AT506272A2 - Electric vehicle operating method, involves testing volume of energy storage to match pre-determined peak value under condition of quality, volume and/or lasting time for accelerating and/or climbing vehicle - Google Patents

Electric vehicle operating method, involves testing volume of energy storage to match pre-determined peak value under condition of quality, volume and/or lasting time for accelerating and/or climbing vehicle Download PDF

Info

Publication number
AT506272A2
AT506272A2 AT0052509A AT5252009A AT506272A2 AT 506272 A2 AT506272 A2 AT 506272A2 AT 0052509 A AT0052509 A AT 0052509A AT 5252009 A AT5252009 A AT 5252009A AT 506272 A2 AT506272 A2 AT 506272A2
Authority
AT
Austria
Prior art keywords
energy storage
volume
socl
electric vehicle
einschaltladezustand
Prior art date
Application number
AT0052509A
Other languages
German (de)
Other versions
AT506272B1 (en
AT506272A3 (en
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to ATA525/2009A priority Critical patent/AT506272B1/en
Publication of AT506272A2 publication Critical patent/AT506272A2/en
Priority to DE102010016188A priority patent/DE102010016188A1/en
Priority to CN201010159851.2A priority patent/CN101857023B/en
Publication of AT506272A3 publication Critical patent/AT506272A3/en
Application granted granted Critical
Publication of AT506272B1 publication Critical patent/AT506272B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The method involves designing an electricity generator according to average power requirement of a motor, and activating the generator under pre-determined charging state (SOC1) before reaching a technical working lower limit (SOC2) of electric accumulator charging state. The electric accumulator charging state is used for defining energy storage (R) of an electric accumulator according to the lower limit. Volume of the energy storage is tested to match the pre-determined peak value under condition of quality, volume and/or lasting time for accelerating and/or climbing a vehicle.

Description

       

  55854 

  
Die Erfindung betrifft ein Verfahren zum Betreiben eines Elektrofahrzeuges, welches zumindest eine elektrische Antriebsmaschine, zumindest einen elektrischen Energiespeicher, sowie zumindest eine Stromerzeugungseinrichtung aufweist, wobei die Stromerzeugungseinrichtung ab einem definierten Ladezustandes des elektrischen Energiespeichers aktiviert wird. 

  
Aus der EP 1 225 074 A2 ist ein Serienhybridfahrzeug mit einem Elektromotor, einem Generator und einer den Generator antreibenden Brennkraftmaschine bekannt. Dabei wird innerhalb einer Zero-Emission-Zone das Fahrzeug rein elektrisch bei deaktivierter Brennkraftmaschine betrieben. Dabei wird sowohl kurz vor dem Eintritt in die emissionsfreie Zone als auch beim Verlassen der emissionsfreien Zone der elektrische Energiespeicher durch die Brennkraftmaschine aufgeladen. 

  
Die WO 2005/082663 AI offenbart ein tragbares Stromaggregat für Elektrofahrzeuge, welches dazu ausgebildet ist, um die Reichweite des Elektrofahrzeuges auszudehnen. 

  
Aus der US 2009/015202 A ist ein Verfahren zur Laderegelung bei einem Hybridfahrzeug bekannt, wobei ein Sollladezustand als Mittelwert des Ladebereiches definiert wird. Der Energiefluss wird so geregelt, dass der Sollladezustand eingehalten wird. Durch Betreiben des elektrischen Antriebsmotors des Hybridfahrzeuges wird der Ladezustand von diesem Sollwert abgesenkt und durch Generieren von elektrischer Energie mit der Brennkraftmaschine wieder angehoben. 

  
Die WO 2008/128416 AI offenbart ein Energiemanagement für Hybridfahrzeuge mit einem Lastvorhersagesystem, mit welchem aufgrund von Eingangsparametern und mittels eines selbstlernenden Systems ein künftiges Lastniveau berechnet wird, um aufgrund der Lastanforderung eine optimale zukünftige Ausgangsleistung, einen Batterieladezustand und eine optimale Fahrzeuggeschwindigkeit zu bestimmen. Aufgrund dieser optimalen zukünftigen Leistungsabschätzung wird die Brennkraftmaschine, der Generator und der elektrische Energiespeicher des Hybridfahrzeuges koordiniert. 

  
Bei den bekannten seriellen Hybridfahrzeugen ist im Allgemeinen die Brennkraftmaschine und der Generator so dimensioniert, dass der maximale Leistungsbedarf abgedeckt werden kann. 

