO 2007/118977, which is cited here as the technological background of the invention.
However, although the metal rail itself is able to provide good thermal conduction between the heat source and the attachment station where the temperature is measured and adjusted at the surface, it is necessary to ensure, in a reliable manner, that the temperature at the core of the rail and, in particular, at the center of the head or the flange, also corresponds, in a uniform manner, to the "pre-destressing" or "destressing" temperature.
For this purpose, laboratory tests have been carried out with sensors positioned at the center of the (steel) material of the rail. The results of these tests make it possible to calculate, in a sufficiently reliable manner, the time required, depending on the heat or cooling supplied, to obtain a uniform temperature through the whole cross section of the rail within a range of values referred to as the "pre-destressing" range or maintained at the precise "destressing" value at the time when the rail is attached.
Moreover, due to the dimensions of the equipment and the size of the "work" train wagons, the distance between the position of the heating station and the attachment station (10 to 20 meters) is sufficiently long for significant heat losses to occur and/or for the environment or collateral factors to have an unfavorable influence on the set temperature of the rail when it is being attached. This is the case, in particular, when the "work" train is stationary or moving slowly, or indeed
WO 2017/017600 - 4 - PCT/IB2016/054438
when environmental events occur at the track renewal site (precipitation such as rain or snow, or the presence of wind, etc.) that are likely to affect the temperature of the rail. In these conditions, because the temperature of the new rail can vary, its length will be substantially modified at the time that it is permanently attached to the crosstie.
Therefore, disadvantageously, these factors are likely to subsequently result in uncontrolled inconsistencies in the internal stress of the rail that can prove to be seriously detrimental to the reliability and safety of the track, once the rail has been secured to the crossties.
Moreover, certain "work" trains are not able to reverse in order to correct, using the primary adjustment means, a discrepancy between the actual and set temperatures, for example, following an unexpected stoppage of the train. These "work" trains therefore need to adjust or maintain the set temperature during continuous operation directly and immediately before the time of attachment of the new rail.
It is therefore desirable to alleviate these technical problems by ensuring that the thermodynamic behavior of the rail is controlled and its temperature more accurately adjusted at the point of attachment to the crossties.
According to the present invention, there is provided a railroad renewal method comprising, in particular, the removal of an old rail, the laying of a new rail and the primary adjustment of a temperature of said new rail at a point located upstream from and close to an attachment area where it is attached to a crosstie, wherein the thermodynamic behavior of an intermediate section of the new rail located between its primary temperature adjustment point and the attachment area is controlled
WO 2017/017600 - 5 - PCT/IB2016/054438
such that the temperature of the new rail is uniform, in a cross-section thereof, at a set value at the attachment area.
According to a first advantageous variant, the intermediate section is thermodynamically controlled by thermally insulating it from the external environment.
Preferably, the intermediate section is insulated by means of at least one thermally insulated tunnel.
According to a specific variant, the primary temperature adjustment is carried out by maintaining a temperature higher than the set value.
According to another variant, an additional thermal treatment is carried out along the intermediate section to compensate for thermal interactions with the environment.
According to an advantageous feature, the temperature of the intermediate section is measured continuously over all or part of its length by means of at least one sensor coupled to a computer acting on the primary adjustment and/or on the additional thermal treatment.
According to a specific variant, the additional thermal treatment is carried out by means of a thermodynamic fluid (gas or liquid).
According to an advantageous feature of this variant, the thermodynamic fluid is brought, under pressure, into contact with the rail, for example, by spraying it against the side faces of the latter.
According to another advantageous feature of this variant, the thermodynamic fluid is a heat-transfer fluid sprayed against the faces of the rail.
WO 2017/017600 - 6 - PCT/IB2016/054438
According to yet another variant of the method, the additional thermal treatment is carried out by means of a flame that comes into contact with the intermediate section of the rail.
According to yet another variant, the additional thermal treatment is carried out by means of at least one induction system, or indeed by combining at least two of the abovementioned variants.
