AU2001286917A1 - Fuel processor with integrated fuel cell utilizing ceramic technology - Google Patents
Fuel processor with integrated fuel cell utilizing ceramic technologyInfo
- Publication number
- AU2001286917A1 AU2001286917A1 AU2001286917A AU8691701A AU2001286917A1 AU 2001286917 A1 AU2001286917 A1 AU 2001286917A1 AU 2001286917 A AU2001286917 A AU 2001286917A AU 8691701 A AU8691701 A AU 8691701A AU 2001286917 A1 AU2001286917 A1 AU 2001286917A1
- Authority
- AU
- Australia
- Prior art keywords
- fuel
- integrated
- fuel cell
- fuel processor
- processor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00873—Heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2453—Plates arranged in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2456—Geometry of the plates
- B01J2219/2458—Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2466—The same reactant stream undergoing different reactions, endothermic or exothermic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2467—Additional heat exchange means, e.g. electric resistance heaters, coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2479—Catalysts coated on the surface of plates or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2483—Construction materials of the plates
- B01J2219/2487—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A fuel processor and integrated fuel cell including a monolithic three-dimensional multilayer ceramic carrier structure defining a fuel reformer and including an integrated fuel cell stack. The reformer includes a vaporization zone, a reaction zone including a catalyst, and an integrated heater. The integrated heater is thermally coupled to the reaction zone. The fuel processor further includes an inlet channel for liquid fuel and an outlet channel for hydrogen enriched gas. The fuel processor is formed utilizing multi-layer ceramic technology in which thin ceramic layers are assembled then sintered to provide miniature dimensions in which the encapsulated catalyst converts or reforms inlet fuel into a hydrogen enriched gas.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/649,553 | 2000-08-28 | ||
US09/649,553 US6569553B1 (en) | 2000-08-28 | 2000-08-28 | Fuel processor with integrated fuel cell utilizing ceramic technology |
PCT/US2001/026980 WO2002019452A2 (en) | 2000-08-28 | 2001-08-28 | Fuel processor with integrated fuel cell utilizing ceramic technology |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001286917A1 true AU2001286917A1 (en) | 2002-03-13 |
Family
ID=24605297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001286917A Abandoned AU2001286917A1 (en) | 2000-08-28 | 2001-08-28 | Fuel processor with integrated fuel cell utilizing ceramic technology |
Country Status (13)
Country | Link |
---|---|
US (1) | US6569553B1 (en) |
EP (1) | EP1346428B1 (en) |
JP (1) | JP4969762B2 (en) |
KR (1) | KR100760842B1 (en) |
CN (1) | CN100361339C (en) |
AT (1) | ATE441220T1 (en) |
AU (1) | AU2001286917A1 (en) |
BR (1) | BR0113593A (en) |
DE (1) | DE60139713D1 (en) |
RU (1) | RU2003108499A (en) |
TW (1) | TW515127B (en) |
WO (1) | WO2002019452A2 (en) |
ZA (1) | ZA200301549B (en) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6638654B2 (en) * | 1999-02-01 | 2003-10-28 | The Regents Of The University Of California | MEMS-based thin-film fuel cells |
US7048897B1 (en) * | 2000-08-28 | 2006-05-23 | Motorola, Inc. | Hydrogen generator utilizing ceramic technology |
US6753036B2 (en) * | 2001-07-16 | 2004-06-22 | The Regents Of The University Of California | Method for fabrication of electrodes |
US6821666B2 (en) * | 2001-09-28 | 2004-11-23 | The Regents Of The Univerosity Of California | Method of forming a package for mems-based fuel cell |