  
Aufgabe der Erfindung ist es, mit möglichst geringem technischen Aufwand temporäre Lastanforderungen bei Elektrofahrzeugen abzudecken.  Erfindungsgemäss wird dies dadurch erreicht, dass die Stromerzeugungseinrichtung für einen mittleren Leistungsbedarf der elektrischen Antriebsmaschine bei einer definierten Dauergeschwindigkeit des Elektrofahrzeuges in der Ebene ausgelegt wird und dass die Stromerzeugungseinrichtung noch vor Erreichen einer unteren technischen Betriebsgrenze des Ladezustandes des elektrischen Energiespeichers bei einem definierten Einschaltladezustand aktiviert wird, wobei der Einschaltladezustand in Bezug auf die untere technische Betriebsgrenze eine Energiereserve des elektrischen Energiespeichers definiert, deren Grösse so bemessen wird, dass in Anzahl, Grösse und/oder Dauer definierte Spitzenleistungen,

   vorzugsweise Fahrzeugbeschleunigungen und/oder Steigungen abgedeckt werden können. Vorzugsweise wird der Einschaltladezustand so angesetzt, dass mindestens 10%, vorzugsweise mindestens 30% der Kapazität des Energiespeichers als Energiereserve verbleibt. Auf diese Weise lassen sich alle Betriebsbereiche des Fahrzeuges abdecken. 

  
In einer besonders vorteilhaften Ausführungsvariante der Erfindung ist vorgesehen, dass der Einschaltladezustand in einem selbstlernenden Prozess auf der Basis von absolvierten Fahrten des Elektrofahrzeuges angesetzt wird. 

  
Alternativ oder zusätzlich kann vorgesehen sein, dass der Einschaltladezustand in Abhängigkeit eines Fahrzieles und/oder einer geplanten Fahrtroute festgelegt wird, wobei es besonders vorteilhaft ist, wenn für zumindest zwei Fahrabschnitte einer geplanten Fahrtroute unterschiedliche Einschaltladezustände definiert werden. Dadurch kann der Streckencharakter bei der Definition des Einschaltladezustandes mit berücksichtigt werden. 

  
Dadurch, dass die Stromerzeugungseinrichtung für einen mittleren Leistungsbedarf der elektrischen Antriebsmaschine bei definierter Nenngeschwindigkeit in der Ebene ausgelegt wird, lässt sich eine sehr kompakte Bauweise erzielen. 

  
Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen: Fig. 1 den Ladezustand des elektrischen Energiespeichers über der Betriebszeit und Fig. 2 ein Auslegungsdiagramm für die Stromerzeugungseinrichtung. 

  
In Fig. 1 ist der Ladezustand SOC des elektrischen Energiespeichers des elektrisch angetriebenen Fahrzeuges über der Zeit t aufgetragen. Bei herkömmlichen Elektrofahrzeugen werden die elektrischen Energiespeicher im Fahrbetrieb bis auf den technisch möglichen Minimalladezustand geleert, welcher eine technische Untergrenze SOC2 für die Fahrbarkeit des Elektrofahrzeuges darstellt. Nach Erreichen dieses Zustandes ist die verfügbare Fahrleistung unmittelbar von der Energiezufuhr der Stromerzeugungseinrichtung (Range Extender) abhängig und damit begrenzt.      

  
Gemäss dem vorgestellten Verfahren wird die Stromerzeugungseinrichtung nicht erst an der technischen Untergrenze SOC2 des elektrischen Energiespeichers, sondern im Bereich eines mittleren ersten Ladezustandes - dem Einschaltladezustand SOC1 - aktiviert, sodass eine restliche Energiereserve R im Energiespeicher verbleibt. Durch die Definition des Einschaltladezustandes SOC1 oberhalb der technischen Untergrenze SOC2, die nach Erreichen den Ladevorgang durch die Stromerzeugungseinrichtung auslöst, kann die Begrenzung der abgerufenen Fahrleistung durch Pufferung über die Energiereserve R bis an die Systemlimits erweitert werden. Damit können temporäre Spitzenleistungen, wie Beschleunigungen oder Steigungen abgedeckt werden, ohne die Leistung der Stromerzeugungseinrichtung für die Spitzenlast, sondern nur für eine mittlere Leistung zu dimensionieren. 

  
In Fig. 1 ist mit der strichlierten Linie 1 der Fahrbetrieb mit einem konventionellen elektrisch angetriebenen Elektrofahrzeug und mit 2 der Fahrbetrieb nach dem hier beschriebenen Verfahren dargestellt. Erreicht der Ladezustand SOC den Einschaltladezustand SOC1 (Punkt 3), so wird die Stromerzeugungseinrichtung hinzugeschaltet, wobei nur mehr Energieanforderungen, welche über die Leistung der Stromerzeugungseinrichtung hinausgehen, aus der Energiereserve R des elektrischen Energiespeichers genommen werden. 

