AU2005203792A1 - Artificial insemination device for animals - Google Patents

Artificial insemination device for animals Download PDF

Info

Publication number
AU2005203792A1
AU2005203792A1 AU2005203792A AU2005203792A AU2005203792A1 AU 2005203792 A1 AU2005203792 A1 AU 2005203792A1 AU 2005203792 A AU2005203792 A AU 2005203792A AU 2005203792 A AU2005203792 A AU 2005203792A AU 2005203792 A1 AU2005203792 A1 AU 2005203792A1
Authority
AU
Australia
Prior art keywords
nozzle
catheter tube
insemination
semen
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2005203792A
Inventor
Sheng-Jui Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AU2005203792A priority Critical patent/AU2005203792A1/en
Publication of AU2005203792A1 publication Critical patent/AU2005203792A1/en
Abandoned legal-status Critical Current

Links

Description

S&FRef: 732992
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Sheng-Jui Chen, of No.14, Lane 291, Shin-Te St., Pyng- Jenn City, Taoyuan, Taiwan Sheng-Jui Chen Spruson Ferguson St Martins Tower Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Artificial insemination device for animals The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c ARTIFICIAL INSEMINATION DEVICE FOR ANIMALS Background of the Invention Field of the Invention The present invention relates to an artificial insemination device for animals, more particularly, a simple device that is easy and convenient to use and allows animal semen to reach the two ducts to uterine horns or the uterus swiftly and smoothly, thereby improving the success rate of artificial insemination and effectively saving the amount of io semen needed. The invention herein requires minimal amounts of insemination semen and offers economic benefit. It also renders artificial insemination safer, more hygienic, and more humane.
Description of the Prior Art Is The assembly and operation of conventional artificial insemination device for animals as shown in FIG. 1 and FIG. 2, typically comprises a plastic catheter tube 10 of certain hardness and a nozzle 20 made of softer material installed protrusively on the front end of catheter tube 10. When artificial insemination is carried out, the catheter tube 10 and nozzle 20 are inserted along the vagina 11 of female animal body 1 until the nozzle 20 at the front penetrates into cervical tract 12. Subsequently, the insertion tube 31 of the semen dispenser (bag or syringe) 30 containing the animal semen is inserted into the rear end of catheter tube 10, and as the operator continuously squeezes the semen dispenser (bag or syringe) 30, the semen contained therein is ejected into the cervical tract 12 through the nozzle 20 of catheter tube 10, where the uterus 13 contracts to draw in semen from cervical tract 12. Although the configuration and operation of such artificial insemination device achieve the purpose of artificial insemination in animals effectively, there are some drawbacks: 1. After the catheter tube 10 penetrates the vagina 11 of female animal body 1, the nozzle 20 at the front is pushed approximately to the position of first cervical ring 121 of cervical tract 12, but there remains considerable distance between the first cervical ring 121 and the uterus. Although the contraction of uterus 13 could draw in the semen from cervical tract 12, a large amount of semen ejected from the nozzle 20 initially accumulates at the position of first cervical ring 121 and cannot instantly flow into the uterus 13. What happens most frequently is that the semen accumulated at the first cervical ring 121 often backflows outside the vaginal orifice 111. As such, not only semen is 1 [R:\LIBLL] 17317.doc: LZV wasted, the amount of semen that flows into the uterus 13 is proportionately lessened, hence decreasing the probability of successful insemination.
2. In response to the problem of semen backflow, operators commonly dilute the semen fluid many folds (typically 5cc is diluted into 50-120cc) and enlarge the inner diameter of catheter tube to accommodate and provide more semen fluid for insemination. But the massive dilution of semen fluid apparently reduces the rate of fertilization and the number of fetus, while using more semen leads to waste directly.
3. As described above, the semen in catheter tube 10 is directly released from the nozzle 20, and when nozzle 20 penetrates the cervical tract 12 from outside the female animal body 1, the accidental admittance of contaminants from outside the body or the vagina 11 is difficult to avoid as the semen flows into the uterus 13. As such, the risk of bacteria infection and inflammation of the vagina, cervical tract, and even the uterus of the animal during artificial insemination is high and, at the same time, the safety of fetus carried in the uterus 13 is jeopardized.
4. To improve the success rate and safety of artificial insemination, the operation of artificial insemination requires professional personnel (such as veterinarians or specialized technical personnel) and, as such, to big animal farms (such as pig farmers), it incurs heavy economic burden and demands considerable professional manpower.
After the operator utilizes the catheter tube 10 and nozzle 20 to penetrate the vagina 11 and cervical tract 12 of female animal body 1, he has to use one hand to hold the rear end of catheter tube 10 and the other hand to grip and squeeze the semen dispenser 30, which is apparently more troublesome, inconvenient, cumbersome, and time consuming in operation.