US6960235B2 (en) * | 2001-12-05 | 2005-11-01 | The Regents Of The University Of California | Chemical microreactor and method thereof |
US7169367B2 (en) | 2002-04-05 | 2007-01-30 | Casio Computer Co., Ltd. | Chemical reaction apparatus and power supply system |
US6921603B2 (en) * | 2002-04-24 | 2005-07-26 | The Regents Of The University Of California | Microfluidic fuel cell systems with embedded materials and structures and method thereof |
TWI229931B (en) * | 2002-05-15 | 2005-03-21 | Amkor Technology Inc | Solder ball and conductive wire for a semiconductor package, and its manufacturing method, and its evaporation method |
US6913998B2 (en) * | 2002-07-01 | 2005-07-05 | The Regents Of The University Of California | Vapor-deposited porous films for energy conversion |
US6960403B2 (en) * | 2002-09-30 | 2005-11-01 | The Regents Of The University Of California | Bonded polyimide fuel cell package and method thereof |
US7541007B2 (en) * | 2002-12-20 | 2009-06-02 | Lehigh University | Microreactor and method of use to produce hydrogen by methanol reforming |
CA2452657C (en) * | 2003-02-18 | 2009-03-03 | Sulzer Markets And Technology Ag | A power source with solid oxide fuel cells |
US7122261B2 (en) * | 2003-02-21 | 2006-10-17 | The Regents Of The University Of California | Metal hydride fuel storage and method thereof |
JP3873171B2 (en) * | 2003-03-25 | 2007-01-24 | カシオ計算機株式会社 | Reforming apparatus and power generation system |
US20040228211A1 (en) * | 2003-05-13 | 2004-11-18 | Koripella Chowdary R. | Internal micromixer |
EP1639660A4 (en) * | 2003-06-27 | 2009-12-02 | Ultracell Corp | Efficient micro fuel cell systems and methods |
US8821832B2 (en) | 2003-06-27 | 2014-09-02 | UltraCell, L.L.C. | Fuel processor for use with portable fuel cells |
US20050008908A1 (en) * | 2003-06-27 | 2005-01-13 | Ultracell Corporation | Portable fuel cartridge for fuel cells |
US20060156627A1 (en) * | 2003-06-27 | 2006-07-20 | Ultracell Corporation | Fuel processor for use with portable fuel cells |
US7666539B2 (en) * | 2003-06-27 | 2010-02-23 | Ultracell Corporation | Heat efficient portable fuel cell systems |
US8318368B2 (en) * | 2003-06-27 | 2012-11-27 | UltraCell, L.L.C. | Portable systems for engine block |
WO2005004256A2 (en) * | 2003-06-27 | 2005-01-13 | Ultracell Corporation | Annular fuel processor and methods |
US20060127711A1 (en) * | 2004-06-25 | 2006-06-15 | Ultracell Corporation, A California Corporation | Systems and methods for fuel cartridge distribution |
US7655337B2 (en) * | 2003-06-27 | 2010-02-02 | Ultracell Corporation | Micro fuel cell thermal management |
US7335432B2 (en) * | 2004-04-30 | 2008-02-26 | Motorola, Inc. | Solid oxide fuel cell portable power source |
US20050255368A1 (en) * | 2004-05-12 | 2005-11-17 | Ultracell Corporation, A California Corporation | High surface area micro fuel cell architecture |
US7648792B2 (en) * | 2004-06-25 | 2010-01-19 | Ultracell Corporation | Disposable component on a fuel cartridge and for use with a portable fuel cell system |
US7968250B2 (en) * | 2004-06-25 | 2011-06-28 | Ultracell Corporation | Fuel cartridge connectivity |
KR100599687B1 (en) * | 2004-06-29 | 2006-07-13 | 삼성에스디아이 주식회사 | Fuel cell system and reformer used thereto |
WO2006017375A2 (en) | 2004-08-06 | 2006-02-16 | Ultracell Corporation | Method and system for controlling fluid delivery in a fuel cell |
US7807313B2 (en) * | 2004-12-21 | 2010-10-05 | Ultracell Corporation | Compact fuel cell package |
US20060194082A1 (en) * | 2005-02-02 | 2006-08-31 | Ultracell Corporation | Systems and methods for protecting a fuel cell |
KR101155910B1 (en) * | 2005-03-16 | 2012-06-20 | 삼성에스디아이 주식회사 | Stack capable of reforming action and fuel cell system with the same |
KR100639008B1 (en) * | 2005-04-13 | 2006-10-25 | 삼성에스디아이 주식회사 | Plate type reformer and fuel cell system having the same |
JP4341587B2 (en) * | 2005-06-09 | 2009-10-07 | カシオ計算機株式会社 | Reactor |
US7204156B2 (en) * | 2005-07-29 | 2007-04-17 | Motorola, Inc. | Fuel cell system having fluidic oscillation flow meter |
KR100649737B1 (en) * | 2005-10-17 | 2006-11-27 | 삼성전기주식회사 | Hydrogen fuel cells having thin film multi-layers |
JP2009528249A (en) * | 2006-02-27 | 2009-08-06 | エンサイン−ビツクフオード・エアロスペース・アンド・デフエンス・カンパニー | Solid hydrogen fuel element and manufacturing method thereof |
KR100755620B1 (en) * | 2006-04-18 | 2007-09-06 | 삼성전기주식회사 | High-performance micro fuel cells |
US20080187797A1 (en) * | 2006-07-10 | 2008-08-07 | Protonex Technology Corporation | Fuel processor for fuel cell systems |
JP4887102B2 (en) * | 2006-08-30 | 2012-02-29 | 京セラ株式会社 | Reactor, fuel cell system and electronic device |
JP4939148B2 (en) * | 2006-08-30 | 2012-05-23 | 京セラ株式会社 | Reactor, fuel cell system and electronic device |
EP2062851A4 (en) * | 2006-08-30 | 2011-11-02 | Kyocera Corp | Reaction device, fuel battery system, and electronic device |
US8382866B2 (en) * | 2006-08-30 | 2013-02-26 | Kyocera Corporation | Reaction apparatus, fuel cell system and electronic device |
US20100086813A1 (en) * | 2006-08-30 | 2010-04-08 | Kyocera Corporation | Reaction Apparatus, Fuel Cell System and Electronic Device |
JP4552915B2 (en) * | 2006-09-01 | 2010-09-29 | カシオ計算機株式会社 | Reforming apparatus and power generation system |
US8232010B2 (en) | 2006-10-06 | 2012-07-31 | Stmicroelectronics S.R.L. | Process and corresponding apparatus for continuously producing gaseous hydrogen to be supplied to micro fuel cells and integrated system for producing electric energy |
DE602006018741D1 (en) | 2006-10-06 | 2011-01-20 | St Microelectronics Srl | Hydrogen-fed microborohydride fuel cell with hydrogen derived from sodium borohydride in a microreactor |
US20080245424A1 (en) * | 2007-02-22 | 2008-10-09 | Jacobsen Stephen C | Micro fluid transfer system |
US8435683B2 (en) * | 2007-07-19 | 2013-05-07 | Cp Sofc Ip, Llc | Internal reforming solid oxide fuel cells |
US8309270B2 (en) * | 2007-08-03 | 2012-11-13 | Cp Sofc Ip, Llc | Solid oxide fuel cell systems with improved gas channeling and heat exchange |
WO2010022732A1 (en) * | 2008-08-25 | 2010-03-04 | Dantherm Power A/S | Fuel cell system and method of operating such fuel cell system |
KR101200930B1 (en) | 2010-05-04 | 2012-11-13 | 한국과학기술연구원 | Micro-macro channel reactor |
DE102013012731A1 (en) * | 2013-08-01 | 2015-02-05 | Krohne Messtechnik Gmbh | Process for the preparation of a gas converter and corresponding gas converter |
US10367208B2 (en) | 2015-05-06 | 2019-07-30 | Robert E. Buxbaum | High efficiency fuel reforming and water use in a high temperature fuel-cell system and process for the such thereof |
DE102016117998A1 (en) * | 2016-09-23 | 2018-03-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for the detection of organic compounds |
CN115228103A (en) * | 2022-07-06 | 2022-10-25 | 彩源科技股份有限公司 | Ammonia water treatment device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5924721B2 (en) * | 1979-07-12 | 1984-06-12 | 日産自動車株式会社 | Alcohol reformer |
US4816353A (en) * | 1986-05-14 | 1989-03-28 | International Fuel Cells Corporation | Integrated fuel cell and fuel conversion apparatus |
JPH02186565A (en) * | 1989-01-12 | 1990-07-20 | Sanyo Electric Co Ltd | Molten carbonate fuel cell |
JPH0562701A (en) * | 1991-08-30 | 1993-03-12 | Nippon Telegr & Teleph Corp <Ntt> | Solid electrolyte type fuel cell |
JPH06287062A (en) * | 1993-03-31 | 1994-10-11 | Toshiba Corp | Reinforced sic-based ceramic member |
JP3700162B2 (en) * | 1994-05-20 | 2005-09-28 | 石川島播磨重工業株式会社 | Integrated fuel cell power generator |
JP3440551B2 (en) * | 1994-06-09 | 2003-08-25 | 三菱電機株式会社 | Fuel reformer and method of operating fuel reformer |
JPH08138693A (en) * | 1994-11-01 | 1996-05-31 | Matsushita Electric Ind Co Ltd | Fuel cell and power generator using it |
US5858314A (en) * | 1996-04-12 | 1999-01-12 | Ztek Corporation | Thermally enhanced compact reformer |
DE19716438A1 (en) * | 1997-04-18 | 1998-10-22 | Heitzer Joerg Dr | Cooling for fuel cell |
JP3743119B2 (en) * | 1997-06-03 | 2006-02-08 | ダイキン工業株式会社 | Fuel cell power generation system |
JP4305973B2 (en) * | 1997-07-23 | 2009-07-29 | トヨタ自動車株式会社 | Fuel reformer |
KR100388161B1 (en) * | 1998-07-08 | 2003-06-25 | 도요다 지도샤 가부시끼가이샤 | Apparatus for reforming of fuel |
-
2000
- 2000-08-28 US US09/649,553 patent/US6569553B1/en not_active Expired - Lifetime
-
2001
- 2001-08-27 TW TW090121077A patent/TW515127B/en not_active IP Right Cessation
- 2001-08-28 DE DE60139713T patent/DE60139713D1/en not_active Expired - Lifetime
- 2001-08-28 BR BR0113593-7A patent/BR0113593A/en not_active IP Right Cessation
- 2001-08-28 WO PCT/US2001/026980 patent/WO2002019452A2/en active Application Filing
- 2001-08-28 JP JP2002524246A patent/JP4969762B2/en not_active Expired - Fee Related
- 2001-08-28 AU AU2001286917A patent/AU2001286917A1/en not_active Abandoned
- 2001-08-28 KR KR1020037002910A patent/KR100760842B1/en active IP Right Grant
- 2001-08-28 CN CNB018165273A patent/CN100361339C/en not_active Expired - Fee Related
- 2001-08-28 AT AT01966398T patent/ATE441220T1/en not_active IP Right Cessation
- 2001-08-28 RU RU2003108499/09A patent/RU2003108499A/en not_active Application Discontinuation
- 2001-08-28 EP EP01966398A patent/EP1346428B1/en not_active Expired - Lifetime
-
2003
- 2003-02-25 ZA ZA200301549A patent/ZA200301549B/en unknown
Also Published As
Publication number | Publication date |
---|---|
RU2003108499A (en) | 2004-07-10 |
CN1689184A (en) | 2005-10-26 |
ZA200301549B (en) | 2004-02-03 |
JP4969762B2 (en) | 2012-07-04 |
KR20030028829A (en) | 2003-04-10 |
WO2002019452A2 (en) | 2002-03-07 |
BR0113593A (en) | 2004-06-08 |
TW515127B (en) | 2002-12-21 |
KR100760842B1 (en) | 2007-10-04 |
EP1346428B1 (en) | 2009-08-26 |
US6569553B1 (en) | 2003-05-27 |
WO2002019452A3 (en) | 2003-07-17 |
DE60139713D1 (en) | 2009-10-08 |
EP1346428A2 (en) | 2003-09-24 |
JP2004508670A (en) | 2004-03-18 |
ATE441220T1 (en) | 2009-09-15 |
CN100361339C (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2001286917A1 (en) | Fuel processor with integrated fuel cell utilizing ceramic technology | |
WO2002018268A3 (en) | Hydrogen generator utilizing ceramic technology | |
EP1886369B1 (en) | Compact solid oxide fuel cell apparatus | |
CN100387330C (en) | Chemical reactor and fuel cell system | |
CN101248550B (en) | High temperature fuel cell apparatus and its heat, reactant and safety management | |
EP1807894B1 (en) | Solid oxide fuel cell system | |
JP2007524562A (en) | Annular fuel processing apparatus and method | |
WO2003088390A3 (en) | Chemical reactor and fuel processor utilizing ceramic technology | |
WO2002017419A3 (en) | Sealless radial solid electrolyte fuel cell stack design | |
JP2005314207A (en) | Reaction apparatus | |
JP4879691B2 (en) | Ceramic multilayer substrate reformer for micro fuel cell and manufacturing method thereof | |
CN101163542B (en) | Reactor | |
JP2007200867A (en) | Reaction device, power generation device, and electronic equipment | |
US20070071659A1 (en) | Thin micro reforming apparatus | |
JP4631623B2 (en) | Reactor | |
JP2007287693A (en) | High performance small fuel cell | |
US8038959B2 (en) | Reacting device | |
JP2007090263A (en) | Reaction apparatus | |
JP4984760B2 (en) | Reactor | |
US20090036303A1 (en) | Method of forming a co-fired ceramic apparatus including a micro-reader | |
JP5229269B2 (en) | Reactor | |
JP2007084404A (en) | Reactor | |
JP2007070180A (en) | Reactor |