  
Fig. 2 zeigt ein Auslegungsdiagramm für die Stromerzeugungseinrichtung (Range Extender), wobei die Leistung P über der Fahrgeschwindigkeit v aufgetragen ist. Für die Auslegung gilt die Vorgabe, dass das Elektrofahrzeug im Betrieb mit dem Range Extender keine Fahrleistungseinbusen im Vergleich zum rein elektrischen Betrieb aufweisen soll. Das Elektrofahrzeug ist auf eine bestimmte Fahrleistung (Dynamik, Steigfähigkeit, Höchstgeschwindigkeit, etc.) ausgelegt. Die Leistung der Stromerzeugungseinrichtung kann deutlich geringer sein, als die Leistung des Antriebsmotors des Elektrofahrzeuges. Die Stromerzeugungseinrichtung wird so ausgelegt, dass sie die Maximalgeschwindigkeit des Elektrofahrzeuges in der Ebene, inklusive Nebenverbraucher, abdeckt.

   Die darüber hinausgehenden dynamischen Anforderungen werden über eine festgelegte elektrische Reserve R des elektrischen Energiespeichers (Fahrzeugbatterie) abgedeckt. 

  
Berechnungen haben ergeben, dass beispielsweise bei einem Elektrofahrzeug mit 1450 kg Gesamtgewicht mit einer elektrischen Energiereserve R von etwa 2 kWh die Fahrdynamik abgedeckt werden kann. In Fig. 2 sind die Widerstandskurven 4, 5, 6, 7 für verschiedene Steigungen eingetragen, wobei mit den gestrichelten Kurven 4', 5<1>, 6', 7' der Energiebedarf unter Verwendung von zusätzlichen Nebenaggregaten dargestellt ist. Betrachtet man als Beispiel ein Aggregat mit 15 kW elektrischer Leistung, was einer Radleistung von ca. 13 kW entsprechen würde, dann erkennt man, dass man mit diesem gewählten Fahrzeug (1475 kg  fr-    voll besetzt) eine Konstantgeschwindigkeit von 100 km/h erreichen könnte.

   Setzt man eine elektrische Energiereserve R von 2 kWh ein, dann kann man diese Geschwindigkeit von 100 km/h auch bei einer Steigung von 2% 21 km weit mit dem Range Extender und der Batterie fahren (siehe Punkt 11). Alternativ dazu könnte 22 mal von 100 km/h auf 120 km/h beschleunigt werden. Zum Vergleich dazu kann bei 80 km/h bei einer 2%igen Steigung eine Distanz über 66 km zurückgelegt oder 28 Beschleunigungsvorgänge von 80 km/h auf 100 km/h gefahren werden (siehe Punkt 12). Bei einer Steigung von 5% last sich mit der Energiereserve R eine Distanz von 9 km oder 19 Beschleunigungsvorgänge von 100 km/h auf 120 km/h durchführen, wie mit Punkt 13 angedeutet ist. Das Bezugszeichen 14 bezeichnet einen Betriebspunkt bei 80 km/h bei einer Steigung von 5%, bei dem 12 km mit der Energiereserve R oder 25 Beschleunigungsvorgänge von 80 km/h auf 100 km/h durchgeführt werden können.

   Punkt 15 markiert einen Betriebspunkt für eine Fahrgeschwindigkeit von 60 km/h, bei der eine Distanz über 22 km zurückgelegt werden kann, oder bei der 34 Beschleunigungsvorgänge von 60 km/h auf 80 km/h durchgeführt werden können. Bei einer Steigung von 10% und einer Fahrgeschwindigkeit von 60 km/h kann mit der Energiereserve R nur mehr eine Distanz von etwa 6 km zurückgelegt oder 28 Beschleunigungsvorgänge von 60 km/h auf 80 km/h durchgeführt werden (Punkt 16). 

  
Der Einschaltladezustand SOCl bzw. die Energiereserve R kann vom Fahrzeughersteller aufgrund des geschätzten Nutzungsprofiles des elektrischen Fahrzeuges festgelegt werden. Alternativ dazu ist es auch möglich, den Einschaltladezustand SOCl flexibel während des Betriebes des Elektrofahrzeuges mittels eines selbstlernenden Systems zu bestimmen. Dabei können in der Vergangenheit zurückliegende Fahrten des Elektrofahrzeuges die Basis für eine Neufixierung des Einschaltladezustandes SOCl bilden, sodass eine werksmässig vordefinierte Einstellung nach Unten oder nach Oben aufgrund der tatsächlichen Wegstrecken nachjustiert werden kann.