Preferably, the primary temperature adjustment of the intermediate section is carried out by heating by means of at least one induction system.
The invention also concerns a device for implementing the method as defined above.
According to another aspect of the invention, there is provided a railroad renewal device comprising primary temperature adjustment means for carrying out the primary adjustment of the temperature of a new rail located upstream from and close to an attachment area where it is attached to a crosstie, wherein it further comprises a system for controlling and managing the thermodynamic energy of an intermediate section of the new rail located between said primary temperature adjustment means and the attachment area, said system being intended to make the temperature of the new rail uniform at a set value at the attachment area.
According to another feature, the control and management system comprises means for additional thermal treatment along said section for compensating for interactions with the external environment.
According to a first variant, the system comprises at least one temperature sensor arranged on the intermediate section, that is coupled to a computer acting on the
6a
primary adjustment means and/or on the means for additional thermal treatment.
Preferably, the control and management system comprises three temperature sensors arranged, respectively, at the primary adjustment means, along the section and at the attachment area.
According to another variant, the means for additional thermal treatment of the intermediate section comprise at least one thermally insulated tunnel.
According to yet another variant of the device, the means for additional thermal treatment of the section comprise a heating member that functions according to one or more modes chosen from induction heating, heating by heat transfer fluid or heating by contact with a flame.
According to an alternative variant, the means for additional thermal treatment of the section comprise a cooling member.
WO 2017/017600 - 7 - PCT/IB2016/054438
The different variants of the method of the invention make it possible to improve the renewal of the railroad by positioning the new rails in a more reliable manner and attaching them appropriately to the crossties, while improving the preparation and adaptation of the track for potential variations in the dimensions of the rails resulting from environmental changes and, in particular, different climatic and/or meteorological conditions.
BRIEF DESCRIPTION OF THE FIGURES Other features and advantages of the invention will become clearer upon reading the description that follows, with reference to the appended drawings described in detail below.
Figure 1A shows a schematic view of a railroad track renewal site according to the prior art.
Figure 1B shows a schematic view of a detail of the site of figure 1A.
Figure 2 shows a schematic view of a railroad track renewal site according to one mode of implementation of the method of the invention.
Figures 3A, 3B and 3C show schematic views of details of different embodiments of the device used to implement the method of the invention.
Figure 4 shows a schematic view, in cross section, of a variant of the device for implementing the method of the invention.
Figure 5 is a synoptic diagram of an embodiment of the thermodynamic control of the rail according to the method of the invention.
WO 2017/017600 - 8 - PCT/IB2016/054438
For the purpose of clarity, elements that are identical or similar are denoted by identical reference signs in all the figures.
DETAILED DESCRIPTION OF EMBODIMENTS Naturally, the embodiments shown in the figures described above are provided purely as non-limiting examples. It is explicitly expected that these different embodiments and variants may be combined in order to propose others.
Figure 1A shows an overall view of a conventional railroad track renewal site in which a work train T (shown in part) is used, respectively, for removing the old rails A (front sector) and laying new rails B on the crossties H (rear sector).
For the purpose of clarity, it is assumed in this case that the crossties H and the ballast (not shown in the figures) are not replaced.
The new rail B is laid and then gradually attached to the crossties H as the train moves forward, as shown in figure 1.
The front wagons W1 and W2 always run on the old rail A whereas the rear wagons W3 run on the new rail B. The central transport wagon WT that replaces the rails conventionally comprises mechanical means for lifting and supporting the rails and has a raised frame that makes no rolling contact with the track (figure 1).
In order to prevent or limit the risk of gaps or breakages in the track likely to be caused by variations in the dimensions of the rails as a result of more severe climatic or meteorological conditions, the metal profile sections of new rails are conventionally brought to an average temperature referred to as a "pre-destressing" or "destressing"
WO 2017/017600 - 9 - PCT/IB2016/054438
temperature in order to be permanently attached to the crossties, said temperature causing the rail to extend or retract by a determined amount.