To render animal artificial insemination process more efficient and humane, some operators would use accessory devices. As shown in FIG. 3, such devices include an AI Buddy 40, an elastic saddle-like apparatus resembling the two front legs of an animal, wherein a connector 50 with open posterior is installed at the rear end of catheter tube with a positioning strap 41 disposed between the AI Buddy 40 and the connector 50; as such, during the artificial insemination procedure, the operator straddles the AI Buddy over the back of the female animal 1 such that the female animal feels that a male animal has mounted with its two front legs, a guide bush 60 is then placed at the vaginal orifice 111 of female animal body 1 and after the catheter tube 10 and nozzle 20 penetrate the vagina 11 and reaches the cervical tract 12 through the guide bush 60, the rear end of catheter tube 10 is flexed upward and directly secured by the positioning strap 41 connected to the AI Buddy 40; following the ingress of a semen dispenser 30 insertion tube 31 into the connector 50, the operator only has to squeeze the semen dispenser 30. In such 2 [R:\LIBLLJI 7317.doc:LZV approaches, the operator needs to use both hands at the same time, one for grasping the catheter tube 10 and one for squeezing the semen dispenser 30, a procedure that is troublesome and time consuming, but nevertheless an effective improvement. However, existent shortcomings that have not been improved include semen backflow that wastes semen, which is uneconomical and lowers insemination success rate; the easy inflow of contaminants from the outside of the female animal body into the vagina, cervical tract, and uterus that endanger the health of the female animal and fetus carried in the uterus; and the requiring of specialized personnel for operation, which is uneconomical and involves additional manpower.
To increase the success rate of artificial insemination, an improved artificial insemination device for animals as shown in FIG. 4 and FIG. 5 Patent No.5899848) has been disclosed, which features a balloon 16 attached to nozzle 20 of catheter tube The balloon 16 is folded or tucked completely within the forward end of passage of nozzle with a plurality of perforations 29 formed within the periphery of balloon. When semen dispenser is inserted into nozzle 20 of catheter tube 10, the balloon 16 is inflated by the semen forced therein, and the semen is subsequently expelled through the perforations 29 due to the uterine contractions acting upon the balloon 16 at cervical tract. Undeniably, the device just mentioned is an improvement over conventional artificial insemination devices that have the drawbacks of massive backflow of semen and easily bringing contaminants from outside of female animal body into the vagina, cervical tract and even uterus, hence endangering the health of animal and fetus. But given that after nozzle 20 of catheter tube is extended inward to the position of first cervical ring of cervical tract, the balloon 16 in inflated shape that is exposed under the force of semen merely reaches the forward portion of passage of nozzle 20, still around the first cervical ring. Under the circumstance that there remains considerable distance between the inflated balloon 16 that carries semen fluid and the uterus, the semen expelled under the action of uterine contraction is unable to reach uterus swiftly and efficiently and some would backflow, resulting in waste. To make sure more semen enters uterus, the inner diameter of catheter tube 10 has to be made larger to accommodate more semen, which does not improve the uneconomical use of semen seen in conventional artificial insemination devices.
Referring to FIG. 6 and FIG. 7, another artificial insemination apparatus for animals is disclosed Patent No.6526917), wherein the front end opening 421 of catheter tube 420 is inserted into a sheath-like membrane 410 and the leading edge 412 of membrane 410 is snapped into a positioning ring 422 of catheter tube 420. Subsequently, nozzle 440 is inserted into the front end of catheter tube 420 to immobilize membrane 410.
After nozzle 440 is inserted into the front end of catheter tube 420, the various components 3 [R:\LIBLL] 17317.doc:LZV including the member 410 sandwiched between nozzle 440 and the catheter tube 420 can be further secured to each other by sonically welded or heat staked. The object of such artificial insemination assembly is to cause the tip 411 of sheath-like membrane 410 to begin unfolding in an inside-out manner not unlike removing one's sock by pulling from the open end when semen is squeezed into the rear end of catheter tube 420 and enters the uterus along the cervical tract where semen is ejected from the opening of tip 411 to enhance the efficiency of insemination, prevent the entry of contaminants into uterus, and prevent the backflow of semen. Such artificial insemination apparatus is more effective in comparison with prior art. But it still has some drawbacks in actual implementation: 1o 1. Given that membrane 410 is inserted from the opening of catheter tube 420 and secured to nozzle 440 via a leading edge 412, the tip 411 of membrane, when squeezed inside-out under the pressure of semen, must pass through the pathway B (FIG.
6) of nozzle 440 before entering the cervical tract of animal. Thus in order for membrane 410 to enter the uterus of animal, it must have certain length. As we know, the longer the membrane, greater squeeze force to expose it outside the nozzle is required, rendering the whole operation more troublesome. In particular when the semen dispenser is in bag shape, the force generated from squeeze is not as much as that of bottle or syringe, which construes a limitation in implementation.
2. Given that the leading edge 412 of membrane 410 is snapped into the positioning ring 422 of catheter tube 420, membrane 410 is tightly attached to the periphery of tube 420 under certain tension, and subsequently nozzle 440 is tightly conjoined to the periphery of membrane 410. What happens most frequently is that when the membrane 410 under tension is pushed by the exertion of nozzle 440, perforation tends to occur around the edge of front end of catheter tube 420 (shown as C in FIG. In such event, when semen is squeezed into catheter tube 420, the perforation would cause air leakage, which keeps membrane 410 from being squeezed out quickly and smoothly, thereby resulting in poor execution or even the failure of artificial insemination.