   Beispielsweise kann es bei einer grossen Anzahl von Fahrzeugbeschleunigungen und überdurchschnittlich steilen Fahrabschnitten sinnvoll sein, eine grössere Energiereserve R vorzusehen, wodurch die Stromerzeugungseinrichtung im elektrischen Fahrbetrieb früher aktiviert wird. Andererseits kann es bei gleichmässigen Fahrten auf ebenen Strassen mit durchschnittlicher Geschwindigkeit durchaus sinnvoll sein, die elektrische Energiereserve R zu vermindern und das Aktivieren der Stromerzeugungseinrichtung zu verzögern, wodurch Kraftstoff eingespart und unnötige Emissionen verhindert werden können. 

  
Besonders vorteilhaft ist es, wenn aufgrund der in ein Navigationssystem eingegebenen Zieldaten und aufgrund von Informationen über das Verkehrsaufkom    men der Energiebedarf für die Überwindung der vorausliegenden Fahrstrecke unter Berücksichtigung von Hindernissen, wie Steigungen, Staus oder dgl., abgeschätzt wird und die optimale Energiereserve und somit die Lage des für die Aktivierung der Stromerzeugungseinrichtung massgebenden Einschaltladezustandes SOCl berechnet wird. Diese Optimierung kann unter Gewichtung der Fahrtdauer oder des Kraftstoffverbrauches bzw. der Emissionen erfolgen. Weiters ist es auch möglich, dass für bestimmte Fahrabschnitte unterschiedliche Energiereserven R flexibel definiert werden. Dies ist insbesondere dann von Vorteil, wenn sich der überwiegende Streckencharakter (Steilheit, Kurvigkeit, Verkehrsaufkommen) im Zuge einer Fahrroute ändert.



  55854

  
The invention relates to a method for operating an electric vehicle, which has at least one electric drive machine, at least one electrical energy store, and at least one power generating device, wherein the power generating device is activated from a defined state of charge of the electrical energy store.

  
From EP 1 225 074 A2 a series hybrid vehicle with an electric motor, a generator and an internal combustion engine driving the generator is known. In this case, the vehicle is operated purely electrically with deactivated internal combustion engine within a zero-emission zone. In this case, the electric energy storage is charged by the internal combustion engine both shortly before entering the emission-free zone and when leaving the emission-free zone.

  
WO 2005/082663 A1 discloses a portable power unit for electric vehicles, which is designed to extend the range of the electric vehicle.

  
From US 2009/015202 A, a method for charging control in a hybrid vehicle is known, wherein a nominal state of charge is defined as the mean value of the charging area. The energy flow is controlled so that the nominal state of charge is maintained. By operating the electric drive motor of the hybrid vehicle, the state of charge is lowered from this desired value and raised again by generating electrical energy with the internal combustion engine.

  
WO 2008/128416 A1 discloses an energy management for hybrid vehicles with a load prediction system, with which a future load level is calculated on the basis of input parameters and by means of a self-learning system in order to determine an optimal future output power, a battery state of charge and an optimal vehicle speed on the basis of the load request. On the basis of this optimum future power estimation, the internal combustion engine, the generator and the electrical energy store of the hybrid vehicle are coordinated.

  
In the known serial hybrid vehicles, the internal combustion engine and the generator are generally dimensioned so that the maximum power requirement can be covered.

  
The object of the invention is to cover with minimal technical effort temporary load requirements in electric vehicles. According to the invention this is achieved in that the power generating device is designed for a mean power demand of the electric drive machine at a defined continuous speed of the electric vehicle in the plane and that the power generating device is activated before reaching a lower technical operating limit of the state of charge of the electric energy storage at a defined Einschaltladezustand, wherein the switch-on state of charge with respect to the lower technical operating limit defines an energy reserve of the electrical energy store whose size is dimensioned such that in number, size and / or duration defined peak powers,

   preferably vehicle accelerations and / or gradients can be covered. Preferably, the switch-on charge is set so that at least 10%, preferably at least 30% of the capacity of the energy storage remains as an energy reserve. In this way, all operating ranges of the vehicle can be covered.

  
In a particularly advantageous embodiment of the invention it is provided that the Einschaltladezustand is recognized in a self-learning process on the basis of completed trips of the electric vehicle.