More specifically, the aim of these operations is to anticipate and simulate the mechanical behaviors of the constituent material of the rail depending on the temperature variations that can occur during its service life.
To this end, prior to laying, the section of new rail is subjected to a primary temperature adjustment to a set value T1 at a point C located upstream from and close to the attachment area F where it is attached to one or more crossties H.
This adjustment can consist of locally heating or cooling the metal, which is initially at the temperature TO, because the period of intervention on the track renewal site is chosen, preferably, at a time when the ambient temperature is lower or respectively higher than the set temperature referred to as the "pre-destressing" or "destressing" temperature.
When a heat input is required, this is carried out using heating means that consist, for example, of a thermal source or an induction system working upstream from the section R of the rail B on the crossties H (see figure 1B). This thermal input to the rail B is transmitted, by conduction through the metal, to the attachment area F of the rail B.
Conversely, if the thermal adjustment of the rail needs it to be locally cooled, suitable air conditioning or ventilation means can be used.
The subsequent retraction or lengthening of the rail caused, respectively, by its possible cooling down or heating up after being permanently fixed (depending on
WO 2017/017600 - 10 - PCT/IB2016/054438
the ambient temperature) is then managed by applying assembly standards and observing possible clearances imposed by the regulations in force.
As shown in figure 1B, the section of the rail B located between the primary thermal adjustment (heating or cooling) station C and the attachment station F, is generally in the open air and is therefore subject to interactions with the climatic environment that are likely to give rise to variations in the dimensions of the rail before it is permanently attached to the crossties H.
In order to solve this problem, the method of the invention involves carrying out an additional thermal treatment CC with a view to correcting or maintaining the temperature of the rail B on this intermediate section R at a uniform set temperature value Tf (the temperature referred to as the "pre-destressing" or "destressing" temperature), regardless of the length of this section and external influencing factors.
To this end, the method is likely to be implemented according to various passive treatment variants, consisting of thermally insulating this section, and/or active treatment variants, consisting of compensating for natural decreases or increases in temperature as well as those caused by external agents (wind, rain, sun, etc.).
Figure 2 shows a first passive mode of implementation of the method of the invention in which the section R of the rail B, pre-heated to the temperature T1 by the induction means C, is then inserted into at least one thermally insulated tunnel D that protects it and thermally insulates it from the outside.
In this tunnel, which extends in a continuous or discontinuous manner to the attachment area F, the
WO 2017/017600 - 11 - PCT/IB2016/054438
temperature of the rail B remains stable around a value very close to the pre-destressing or destressing temperature Tf.
Figures 3A to 3B show active variants of implementation in which an additional quantity of heating or cooling energy is supplied to the rail B in order to compensate for the thermal losses along the length of the section R.
This thermodynamic modification (heat input or reduction) allows the rail B to therefore stay at a temperature equal or very close to the pre-destressing or destressing temperature Tf until it reaches the area F.
The primary temperature adjustment C is carried out by contributing a temperature greater than or less than the set value Tf in order to compensate for the time that passes between the thermodynamic input and the attachment F of the rail.
In the case of an addition of heating energy, this is delivered by heating means CC identical or similar to the primary heating means C arranged upstream.
The means CC therefore make it possible to maintain or correct the temperature of the intermediate section R of the new rail B before the attachment area F.
According to the invention, it is possible to combine these variants with that of figure 2 by providing additional heating means CC inside the thermally insulated tunnel D.
According to one variant of implementation of the method of the invention shown in figure 4, the additional heating CC is carried out by injecting a heat-transfer fluid S (gas or liquid) that is brought
WO 2017/017600 - 12 - PCT/IB2016/054438
under pressure into contact with the rail B and, preferably, sprayed against the side faces of the latter.
Conversely, if it is necessary to cool the rail B, the tunnel D can be equipped with ventilation means and/or cooling or air conditioning means (heat pump, etc.).
Another variant not shown here could consist of passing the section R of rail through a sealed conduit containing a liquid or a gas at a constant temperature or indeed a fluid whose temperature acts on that of the rail in the desired manner (by cooling or heating the rail).
