AU2009234636A1 - Multi-purpose earth anchor bracket - Google Patents

Multi-purpose earth anchor bracket Download PDF

Info

Publication number
AU2009234636A1
AU2009234636A1 AU2009234636A AU2009234636A AU2009234636A1 AU 2009234636 A1 AU2009234636 A1 AU 2009234636A1 AU 2009234636 A AU2009234636 A AU 2009234636A AU 2009234636 A AU2009234636 A AU 2009234636A AU 2009234636 A1 AU2009234636 A1 AU 2009234636A1
Authority
AU
Australia
Prior art keywords
anchor
plate
plates
bracket
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2009234636A
Inventor
Man-Ki Lee
Seok-Woo Nam
Il-Jun Sohn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEW TECHNICAL INDUSTRY Co Ltd
Original Assignee
NEW TECHNICAL INDUSTRY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020080032825A priority Critical patent/KR100992942B1/en
Priority to KR10-2008-0032825 priority
Application filed by NEW TECHNICAL INDUSTRY CO Ltd filed Critical NEW TECHNICAL INDUSTRY CO Ltd
Priority to PCT/KR2009/001605 priority patent/WO2009125935A1/en
Publication of AU2009234636A1 publication Critical patent/AU2009234636A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/76Anchorings for bulkheads or sections thereof in as much as specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/808Ground anchors anchored by using exclusively a bonding material