  
Alternatively or additionally, it may be provided that the switch-on charge state is determined as a function of a travel destination and / or a planned travel route, wherein it is particularly advantageous if different switch-on charge states are defined for at least two travel sections of a planned travel route. As a result, the track character in the definition of Einschaltladezustandes be taken into account.

  
Characterized in that the power generating device is designed for a mean power requirement of the electric drive machine at a defined nominal speed in the plane, a very compact design can be achieved.

  
The invention will be explained in more detail below with reference to FIGS. 1 shows the state of charge of the electrical energy store over the operating time, and FIG. 2 shows a design diagram for the power generation device.

  
In Fig. 1, the state of charge SOC of the electrical energy storage of the electrically driven vehicle over time t is plotted. In conventional electric vehicles, the electrical energy storage are emptied while driving to the technically possible minimum charge state, which represents a lower technical limit SOC2 for the drivability of the electric vehicle. After reaching this state, the available driving performance is directly dependent on the power supply of the power generation device (Range Extender) and thus limited.

  
According to the presented method, the power generating device is activated not only at the lower technical limit SOC2 of the electric energy storage, but in the region of a middle first state of charge - the Einschaltladezustand SOC1 - so that a residual energy reserve R remains in the energy storage. By the definition of the Einschaltladezustandes SOC1 above the lower technical limit SOC2, which triggers the charging process by the power generation device after reaching the limit of the recalled driving performance can be extended by buffering the energy reserve R up to the system limits. Thus, temporary peak powers, such as accelerations or gradients can be covered, without dimensioning the power of the power generating device for the peak load, but only for an average power.

  
In Fig. 1 is shown with the dashed line 1 of the driving operation with a conventional electrically driven electric vehicle and with 2 the driving operation according to the method described here. If the state of charge SOC reaches the switch-on charge state SOC1 (point 3), then the power generation device is connected, with only more energy requirements, which go beyond the power of the power generation device, being taken from the energy reserve R of the electrical energy store.

  
Fig. 2 shows a design diagram for the power generation device (Range Extender), the power P is plotted against the vehicle speed v. For the design, the requirement is that the electric vehicle during operation with the range extender should not have any loss of performance compared to purely electrical operation. The electric vehicle is designed for a specific driving performance (dynamics, climbing ability, maximum speed, etc.). The power of the power generation device can be significantly lower than the power of the drive motor of the electric vehicle. The power generation device is designed so that it covers the maximum speed of the electric vehicle in the plane, including auxiliary consumers.

   The additional dynamic requirements are covered by a specified electrical reserve R of the electrical energy storage unit (vehicle battery).

  
Calculations have shown that, for example, in an electric vehicle with 1450 kg total weight with an electrical energy reserve R of about 2 kWh, the driving dynamics can be covered. In Fig. 2, the resistance curves 4, 5, 6, 7 registered for different gradients, with the dashed curves 4 ', 5 <1>, 6', 7 ', the energy requirement is shown using additional ancillaries. If, for example, an aggregate with 15 kW of electric power is considered, which would correspond to a wheel output of approx. 13 kW, then one realizes that with this selected vehicle (1475 kg fully occupied) one could achieve a constant speed of 100 km / h ,

   If you use an electrical energy reserve R of 2 kWh, then you can drive this speed of 100 km / h even with a slope of 2% 21 km with the range extender and the battery (see point 11). Alternatively, it could be accelerated 22 times from 100 km / h to 120 km / h. For comparison, at 80 km / h with a 2% gradient, a distance of 66 km can be covered or 28 acceleration events can be traveled from 80 km / h to 100 km / h (see point 12). With a gradient of 5%, the energy reserve R should be at a distance of 9 km or 19 acceleration operations from 100 km / h to 120 km / h, as indicated by point 13. The reference numeral 14 denotes an operating point at 80 km / h at a gradient of 5%, in which 12 km can be performed with the energy reserve R or 25 acceleration operations from 80 km / h to 100 km / h.

   Point 15 marks an operating point for a driving speed of 60 km / h, where a distance of 22 km can be covered, or where 34 acceleration operations from 60 km / h to 80 km / h can be performed. With a gradient of 10% and a travel speed of 60 km / h, the energy reserve R can only travel a distance of about 6 km or 28 acceleration processes from 60 km / h to 80 km / h (point 16).

  
The switch-on charge state SOCl or the energy reserve R can be set by the vehicle manufacturer on the basis of the estimated usage profile of the electric vehicle. Alternatively, it is also possible to determine the switch-on charge state SOCl flexibly during operation of the electric vehicle by means of a self-learning system. In the past, journeys of the electric vehicle lying past in the past can form the basis for a new fixation of the start-up charge state SOCl, so that a factory-preset setting can be readjusted downwards or upwards on the basis of the actual travel distances.