According to yet another variant not shown here, it is possible to position burners close to the rail, either in the open air or inside a closed or semi-open chamber in which the intermediate section R is heated as it moves in translation, being in contact with the flames.
A preferred mode of implementation of the method of the invention consists of continuously measuring the temperature Ti of the intermediate section over all or part of its length with a view to controlling its thermodynamic behavior and bringing it to a predetermined destressing temperature Tf at the attachment point F of the rail.
To this end and as shown in figure 5, the method is implemented, in particular, by using a system G for controlling and managing the thermodynamic energy.
The system G comprises at least one sensor and, in this case, three sensors arranged on the intermediate section R, which are coupled to a computer E (and/or a microprocessor) acting on the primary adjustment means C and/or on the means for additional thermal treatment CC, whether the latter are passive or active.
WO 2017/017600 - 13 - PCT/IB2016/054438
Thus, any variation relative to the set temperature value Tf can be detected and corrected on the intermediate section R of the rail before the attachment area F.
In the variant shown in figure 5, a first sensor is arranged upstream from the primary adjustment means C to measure the initial temperature TO of the new rail B, a second intermediate sensor is arranged to measure the temperature Ti along the section R and a third sensor is arranged to measure and confirm the destressing temperature Tf at the attachment point F.
If applicable, the energy management system G will also comprise a sensor or a tachometer positioned beyond the attachment area F to determine the forward speed of the train. This speed will be managed and/or controlled by the computer in order to better control the homogenization of the temperature along the section R.
All of the measurements taken by the different sensors are recorded in the memory of the computer E and contribute to the information contained in the database managed by the operator.
As shown in figure 5, it is possible, according to the method of the invention, to implement the thermodynamic control of the section R conjointly and simultaneously for the two parallel rails B of the same track.
Editorial Note
2016298814 Pages are non sequential description pages end page 13 claims start from page 7 to 9. The claims should be pages 14 to 16
Claims (18)
1. A railroad renewal method comprising, in particular, the removal of an old rail, the laying of a new rail and the primary adjustment of a temperature of said new rail at a point located upstream from and close to an attachment area where it is attached to a crosstie, wherein the thermodynamic behavior of an intermediate section of the new rail located between its primary temperature adjustment point and the attachment area is controlled such that the temperature of the new rail is uniform, in a cross section thereof, at a set value at the attachment area.
2. The method as claimed in claim 1, wherein the intermediate section is thermodynamically controlled by thermally insulating it from the external environment.
3. The method as claimed in claim 2, wherein said section is thermally insulated by means of at least one thermally insulated tunnel.
4. The method as claimed in any one of the preceding claims, wherein the primary temperature adjustment is carried out by maintaining a temperature higher than the set value.
5. The method as claimed in any one of the preceding claims, wherein an additional thermal treatment is carried out along said intermediate section to compensate for thermal interactions with the environment.
6. The method as claimed in claim 5, wherein the temperature of the intermediate section is measured continuously over all or part of its length by means
WO 2017/017600 - 8 - PCT/IB2016/054438
of at least one sensor coupled to a computer acting on the primary adjustment and/or on the additional thermal treatment.
7. The method as claimed in claim 5 or 6, wherein said thermal treatment is carried out by means of a thermodynamic fluid.
8. The method as claimed in claim 7, wherein the thermodynamic fluid is brought, under pressure, into contact with the rail.
9. The method as claimed in claim 8, wherein the thermodynamic fluid is a heat-transfer fluid sprayed against the faces of the rail.
10. The method as claimed in claim 5, wherein said additional thermal treatment is carried out by means of a flame that comes into contact with the intermediate section of the rail.
11. The method as claimed in any one of the preceding claims, wherein the primary temperature adjustment of the intermediate section is carried out by heating by means of at least one induction system.