Description

1 PCT/KR2009/001605 RO/KR 30.03.2009 [DESCRIPTION] [Invention Title] MULTIPURPOSE ERATH ANCHOR BRACKET 5 [Technical Field] The present invention relates to an earth anchor bracket for securing an anchor body which is inserted and fixed into the ground to prevent collapse of soft ground in an earth anchor method. More particularly, the present invention 10 relates to an earth anchor bracket, which allows automatic adjustment in the position of a pressure support means depending on tensile direction of the anchor body, and multipurpose utilization in various forms of earth retaining working. 15 [Background Art] In general, an earth anchor method is widely used to prevent collapse of an earth retaining wall when a steep excavation hole is formed in a digging or foundation work at a 20 civil engineering/construction field. The earth anchor method is performed as follows. As shown in FIG. 1, soldier piles(H-beams) are driven into 2 PCT/KR2009/001605 RO/KR 30.03.2009 a ground and a designated ground is excavated, and then laggings are inserted between the soldier piles, thereby forming an earth retaining wall 1. Subsequently, boring is performed through the earth 5 retaining wall 1 at a predetermined slanted angle and an anchor body 3 is driven into the boring portion 2, and then a first grouting is performed for a fixed anchor length Lb to fix the anchor body 3. In general, the anchor body 3 is divided into a anchor free length La and the fixed anchor 10 length Lb with respect to a portion where a virtual collapse line (a dashed line in FIG. 1), which is set between an edge of a bottom surface 6 of the excavation hole and the ground by a design standard according to a soil, meets the boring portion 2, and the first grouting is generally performed for 15 the fixed anchor length Lb. When curing for the first grouting is completed, a tensile force is applied to the anchor free length La of the anchor body 3 to fix the anchor body 3 to an earth anchor bracket 10 which is installed on a girder 4 of the earth retaining wall 1. 20 To this end, the anchor free length La of the anchor body 3 is 3 PCT/KR2009/001605 RO/KR 30.03.2009 passed through a through portion formed at the earth anchor bracket 10 and is then fixed using a cone 5 having a diameter greater than that of the through portion. After the anchor body 3 is fixed to the bracket 10, a 5 second grouting is performed for the remainder of the boring portion 2, and a tensile force of the anchor body 3 thereby supports the earth retaining wall 1 against earth pressure. Various kinds of the earth anchor brackets are used in this earth anchor method. 10 FIG. 2 is a perspective view illustrating an example of the earth anchor bracket 10 which has been most used in the civil engineering/construction field, and it includes two generally triangular shaped side plates 11 installed parallel to each other, and a pressure support plate 12 installed on 15 the same inclined sides of the two side plates 11 and provided with a through portion 12a through which the anchor body 3 is withdrawn. However, since the tensile force applied to the anchor body 3 is very large, use of such shaped earth anchor bracket 20 10 causes frequent occurrence of warp of the pressure support 4 PCT/KR2009/001605 RO/KR 30.03.2009 plate 12 or deformation of the side plates 11 during working. Also, there was a problem that tensile direction of the anchor body 3 and a reference tensile angle of the earth anchor bracket do not accord and thus the anchor body 3 should 5 be bent when the earth anchor bracket 10 is installed. When the anchor body is bent, the greater tensile force is required as compared with the normal case, and in order to support this pressure, a size or weight of the earth anchor bracket should be increased. 10 Korean Patent No. 760213 suggests, to solve the aforementioned problem, an earth anchor bracket having curved portions with saw-teeth formed at inclined sides of two side plates and protrusions formed at a cylinder for engagement with the saw-teeth and supported by the two side plates in 15 order to correspond to various tensile angles. However, even when the earth anchor bracket of the patent is used, there is inconvenience that a worker should select the saw-tooth corresponding to the tensile angle to hold the cylinder after the earth anchor bracket is held by the girder. 20 Further, since the earth anchor bracket is used with being 5 PCT/KR2009/001605 RO/KR 30.03.2009 fixed to or held by two girders spaced apart from each other, there is a problem that it cannot be used for a concrete wall which employs a continuous pile wall or underground continuous wall. 5 [Disclosure] [Technical Problem] Embodiments of the present invention are directed to an earth anchor bracket in which a position of a pressure support 10 means can be adjusted automatically depending on tensile direction of an anchor body without manual adjustment of a worker. Also, embodiments of the present invention are directed to an earth anchor bracket which can be used for anchor body 15 fixation in various fields where different earth retaining methods are employed. [Technical Solution] In one embodiment, an earth anchor bracket for fixing an 20 anchor body inserted and fixed into the ground in an earth anchor method, includes: two side plates parallel to each other and having a shaft hole, respectively; a connection 6 PCT/KR2009/001605 RO/KR 30.03.2009 member installed between the both side plates to connect the both side plates; and a pressure support means placed between the both side plates, and having rotation shafts each inserted into the shaft holes and a through portion through which a 5 anchor free length is withdrawn. Preferably, the pressure support means is a cylinder member having the rotation shafts each projected from the opposite outer surfaces and the through portion which passes through both ends thereof. 10 Preferably, the both side plates are provided with a curved portion on an upper end thereof, respectively, and the outside of the cylinder member is provided with projections having a curved surface which is held on the curved portion of the both side plates, respectively. 15 Preferably, the both side plates includes a first side plate provided with the shaft hole; and a second side plate coupled to the first side plate by a coupling means, respectively, and the first side plate and the second side plate are engaged with each other in a zigzagged form. 20 Preferably, a circular reinforcing member for surrounding the periphery of the shaft hole is formed on each of the both side plates. Preferably, a first base plate and a second base plate spaced apart from each other are coupled to lower ends of the 7 PCT/KR2009/001605 RO/KR 30.03.2009 both side plates, and a reinforcing member is installed between the both side plates and the first base plate or the second base plate. Preferably, a base plate provided with an anchor fastening hole for coupling a fixation anchor to an 5 earth retaining wall is coupled to lower ends of the both side plates. In another embodiment, an earth anchor bracket for fixing an anchor body inserted and fixed into the ground in an earth anchor method, includes: a first bracket unit having two first 10 side plates parallel to each other and having a shaft hole, respectively, a first connection member installed between the both first side plates to connect the both first side plates, and a pressure support means placed between the both first side plates and having rotation shafts each inserted into the 15 shaft holes and a through portion through which a anchor free length is withdrawn; a second bracket unit having two second side plates parallel to each other and a second connection member installed between the both second side plates to connect the both second side plates; and a coupling means for 20 connecting the first bracket unit and the second bracket unit. In further another embodiment, an earth anchor bracket for fixing an anchor body inserted and fixed into the ground in an earth anchor method, includes: two side plates parallel to each other and having a rotation shaft on an inner surface 8 PCT/KR2009/001605 RO/KR 30.03.2009 thereof, respectively; a connection member installed between the both side plates to connect the both side plates; and a pressure support means placed between the both side plates, and having shaft holes each coupled with the rotation shafts 5 of the both side plates and a through portion through which a anchor free length is withdrawn. [Advantageous Effects] In accordance with the present invention, a position of 10 the cylinder member is determined automatically depending on tensile angle of the anchor body since the cylinder member in which the anchor body is inserted can rotates about the rotation shaft. Therefore, it is possible to solve the inconvenience that a worker adjusts the position of the 15 pressure support means manually as is conventionally performed. Also, the earth anchor bracket of the present invention can be used for multipurpose uses in various earth retaining methods since the first bracket unit and the second bracket unit can be connected to be used as a single earth anchor 20 bracket or the first bracket unit can be used separately. Therefore, it is possible to considerably save a construction cost since it is not necessary to employ earth anchor brackets of different forms corresponding to each earth retaining method by using the earth anchor bracket of the present 9 PCT/KR2009/001605 RO/KR 30.03.2009 invention. [Description of Drawings] The above and other objects, features and advantages of 5 the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which: FIG. 1 is a schematic view illustrating an earth anchor method. 10 FIG. 2 is a perspective view illustrating an example of a conventional earth anchor bracket. FIG. 3 is a perspective view illustrating an earth anchor bracket in accordance with an embodiment of the present invention. 15 FIG. 4 is an exploded perspective view illustrating the earth anchor bracket in accordance with an embodiment of the present invention. FIG. 5 and FIG. 6 are perspective views illustrating a first bracket unit and a second bracket unit of the earth 20 anchor bracket in accordance with an embodiment of the present invention, respectively.