3. As perforation C on membrane 410 is totally covered by nozzle 440, the quality of the apparatus becomes uncertain since quality control inspection is difficult to carry out. Similarly the performance of the apparatus also becomes questionable.
4.Given that membrane 410 is inserted into catheter tube 420 from its opening 421, the inner diameter of catheter tube 420 the hollow space 424) must be bigger.
But bigger tube directly increases the consumption of semen, the same as in prior art. Such apparatus apparently does not offer the economic benefit of saving the usage of semen.
5. To prevent trauma to the animal during artificial insemination, the nozzle is usually made of elastomeric material. If the force used is improper or the animal 4 [R:\LIBLL] 17317.doc:LZV does not stay still during artificial insemination, the front part of nozzle is prone to deformation or bend which might block the semen pathway. Under the circumstances, it is likely that the membrane 410 disposed inside catheter tube 420 will not extend under pressure to achieve artificial insemination.
Summary of the Invention The primary object of the present invention is to provide an artificial insemination device for animals, characterized in which an elastic insemination sheath is disposed between the nozzle passage and the forward portion of center orifice of catheter tube an the rear section of said elastic insemination sheath is secured to the front part of nozzle. When semen is squeezed into the catheter tube which causes the insemination sheath to unfold gradually under pressure, the length of insemination sheath that enters into the uterus along cervical tract is actually shorter as measured from the front part of nozzle. As such, the pressure needed to push the insemination sheath outward is effectively reduced, which renders the practice of artificial insemination more convenient.
The movement of insemination sheath extending into the uterus is also made smoother, thereby enhancing the efficiency of artificial insemination.
Another object of the present invention is to provide an artificial insemination device for animals, wherein by making the rear end of insemination tube directly snapped over the front part of nozzle and disposing a neck ring made of slightly rigid material to brace the opening of nozzle passage, the assembly of insemination sheath is less prone to perforation and inspection of the integrity of the assembly is facilitated. Moreover, the front part of nozzle is less likely to deform or bend, hence keeping the nozzle passage unblocked all the time.
A further object of the present invention is to provide an improved artificial insemination device for animals, wherein the insemination sheath is tucked inwardly into nozzle through its front part and disposed in compressed state between the forward portion of center orifice of catheter tube and nozzle passage, instead of being inserted completely into the catheter tube. As such, the inner diameter of the catheter tube can be made smaller.
'Also, as the insemination sheath can effectively carry semen into uterus without the concern of backflow when under pressure, the semen used does not require massive dilution, while only more concentrated semen in small amount needs to be injected into the catheter tube. Thus the present invention not only offers the economic benefit of saving the semen used, the fertilization rate and the number of fetus are also expected to increase.
[R:\LIBLL] 17317.doc:LZV Yet another object of the present invention is to provide an artificial insemination device for animals, wherein after the insemination sheath is inserted into the nozzle passage, the portion of sheath situated at the passage opening has a guide member that unfolds in an inside-out manner. When semen is squeezed into the catheter tube, the guide member concurrently guides the whole assembly of insemination sheath to unfold inside-out and extend forward, rendering the operation of artificial insemination more efficient.
The objects, features and effects of the invention are described in details below with accompanying drawing and embodiments.
Brief Description of the Drawings FIG 1 is a schematic of a conventional artificial insemination device with a semen dispenser.
FIG. 2 is a schematic of the artificial insemination device in FIG 1 penetrating the body of a female animal.
FIG'3 is a schematic of a conventional artificial insemination device, equipped with a connector and an AI Buddy, penetrating the body of a female animal.
FIG. 4 is a perspective view of an artificial insemination device disclosed in US Patent No. 5899848.
FIG 5 is schematic of the artificial insemination device in FIG 4 showing its placement inside the body of a female animal.
FIGS. 6A and 6B are schematic views of the before and after deployment, respectively, of the catheter in accordance with the artificial insemination device disclosed in US Patent No. 6526917.
FIGS. 7A through 7F show the assembly of the catheter of FIGS. 6A and 6B.
FIG 8 is a schematic view of the present invention.
FIG 9 is a schematic view of the catheter tube, elastic insemination sheath, and air rod in separated state.
FIG 10 is a schematic view of elastic insemination sheath tucked into the catheter tube according to the invention.
FIG. 11 is a schematic view of the strap member of elastic insemination sheath according to the invention secured to the nozzle.
FIG. 12 is a schematic view of the extension member of elastic insemination heath according to the invention in compressed state.
FIGS 13A and 13B show the slits at the front of extension member of elastic insemination sheath according to the invention in closed and open state.
6 [R:\LIBLL]1 7317.doc:LZV FIG. 14 is a schematic view of the elastic insemination sheath according to the invention conjoining the nozzle and forming a guide member that unfolds outwardly.
FIG 15 shows the deployment of the invention in the body of a female animal.