   For example, it may be useful for a large number of vehicle accelerations and above-average steep sections to provide a larger reserve of energy R, whereby the power generating device is activated earlier in electric driving. On the other hand, with even rides on level roads at average speed, it may well make sense to reduce the electrical energy reserve R and delay activation of the power plant, thereby saving fuel and avoiding unnecessary emissions.

  
It is particularly advantageous if, due to the input into a navigation system target data and information on the Verkehrsaufkom the energy demand for overcoming the route ahead, taking into account obstacles such as gradients, traffic jams or the like., Is estimated and the optimal energy reserve and thus the position of the relevant for the activation of the power generating device Einschaltladezustandes SOCl is calculated. This optimization can be done by weighting the journey time or the fuel consumption or the emissions. Furthermore, it is also possible that different energy reserves R are flexibly defined for certain driving sections. This is particularly advantageous if the predominant track character (steepness, curvature, traffic) changes in the course of a route.


    

Claims (5)

- # P A T E N T A N S P R Ü C H E- # P A T E N T A N S P R O C H E 1. Verfahren zum Betreiben eines Elektrofahrzeuges, welches zumindest eine elektrische Antriebsmaschine, zumindest einen elektrischen Energiespeicher, sowie zumindest eine Stromerzeugungseinrichtung aufweist, wobei die Stromerzeugungseinrichtung ab einem definierten Ladezustandes (SOC) des elektrischen Energiespeichers aktiviert wird, dadurch gekennzeichnet, dass die Stromerzeugungseinrichtung für einen mittleren Leistungsbedarf der elektrischen Antriebsmaschine bei einer definierten Dauergeschwindigkeit des Elektrofahrzeuges in der Ebene ausgelegt wird und dass die Stromerzeugungseinrichtung noch vor Erreichen einer unteren technischen Betriebsgrenze des Ladezustandes des elektrischen Energiespeichers bei einem definierten Einschaltladezustand (SOCl) aktiviert wird, wobei der Einschaltladezustand (SOCl) in Bezug auf die untere technische Betriebsgrenze (SOC2) 1. A method for operating an electric vehicle, which has at least one electric drive machine, at least one electrical energy storage, and at least one power generating device, wherein the power generating device is activated from a defined state of charge (SOC) of the electrical energy storage, characterized in that the power generating device for a medium Power requirement of the electric drive machine is designed at a defined continuous speed of the electric vehicle in the plane and that the power generating device is activated before reaching a lower technical operating limit of the state of charge of the electric energy storage at a defined Einschaltladezustand (SOCl), the Einschaltladezustand (SOCl) with respect the lower technical operating limit (SOC2) eine Energiereserve (R) des elektrischen Energiespeichers definiert, deren Grösse so bemessen wird, dass in Anzahl, Grösse und/oder Dauer definierte Spitzenleistungen, vorzugsweise Fahrzeugbeschleunigungen und/oder Steigungen abgedeckt werden können.  defines an energy reserve (R) of the electrical energy storage whose size is measured so that in terms of number, size and / or duration defined peak powers, preferably vehicle accelerations and / or gradients can be covered. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Einschaltladezustand (SOCl) so angesetzt wird, dass mindestens 10%, vorzugsweise mindestens 30% der Kapazität des Energiespeichers als Energiereserve (R) verbleibt. 2. The method according to claim 1, characterized in that the Einschaltladezustand (SOCl) is set so that at least 10%, preferably at least 30% of the capacity of the energy storage as energy reserve (R) remains. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Einschaltladezustand (SOCl) in einem selbstlernenden Prozess auf der Basis von absolvierten Fahrten des Elektrofahrzeuges angesetzt wird. 3. The method according to claim 1 or 2, characterized in that the Einschaltladezustand (SOCl) is set in a self-learning process on the basis of completed trips of the electric vehicle. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Einschaltladezustand (SOCl) in Abhängigkeit eines Fahrzieles und/oder einer geplanten Fahrtroute festgelegt wird. 4. The method according to any one of claims 1 to 3, characterized in that the Einschaltladezustand (SOCl) is determined in dependence of a destination and / or a planned route. 5. Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass für zumindest zwei Fahrabschnitte einer geplanten Fahrtroute unterschiedliche Einschaltladezustände (SOCl) definiert werden. 5. The method according to any one of claims 3 or 4, characterized in that for at least two driving sections of a planned route different Einschaltladezustände (SOCl) are defined. 20090402 Patentanwalt 20090402 Patent Attorney <Fu/ o> Dipl.-Ing. <Fu / o> Dipl.-Ing. A-1150 Wln Tel.; M31) 882 A-1150 Wln Tel. M31) 882 WWaMfl <EMI ID=6.1> WWaMfl  <EMI ID = 6.1>
ATA525/2009A 2009-04-02 2009-04-02 METHOD FOR OPERATING AN ELECTRIC VEHICLE AT506272B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ATA525/2009A AT506272B1 (en) 2009-04-02 2009-04-02 METHOD FOR OPERATING AN ELECTRIC VEHICLE
DE102010016188A DE102010016188A1 (en) 2009-04-02 2010-03-29 Method for operating an electric vehicle
CN201010159851.2A CN101857023B (en) 2009-04-02 2010-04-02 Method for operating electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA525/2009A AT506272B1 (en) 2009-04-02 2009-04-02 METHOD FOR OPERATING AN ELECTRIC VEHICLE