10 PCT/KR2009/001605 RO/KR 30.03.2009 FIG. 7 is a side sectional view illustrating installation of the earth anchor bracket in accordance with an embodiment of the present invention. FIG. 8 is sectional view illustrating that an angle of a 5 cylinder member varies with tensile direction of an anchor body. FIG. 9 and FIG. 10 are side sectional view illustrating various usages of the first bracket unit, respectively. 10 [Detailed Description of Main Elements] 100: earth anchor bracket 110: side plate 111: first side plate 112: second side plate 114: shaft hole 120: connection member 130a, 130b: first and second base plates 15 140: cylinder member 150: rotation shaft 160: first reinforcing member 170: second reinforcing member 180: coupling plate 200: tensioner 20 [Best Model 11 PCT/KR2009/001605 RO/KR 30.03.2009 Hereinafter, the embodiments of the present invention will be described in detail with reference to accompanying drawings. FIGs. 3 and 4 are a perspective view and an exploded 5 perspective view illustrating an earth anchor bracket in accordance with an embodiment of the present invention, respectively. The earth anchor bracket 100 in accordance with an embodiment of the present invention includes two side plates 10 110, a connection member 120 interposed between the two side plates 110 to connect the two side plates 110, first and second base plates 130a, 130b spaced apart from each other and each coupled with lower ends of the two side plates 110, and a cylinder member 140 placed between the two side plates 110 to 15 withdraw a anchor free length of a anchor body. The cylinder member 140 is provided with a through portion 141 that passes through both ends thereof. And two rotation shafts 150 are projected outwardly from two opposite outer surfaces of the cylinder member 140. Each rotation shaft 150 20 is inserted in a shaft hole 114 formed at the both side plates 12 PCT/KR2009/001605 RO/KR 30.03.2009 110, and the cylinder member 140 is thereby coupled rotatably with the two side plates 110. It is preferred that the rotation shaft 150 and the cylinder member 140 are formed integrally, but it is not 5 particularly limited thereto. The rotation shaft 150 may have a cylindrical shape, or may be manufactured in a form of a hollow cylinder so as to reduce a weight. Although the cylinder member 140 has a rectangular section in figures, the cylinder member may have a circular section. 10 Since the cylinder member 140 functions as pressure support means when tensile force is applied to the anchor body being withdrawn, it is not necessary for the cylinder member 140 to have the cylindrical shape. Therefore, a pressure support means in another form may be used, provided that it 15 has the through portion 141 for withdrawing the anchor body therethrough and the rotation shaft 150 to be coupled with the shaft hole 114 of the side plate 110. Meanwhile, in order to properly distribute pressure applied to the cylinder member 140 and properly guide the 20 rotation movement of the cylinder member 140, projections 142, 13 PCT/KR2009/001605 RO/KR 30.03.2009 which are held on an upper end of the side plates 110, respectively, may be projected from the upper outer ends of the cylinder member 140. In this case, in consideration that the cylinder member 5 140 rotates about the rotation shaft 150, it is necessary to form a upper end of each side plate 110 where the projection 142 is in contact into a curved portion 113, and form a bottom surface of each projection 142 into a curved surface that corresponds to the curved portion 113. 10 Since tens or more tons pressure is applied to the anchor body withdrawn through the cylinder member 140, the side plates 110 may be deformed due to the pressure. To prevent the deformation of the side plate 110, first reinforcing members 160 that surround an outer circumference of the shaft hole 114 15 may be installed at inner or outer surfaces of the both side plates 110. Also, second reinforcing members 170 are installed between the side plates 110 and the first and second base plates 130a, 130b at an outer or inner side of the both side plates 110. 20 While the second reinforcing members 170 are installed between 14 PCT/KR2009/001605 RO/KR 30.03.2009 the first base plate 130a and the both side plates 110 in the figures, the second reinforcing members 170 having the same shape can be installed between the second base plate 130b and the both side plates 110. 5 The second reinforcing member 170 is coupled vertically with the side plate 170, and is, but not particularly limited to, preferably a plate having wider width as goes to a lower end. The first and second base plate 130a, 130b function to 10 distribute the pressure applied to the both side plates 110 to a girder or bottom surface, and are provided with an anchor fastening hole 134 for fastening of the anchor. The anchor fastening hole 134 is for insertion of a fixation anchor, which fixes the first base plate 130a to a retaining wall, 15 when the earth anchor bracket 100 of the present invention is separated and the first bracket unit 100a alone is separately used as will be described later. Since the first base plate 130a should not obstruct withdrawing the anchor body through the cylinder member 140, a 20 cut portion 131 for withdrawing the anchor body may be formed 15 PCT/KR2009/001605 RO/KR 30.03.2009 in a middle portion of the first base plate 130a if a length of the first base plate 130a is too long. The second base plate 130b is a portion supported by a girder placed therebelow when it is installed, and is