FIG 16 is a schematic view of the elastic insemination sheath according to the invention extending outwardly.
FIG. 17 shows the deployment of the invention in the body of a female animal with insemination sheath unfolded.
FIG. 18 shows the front part of insemination sheath extending into the uterus of a female animal according to the invention Detailed Description of the Preferred Embodiments As show in FIG. 8, the artificial insemination device for animals according to the invention features an elastic insemination sheath 80 amassed in compressed state between the forward portion of center orifice 101 of catheter tube 10 and the passage 201 of nozzle 20, and the rear end of said elastic insemination sheath 80 is secured to the front part of nozzle 20. That is, as shown in FIGS. 9, 10, 11, 12, and 13, the elastic insemination sheath is a membrane-like sheath made of balloon or condom material such that it possesses softness and elastic stretch characteristics and comprising an extension member 801 and a strap member 802. The extension member 801 has an elongated shape with slits juxtaposing along the two sides of its front end; the strap member 802 is bigger than extension member 801 with a small, thicker and more rigid neck ring 8021 in the front connected to the extension member 801 and a thicker strap ring 8022 at the back. A strap edge 8023 that tapers towards the center is disposed anterior to strap ring 8022.
The extension member 801 of insemination sheath 80 has an outer diameter smaller than that of the center passage 201 of nozzle 20 and the center orifice 101 of catheter tube 10 that allows it to be placed into nozzle passage 201 and center orifice 101 of catheter tube without difficulty.
The strap member 802 of insemination sheath 80 is configured slightly smaller than the positioning member 202 at the front part of nozzle 20, while the neck ring 8021 at the front of strap member 802 is configured slightly bigger than the passage 201 of nozzle and the strap ring 8022 at the back of strap member 802 seats exactly into a prearranged seat groove 203 on the positioning member 202 of nozzle That is, the elastic insemination sheath 80 has the front end of extension member 801 tucked into nozzle 20 from its front passage opening 2011 and the more rigid neck ring 8021 at the front of strap member 802 seated at the front passage opening 2011 of nozzle for support. Given that strap member 802 is slightly smaller than the positioning 7 [R:\LIBLL]17317.doc:LZV member 202 of nozzle 20 and it is elastic and stretchable, the operator can push the strap member 802 in reverse direction along the periphery of nozzle positioning member 202 to enfold it completely. Also because the strap ring 8022 at the back of strap member 802 is thicker and has stronger tightening force, and a strap edge 8023 which tapers towards the center is disposed anterior to strap ring 8022, giving strap ring 8022 tighter clamping power; when strap member 802 gradually enfolds the nozzle positioning member 202 and aligns strap ring 8022 with the seat groove 203 on nozzle positioning member 202, the strap ring 8022 consequently and quickly seats into the seat groove 203 in a press-down manner. The strap edge 8023 also acts to tighten up to make sure the union of insemination sheath 80 and nozzle 20 is secure and stable that does not separate easily (FIG. 11).
After the extension member 801 of insemination sheath 80 is tucked into the nozzle 20 from the front passage opening 2011 with strap member 802 tightly enfolding nozzle positioning member 202, the extension member 801, with the aid of a fixator or a is mechanical device, will compress gradually towards the back until it reaches the position between the passage 201 of nozzle 20 and the forward portion of center orifice 101 of catheter tube There are a variety of means to amass the extension member 801 of insemination sheath. 80 in compressed state at the location between nozzle passage 201 and the forward portion of center orifice 101 of catheter tube 10. In an embodiment of the invention, an air rod 9 is employed. Air rod 9 has a round and smooth body and is comprised of a sheathing member 91, a positioning member 92, and a through air hole disposed at the center; wherein the sheathing member 91 approximates the extension member 801 of insemination sheath 80 in length and can be disposed directly throughout the inside of extension member 801; positioning member 92 is slightly smaller than the neck ring 8021 on the strap member 802 of insemination sheath 80 for neck ring 8021 to clasp fittingly over its periphery.
In the assembly of insemination sheath 80 with air rod 9, insemination sheath is first folded over air rod 9 with extension member 801 and neck ring 8021 of strap member clasping respectively the sheathing member 91 and positioning member 92 of air rod 9; next, insert the air rod 9 from the front passage opening 2011 of nozzle 20 to bring the extension member 801 of insemination sheath 80 into the passage 201 of nozzle and the center orifice 101 of catheter tube 10 and position the neck ring 8021 of strap member 802 at the front passage opening 2011 of nozzle 20; the operator pushes the strap member 802 inwardly in reverse direction along the periphery of nozzle positioning member 202 until the strap ring 8022 and strap edge 8023 seat directly into the 8 [R:\LIBLL] 17317.doc:LZV prearranged seat groove 203 on nozzle 20 to complete the assembly of insemination sheath 80 in nozzle 80; the operator then extracts air through the center air hole 93 of air rod 9 to let the front end of extension member 801 of insemination sheath 80 suck to the front end of sheathing member 91 of air rod 9; as the operator withdraws the air rod 9 slowly, the extension member 801 of insemination sheath 80 will squeeze backward along with the outward movement and naturally assemble in compressed state between the nozzle passage 201 and the forward portion of center orifice 101 of catheter tube In light that the strap member 802 of insemination sheath 80 is securely strapped to the front part of nozzle 20 and the extension member 801 is pliable, when the air rod 9 1o is withdrawn gradually, it is easy for extension member 801 to form a compressed shape, and moreover, the separation of the entire insemination sheath 80 from nozzle 20 is not a concern. After the extension member 801 is amassed in compressed state at the desired position, the air rod 9 will stop air extraction so that the front end of extension member 801 of insemination sheath 80 is no longer sucked to the front end of sheathing member 91 of air rod 9. As such, air rod can be withdrawn smoothly and the assembly of insemination sheath 80 is completed swiftly.