Publications (3)

Publication Number Publication Date
AT506272A2 true AT506272A2 (en) 2009-07-15
AT506272A3 AT506272A3 (en) 2013-12-15
AT506272B1 AT506272B1 (en) 2015-01-15

Family

ID=40845961

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA525/2009A AT506272B1 (en) 2009-04-02 2009-04-02 METHOD FOR OPERATING AN ELECTRIC VEHICLE

Country Status (3)

Country Link
CN (1) CN101857023B (en)
AT (1) AT506272B1 (en)
DE (1) DE102010016188A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134992A1 (en) 2010-04-29 2011-11-03 Avl List Gmbh Method for operating an electric vehicle
WO2011160995A1 (en) 2010-06-24 2011-12-29 Avl List Gmbh Method for operating an electric vehicle
WO2012022454A1 (en) * 2010-08-16 2012-02-23 Avl List Gmbh Method for operating an electric vehicle
WO2015063311A1 (en) 2013-11-04 2015-05-07 Avl List Gmbh Method for operating a hybrid vehicle
EP2428389A3 (en) * 2010-09-10 2016-03-23 Audi Hungaria Motor Kft. Motor vehicle with electric drive and battery and method for operating a device for charging a battery
WO2018091303A1 (en) * 2016-11-16 2018-05-24 Bayerische Motoren Werke Aktiengesellschaft Operating method for a hybrid vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011101550A1 (en) 2011-05-14 2012-11-15 Volkswagen Aktiengesellschaft Method and device for charging a battery for a vehicle
DE102011116184A1 (en) 2011-10-14 2013-04-18 Volkswagen Aktiengesellschaft Method for operating e.g. electric car, involves determining power requirement of auxiliary equipments of vehicle, and determining driving mode for vehicle based on power requirement, where driving mode influences estimated travel time
DE102013013954A1 (en) 2013-08-21 2015-02-26 Audi Ag Drive device for a hybrid vehicle
DE102013224349B3 (en) * 2013-11-28 2015-03-26 Continental Automotive Gmbh Method for controlling a hybrid drive of a vehicle and computer program for controlling a hybrid drive of a vehicle
DE102014203852B4 (en) 2014-03-03 2022-12-08 Bayerische Motoren Werke Aktiengesellschaft Starting a combustion engine serving as a range extender in an electric vehicle
DE102014009448B4 (en) * 2014-06-25 2019-12-05 Audi Ag Predictive state of charge control of an energy storage device of an electrically operated motor vehicle
US9643512B2 (en) * 2015-02-17 2017-05-09 Ford Global Technologies, Llc Vehicle battery charge preparation for post-drive cycle power generation
FR3061470B1 (en) * 2017-01-05 2019-05-17 Renault S.A.S. METHOD FOR CALCULATING A FUEL CONSUMPTION AND ELECTRIC POWER MANAGEMENT INSTRUCTION OF A HYBRID MOTOR VEHICLE
DE102018219210A1 (en) 2018-11-12 2020-05-14 Audi Ag Method for operating a motor vehicle with hybrid drive and motor vehicle with hybrid drive
DE102018219211A1 (en) 2018-11-12 2020-05-14 Audi Ag Method for operating a motor vehicle with hybrid drive and motor vehicle with hybrid drive
CN111038328B (en) * 2019-12-24 2023-06-20 苏州正力新能源科技有限公司 SOP control method based on auxiliary power