12. A railroad renewal device comprising primary temperature adjustment means for carrying out the primary adjustment of the temperature of a new rail located upstream from and close to an attachment area where it is attached to a crosstie, wherein it further comprises a system for controlling and managing the thermodynamic energy of an intermediate section of the new rail located between said primary temperature adjustment means and the attachment area, said system being intended to make the temperature of the new rail uniform at a set value at the attachment area.
WO 2017/017600 - 9 - PCT/IB2016/054438
13. The device as claimed in claim 12, wherein said system comprises means for additional thermal treatment along said section for compensating for interactions with the external environment.
14. The device as claimed in claim 13, wherein said system comprises at least one temperature sensor arranged on the intermediate section, that is coupled to a computer acting on the primary temperature adjustment means and/or on the means for additional thermal treatment.
15. The device as claimed in claim 14, wherein said system comprises three temperature sensors arranged, respectively, at the primary temperature adjustment means, along the section and at the attachment area.
16. The device as claimed in any one of claims 13 to 15, wherein said means for additional thermal treatment of the section comprise at least one thermally insulated tunnel.
17. The device as claimed in any one of claims 13 to 16, wherein said means for additional thermal treatment of the section comprise a heating member that functions according to one or more modes chosen from induction heating, heating by heat-transfer fluid or heating by contact with a flame.
18. The device as claimed in any one of claims 13 to 16, wherein said means for additional thermal treatment of the section comprise a cooling member.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1557163A FR3020073B1 (en) | 2015-07-27 | 2015-07-27 | METHOD OF RENEWING RAILWAYS AND DEVICE FOR IMPLEMENTING SAID METHOD |
FR1557163 | 2015-07-27 | ||
PCT/IB2016/054438 WO2017017600A1 (en) | 2015-07-27 | 2016-07-26 | Railroad renewal method and device for implementing said method |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2016298814A1 AU2016298814A1 (en) | 2018-02-22 |
AU2016298814B2 AU2016298814B2 (en) | 2020-09-17 |
AU2016298814C1 true AU2016298814C1 (en) | 2021-01-07 |
Family
ID=54256415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016298814A Active AU2016298814C1 (en) | 2015-07-27 | 2016-07-26 | Railroad renewal method and device for implementing said method |
Country Status (11)
Country | Link |
---|---|
US (1) | US10676873B2 (en) |
EP (1) | EP3329049B1 (en) |
CN (1) | CN107849828B (en) |
AU (1) | AU2016298814C1 (en) |
CA (1) | CA2989746C (en) |
ES (1) | ES2755712T3 (en) |
FR (1) | FR3020073B1 (en) |
PL (1) | PL3329049T3 (en) |
RU (1) | RU2676964C1 (en) |
WO (1) | WO2017017600A1 (en) |
ZA (1) | ZA201800101B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3020073B1 (en) * | 2015-07-27 | 2017-01-13 | Matisa Materiel Ind Sa | METHOD OF RENEWING RAILWAYS AND DEVICE FOR IMPLEMENTING SAID METHOD |
FR3053984B1 (en) * | 2016-07-13 | 2018-07-06 | Tso | RAILWAY RENEWAL TRAIN |
FR3066508B1 (en) * | 2017-05-22 | 2021-02-12 | Matisa Materiel Ind Sa | PROCEDURE FOR LAYING A RAILWAY RAIL, INCLUDING HEATING OF THE RAIL, AND WORK TRAIN FOR IMPLEMENTING THE LAYING PROCEDURE |
FR3086677B1 (en) | 2018-10-02 | 2020-10-30 | Matisa Materiel Ind Sa | PROCESS FOR IMMOBILIZING A RAILWAY RAIL WITH THERMAL CONDITIONING OF A PORTION OF RAIL, AND ASSOCIATED RAILWAY MACHINE |
FR3093115B1 (en) * | 2019-02-21 | 2022-07-15 | Matisa Materiel Ind Sa | MOBILE DEVICE FOR HEATING A RAILWAY RAIL BY ELECTRIC LAMPS WITH INFRARED RADIATION AND ASSOCIATED HEATING METHOD |
RU2711455C2 (en) * | 2019-04-08 | 2020-01-17 | Общество с ограниченной ответственностью "Конструкторское Бюро "Тулажелдормаш" (ООО "КБ "Тулажелдормаш") | Method of rail bars changing |
RU190434U1 (en) * | 2019-04-08 | 2019-07-01 | Общество с ограниченной ответственностью "Конструкторское Бюро "Тулажелдормаш" (ООО "КБ "Тулажелдормаш") | Machine for changing rail lashes |
FR3112353B1 (en) * | 2020-07-08 | 2022-07-15 | Matisa Materiel Ind Sa | Initial and final long rail break process and associated renewal process |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080118A1 (en) * | 2012-11-23 | 2014-05-30 | Etf | Railway rail renewal train and method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3566796A (en) * | 1967-03-28 | 1971-03-02 | Penn Central Co | Rail temperature regulating apparatus |
SU703618A1 (en) * | 1978-05-23 | 1979-12-15 | Ростовский-на-Дону институт инженеров железнодорожного транспорта | Method of eliminating temperature strain in rail lengths of jointless track |
DE69101412T2 (en) * | 1990-07-13 | 1994-10-13 | Scheuchzer Sa | Procedure for neutralizing railroad tracks in situ. |
IT1268088B1 (en) * | 1994-08-26 | 1997-02-20 | Bruno Faroldi | EQUIPMENT FOR THE HEATING OF RAILS DURING THEIR INSTALLATION. |
JP2004188455A (en) * | 2002-12-11 | 2004-07-08 | Railway Technical Res Inst | Cooling method and water-cooling device for rail welding structure |
RU2291240C2 (en) * | 2004-10-20 | 2007-01-10 | Василий Иванович Новакович | Method of connecting rail lengths of continuous welded rail track |
FR2899249B1 (en) * | 2006-04-04 | 2012-10-05 | Europ De Travaux Ferroviaires Etf | METHOD AND DEVICE FOR CONTINUOUSLY RAIL RAIL RENEWAL |
CH700777B1 (en) * | 2009-04-03 | 2013-06-28 | Matisa Materiel Ind Sa | A machine for renewing a track. |
CN103874559A (en) * | 2011-10-13 | 2014-06-18 | B·F·朱里 | Apparatus and method of flash butt welding of railway lines |
CN102433808B (en) * | 2011-12-30 | 2016-05-18 | 单景州 | Forward, finedraw, shockproof, without thermal (temperature difference) stress rail and making, installation method |
CH708460B1 (en) * | 2013-08-20 | 2017-06-30 | Matisa Matériel Ind Sa | Machine for renewing sleepers of a track. |
ES2561928B1 (en) * | 2014-04-11 | 2017-01-04 | Ferrovial Agroman, S.A. | Railroad track assembly procedure |
FR3020073B1 (en) * | 2015-07-27 | 2017-01-13 | Matisa Materiel Ind Sa | METHOD OF RENEWING RAILWAYS AND DEVICE FOR IMPLEMENTING SAID METHOD |
FR3047016B1 (en) * | 2016-01-21 | 2019-09-06 | Matisa Materiel Industriel S.A. | SYNCHRONIZED HYDRAULIC MOTOR JAM MACHINE |
FR3048985B1 (en) * | 2016-03-15 | 2020-05-01 | Matisa Materiel Industriel S.A. | BALLAST BED REBUILDING MACHINE WITH TWO SCREENING MACHINES, AND BALLAST BED REBUILDING METHOD |
-
2015
- 2015-07-27 FR FR1557163A patent/FR3020073B1/en not_active Expired - Fee Related
-
2016
- 2016-07-26 ES ES16751011T patent/ES2755712T3/en active Active
- 2016-07-26 PL PL16751011T patent/PL3329049T3/en unknown
- 2016-07-26 US US15/748,056 patent/US10676873B2/en not_active Expired - Fee Related
- 2016-07-26 CN CN201680043195.5A patent/CN107849828B/en active Active
- 2016-07-26 CA CA2989746A patent/CA2989746C/en active Active
- 2016-07-26 WO PCT/IB2016/054438 patent/WO2017017600A1/en active Application Filing
- 2016-07-26 RU RU2018106526A patent/RU2676964C1/en not_active IP Right Cessation
- 2016-07-26 AU AU2016298814A patent/AU2016298814C1/en active Active
- 2016-07-26 EP EP16751011.4A patent/EP3329049B1/en active Active
-
2018
- 2018-01-05 ZA ZA2018/00101A patent/ZA201800101B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080118A1 (en) * | 2012-11-23 | 2014-05-30 | Etf | Railway rail renewal train and method |
Also Published As
Publication number | Publication date |
---|---|
EP3329049A1 (en) | 2018-06-06 |
AU2016298814A1 (en) | 2018-02-22 |
PL3329049T3 (en) | 2020-01-31 |
FR3020073A1 (en) | 2015-10-23 |
CA2989746A1 (en) | 2017-02-02 |
CA2989746C (en) | 2019-12-03 |
RU2676964C1 (en) | 2019-01-11 |
FR3020073B1 (en) | 2017-01-13 |
US10676873B2 (en) | 2020-06-09 |
CN107849828A (en) | 2018-03-27 |
ES2755712T3 (en) | 2020-04-23 |
ZA201800101B (en) | 2019-08-28 |
CN107849828B (en) | 2020-08-28 |
AU2016298814B2 (en) | 2020-09-17 |
WO2017017600A1 (en) | 2017-02-02 |
US20180216299A1 (en) | 2018-08-02 |
EP3329049B1 (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016298814C1 (en) | Railroad renewal method and device for implementing said method | |
CA2574428C (en) | System and method for determining rail safety limits | |
AU2019326255B2 (en) | Method for automatic correction of the position of a track | |
CN110651085B (en) | Method for laying a rail of a railway track | |
CN106320106B (en) | The gapless track locking construction method of embedded continuous support ballastless track system | |
JP5806627B2 (en) | Method and apparatus for preventing inversion of electric switch | |
CN101454509A (en) | Continuous railway track renewing method, involves riveting new long rails at liberation temperature, realizing new long rails without discontinuity by welding elements of new long rails at temperatur | |
BR112015024476B1 (en) | Rail manufacturing method and manufacturing equipment | |
US20210348246A1 (en) | Method for fixing a rail of a rail track with thermal conditioning of a rail portion, and associated rail machine | |
SA517381144B1 (en) | Method And Device For Production Of Heat Treated Welded Rail For Rail Transport And Rail Produced Therewith | |
DE102005018176B4 (en) | Temperature control device for welding railway rails and / or rail components and methods using the device | |
SU1474194A1 (en) | Method of restoring the design strain of rail length of continuous welded track | |
JP5379979B2 (en) | Rail edge correction method | |
US10655293B2 (en) | Device and method for ground freezing | |
US20230094944A1 (en) | Method and system for estimating temperature-related forces in railway lines | |
Albinović¹ et al. | Continuously welded rail (CWR) track buckling and safety concepts | |
CN104695294A (en) | Method for adjusting straightness of on-line steel rail welding joint | |
Hoather et al. | Management of rail stress in a modern railway maintenance infrastructure | |
CN101381976A (en) | White synchronization railway | |
SU1063907A1 (en) | Measuring system of apparatus for straightening railway track | |
FR2883891A1 (en) | Railway track rails substitution optimizing method, involves heating or cooling new installed rails to reduce temperature difference between new rails during substitution operation and same rails during ballast clearing operation | |
BR112019025788A2 (en) | rail track part and its method, in particular a low-alloy steel rail for railway vehicles. | |
DE1027706B (en) | Process for the artificial heating or cooling of rails, in particular in the production of seamless tracks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 22 SEP 2020 |
|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT FILED 22 SEP 2020 |
|
FGA | Letters patent sealed or granted (standard patent) |