provided 5 with a holding end 132 formed by bending an upper end thereof so that is can be conveniently held on the girder therebelow. Also, in order to prevent the holding end 132 from being damaged by a tensile force, a reinforcing portion 119, which surrounds and supports the outer circumference of the holding 10 end 132, is formed at the lower ends of the both side plates 110. Meanwhile, while each side plate 110 can be manufactured integrally, in an embodiment of the present invention, a first side plate unit 111 and a second side plate unit 112 are 15 separately manufactured and then coupled with each other to complete the side plate 110 as shown in the figures. This is for applying the earth anchor bracket 100 of the present invention to various forms of earth retaining working, and specific usage will be described later. 20 The first side plate unit 111 and the second side plate 16 PCT/KR2009/001605 RO/KR 30.03.2009 unit 112 are coupled, using bolts 186 and nuts 185, with coupling plates 180 being attached to the outer (or inner) surface of the first side plate unit 111 and the second side plate unit 112. 5 In order to increase coupling force and pressure resistance of the first side plate unit 111 and the second side plate unit 112, coupling sides of the first side plate unit 111 and the second side plate unit 112 are engaged in a zigzagged form. 10 To this end, a projection portion 116 is formed at the side of the first side plate unit 111 which is coupled with the side of the second side plate unit 112, and a coupling groove 117 which is fitted with the projection portion 116 is formed at the side of the second side plate unit 112 which is 15 coupled with the side of the first side plate unit 111. In other words, the first side plate unit 111 and the second side plate unit 112 are coupled using the coupling plate 180 with the projection portion 116 and the coupling groove 117 being fitted with each other. The projection portion 116 and the 20 coupling groove 117 may be formed reversely, and a larger 17 PCT/KR2009/001605 RO/KR 30.03.2009 number of the projection portion 116 and the coupling groove 117 may be formed. The coupling plate 180 may be fastened to the first side plate unit 111 and the second side plate unit 112 with bolts, 5 or some portion of the coupling plate 180 may be previously welded to the second side plate unit 112 and the other portion is then fastened to the first side plate unit 111 with bolts. The coupling plate 180 and the first side plate unit 111 are provided with bolt holes 183, 118 for bolt fastening, 10 respectively. When the coupling plate 180 is welded to the second side plate unit 112, welding holes 184 may be formed in the coupling plate 180 for the convenience of welding. While it is possible to couple the coupling plate 180 only to the first side plate unit 111 and the second side plate 15 unit 112, in order to increase pressure resistance, it may be possible for the coupling plate 180 to be coupled further to the first base plate 130a coupled with lower ends of the first side plate units 111. In other words, as shown in the figures, it is possible 20 that the coupling plate 180 includes a vertical plate 181 18 PCT/KR2009/001605 RO/KR 30.03.2009 coupled to the first side plate unit Ill and the second plate unit 112 and a horizontal plate 182 bent from the lower end of the vertical plate 181, and the horizontal plate 182 is coupled to the first base plate 130a. To the end, the first 5 base plate 130a is provided with bolt fastening hole 136 for coupling the first base plate 130a with the horizontal plate 182 therethrough. The shaft hole 114, in which the rotation shaft 150 of the cylinder member 140 is inserted, is formed in the first side 10 plate unit 111. Therefore, two first side plate units 111 are coupled using the connection member 120 with the cylinder member being interposed therebetween and lower ends of the first side plate units 111 are then coupled to the first base plate 130a, thereby constructing the first bracket unit 100a 15 which can be used independently, as shown in FIG. 5. Also, two second side plate units 112 are coupled with the connection member 120 interposed therebetween and lower ends of the two second side plate units 112 are then coupled to the second base plate 130b, thereby constructing the second 20 bracket unit 100b as shown in FIG. 6. As shown in the figures, 19 PCT/KR2009/001605 RO/KR 30.03.2009 the coupling plate 180 may be previously coupled to the second side plate units 112, for example, by welding. FIG. 7 is a view illustrating a usage of the earth anchor bracket 100 in which the first bracket unit 100a and the 5 second bracket unit 100b are connected with the coupling plate 180. In other words, when two girders 4 spaced apart from each other are installed outside the earth retaining wall 1, the holding end 132 of the second base plate 130b is held on the lower girder 4, and an end of the anchor free length of the 10 anchor body 3 is withdrawn through the cylinder member 130 and then tensioned using a tensioner 200. A tensile force is transferred to the both side plates 110 through the rotation shaft 150 of the cylinder member 140, and then distributed to the upper and lower girders 4 through the 15 first and second base plates 130a, 130b. At this time, since the cylinder member 140 is arranged automatically along tensile direction by the rotation shaft 150, it is not necessary for a worker to adjust the position of the cylinder member or pressure support means manually as 20 is conventionally performed.