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483198B2 (en) 2001-01-19 2002-11-19 Transportation Techniques Llc Hybrid electric vehicle having a selective zero emission mode, and method of selectively operating the zero emission mode
US7449793B2 (en) 2004-02-18 2008-11-11 Bluwav Systems, Llc Portable range extender with autonomous control of starting and stopping operations
CN100999184A (en) * 2006-01-11 2007-07-18 北京嘉捷博大电动车有限公司 Rear driven mixed power vehicle of motor hydraulic device connection type
US7588847B2 (en) * 2006-06-09 2009-09-15 Gm Global Technology Operations, Inc. Advanced controls concept for hybrid fuel cell systems
JP2008201165A (en) * 2007-02-16 2008-09-04 Tokai Rika Co Ltd Hybrid vehicle control unit
WO2008128416A1 (en) 2007-04-19 2008-10-30 The Chinese University Of Hong Kong Energy management for hybrid electric vehicles
US8022674B2 (en) 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134992A1 (en) 2010-04-29 2011-11-03 Avl List Gmbh Method for operating an electric vehicle
WO2011160995A1 (en) 2010-06-24 2011-12-29 Avl List Gmbh Method for operating an electric vehicle
WO2012022454A1 (en) * 2010-08-16 2012-02-23 Avl List Gmbh Method for operating an electric vehicle
EP2428389A3 (en) * 2010-09-10 2016-03-23 Audi Hungaria Motor Kft. Motor vehicle with electric drive and battery and method for operating a device for charging a battery
WO2015063311A1 (en) 2013-11-04 2015-05-07 Avl List Gmbh Method for operating a hybrid vehicle
WO2018091303A1 (en) * 2016-11-16 2018-05-24 Bayerische Motoren Werke Aktiengesellschaft Operating method for a hybrid vehicle
US11299143B2 (en) 2016-11-16 2022-04-12 Bayerische Motoren Werke Aktiengesellschaft Operating method for a hybrid vehicle

Also Published As

Publication number Publication date
CN101857023A (en) 2010-10-13
AT506272B1 (en) 2015-01-15
DE102010016188A1 (en) 2010-11-18
CN101857023B (en) 2014-12-31
AT506272A3 (en) 2013-12-15

Similar Documents

Publication Publication Date Title
AT506272B1 (en) METHOD FOR OPERATING AN ELECTRIC VEHICLE
DE102008056858B4 (en) Method for operating a hybrid vehicle
EP1399329B1 (en) Method and device for control of a hybrid vehicle
AT507916B1 (en) METHOD FOR OPERATING AN ELECTRIC VEHICLE
DE102008017699A1 (en) System and method for providing route information to a driver of a vehicle
EP2714482B1 (en) Hybrid vehicle and method for operating a device for charging a battery in a hybrid vehicle
DE102013016569A1 (en) Operating method for a hybrid drive, in particular for selecting optimal operating modes of the hybrid drive along a route
AT508065B1 (en) METHOD FOR OPERATING AN ELECTRIC VEHICLE
DE102012011996B4 (en) Method and device for optimizing operation of a vehicle and vehicle itself
DE102014014851B4 (en) Method for operating a navigation system of a hybrid motor vehicle and hybrid motor vehicle
WO2017109218A1 (en) Method for operating a motor vehicle, control unit for a drive system, and a drive system
DE102008047380A1 (en) Method and device for the management of torque inputs in an electromechanical transmission
WO2010094545A1 (en) Method for operating a hybrid drive train
DE102014219260A1 (en) Operating a drive device of a vehicle using a control device
DE102016222448A1 (en) Operating method for a hybrid vehicle
DE102010062866A1 (en) Method for creating operation strategy of electric car, involves creating strategy for shutting down aggregate if quotient from costs for energy stored in battery and costs for energy stored in fuel tank is smaller than predetermined factor
DE102006008641A1 (en) Vehicle-operating method for operating a hybrid vehicle uses two or more units with one unit as an internal combustion engine to provide torque for a hybrid vehicle&#39;s driving mechanism
WO2011020704A1 (en) Navigation device and method for recuperation control
EP4015282A2 (en) Method for compensating for idle losses in a hybrid electric vehicle, computer program product, data carrier and hybrid electric vehicle
DE102018211134A1 (en) Method and control device for operating a hybrid electric vehicle
DE102017211548A1 (en) Optimized use of an internal combustion engine of a hybrid drive system of a vehicle
DE102021201379A1 (en) Route planning method for an electric vehicle
DE102016202136A1 (en) Arrangement, means of transport and method for improving the efficiency of a hybrid drive system
AT511553B1 (en) Method for operating an electrical power generation device
DE102016222735A1 (en) A computer-implemented method, computer-readable medium, system, and vehicle comprising the system for providing a vehicle&#39;s quantitative energy-saving potential