Referring to FIG. 12 and FIG. 13, after the extension member 801 of insemination sheath 80 is amassed in compressed state between nozzle passage 201 and the forward portion of center orifice 101 of catheter tube, the section of extension member 801 situated at the front passage opening 2011 of nozzle 20 has a guide member K that unfolds inside out. Guide member K either aligns with or slightly hangs over the front passage opening 2011 of nozzle 20. There are a number of means to let guide member K unfold outwardly. For example, extend the front of air rod 9 slightly inward into the extension member 801 of insemination sheath situated in nozzle passage 201 and adhere the air hole 93 to the inner periphery of extension member 801; next carry out air extraction to let air hole 93 suck up the corresponding extension member 801; withdraw air rod 9 and the sucked extension member 801 is also pulled out to form a section of superimposed guide member K that unfolds inside out.
The nozzle 20 and catheter tube 10 of the invention are conventional assemblies.
The insemination sheath 80 is inserted into nozzle passage 2011 after nozzle 20 and catheter tube 10 are assembled, so there is no friction between insemination sheath 80 and catheter tube Referring to FIG. 15, the operator would use conventional operating procedure when using the present invention for artificial insemination in animals. That is, the nozzle 20 and catheter tube 10 are inserted into the vagina 11 of animal body 1 through guide bush 60, where nozzle 20 is extended approximately to the position of first cervical ring 9 [R:\LIBLL]1I 7317.doc:LZV 121 of cervical tract 12, and connector 50 at the rear end of catheter tube 10 is bent 0 upward as in prior art to secure to the positioning strap 41 of AI Buddy 40, and the insertion tube 31 of semen dispenser (bag or syringe) 30 is inserted into connector 50 and pulled out after proper amount of semen fluid is squeezed into catheter tube Referring to FIG. 16 and FIG. 17, when the semen in semen dispenser (bag or syringe) 30 is squeezed into catheter tube 10, the extension member 80 compressed between nozzle passage 201 and forward portion of center orifice 101 of catheter tube is pushed forward automatically under pressure. Under the guidance of guide member K which is a section of extension member 801 situated at the nozzle passage opening 2011 and unfolds inside out (FIG. 14), extension member 801, under the force of semen, will extend forward and outward (FIG. 16) to allow semen from catheter tube 10 to enter. As shown in FIG. 17, when the semen dispenser (bag or syringe) squeezes semen into catheter tube 10, the extension member 801 of insemination sheath 80 will be filled with semen and extend from the front part of nozzle 20 forward and outward towards cervical tract 12 and directly engages the two ducts to uterine horns 14 or the uterus 13. Because the extension member 801 of insemination sheath is soft and pliable, it could extend forward under pressure along the circuitous and narrow cervical tract without causing friction. Such design allows the front part of extension member to reach deep into cervical tract 12 to the two ducts to uterine horns 14 or uterus 13 without traumatizing the delicate tissue of cervical tract 12 or hurting the animal, rendering the artificial insemination process safer and more humane.
SWhen extension member 801 extends and its front part enters uterus 13 or the two ducts to uterine horns 14, it will be squeezed under uterine contraction and the semen inside is also pushed forward. The front part of extension member 801 has two juxtaposing slits 8011, which are forced open when semen is pushed forward (as shown in FIG. 13 and FIG. 18) so that semen is rapidly expelled into the two ducts of uterine horns 14 or uterus 13. Subsequently as the uterus continues to contract, semen inside the extension member 801 is gradually emptied, and semen injected into catheter tube 10 also continues to enter the extension member 801 of insemination sheath to enhance the efficiency of artificial insemination.
Given that the two slits 8011 on the front part of extension member 801 are in closed state while not under squeeze force, they are kept closed during the stage of semen being injected into catheter tube 10 and extension member 801 of insemination sheath gradually unfolding. When extension member 801 extends through cervical tract 12 and reaches the two ducts to uterine horns 14 or uterus 13, the slits will open under pressure and release the semen. As such, semen is used most efficiently.
[R:\LIBLL] 17317.doc:LZV The insemination sheath 80 may be coated a layer of lubricant inside and outside during fabrication, which will facilitate the insertion and withdrawal of air rod 9, and makes its enfolding over the positioning member 202 of nozzle a simple and convenient procedure. The lubrication helps in particular the forward extension of extension member 801 into cervical tract 12 to keep the process smooth and swift.
Because the strap member 802 of insemination sheath 80 is securely seated in the seat groove 203 on the positioning member 202 of nozzle 20 through strap ring 8022 and strap edge 8023, the insemination sheath will not dislodge when extension member 801 extends forward to cervical tract 12 and uterus 13 of female animal body 1 under squeeze force.