20 PCT/KR2009/001605 RO/KR 30.03.2009 FIGs. 8a and 8b are views illustrating that the cylinder member 140 is arranged with various angles. FIG. 9 is a view illustrating that an anchor body is fixed to the first bracket unit 100a alone. This may be applied to 5 an earth retaining method, which does not employs a girder, for example, a continuous pile wall or underground continuous wall method. In other words, the earth retaining wall W formed by the aforementioned method is bored to insert the anchor body 3 10 therein, and grouping is performed for the fixed anchor length, and then a anchor free length of the anchor body 3 is withdrawn and fixed through the cylinder member 140 of the first bracket unit 100a. At this time, a fixation anchor 300 is inserted in the 15 anchor fastening hole 134 formed in the first base plate 130a of the first bracket unit 100a to fix the first bracket unit 100 to the earth retaining wall W. The fixation anchor 300 may be previously installed during construction of the earth retaining wall W. 20 As described above, since the cylinder member 140 can 21 PCT/KR2009/001605 RO/KR 30.03.2009 rotate by the rotation shaft 150, the first bracket unit 100a with the same structure can be used even when the tensile direction of the anchor body 3 varies as shown in Fig. 9. Meanwhile, while an earth anchor method in which the 5 anchor body is inserted through a side surface of the earth retaining wall W was conventionally mainly used, use of the first bracket unit 100a of the present invention allows the anchor body to be directly inserted into the ground from the upper side of the earth retaining wall W as shown in FIG. 10. 10 With this method, since it is not necessary to bore the earth retaining wall W made of concrete to install the anchor body 3, it is not necessary to weaken a water stopping property or strength of the earth retaining wall W. Also, a utilization space within an excavation hole is enlarged as 15 compared with the case that the bracket for supporting the anchor body 3 is installed on a side surface of the earth retaining wall W. Meanwhile, while the rotation shaft 150 is projected outwardly from the cylinder member 140 and the shaft hole 114 20 for inserting the rotation shaft 150 therein is formed in the 22 PCT/KR2009/001605 RO/KR 30.03.2009 both side plates 110 in the above described embodiment, an alternative design is also allowed. For example, it is possible that the shaft holes are formed at both sides of the cylinder member 150 and the 5 rotation shafts which are coupled with the shaft holes are formed on inner surfaces of the both side plates 110. Consequently, the earth anchor bracket 100 according to the present invention is characterized in that the pressure support means (or the cylinder member) is coupled rotatably 10 with the both side plates 110 by the rotation shaft. While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit 15 and scope of the invention as defined in the following claims.

AU2009234636A 2008-04-08 2009-03-30 Multi-purpose earth anchor bracket Abandoned AU2009234636A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020080032825A KR100992942B1 (en) 2008-04-08 2008-04-08 Multipurpose earth anchor bracket
KR10-2008-0032825 2008-04-08
PCT/KR2009/001605 WO2009125935A1 (en) 2008-04-08 2009-03-30 Multi-purpose earth anchor bracket

Publications (1)

Publication Number Publication Date
AU2009234636A1 true AU2009234636A1 (en) 2009-10-15

Family

ID=41162045

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2009234636A Abandoned AU2009234636A1 (en) 2008-04-08 2009-03-30 Multi-purpose earth anchor bracket

Country Status (6)

Country Link
EP (1) EP2278076A1 (en)
KR (1) KR100992942B1 (en)
CN (1) CN102046886A (en)
AU (1) AU2009234636A1 (en)
MY (1) MY159716A (en)
WO (1) WO2009125935A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964258B1 (en) * 2010-01-27 2010-06-16 (주)서림건설 Auto angle bracket for earth anchor
KR101004639B1 (en) * 2010-02-08 2011-01-04 이윤정 Anchor bracket
KR101260966B1 (en) * 2011-04-13 2013-05-06 김용만 Steel Strand Extension Device having Angle adjustment anchor bracket
KR101314275B1 (en) 2012-08-09 2013-10-02 대우조선해양 주식회사 Anchor pocket structure for vessels and assembly method thereof
CN105083743A (en) * 2015-07-16 2015-11-25 上海外高桥造船有限公司 Pile leg fixing device
KR101965406B1 (en) * 2018-08-03 2019-04-03 정순국 Nail assembly and construction method of nail using the same
NL2022393B1 (en) * 2019-01-14 2020-08-14 Key Staal B V Assembly of a retaining wall, at least two elongated anchoring elements and a purlin beam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534326B2 (en) * 1975-01-09 1978-02-16
JP2003105760A (en) * 2001-09-27 2003-04-09 Kozo Koji Kk Built-up universal anchor pedestal
KR100652530B1 (en) * 2006-03-31 2006-12-04 손일준 Earth anchor bracket
KR100760213B1 (en) * 2006-12-28 2007-09-20 (주) 신기술산업 Earth anchor bracket having saw-toothed and curved part

Also Published As

Publication number Publication date
WO2009125935A1 (en) 2009-10-15
KR100992942B1 (en) 2010-11-08
KR20090107354A (en) 2009-10-13
EP2278076A1 (en) 2011-01-26
CN102046886A (en) 2011-05-04
MY159716A (en) 2017-01-31

Similar Documents

Publication Publication Date Title
US20200248428A1 (en) Apparatus and method for lifting building foundations
US5575593A (en) Method and apparatus for installing a helical pier with pressurized grouting
EP0870092B1 (en) Method and apparatus for forming piles in-situ
US6435776B2 (en) Method and apparatus for forming piles in place
US6012874A (en) Micropile casing and method
KR100621669B1 (en) Structure lifting and foundation strengthening method using the steel pipe
EP2042659B1 (en) Anchor post
JP4375733B2 (en) Steel pipe placing method
US6814524B1 (en) Method and apparatus for lifting and stabilizing subsided slabs, flatwork and foundations of buildings
CA2682816C (en) Spiral steel pile
US10676887B2 (en) One-piece Z-shaped flat plate foundations and method of forming same
KR20050000710A (en) A connection device to connect concrete piles
KR101530871B1 (en) Retaining Wall Having Natural Rock And Construction Method Thereof
JP5199166B2 (en) Foundation pile structure by site construction and construction method of foundation pile
US8109057B2 (en) Tower foundation system
KR101072527B1 (en) Retaining wall structure using twisted steel wire
JP2003314197A (en) Conduit repairing method and conduit interior repairing structure
EP1954884A1 (en) Apparatus for fixing a wale
EP1468145A1 (en) Reinforcement unit fo reinforcing a footing element when laying pile foundations with a foundation pile, and method for placing a foundation pile and reinforcement of a footing element
US7600948B2 (en) Micropile retaining wall
US20100322718A1 (en) Earth anchor bracket having saw-toothed and curved part
JP5222226B2 (en) Friction pile repair method and pile foundation structure
KR101675884B1 (en) Helical pile and construction method thereof
KR100904857B1 (en) A constructing method of underground structure using steel pipe and segment
KR100917044B1 (en) Concrete retaining wall construction method with dual wall jointed by anchor

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted