AU2013264930A1 - Pressure power system - Google Patents

Pressure power system Download PDF

Info

Publication number
AU2013264930A1
AU2013264930A1 AU2013264930A AU2013264930A AU2013264930A1 AU 2013264930 A1 AU2013264930 A1 AU 2013264930A1 AU 2013264930 A AU2013264930 A AU 2013264930A AU 2013264930 A AU2013264930 A AU 2013264930A AU 2013264930 A1 AU2013264930 A1 AU 2013264930A1
Authority
AU
Australia
Prior art keywords
sub
pressure
working fluid
pressure power
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2013264930A
Other languages
English (en)
Inventor
Bruce I. Benn
Jean Pierre Hofman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of AU2013264930A1 publication Critical patent/AU2013264930A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G4/00Devices for producing mechanical power from geothermal energy
    • F03G4/023Devices for producing mechanical power from geothermal energy characterised by the geothermal collectors
    • F03G4/029Devices for producing mechanical power from geothermal energy characterised by the geothermal collectors closed loop geothermal collectors, i.e. the fluid is pumped through a closed loop in heat exchange with the geothermal source, e.g. via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/004Devices for producing mechanical power from solar energy having a Rankine cycle of the Organic Rankine Cycle [ORC] type or the Kalina Cycle type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hybrid Cells (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Wind Motors (AREA)
AU2013264930A 2012-05-24 2013-05-24 Pressure power system Abandoned AU2013264930A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,778,101 2012-05-24
CA2778101A CA2778101A1 (en) 2012-05-24 2012-05-24 Power generation by pressure differential
PCT/IB2013/001309 WO2013175302A2 (en) 2012-05-24 2013-05-24 Pressure power system

Publications (1)

Publication Number Publication Date
AU2013264930A1 true AU2013264930A1 (en) 2015-01-22

Family

ID=49624437

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2013264929A Abandoned AU2013264929A1 (en) 2012-05-24 2013-05-24 Pressure power unit
AU2013264930A Abandoned AU2013264930A1 (en) 2012-05-24 2013-05-24 Pressure power system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2013264929A Abandoned AU2013264929A1 (en) 2012-05-24 2013-05-24 Pressure power unit

Country Status (11)

Country Link
US (2) US20150096298A1 (enExample)
EP (2) EP2855844A4 (enExample)
JP (2) JP2015518935A (enExample)
KR (2) KR20150032263A (enExample)
CN (2) CN104838136A (enExample)
AU (2) AU2013264929A1 (enExample)
BR (2) BR112014029145A2 (enExample)
CA (1) CA2778101A1 (enExample)
EA (2) EA201492200A1 (enExample)
IN (2) IN2014DN10789A (enExample)
WO (2) WO2013175302A2 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4278079A4 (en) * 2021-01-08 2024-11-20 Vasilev, Ivaylo Trendafilov SYSTEM AND METHOD FOR GENERATING A MOMENT CHANGE IN A VEHICLE BY PHASE CHANGE MATERIAL IN A CLOSED SYSTEM

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405462A (zh) * 2014-10-15 2015-03-11 中山昊天节能科技有限公司 空气能转换为电能的换能系统
CN104373159A (zh) * 2014-10-15 2015-02-25 中山昊天节能科技有限公司 小型空气能发电机
CN106256995A (zh) * 2015-06-16 2016-12-28 熵零股份有限公司 一种蓄能系统
GB201522888D0 (en) * 2015-12-24 2016-02-10 Halloy Guillaume And Halloy Helene And Halloy Louis And Halloy Elise Power generation using liquids with different vapour pressures
JP6739766B2 (ja) * 2016-02-12 2020-08-12 学校法人日本大学 動力生成システム及び発電システム
CN108779674B (zh) 2016-02-14 2020-12-25 北京艾派可科技有限公司 对压气能贮存装置及检测方法、贮存系统、平衡侦测机构
DE102016205359A1 (de) * 2016-03-31 2017-10-05 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Verdichten eines Fluids
CN105697218B (zh) * 2016-04-08 2018-05-11 天津融渌众乐科技有限公司 一种将热能转换为势能的水力发电系统
WO2019094737A1 (en) * 2017-11-10 2019-05-16 Neiser Paul Refrigeration apparatus and method
CL2017003498A1 (es) 2017-12-29 2018-05-04 Ahr Energy Spa Método para producir transferencia de calor entre dos o mas medios y un sistema para ejecutar dicho método.
US12128354B2 (en) * 2018-04-28 2024-10-29 M & R Consulting Service, Inc. Electrochemical nitrogen generator system and method
CN109681283A (zh) * 2019-02-18 2019-04-26 李方耀 一种低温温差能热能利用装置及方法
US10724470B1 (en) 2019-05-21 2020-07-28 General Electric Company System and apparatus for energy conversion
EP4249745A3 (en) * 2019-05-21 2023-12-06 Hyliion Holdings Corp. System and apparatus for energy conversion
AU2020325053A1 (en) * 2019-08-08 2022-03-17 Herbert L. WILLIAM Method and system for liquifying a gas
US10900206B1 (en) 2020-02-11 2021-01-26 Ramses S. Nashed Vapor-liquid mixture-based constant pressure hydropneumatics system
GB2593538B (en) * 2020-03-27 2023-07-19 Nanosun Ip Ltd Apparatus and method for transfering and cooling a compressed fuel gas
NO20220335A1 (en) * 2022-03-18 2023-09-19 Hans Gude Gudesen Thermal energy conversion method and system
US11655802B1 (en) * 2023-01-05 2023-05-23 William A. Kelley Atmospheric energy recovery
CN116557247A (zh) * 2023-02-23 2023-08-08 赵尉 温差发电装置
CN118654507B (zh) * 2024-08-20 2024-10-22 锦益深冷(常州)能源科技有限公司 一种便于调节温度的水浴式气化器
JP7709241B1 (ja) * 2024-12-05 2025-07-16 株式会社トライテック インクジェット記録装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505745A (enExample) * 1973-05-21 1975-01-21
US3846984A (en) * 1974-04-29 1974-11-12 I Siegel Temperature differential fluid motor
JPS562414A (en) * 1979-06-21 1981-01-12 Mitsubishi Heavy Ind Ltd Variable pressure driving system for hot water turbine
US4479354A (en) * 1979-08-20 1984-10-30 Thomas Cosby Limited expansion vapor cycle
JPS5647608A (en) * 1979-09-25 1981-04-30 Mitsui Eng & Shipbuild Co Ltd Energy saving type generator
EP0148756B1 (fr) * 1980-08-11 1989-03-08 Etablissement Public dit: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) Système pour le revalorisation d'énergie thermique à bas niveau mettant en oeuvre des phénomènes d'évaporation et de mélange de deux fluides en équilibre de pression de vapeur sous des températures différentes
JPS5851280A (ja) * 1981-09-21 1983-03-25 Mitsubishi Heavy Ind Ltd 間欠作動装置
JPS59119073A (ja) * 1982-12-24 1984-07-10 Toshiba Corp 低温度差発電プラント
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
US5117635A (en) * 1990-08-06 1992-06-02 Westinghouse Electric Corp. High power density propulsion/power system for underwater applications
US6199382B1 (en) * 1998-11-25 2001-03-13 Penn State Research Foundation Dynamic condensate system
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
CN100501299C (zh) * 2003-04-01 2009-06-17 三菱化学株式会社 吸附热泵用吸附材料、调湿空调装置用吸附材料、吸附热泵及调湿空调装置
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
JP4659818B2 (ja) * 2004-03-15 2011-03-30 オルハン ウストゥーン 電気エネルギーへの変換のための熱エネルギー蓄積装置
US7428816B2 (en) * 2004-07-16 2008-09-30 Honeywell International Inc. Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems
US20100263380A1 (en) * 2007-10-04 2010-10-21 United Technologies Corporation Cascaded organic rankine cycle (orc) system using waste heat from a reciprocating engine
CA2709031C (en) * 2007-12-17 2020-06-30 Klaus Wolter Method, device and system for impressing energy into a medium
US8225606B2 (en) * 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8353160B2 (en) * 2008-06-01 2013-01-15 John Pesce Thermo-electric engine
US8820079B2 (en) * 2008-12-05 2014-09-02 Honeywell International Inc. Chloro- and bromo-fluoro olefin compounds useful as organic rankine cycle working fluids
DE102008057202A1 (de) * 2008-11-13 2010-05-20 Daimler Ag Clausius-Rankine-Kreis
WO2011128721A1 (en) * 2010-04-12 2011-10-20 Gariepy Donald J Green engine
US20110271676A1 (en) * 2010-05-04 2011-11-10 Solartrec, Inc. Heat engine with cascaded cycles
CN201827032U (zh) * 2010-08-16 2011-05-11 上海盛合新能源科技有限公司 一种太阳能氨水热电转换装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4278079A4 (en) * 2021-01-08 2024-11-20 Vasilev, Ivaylo Trendafilov SYSTEM AND METHOD FOR GENERATING A MOMENT CHANGE IN A VEHICLE BY PHASE CHANGE MATERIAL IN A CLOSED SYSTEM

Also Published As

Publication number Publication date
CN104854344A (zh) 2015-08-19
EP2855931A2 (en) 2015-04-08
EP2855844A4 (en) 2016-07-27
CA2778101A1 (en) 2013-11-24
KR20150032262A (ko) 2015-03-25
EA201492199A1 (ru) 2015-10-30
IN2014DN10788A (enExample) 2015-09-04
WO2013175301A2 (en) 2013-11-28
BR112014029144A2 (pt) 2017-06-27
IN2014DN10789A (enExample) 2015-09-04
EP2855931A4 (en) 2016-11-16
WO2013175301A8 (en) 2014-03-13
US20150096298A1 (en) 2015-04-09
JP2015518935A (ja) 2015-07-06
US20150135714A1 (en) 2015-05-21
WO2013175302A2 (en) 2013-11-28
BR112014029145A2 (pt) 2017-06-27
KR20150032263A (ko) 2015-03-25
WO2013175302A3 (en) 2015-06-11
CN104838136A (zh) 2015-08-12
JP2015522740A (ja) 2015-08-06
AU2013264929A1 (en) 2015-01-22
EP2855844A2 (en) 2015-04-08
EA201492200A1 (ru) 2015-05-29
WO2013175301A3 (en) 2014-05-01
WO2013175302A8 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US20150096298A1 (en) Pressure power system
Chen et al. A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid
Gómez et al. Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process
Mercangöz et al. Electrothermal energy storage with transcritical CO2 cycles
Zhang et al. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid
Wang et al. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
Garg et al. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles
CA3014204C (en) Use of perfluoroheptenes in power cycle systems
Chen et al. A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source
Date Analytic combustion
Xia et al. Comprehensive performance analysis of cold storage Rankine Carnot batteries: Energy, exergy, economic, and environmental perspectives
Semmari et al. A novel Carnot-based cycle for ocean thermal energy conversion
Tomków et al. Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption–ORC (organic Rankine cycle)
Nouman Comparative studies and analyses of working fluids for Organic Rankine Cycles-ORC
JP2001193419A (ja) 複合発電システム及びその装置
Gu et al. Optimization of cyclic parameters of a supercritical cycle for geothermal power generation
Ajimotokan A study of trilateral flash cycles for low-grade waste heat recovery-to-power generation
US12352503B2 (en) Thermoelectric device for storage or conversion of energy
Michaelides Entropy production and optimization of geothermal power plants
Ezgi Thermodynamic analysis of a closed-cycle ocean thermal energy conversion power plant for offshore platforms
Do Val et al. Deep water cooled orc for offshore floating oil platform applications
Pattavina Introduction to Heat Pumps
Clemente Small scale cogeneration systems based on organic Rankine cycle technology
Tarique et al. Application of scroll expander in cryogenic process of hydrogen liquefaction
Toprak THERMO-ECONOMIC STUDY OF CLOSED CYCLE OCEAN THERMAL ENERGY (OTEC) SYSTEMS USING ORGANIC REFRIGERANTS

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application