The extension member 801 of insemination sheath 80 is inserted into nozzle through its front passage opening 2011 and the strap member 802 of insemination sheath enfolds tightly over the front part of nozzle 20, instead of being secured at the junction of catheter tube and nozzle 20 as in prior art (FIG 6 and FIG. Such arrangement is less likely to cause perforation in insemination sheath and makes it easier to check the effect of insemination. More particularly, when nozzle 20 reaches the position of first cervical ring 121 of cervical tract, the distance to travel by extension member 801 into uterus 13 is measured from the front of nozzle 20, instead of the front of catheter tube as in prior art.
As the distance to travel is apparently shorter, extension member 801 will be able to reach uterus 13 more swiftly and smoothly under pressure. In addition with an outward-unfolding guide member K at the passage opening 2011 of nozzle by extension member 801, only small pressure from the injection of semen into catheter tube 10 is needed to cause the extension member 801 to extend forward and outward quickly and smoothly, which is an improvement over prior art that requires greater exertion of force.
As described above, the extension member 801 of insemination sheath 80 is conveniently tucked into the nozzle 20 through its front passage opening 2011 and is compressed in shorter length between nozzle passage 201 and the forward portion of center orifice 101 of catheter tube 10. This is a contrast to prior art that requires longer sheath and the sheath needs to be placed entirely inside the catheter tube. As such, the extension member 801 of insemination sheath 80 according to the present invention can have smaller diameter, and the center orifice 101 of the catheter tube can also be made smaller. As such, the extension member 801 can quickly deliver semen into uterus 13 under minimal squeeze force and the aid of uterine contraction. Consequently, there is no need to massively dilute the semen or use catheter tube of larger diameter in order to accommodate large volume of diluted semen fluid as in prior art. Instead, only small amount of more concentrated semen is required to fill the tube of smaller diameter. Thus 11 [R:\LIBLL] 17317.doc:LZV the present invention offers the economic benefit of saving semen, and concurrently, raises the fertilization rate and number of fetus, thereby allowing successful insemination with minute amount of semen.
Because the strap member 802 of insemination sheath 80 has a more rigid neck ring 8021 disposed at the front passage opening 2011 of nozzle 20 as support, the front part of nozzle 20 is kept soft at the outer periphery, while the passage opening 2011 at the center is not prone to deformation. Consequently in the process of artificial insemination, the nozzle passage opening 2011 will not bend, deform or even block the outward extension of extension member 801 due to improper exertion of force or the fidgeting of io animal to ensure a smooth process.
In other words, the invention disclosed herein has at least the following advantages: 1. The extension member of insemination sheath is tucked into nozzle directly through its front passage opening and amassed in compressed state between the forward portion of center orifice of catheter tube and nozzle passage, and the strap member at rear section of elastic insemination sheath is secured to the front part of nozzle.
Thus when semen is squeezed into the catheter tube which causes the insemination sheath to unfold gradually under pressure, the length of insemination sheath that enters into the uterus along cervical tract is actually shorter as measured from the front part of nozzle. As such, the pressure needed to push the insemination sheath outward is effectively reduced, which renders the practice of artificial insemination more convenient. Similarly, the movement of insemination sheath extending into the uterus is also made smoother, thereby enhancing the efficiency of artificial insemination.
2. The strap member of insemination sheath is secured directly to the front part of nozzle, instead of at the junction of nozzle and catheter tube. Such arrangement makes it easier to check the effect of insemination and less likely to cause perforation.
3. Because the strap member of elastic insemination sheath has a more rigid neck ring disposed at the front passage opening of nozzle as support, the front part of nozzle is kept soft at the outer periphery, while the passage opening at the center can be free of deformation, bending or blocking the passage of catheter tube to increase the chance of successful insemination.
4. The extension member of elastic insemination sheath is tucked into the front part of nozzle and amassed in compressed state between the nozzle passage and the forward portion of center orifice of catheter tube, instead of being inserted completely into the catheter tube. As such, the inner diameter of the extension member and catheter tube can be made smaller. Also, as the extension member can deliver semen swiftly into uterus 12 [R:\LIBLL]I 7317.doc:LZV without the concern ofbackflow, the semen used does not require massive dilution, while only more concentrated semen in small amount needs to be injected into the catheter tube.
Thus the present invention not only offers the economic benefit of saving the semen used, the fertilization rate and the number of fetus are also expected to increase.
5. After the extension member of insemination sheath is amassed in compressed state in nozzle passage, the portion of extension member situated at the passage opening has a guide member that unfolds in an inside-out manner. When semen is squeezed into the catheter tube and applies pressure on the extension member, the guide member concurrently guides the whole assembly of extension member to unfold inside out and extend forward in a swift and smooth manner.
13 [R:\LIBLL] 17317.doc:LZV

Claims (9)

1. An artificial insemination device for animals, comprising a catheter tube, a nozzle, a connector, and an elastic insemination sheath; the nozzle being assembled anterior to the catheter tube in advance, the connector being installed posterior to the catheter tube for the insertion of insertion tube of semen dispenser (bag or syringe); characterized in which: the elastic insemination sheath has an extension member and a strap member; said extension member has an elongated shape and is tucked inwardly into the nozzle from its front passage opening and amassed in compressed state between the nozzle passage and 1o the forward portion of center orifice of catheter tube; said strap member is secured to the front positioning member of nozzle with a neck ring made of more rigid material at where the strap member adjoins the extension member that is disposed at and bracing the front passage opening of nozzle; when semen is squeezed into the catheter tube from the semen dispenser (bag or syringe), the compressed extension member of elastic insemination sheath extends forward and outward from the front part of nozzle along the cervical tract of female animal body to reach the uterus or the two ducts to the uterine horns.
2. An artificial insemination device for animals as claimed in claim 1, wherein juxtaposing slits are configured at the front part of extension member of said elastic insemination sheath.
3. An artificial insemination device for animals as claimed in claim 1, wherein the extension member of said elastic insemination sheath has an outer diameter smaller than that of the nozzle passage and the center orifice of catheter tube.
4. An artificial insemination device for animals as claimed in claim 1, wherein after the extension member of said elastic insemination sheath is amassed in compressed state between the nozzle passage and the forward portion of center orifice of catheter tube, a superimposed guide member that unfolds in an inside-out manner is disposed at the opening of nozzle passage.
An artificial insemination device for animals as claimed in claim 4, wherein said guide member is disposed aligned with or overhanged the front passage opening of nozzle.
6. An artificial insemination device for animals as claimed in claim 1, wherein the strap member of said elastic insemination device is bigger than its extension member and has a thicker strap ring at rear end where a strap edge that tapers towards the center is disposed anterior to the strap ring. 14 [R:\LIBLL] 17317.doc:LZV
7. An artificial insemination device for animals as claimed in claim 6, wherein the strap member of said elastic insemination sheath enfolds over the front positioning member of nozzle and its strap ring and strap edge seat tightly into a prearranged seat groove on the positioning member of nozzle.
8. An artificial insemination device for animals as claimed in claim 1, wherein when the extension member of said elastic insemination sheath engages the uterus or the two ducts to uterine horns of the female animal body, the two juxtaposing slits at its front will open automatically to expel semen under the pressure from uterine contraction.
9. An artificial insemination device for animals, substantially as hereinbefore described with reference to Figs 8 to 18 of the accompanying drawings. Dated 23 August, 2005 Sheng-Jui Chen Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON [R:\LIBLLI 7317.doc:LZV
AU2005203792A 2005-08-23 2005-08-23 Artificial insemination device for animals Abandoned AU2005203792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005203792A AU2005203792A1 (en) 2005-08-23 2005-08-23 Artificial insemination device for animals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2005203792A AU2005203792A1 (en) 2005-08-23 2005-08-23 Artificial insemination device for animals

Publications (1)

Publication Number Publication Date
AU2005203792A1 true AU2005203792A1 (en) 2007-03-15

Family

ID=37875522

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005203792A Abandoned AU2005203792A1 (en) 2005-08-23 2005-08-23 Artificial insemination device for animals

Country Status (1)

Country Link
AU (1) AU2005203792A1 (en)

Similar Documents

Publication Publication Date Title
US7416526B2 (en) Artificial insemination device in animals
US5899848A (en) Device and process for artificial insemination of animals
US7435212B2 (en) Artificial insemination device with an inner catheter for animals
EP0162770B1 (en) Artificial insemination device, in particular for carnivores
CA2365080C (en) Device and method for introducing and/or collecting fluids in the inside of an animal uterus
US5536243A (en) Time-release insemination device
US7189200B2 (en) Animal-use artificial inseminator
US20110245810A1 (en) Intermittently wholly indwelling, user-actuated, continually-retained, valved urinary catheter
EP3820402A1 (en) Intravaginal devices for enhanced natural insemination and associated systems and methods
AU2003205284B2 (en) Apparatus for creating a pathway in an animal and methods therefor
AU2005203792A1 (en) Artificial insemination device for animals
US4403603A (en) Method to enhance artificial dog breeding
US20100179378A1 (en) Insemination catheter for artificial insemination in animals
KR200398757Y1 (en) Artificial insemination device for animals
EP1757248A1 (en) Improved artificial insemination device with an inner catheter for animals
KR200404487Y1 (en) Improved artificial insemination device with an inner catheter for animals
MX2011003816A (en) Enhanced device for the artificial insemination of sheep, goats, deer and/or domestic and wild animals.
JP4769913B2 (en) Deep injector for transplantation of livestock embryos
JP3118215U (en) Improved structure of artificial insemination equipment for animals with tube
JP3115745U (en) Animal artificial insemination equipment
JP2001120581A (en) Instrument and method for transplant of animal embryo
JP2859364B2 (en) Fertilized egg transplantation device
DE202005016702U1 (en) Artificial insemination device for animal, has expansion unit which is pressed forward and outward of nozzle along cervical track of female animal body, to reach uterus, when semen is squeezed into tube
TWI282730B (en) Artificially micro-insemination instrument for animals
DE102005051008A1 (en) Artificial insemination device for animal, has extension member tucked into nozzle via front passage opening of nozzle and amassed in compressed state between forward portion of center orifice and nozzle passage

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted